KNOWLEDGE BASED PROGRAMMING ASSISTANT,
KBPA-1

by

D. G. Badger
R. Campbell
N. Dershowitz
M T. Harandi
A. Laursen
R. 5. Michalski
D Michie
R. Penka
M. Simmonds

Report No. UTUCDCS-F-82-894, Department of Computer Science, University of Illinois,
Urbana, April 1982,

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

UILU-ENG 82 1708

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois

Knowledge based programming assistant
(Proposal to IBM Palo Alto Scientific Center: Nov. 1980)

by

D.G. Badger*, R. Campbell, N. Dershowitz, M,T. Harandi, A. Laursen,
R.S. Michalski, D. Michie, R. Penka*, M. Simmonds*

* University of Illinois Computing Services Organisation

FILE NO. UIUCDCS-F- 82-894
April 1982

Piape 1

SUMMARY

Ly A R —etw

The kuowledge—hased programming assistant (KBEPA) is an expert system
te aid programmars In the debupging of their progranms. This proposal seceks
support to study and construct snch a system by applylng kaowledge—oase
managoment methods and techniques for coaputer Infecerce (deductive and induc-
tive) to debugaing rules and error statistics. The knowledpe will be gathered
from expert propramumers, professinﬁal programming advisors, information suap-
plied by surveys, and analysis of the actual debugping process. Specifie

poals include:

¢ Identitlcation and analysis of classes of programming errocs

(compile~time and run~time) anennble to KBPA,

® Davelopnent of decision rules fur the diapnosis of ithez? crrors,
reproventative of the cexpertise of experienced rengrampmers and

pragramming consultants.

% Implementation of these rules in rule-processing soitvware systums
developed locally and already shown effectiva in other application

domalns..

® Use of sucu impleventations te study the particular problems posed

by the debugging domaln.

* Developnent of aun cxperimental XBPA fnr small computers in the

ficld.

Page 2
I Intvoduction,

Program debuppging Ls a time and resource consuming activity. Pabug-
plug a program cannot be entirely separated from the problen of uaderstanding
it, and program understanding requires the 3bility- to form -descriptioins,
While formal semantlic descriptions aond [ormal program verificiation describe
properties of programs, such technlques are not casily applicable to aiding
- the dehugging_of prograns writbten by applicntinn progsramaers vho have nol had
formal computer sclence education. We propose applying kaowledge-base manaje-
ment methods and techniques for computer Inference to develop an expert systew

for assisting programmeras debupging their programs.

A key issue to the application of expert systens to debupzing is the

categorlzation and description of programs and programming errors.

2 A Classification of Debueping.,

In this section we cxamine the approaches to debugging that have been
suggested 1In the literature, dlscuss errors and various ways to cateporize
them, and discuss various approaches written by “human experts’ that attempt

to help the Fortran proprammer.

2.1 Tho Nature of Frrors.

S A Bl e A g —l

Ervors can be characteriziod by the time of thelr detection, by the
type of Ffaults that cause them, by the process in which the errors are

detected, and by the technlques that can bz used tn avold then.

Fape 3

242 Characterization of Frrers by the Tipe of their Detection.

— s o R — I W =m—

I e—— N TR R B it S e S s e L - = R e —

Two raln classes of errors can be dis tinguished: those that are
di{scovered at run-time and those that are discovered at compile-time. Sub-
classes of these ervors can be distinguished, for example by identifying 1in

which pass of the comwpiler they were deteclLed.

2.3 Characterization of Errors by the Type of Faults.

PR ————————— e S P E A e - — ke = veledd remr s e b

Yourdon pives an extensive characterization of program errors. His
characterization is partially reproduced below and coanents have heen inserted

to describe thelr applicablility to the Fortran debuncing situation:

2.3.1 Logic Lrrors.

Sy — AL

Logic errors are norwally the most common type of conputer bug and
nost of Qur'testing efforts are jnstifiahty directed towards these bugs. For
the purpose of our discussion, we can assune a logle error to be a solid
repeatable bug, If a aiven test Input exposcs the presence of a bug, then the
same input, whecn presented to the program a secoad time, should expose the

same bug In the same way.

2.3.2 Documentation Lrrors.

There are some Jocunentation uppllcntionslwhuru a programming error
can be just as serlous as a loglc error. ln most cases, we would be more con-
cerned with errors In user documentation specifically when the documentation
incovrrectly tclls a user how to prepare Input for the program; how te operale
the propram, and how tn use and interpret the outpnt from the program. There

are also situntions winae errors in the leehnical docwasntation could be con-

Fapge 4

sidered critical.

2.3.3 gynrlnad Frrorvs.

It is often important to test a program to [ind out what happens 1if
varlous Iinternal tables, buffers, gquecues, or other storaze areas are filled up
to or even beyond their capacity. {Overload errors may well occur in programns

ased by Fortran application programmers.)

2.3.4 Timinp Frrors.

This is a eatcpory that is veually relevant to real-time systens. (It
is wunlikely that these evrors wlll gccur in user programs in the local IBH

Fortran environment.)

2.3.5 Throvghpvt and Capacity FErrors,

Once agnin, this i{s a category that may be relevant only {or real-time
systems, althouph it seems that mote batch-~oriented programs should be tested
in this arca. We are concerned here about the performance of the prograw;
even though it produces the correct output, 1t mﬁy take an unacceptable amount
of CPU time to do so, or it may use an exorbitant amount of memory, disk
epace, etc. This {4 critical for many on~line systems because the performance
of a program is often immediately visible to the user 1a terms of response
tine. 1In a batch program, we mipght stil]l woat to specify (and then test) that
Lhe propram be ahkla to process one transaction per second, that It will take

no more than 109,000 bytes of storape, and so lForth,

Pape 5

2.3.0 Fall-bLiack and Yecovery Frrori.

e ——— il —— e e

Yor a number of pregrens, the concept of reenvery and fallback 1is

quite crirical. (llowever, this category does aot apply to the Fertran uscr in

the cnvironnant in questlon.)

2.3.7 Nlarduvare Errors and System Software Errors.

[——— . L

(Again, this category is not applicable.)

2.3.8 Standards Evrors.

- . ———— e S i ke W

Finally, somc people sugpest that programs should be tested Lo c¢nsure
that they adbere to various programming standards: that they are modular,
woell=-commonted, free of nonstandard programming statements. -(Not directly
applicable to error dinpnosis, although such methods might provide an approach

to an expert guiding a user to correct his program see Eernizhan and Flavgere.)

