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Abstract

WITHIN-CLUSTER RESAMPLING METHODS FOR CLUSTERED RECEIVER OPERATING
CHARACTERISTIC (ROC) DATA

Zhuang Miao, PhD

George Mason University, 2014

Dissertation Director: Dr. Liansheng Tang

The diagnostic studies in which each patient has several diseased and nondiseased observations

generate clustered ROC data. Within the same cluster, observations are naturally correlated, and the

cluster size may be random. The traditional ROC methods on clustered data can result in a biased

variance estimator and subsequently lead to incorrect statistical inference. We introduce resampling

methods on clustered ROC data to account for the within-cluster correlation. The within-cluster

resampling ROC methods work as follows. First, one observation is randomly selected from each

patient/cluster, and then the traditional ROC methods are applied on the resampled data to obtain

resampled ROC estimates. These steps are performed many times and the average of resampled

ROC estimates is the final estimator. The proposed methods do not require a specific within-cluster

correlation structure and yield valid estimators while accounting for the within-cluster correlation.

We compare the proposed methods with existing methods in extensive simulation studies and apply

the proposed methods to two eye rating examples.



Chapter 1: Background and Literature Review

1.1 Introduction

The receiver operating characteristic (ROC) curve, which is commonly used in medical diagnostic

studies, is a plot of the true positive rate (TPR) (i.e. probability of identifying a case when the subject

is truly diseased) versus false positive rate (FPR) (i.e. probability of identifying a case when the

subject is not diseased) at different possible thresholds. The ROC curve is widely used in radiology,

psychophysical and medical imaging research for detection performance, military monitoring, and

industrial quality control (Metz 1978). The ROC curve indicates the trade-off between the TPR

and FPR under different thresholds. It has many advantages and overcomes the limitation of using

isolated measurements of TPR and FPR. The ROC curve is plotted by connecting all the points

generated by possible thresholds (Zhou, Mcclish, and Obuchowski 2002).

In the mathematical notation, TPR is given by P (T > c|D = 1) and FPR is given by P (T >

c|D = 0) , where c denotes the threshold, T denotes the biomarker results andD is the indicator for

disease status with 1 being a case and 0 being a control. A biomarker with 100% TPR and 0% FPR

is a perfect predictor, i.e., all the case patients have positive biomarker results and all the control

patients have negative biomarker results.

The most commonly used measure is the area under the ROC curve (AUC). Other measures

includes the TPR at a fixed FPR, the partial area under the ROC curve (pAUC) and the likelihood

ratios. Most ROC curves are concave and above the chance diagonal which is the line segment

between (0, 0) and (1, 1). However, some of them are below the chance diagonal and are called im-

proper curves (Hanley and McNeil 1982). The AUC between 0.5 and 1 indicates that the diagnostic

biomarker has a good performance on detecting the case condition and control condition. The closer

the curve is to the left upper corner, the larger the ROC curve area is and the better ability of the

diagnostic biomarker has. The perfect biomarker has an AUC of 1.
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In Figure 1.1, the ROC curves are for three biomarkers. The dotted ROC curve of biomarker 1

has the AUC of 0.9. The dashed ROC