2.4 Characterization of Lryors by the Pro:esﬂ_in vhich they #re Detected.

Hornlng provides a characterizatlon of errors based on the process in

program debugzing when they are discovered.

ey

2.4.1 Inspection.

S—" ¢ l— — ———

One way of detceting errors Is buman inspectinn of the programs. WNot
very nmuch is known about the psycholosy ol prosram readahility {sce Helssman)

but a few pencral things can Le sald alout inconzistency detectlion.

Inconslstent items are caster for the human reader Lo dicover if they

are located close to each other. MHachines are botter at ploblal analysis.

Pagpe b
It Is casler to find inconsistent paivs of itcias than large collec-

tions of ittems.

Direct inconsistencies are casier to detect than those that require

long chains of inference.

2082 Lexical and Gpelling Errers.

rr————— —— i . — —— s bl

Some faults penerally caused by mechanical errors in program prepara-
tion can Dbe detected pucely by the lexical anilysls within a compller. Such
faults may appeér as ill-formed rtokens or as delimltee f{aults wvhere tokeﬁs
begin and end with particular symbols (e.g. comnments and strings). Hany

mechanical faults {n program productlon lead te spellinn errors, in which

B — ——— e - —

tolkens are well-=formod, but undoclared, identiflers. Morgan cloims that 807
of the spelling crrors in programs involve insertion, replacement, or deletion
cf a single character oe the tranpasition of a pair of chavacters. IJn For-
tran, spelling ccrors appear as implicit declarations and may not be detezted

by the lexical analyser.

-2.4.3 Syntactig Eyrers.

Syntactic.errors are the focal point of error detection and diagaosis
within compilers. Decause syntactlc specifications are precise, it is possi-
ble to develop parsers that accept exactly the specified Langagnapes; because
they dare formal, it i{s possible to prove that parsers detectk any syantactically
tuvalid progrums; It is assuned that syntactic errors will not play a major

role in an expert consultlng system for debunesing Fortran proprams.

Pape 7

Z2.0.4 Statin Qemantlic Lrrors.

i e i et el e R - ——— i

These crrors mnay be detected by the senmantlc routines of a compiler.
Unlike syntactlc errors, there ma2y bhe no formal definition of valid programs.
Most static semantic ervors are detected from the context in which they pccur.
For example, launguages which are astrongly typed (Pascal) can delect errors of
assignment bhetwcen variables with different possible ranges of values.
Assignment from a real to an integer is Invalid In Pascal, for exanple. The
Fortran compiler does not provide much staLi; error dotection because of the
lack of redundancy in the specification of algorithms In the language. Thus,
many static scmantic errors that would be discovered in more recent prograws
miny lanpuages pgo undiscovercd iln Fortran and become ‘run-time’ errors. For-

tran assiznment of a real teo an integer is valld, for enonple.

2slia'd Run-time Error potcction.

s bR e SRR P mm—"

Run-time errors are detected by either the run—tine system of Lthe pro-
gramming language or tho operating systen wlthin whose environment the program
is being exncuted. Such errvors may not directly reveal the location of the
fault that caused them. Detection of the errors relies on information encoded
into the program by the compiler and the environnent in which the program is
to execnte. Fot exanple, ranse checking can be Included in the object code of
the complled proaram and vange ¢érrors reportoed to the run—time systems. Divi-
sion by zere or addressiop a logatlon outside of the storage arca allocated
for the propram may be deteected by the operating system and reported ta. the

run~time systoem.

ape 8

2.%.6 Outpul Errors,

e ekl 2l b, pgn = 1 r—

Despite the successlul exccution of a program, the output from the
program may incorrect. In general, these errors are the most difficult to

corruecl.

Zebiad Undetected Faults.

T A B e e et e i W e it e e o

Lastly, [or conpleteness we must mention that some faults within a
propram will generate crrors that are not detected, untll some very special

combinatinn of (he input paramelers Ls used.

2.4.8 nrror Detection and Corveetinn.

—— ——— . Wi | ———————— . m. = e m— e —————

beveral stwdies (Cannon 1973) have shown that the earlier an error is
detected in the process of compiling a program Lhe faster it can be corrocted.
The following results were obtained for the averape persistencnr of faults
asgoclated with the wvarlons classes of errors in two exanple programuing

languages.

lexical arrors 1.00 run
syntactic crrors l.34 runs
samantic eriors 1.24 runs

run-=time errovs 5.78 runs
output errors 8.52 runs

The curzent trends fn the development of programuing lancuapes 1Is
towards producing more relfable lanpuases which deteet errore as early as pos-—
sible. Clearly, the results from this study deaonstrate the Importance of a3

pood diapnosils and treatment Tor ruan-t lee aod aoutpt errors In existing and

‘ape ©
future lanzaazes vheve diapnosis hy tihe conpiler and run-time eystom 1s not
possible. In the neat section we will discuss various attewpts by “experts
to provide a sot of diagnostic and dobugting rules for run-time and output

CYrors.

245 Msestivpuishing E-ror Prene Lanpuape Features.

P — P N vromie = — e r———— i drerai v | e e m— e A AN TN W W P y——

Goe established wmethod of examining a prosram for possihle errors is
to Inspect clnﬁulf constructs that are error prone. Scveral studizs have
examined programming lansuape features to abstract general principles about
language decizn and rveliability. These provide a useful framevork for the
design of rules in an expert system. A short list of such analysis is offered

helow:

GO TO statements (sec Dijkstra). To Fortran mnst of the desired
control coastructs must he built out of the use of conditional
statements and GO T statements. Knonth points out that certain
uses of the GO TO statement ave less ervor prone than nthers. Ia
partictilar, use of the computed GO TQ and non-nested control low

constructlons might he valuable knput for an expert diagnosis.

Global variables (sce Wolf and Shaw). 1In particular, the use cof

COMMON and FRQUILVALENCY In Fortran.

Pointcre (Hoare). Polnters are not permitied in Fortran, but pro-
Frams cenploying list str¥uctures constrocted from avrays and

Indices provides a «bimper arca.

Selection by positieon (Tebbinh and Rissen). Lony parameter lists

are principal olfendoers.

Fape 10
Assiganent statorments in their anrestricted form (Strachey). For-

tunately, this doees nat apply to Fortran.

Defaults and implicit type conversions (Jlmare). Taey hide too many

propram faults. This s o difficult problem in Feortcao.

Duplication (Clark and Horning), useless redundancy at its worst,

For example t he EQUIVALENCE and COMMON statements of Fortran,

2.6 Anomaly Dletection.

e ey il — . T e A ik B it - i w ¥

One approach to the certification of softwire that has been proposod
In industry (Stucki, Osterwiecl and Taylor) is to examine the program for pecu-
liar use of propramming constructs. Exawples of propram annamalies aré SEC-
tions of code that arc 1paccessible, uninltialized variables and infinite
loops. Wiether this approach minht prove useful to an “expert’” debupmer mipht

be considered.

2.7 Approaclies to Deburrine.

Wy i vl — N p—— —— - —— A - - - .

The major problem 1in debugping, perhaps representing 95% of the
effort, 1is the lacation of the fault in the program that lead te a particular

error. Myers categorizes rthe actlvity of debugping Late several approaches.

2.7.1 Debuedng by Brute Foreo.

- F Rl] TE P FRELAEE B el B AF S w s gl = m—

This approach {s charactericed by sttempting to debup using the least
mental effort and rolylng on the conputor providing Information. Exanples of
technlfques in this eaterory are detizeelneg uning a storaee dunp, debupainge by

scattering print statewents throueh phe program, and dehugping with automated

Pag~ 11

debugaing tools such as symbolic duaps, traces and Interactive debugnpers.
Uslng a storape dunp to locate the ervor is inerficient ang diflicult

for the follawin: reasons. 1t {s diificult te relate a large mass of informa-
tion to the variables and code of the program. The dunp represents a static
plcture of the program, not the dynamic one which corresponds to the progpram’s
evecution, The dump 1is rarely produced at the momant the program generaltes
the error, Wt only later after the error is detected, Scattering
print statenents ofters little better debugping features. in particelar Lhis

approach may produce lavae amouats of information, the extra staloments may

cause errors, and the wethod is hit or miss.

The automated debupring tools also generate significant amounts of

data and are hit and niss.

There §is experimental evidenee given by Gould and Draoepovski that
debupalne aids do not “assist the debagaing process, aad that, in terms of the
specd and accuracy of findinyg the crroer, people who use their brains rather
than a set of "aids" seem to exhibit superior poerformance’ {sce Myors.)
Clearly, here is a challenpge to test the abilities of ‘expert’ systems. Brute
force methods are counter-productive and debugging cequires the applicalion of
reasoning. The brute ferce methods mny be success{ully wused ta supplement

reasaoncd debugaing of proprams.

2e702 Debupeing by Human-oriented Induction,

—— mmam . kA B ERWW e WM AN e e e e e . - e -

The Inductive approach tn debupgine follows the following alporlithm,
1} Locare the pertinent data., Enuaorate test cases that work and
do uod vark,

2) Drpanize the data. Streuvcture the data to tacllitate deteection

Pagae 12
of patterns. Contradictions are frerquently imnpertant clues. One
organizat ional technlque proposed is "The Hethod™ (Brown and bSamp-
son). This approach orsanizes syrptoms into a table with one axls
specifyine when, whore, what, and to what extent the symptows
occur and the other axis deseribian confrndictinns.

3) bevise a hypotheses. Study the relationships and clues and form
one or more hypothesis about the reason fur. the crror. If a theory
cannot be developed devise some more test data. IF several
theorics are devloped, select the most prohable first.

4) Prove the hypothesis. Compare the bypothesis with the Qriginal
data and ensure that it accounts for all the syiaptoms. Avold fix-
ing just the symptoms.

5) Now fix Ll fauvlt in Lhe program.

2.7.3 Debupeine by deduet!on.

A — e s iy i G Ry e b S —— e R A T - -

An alternative appreach to debugping 1s to use the following alpo-
rithm:
1) Enumeriate the possihle canses and {orm a hypotheses.
2) Use the data to eliulnate nossible causes.
3) Refine the lypotheses.

4) Prove the hypotheres,

2.7.4 Belmpoing by backtracking.

- m R e e M m 2 rd e — —————

Starving from the detection of the ervor, Incurveet results are used
In & backtrackdng alpoerithm through the logic of the progrom. Useful for

small proproams.

Papn 13

2.75 Debugeing by testin.

——ray. (e e —— i e st W W —

After the detection of an error, modify the tecst case that poneridtes
the error slightly with the eobjective of pinpointlng the prograw Topic condi-

tions under which the error occura.

2.7.6 Further Dobupeion TPrinciples.

1
o — e ——— % ———— - b rm VR EETR W m——

The follouing comionls are a}ﬂn frequently made ahout debugping (e.g.
Myers).,
1) Where there s a bup there is likely to be another.
2) Fix the error, net the synpton.
3} The probability »F a fiw is nol 100%.
4) The probabillty of the fix being correct drons as the prog.ar

size fncreascs,.

2.7.7 On irprovin~ error analywis.

———— my e e Ui e Ben W M MR e e —

It would appear {rom many articles that it is important to obtain a
clear understanding of the prohlems of a set of vsers in developlnp programs
in a partlcular environnont. Particvwlar errors occur very frequentily aad
their prohability of arising can be 3 source of Infermation directing the
scarch for the Flx., In particular, a vaiefol apalysls of debupping acitivities
should record the folloewine kinds of information for study:

1) Vhen was the error mulde?

2) Vho wade the evrov?

3) Vhat was done lncorvectly?

4) low could the error bave been prevented?

5) Wiy wasn™t the ervor detoected eaclior?

Fape 14
6) ilow could the werror Lo detected earlier?

7) tiow was the cevror found?

2.8 Diapnnsia of Softvare Frrore fron Syeptoms of an Frror,

— i G I S e Mmamt it Lem s e i L S m e ml rmh N R EE e e s s P R man mmw - omom e el ema-d

his leads on naturally from the preceding sectinon and has special
relevance to heouristic wmodels of de-bupaing (sea later). Thayer ct al.
describe scveral weasurements nade of software rvreliability. In particnlar,
in one analysis of Fortran and Aszcenbly Code an attenpt is made to categorize
a set of symptons and to deterweine the probabillties that, gilven a set of
synptons, a diasnosis con be made of the oripinal programming favit. Jue
causes of an erruvr are divided into twelve categories which are subdividel
into further nsubcaterories. Franples of the cateporles and subcatoporics

chosen aro:

1) COMPUTATIONAL FIRORS
I.1) Incorrect opurand in ¢ruation
1.2) Incorreect use of parenthesis
1.3) Simn conventlon erroc
1.4) Units or data eonverslon error
1.5) Computation produces over/under=Fflov
I.6) Incorrect/iniccurate equatlion used
1.7) Preclialm loss due to nfxed mode

1.8) Miszsing conputarion

1.9) Rounding or truacation errer

C) LOGTA RRRONS

2.1) Incorreet aperind in logical exprossion

Pags 15
2.2) Lople acrivities out of sefuence
2.3) VWrong variabie heinp chicckad
2.4) Missiup losle or condition tests
2.5) Too many/few statemcats Iin loop
2.6) Loon iterated incorvect number of times

2.7) Duplicate logic

The error catepories provide a very good starting poiat for the work on an
expert system. The symplons ore divided Into twenty flve eateenrics. The
following is a sample of soune of these symptons!

Bata Overflow

Incorrect Processing (Tncorrect ansvier.)

Abort

Prematnre Progeam Erit

Loun

Too MHuch Output Produced

The resulls fron their analysis do not encourage the conclusion that

diagnosis can be made sipply from the symptoms. 7They coﬁclude that the com-
binations of synntonms would need to Loclude not only the sympton description,
tut also certain auxiliary data such as bLranclh execution [requency tables, a
1{=st of set/use discrepancies, and other dynnmfcﬂlly obtained data.

O R el M L e v VT M 2 RSN mfe sepe e e e rmd

2.9 Informatiom Available for uun hy mm Lxpert Debupgor System,

A e o m b — i d——— T e pe———

The Couputrr Svvvices OfUice provides a number of utillties that may
be nsed to obtaln Informition abant the behivior of &4 Fortran program thoy

help satisiy some of the demands required in a diagnosis of program errvors.

In addition to the conpller ereror messages, there ave theee different run~time

Page 16

systom alds that pather Infoinmations

1} PR An errvor vecovery packape that atte.gpte to track down the
source of an execcutlon errer. PMD cenwrates a symbnlic trace of a
Fortran program. The values of variables may be examined includ-

ing the values of avrays.

PM) is distributed by CBC and ts Dbased on the leicester Trace

Packagn.

2) Fortran Trace and Dabug Dircctives Six optiens are permitted
and recognized by the Fortran compiler and can be used Ffor debug-
pinge These six oprinns nre: ARRAYS, Lurns on subserlipt checking,
CALLS traces calls to and retorns from eabiroutiney, FUNCS vhich s
similay to CALLS except it applies to fFfunctions, STORES which
traces stores into Individual wvariables, COTUS checks assigned
GOTO statements, and TRACE whlch provides o trace of gotos, con-

puted potos, arithmctic 1Fs and the true side of lopical ITs.

3) The CYBER Interactive Dobup allovs the interact ive setting of
breakpnints and the examination of the contenls of viariables using
thelr sysbolic macs. The interactive debug nystem 18 more expon=
sive and may aot yield itself Lo Furiher analysis by an expert

S}’S LP"II

A docunent. produced by C50 describes some common causcs of error that have
been woted Lo accur hy €0 staff. In pavticular, several of the errors arce
direcetly related to the vavironnent in vhich the Fertran Propamsg are exo-
cuted; notably the Cyber.

1) invalid subseripts.

Page 17
2} uvatnitiallzed varlahles.
7)) varesolved esteraal references.
&) subprogram calling problems; the wrong argument count ,
incorvect argument types, incorvect argwment dimensions, the
changing of constant pavameters.,
5) misuse of the common block.
6) CNC prcularitics: neceslty to rewind files, nerd Lo use OUTPUT
sﬁatcmnnt on PROGRAM statement, DATA statemaent conflicts with
type, array subscript ﬁﬂsumptionﬁ.
7) use of lllegnl values (undefined, Infinity,cte.)
8) array storape confunion.

More Information can be found in the CH0 document, CYBER FORTRAN DEBUGCGING.

2.10 A Txample Export Guidn to Dolug-ing Fortran Proprams

et I R - e T I R R] —.—.—i-' ————

Kerulghan and I'lauger’s "The Elements of Proepramming Style" provides a
very -1ntercsting description of the most common fallings of Fertrvan program-
mers. 1In this section we examine this book as an example of an expert alding
the user to produce more reliable and ‘better’ programs. Such a collection of
rules might he ufed to 21 the .prugrummer rewriting faulty parts of his
soltware Iin a manner to eliminate further mlstakes, cernighan aund
Plauger provide 62 rules that, if {olloved, will aid in improving the clariLy
and reliability of a program uritten In Fortran. The vules provide a puide-
line for when and how certaln (nften nisused) programming lanpuage constructs
should he used In an appllcation. In the countezt of an autom:sted Fortran sY5-
fem, thoge ruloe provide a starting poiat for gnpeestinns Lo correct a pro-

KU am. They also provide a mechanism to Indieate sources of possibls crrors

Pape 18

and ways Firr anvice prosrasmers Lo odevelop their proaranniag technique, For
example, questinnsg of the fora

Did you write this program yoursel{?

How much proprimming expericnce have you?

ﬁocs your progsram inclode a cowputed GOT07?
might reveal a nlavety in the progrumﬁer that 1s best referred to an Instruc—
tor. Similarly for an ‘expert’ consultaltion that has establlshed that the
program entored an infinite loop and that #t is the programrer’s flrst real
number ccmputation asaipgnnent an Approprate enguiry mipht he whether rosl
nunbers are usad in any comparison for equality. Input to and output
from a program are {requently the source of error. Kernlpghan and Planger
apply several important principles to this area which might be gencraiized in

an ‘cxpert’ systow:

1) Choeck input datn for valldiry ond plausihility

2) Malke sure that dqtn does not violate the Limits of the progran.
3) Read iaput until end of file, not by count.

4) ldentify input crrors and recover if possible. Do not stop on
the flrst error. Do not ignore crrors.

3) Use mnemonic Input and ouiput. Halke input easy to prepare (and
easy to prepare correctly). FEeho the input and any defaults onto

the output; make the outpnt self-explanatory.

A separate section in the book outlines ecowmon blunders. Kernlahan
and Plauper liast the (ollowineg comon sonrces 6f errors
1) Variahle Inittallzation
- i]-:m'_l' stop esaadndag Lthe proore aftes finding one error.

3) Use the debuesing facilities of thoe conpiler.

sage 17
4) Watch out {or off-by-one Crrors .
5) Tale care to braneh the rinht way on cqualiry.
6) Examine loops that exit to the same place from side and botltom.
7) Hake sore vewar code "does nothing"” pracelully.
1) Test programs al their boundary cnndittunﬁ.
8) Check some ansvers by hand.
10) 10.0 times 0.1 is hardly évur 1.0..
11} Don‘t compare floating paint mnmhers nnlﬁjy for vgquality
12} Check array references do not go oul of bounds.

13) Yo not count with [loating polat nunbers.

3 Enowledre Lorod Sysinons,

e — v ma m—— s e R R s e e mmf e = SR

3.1 Al ficat ITniciliperee Applicd to Propranmivn.

o — i A wnm A N e s — N — e AN A R o ————— 1 . N

Mueh Artificinl Infﬂlligcncn vorls has roots In automatic propgrarming.
Floyd’s proposals were owong the earllect of those to envisage a "programaer’s
apprentice” nodel, They were followed by a succession of experimental imple-
mentatinans leading to modest but defiaite practical successes and sope unlty-—
ing princlples. Voork nt'HIT_by Caldstaln, Sussman, Ruth, Waters, and Rich &
Streobe, awml other work by Stelaneacu and Szhnetdecman & lelay, all gravitated
around the debus-ing problem, classifying this inlo (n) fallures of the pro-
pram to correspend to Lhe speci{ication aud (b)Y evrors of the speclfication
ftself. Other, vore formal, apﬁtunnhuu to debusninz [nelude work by Katz &

Manmt, Saplv, and Dershovitz & Manni,

A predicoto=locic-biased asrecam of fdeas vhich intplred these fnvesti-

pations tefepered o the Unlted Kinedom a departvre o Foprogramalng lanpuane

'age 20
desiga bn which the distluction butwoon propgram-excention and automabic
theorem—proving is partly cobilterated. Relevance to the avtomatic pregramaing
prohlen has recently heen acecentniabed by the demonstration by Clark & Ternbund
that a PROLOG program can be proved corect by daducing it as a ;hcorum from
.its formil speclficatlon. Other vecent work on [ormal derivatlon of PTOPETaNSs
includes Manna and Valdiaper. For a survey of propram synthesize ﬁethnds S50
Biermunn. As a correctlen to uvur;cnphnnlzlng parely dedoactive paths, recent
projucts by UBiermann, Sumers, Jaunnnnnd & Rodratoﬁf, and Shaw, Swarloul &
Green deomonstrated synthesis of corvect LISD programs not by deduction fron
the formal saspecification bLut hy cnmpuﬁer induction from examples and coun-

terexannles of the transforuation to be programmed,

Recent yoars, vith increasing conrleoxity of the basks attempted, ha-re.
seen nore stress oa the vole éf mrehine=stored orpanizel hknowledpe. The IS
system (3 typlcal "Expart System”) is the most carefvlly vorked out experimen-
tal approach to date. The orlpinal trial domain was suwring; more recently
the conmplex task of syuthesizinpg a prosrom for concept-forming wvas tacklerd
with substantial success. Other work on progran undervstanding Includes WEl-

cov, Davis & Tindall.

Program debugpling 1s related Lo the recently popular ficld of program
transformations, see e.n. harlington & Burstall, Loveman, Standish et al,, and

Wepbrelt. NHovewver, most of this wvork has taken a forwal approach,

3.2 Comaereinlly oriented work,

— T RN e el - B SN T W N TN BN EES SR 1R WY e e e

Oac of the mala conters of wvork on eowievclially—orivented auvtomatic

prao- owlng Ao oat IBM, Yorktown Helpgbts. A major project for some yeoars has

Pape 21
been the developaent by Patricia Galdbersg’s group of ‘a system for bLusinens
data processing, 1in which the task is described in a very hizh level, non-
procedural datatlow lanpuage. A program Is then penevated: if the problem
specificatinn wias incorplete the user is p-runlpi_nd to provide the missing
fnfornatton, awd if the probloem formulation is inconslistent Lthe system will

conduct a dialopue with the user to dnfina the problem more precisely.

Meatton should be made of seme recent UX work aimed at automating the
construction of commercial data procassing proprams by the "ilichael Jackson"
methodolopgy. Jackson’s method 15 a manual téchnfque for constructlng pro-
grams, starting with speclifications of the manual techinique of the Input and
output files. Cnlemnn at UMIST ouserved that since the file structure could
be expressed N HH?,'thv proge-us could be synthesized by a syatax analyzev-
generator., His cu"wnrk&r lghes investipated In more derall the precise elouss
of problems to which this technique appitics, showing that autonatie peneration
is poscinb!z enly if the files can he described by regular expressions.
Further work on the autouwated production of programs for distributed computiug

gystems is LIn progress.

3.3 Relation to Expert Hyotorms,

e e T B W e ey . e —— TN N s

The: eonnection botween automiatic synthesis aud debugging of programs
and work on “knowledse sed” or Mexpert" systems arises In two di{ferent

ways. Oa rhe onc hand, there Is the tdea of implement ing programming expers

tise as an fateractive system: this

LY

g easentially the "propgrammer’s appren-
tiee” roncopt. Mot surnrisingly the desion principles show essentlal slmilar-
{ty to thouse yoveraing the Joplementation of knowledge=hased expertise In

other donatns of mental skill==clinical consultatian, mass spectrometry, plant

Pape 22
patholoey, efes This siwilarity of structure [y scen particularly clearly In

Green’s PST systom mentioned earlier,

On the other hand, many expert systen projects In applied sclence at
soan stape devalop & need Lo provide the demain~specinl ist with sulficient
autopatic propramming aids to lighten his task dn tranulerring to the machibe
the bodles of knowledse necessary for Lts decision—-taking. Examples are the
Heta-DENORAL module ﬁf Lhe DERDRM. chemistry .syntvm and Michalski's 'AQII
inductive Inference prosran used for dotermining decislon rules for the
PLANT/DC system (soybean diacases). A recent exeveisc Ln the same vein was
undertaken by T. Niblett and A, Shapivo using Quinlan’s 103 algoritha to
machine~ synthesise a classilication program for o difficult-to-propram chess
endpan, A neoed for prosram synthesis alse arises in a slighll? different
sense vhua the cxpert shill deployed by the knowledge-based system bas the
construction of plinn of action as an iuportant cenponent of ks consnltative
task. An example is the SECS program for planning organice chemical syntheses
developed by Tod Wipke; other coues arise in planning manipualative movorents
by assembly robots, in scheduling problems, in couputer gpame-playing and in

uther applications where maans—ends analysis and attainpent of goals are cen-

tral.,
A distinguishing feature of our proposal 1s that thlis connegtion camesg
In twlce over. Parts of the system s programmlng expertlise will have heen

buflt with the afd of purts of this sane expoertisoe.

4 Propased Syoatem.

L v —— o ——— v a——y w - -

Papeo 23

O, 1 Hourictic Madels and Deop todels,

Our plan of work and division of functlons follows a particular way of par-
titioning the structure of cxpert bohavlior inte two major camponents, namely &
heuristic model and a deep nodel. Great convenieners attend treating these Cwo
models as s:ép:n'.-n_e. The dichotonmy reflects the fact that (with some variations from
one domaln to aunther) a consultant or other perseon with a highly tralned gquest ton-
answer ing skill can usually anszwer Lhe overwhelming majority of client s questions
"off the top of hils head", just as a Fisher ur.a rarpev when playing wunder the time
constraints of lightn[ng chess enn usually find a wmaster move In five seconds (leus

than 200 binary decisions in terms of hwman compute time).

The discovery that a domaln specinlist’s top~of-thc-head skill can be min~
{cked by relatively slmple and uniforn computational structures, bascd on ﬂattefn-
driven situation-action rules, is what has led to the reecent rapid developaent of
export systems such as HICLEN, NOLPLCTOR, PUFEF, WVid, SACON, and others. Tt is not
genurally understood that pgilven an epproprlate cholece of domain (the de=buniing
domaln 1s actually unlilleay to be such a case) a sufficient lavel of expertise can
be implemented using a heuristic wodel alone, with no need for the more difficult
and costly task of constructing an qdequate deep model. By a "deep" model we mean a
representation of the dumnln's'lugical and cansal structure topether with procedures
for search, caleulations, and reasoning, with which reconpendations for action may
be dug out. Tn other domalns (we helleve debupnbng to be one of them) the ideat
system tncorporates both types of model as seperate sub-programs, and picks them

appropriatley. Some well-studled exanples will help.

The

AL L

Biaveling,

An avering
questions in
arithmetic

Honingitis
dinenosis ond
proeseribing

The three exanprles heive

hearistic

following

modalsa.

thirree

HELRISTIC MODEIL

what every bievelist Mknows”
(hwe doesn’t vreally, but

rellas on sublipinal tripmeriag
of learned stinulus-responsa
honds)

What every caleulabing prodipy
tnows (mainly in rhie foru of
Ehve ts-1ike site tion-actinn
rules)

What evary spocialist knows
(vell nadalod by HYCIR)

arts, all three are probahblly intractable by implementaticn of

exmwples are different.

each case provolnd successtul fmpleventations using

Fape 24
pEEP MODLL

Noewtonlan dynanics
plus control theory

Aximaatisntions such
Peang’s plus inference
procedares,

Anatonteaal, phvsiolopical
fluid-dynamic..l, and
pharmocalopical model
of. tha braln; plus
hiophvsles, chamistry
{(maleealsr, orgaunle,
inoresnic) of pathoaeans
Aamd Jdruzs; plus logical
madel of evoryday

life suffleionat Tor
interprating pationt
historics,

Fpen daliberately chonoscn for bafng tractnble by use

In the present state of the computing aond domain-specialist

decp uadels alone.

Pere one and the same problem has in

hoth Xinds of model,.

by ey b

Papn £

STILL | NLURISTLC HODIL DELP MODEL
pole=balancing Chambers & Micehie’s BOIN! Eastwood, 13168,
under consteaints 1958, 225 pntLurn—dlrnLtud Hewtoniaa Aynanics plus

rules. control theory

Contrnl of Yarpe Assoctative store of Highly developed
cloctrical povar pattutu-dllvun rialaos. Tepiesl and nuaerical
systoms (Pao et al. mndnl of electrical
Case Western Res. U) powcy systen.
Fault-dlapgnosis In nouse and lant’s "S-rules” Pounce & Nant’s "T-rules”
clectro~mechanical mappiop frow symptonatic cwhody In the lepienl
systons (U 1)1in.) patteras Lo decisfons. causal domain struecture,

The slmplest way to combin? the tin kinds of model in a sinsle syctem 1§ for
the deep model to he used as default to angwer those questlons where top-of=the head
rules fall L.e. whenever exit occors from the heuristic model Ehrongh fallure Lo
(Ind an adeqﬁnte pattern march. Retrospective analysis of the first case tabulated
above (pele-balancing) showoed Lhat soaeh combination uould have Prtﬂt1f improved thoe
ECnnnlic' of weach, but In difierent ways, the run-time skill of BOXES ang the run-

t Ime eosts of Eistwood s prosrame An is 1 vitably the case in }_“LLH‘I«!] implemonta-

tion. costs of che decy nodel wore larpe compaved wilth those of the houristic model.

4.2 Division of Functiens and hroud lir t~Year Obijcctives.

S ————— R bk it B MR mmpesteman e mskh B el S wmeelen MW s E—— . — —— - ——

With this back;yround it thﬁmc" straightforward to say who wlll
do what as concerns the techaleal aspect of the project, thus:
heuristic model -~ Hichie (as coftw.e manaper), Havandi (as yaistant
managor), Peulin and Simewends (Aomadn specialliats for FORTRAN)Y, Cuaphell
(domain speclallst Jov PASCALY, Mich.al sk Il (knowloedpe englocer, rule-
acquistion), Ljur$un {kn;wlﬂdgu anpineer, itmplcacatation); ﬂiﬂﬂ.ﬂﬂiﬂl =

Porehowlitz (theoretical bhasts and trlal {fnplementations), Plaisted

Jheonretteal bas in).

1t should be ewphasized herve, and witl b emphasisced apaln, that

Indepeondently of the reerallment

requested the abuve listing of hunan

will over time hecome avallable.

tants under the care of Canphell and

this docmeent, have enmbarkaed on

debusaing and bups-incidence data.

solid

ita

ment 1t {8 bouud to czort a pravitating ianflueace on

minded

As the project moves into action

companent ol our large population of graduate studenis,

Page 20

b made possbble by the Tunds

Lo
resources greatly wnderstates what
Already students and teaching asai-
of Michaleki, who are net namcd in
synt&mntic collection of umpirlcnl'

and

fimanclial hase hecomes knawn in the Computer Scilence Depact=

the mare actgive

Thisg s

where much of the {mplemeniational hard work will come from, supplement-

ing that of the M.S5.

whiich
Fhonselves,

sot inl dnvestivotores

confideat of having a heuristinally boased expert sycten to

the ond of

user support..

design stuly to bhave

nmadel, starting in yeas

the cwvolving heurlstic model.

glven continnation ¢f funds, the heoristic model

yield a wversion

fully docwierntred fora on Lthe Sariew 1,

buprlng aids,.
at the heuvistic level will
will

then be

both, or anly oune, ot the divercenl henristie wodels

tie Lheowrecically oriealed

salarios are requested, and the work contributed

the (iesc year vhich will elineh the fcasibility of
During the G period we expect a

2, capabln of

Ve

inevitably divergn,

Feasihle or desirable for the decp model. to

gtanedies

student vho has already stacred, the posts for

the profes-

by

For tihis and other reasans voe feel

ehou belore
useful

theovet ically based

Lren completed as the basis for buildling & deep

giving powerful default back-up to
currently believe that in year 2,

should be re-vauped to

for PASCAL . which hy then will hgve attained zcolid and

complete with conveational de-

Frotution of the model For (W FORTRAN will cont lnue, and

The degree to which {1t

"Enow about"

s will form part of

nf tha Ffivst year (Derchovitsa,

Plainted).

We proposc fnitially constructing a protetype expert systoem
which will embody a henristic model of debugaing, It will be bascd on
measurcments and analyses of programning ervocs and faults. The inten-
tion will be to achleve a quick but convincing demonstration of feasi-
bLlity in parallel with longer term studlies directed tnwardé a "deop"
model. The system will be huilt {rom locally nvailnhlv software written
in Pascal starting with already {(lelid-tested versions of AQll and

TNDUCE~1 (Hichalski’s group) and AL/X and 1133 (Michie’s group).

Basrcd on erperience with other couplex donaing, ve would oxpect
to build a knowicidee=base of scveral huadrod rules belore attafaing
truly experié pevforrmance. Thene rules will for the post part he hand-
cravted ard tested, altthough progress with cﬁnnputlnr induction ("proprane—
wming by esmmples') ia Hichelski’s and M chic’s proups 1s sulh as Lo
of fer opportunities for takling sowme short cuts. The following set of
cules illostrate what a "rule" wiabt look like Ia the ﬁLIK system for
bullding and exccuting heuristic models. The syntax and camposition of

the rules are, for the purposcs of this exposition, arbitary.

4.3 Samnle Consultation,

v o e = .n - e R - 5 —

RULES:

1¥ ervor is "“inteeor ¥ maxintoeger' THEN theve s an unind-

tialized plebal variahle (09 probability)

IF orror i Yinteper 2 oraxinteger” THEN there 15 iateper

arithnetic »2erfloe (o1 probability)

Pare

IF inteper srithaetle overflow ALRD Lhers in a lonp that con-
taing a recurrcven THEN loop is causing problen (.5 proba-

bility)

I¥ theore 13 tateenr avilhmotic overflow AND there is no loop
canalne the problem THEN error is causcd by cuponentfiation

OR ropeated multiplication (.5 probability)

ar

i h

}

The vrules wmight be appltied by the AL/X system to produce the following

scanario:

Did vou got auy run—-time error massapes? YHS

What was L£? lateper > maxinteger

Do you have a loop in your program that could he inlinlte?

HO

Do you have o loop in your program that has a recurrence

with larpe integer constant coel{ficlent? NO

Do you use exponenblation in your progran? RO

Did you have any onther nessanes? HO

I belleve (G99 porcent probabilily) that you have an unini-

Lialized global wvariable In your progam.

Stateoaenk of Varl,

In the Vlrei fundine porind, we proponse:

e 29
1) A survey of prosramming faults and errors ceeriated by propgrammers of
faternediate skills. The gsurvey will be conducted in our lecal student
envireament and we expect that the majority of programs will be written
by people with one or wore years exparience in programming. The survey
will be performed Vor twe tarpet langonages: Forctran and Pascal. The
curvey material will include analysis ol job streams, individual pro-

grams, and theoretical analysis of the languape.

2) A stully of the feasibility of cxpert debupgiap systens basad upon the

results of Lhe suarvey,

3) Appropriare podificatlon of our current exnpert system sofltware to

accompodate the required work,
4) A worling rula base For one of the domiins, namely FORTRAN/ISH 4136,

53 Tha construction of an cv<anple rvule<hased expert that generales
adviee for a linmited, bhut reallstic, subset of erruvrs. Plartcicular
eaphasis will be placed on developing a “friendly”® and iInterachive

expert system thot requires l1ittle prior knowledge for its use.

a2

6) A study of the feazibility of a small expert debugning system suit-
able four wini-¢ooputers such as the Series 1 that wvoeuld support

sof twarc langnace pradoacty,

7) A theoretical desion study of the desirante properties of a "deep
nodrl" of de=bnesing and a eritique from this stoadpaint of the ecvalving

hevtrbstice rodel.

)Y Quarterly two=piape proercs--veports accaompaniod by vigitn to the [3H

Palo Allo Coater Lo protent propress,

30

References

Biermann, A. W.,"Approaches to automatic programming," Advances in.Cﬁmpﬁfers,
- vol. 15, Academic Press, New York, pp. 1-63, 1976.

Biermann, A. W., "The inference of regular LISP programs from examples," IEEE
Trans. on Systems, Man and Cybernetics, vol. SMC-8, pp. 585-600, 1978.

Brown, A. R. and Sampson, W. A., Program debugging, HacDonald, London, 1973.

Clark, K. and Tarnlund, S., "A first-order theory of data and programs,"
Information Processing (ed. B, Gilchrist), pp. 939-944, 1977.

Davis, R., "Generating correct programs from logic specifications," Ph.D. Thesis,
University of California, Sant Cruz, CA.

Darlington, J. and Burstall, R. M., "A system which automatically improves pro-
grams,’" Acta Informatica, vol. 6, no. 1, pp. 41-60, 1976.

Dershowitz, N., "The evolution of programs," Ph.D. Thesis, Weizmann Institute of
Science, Rehovot, Israel, 1979.

Dershowitz, N. and Mamna, Z., "The evolution of programs: Automatic program
modification, IEEE Trans., on Scoftware Engineering, vol. SE-3, no. 6, pp. 377-
385, 1979. o

Eastwood, E., "Control theory and the engineer," Proc. IEE, 115, pp. 203-211, 1968,
1968.

Floyd, R. W., "Toward interactive design of correct programs," Proceedings
Information Processing Congress, Ljublijana, Yugoslavia, PP. 7/-10, August
1971. '

Goldstein, I. P., "Summary of MYCROFT: A system for understanding simple picture
programs,'" A.I. Memo, MIT, Cambridge, MA, May 1974,

Gould, J. D. and Drongowski, P., "A controlled psychological study of computer
program debugging," RC-4083, IBM Research Division, Yorktown Heights, NY, 1972.

Gould, J. D., "Some psychological evidence on how people debug computer programs,"
Int. J. Man~Machine Studies, vol. 7, no. 2, pp. 151-182, 1975.

Green, C. C., "The design of the PSI program synthesis system," Proceedings of
the Second International Conference on Software Engineering, San Francisco,
CA, October 1976.

Green, C. C. and Barstow, D., "On program synthesis knowledge," Artificial Intel-
ligence, vol. 10, no. 3, pp. 241-280, 1978.

Horning, J. J., "Programming languages,” Advanced Course on Computing Systems
Reliability, University of Newcastle upon Tyne, 1978.

Ingevaldsson, L., Jackson structured programming: A practical method of program
design, Input Two-Nine Ltd.

31

Jouannaudi, J. and Kodratoff, Y., "An automatic construction of LISP programs,
by transformations of functions synthesized from their input-output
behavior,” to appear.

Katz, S. ®. and Manna, Z.,"Towards automatic debugging of programs,"” Proceedings
International Conference on Reliable Software, Los Angeles, CA, April 1975.

Kernigan, B. W. and Plauger, P. J., The elements of programming style, McGraw-
Hill Boock Company, 1974.

Kernigan, B. W. and Myers, G., The art of software testing, John Wiley and Sons,
1979.

Kowalski, R., Logic for problem solving, Artificial Intelligence Series, no. 7,
North-Holland.

Loveman, D. B., "Program improvement by source-to-source transformation,” J. ACM,
vol. 24, no. 1, pp. 121-145, 1977.

Manna, Z. and Waldinger, R. J., "Synthesis: Dreams => Programs,” IEEE Software
Engineering, vol. SE-5, no. 4, pp. 294-328, July 1979. '

Manna, Z. and Waldinger, R. J., "A deductive approach to program synthesis,”
TOPLAS, vol. 2, no. 1, pp. 90-121, January 1980.

Rich, C. and Shrobe, H. E., "Initial report on a Lisp programmer's apprentice,"”
IEEE Trans. on Software Engineering, vol. SE-4, no. 6, pp. 436-467, 1978.

Rouse, W. B. and Hunt, R. M., "A fuzzy rule-based model of human problem solving
in fault diagnosis tasks,” Working paper, Coordinated Science Laboratory,
University of Illinois, Urbana, IL. |

Ruth, G. R., "Intelligent program analysis," Artificial Intelligence, vol. 7,
pp. 65=-85, 1976.

Ruth, G. R., "Protosystem 1l: An automatic programming system prototype,' TM-72,
Laboratory for Computer Science, MIT, Cambridge, MA, July 1976.

Sacerdoti, E. D., A structure for plans and behavior, American Elsevier, 1977.

Sagiv, Y., "A study of the automatic debugging of programs," Master's thesis,
Weizmann Institute of Science, Rehovot, Israel, August 1976.

Shaw, F. E., Swartout, W. R., and Green, C. C., "Inferring LISP programs from
examples," IJCAI, pp. 260~267.

Shneiderman, B. and McKay, D., "Experimental investigations of computer program
debugging and modification,” 6th Int. Cong. of the Intl. Ergonomics Assoc.,
College Park, MD, July 1976.

Shneiderman, B., "Perceptual and cognitive issues in the syntactic/semantic model
of programmer behavior," Comp. Sci. (W. Camm & R. E. Granda, eds.), pp. 65-77,
July 1978.

32

Shneiderman, B. and Mayer, R., "Syntactic/semantic interactions in programmer

behavior: A model & experimental results," J. Comp. & Inf. Sciences,
VD].- 8, no. 3,. ppl 219-238’ 19791

Stzallman,R. M. and Sussman, G. J., "Forward reasoning dependency-directed
backtracking in a system for computer-aided circuit analysis,” Artificial
Intelligence, v. 9, no. 2, pp. 135-196, October 1977.

Standish, T. A., Harriman, D. C., Kibler, D. F., and Neighbors, J. M., "Improving
and refining program by program manipulation," Memo, Department of Information
and Computer Science, University of California, Irvine, CA, February 1976.

Stefanescu, D. C., "Interactive computer-aided debugging," TR-06-78, Center for
Research in Computing, Harvard University, Cambridge, MA, 1978,

Stefanescu, D. C., "More on debugging of programs,'" Memo, Center for Research
in Computing, Harvard University, Cambridge, MA.

Summers, P. D., "A methodology for LISP program construction from examples," J.
ACM, vol. 24, pp. 161-175, 1977.

Sussman, G. J., A computer model of skill acquisition, American Elsevier, 1975.

Thayer, T. A., Lipow, M., and Nelson, E. C., Software Reliability, North-Holland
Publishing Company, pp. 42-46, 160-162, 1978.

Waters, R. C., "A method, based on plans, for understanding how a loop imple-
ments a computation,” WP 150, Artificial Intelligence Laboratory, MIT,

Cambridge, MA, 1977.

Wegbreit, B., "Goal-directed program transformation," Conference Record, Third
ACM Symposium on Principles of Programming Languages, Atlanta, GA, pp. 153~
170, 1976.

Weinberg, G. M., The psychology of computer programming, Van Nostrand, New York,
1971.

Wertz, H. A., "A system to improve incorrect programs,' Proc. 4th Software
Engineering, pp. 286-193, 1979.

Wilcox, T. R., Davis, A., and Tindall, M., "The design and implementation of a
table driven, interactive diagnostic programming system,”" Comm. ACM, vol,
19, pp. 609-616, 1976,

Pao, Y~H., "A knowledge based engineering approach to power systems monitoring
and control," Dept. of E. E., Case Western Reserve University, Cleveland,
1981. |

Yourdon, E., Techniques of program structure and design, Prentice-Hall, 1975.

Yourdon, E. and Constantine, L. L., Structured Design, Englewood Cliffs, NJ,
Prentice-Hall, pp. 502, 504-5, 511, 1979,

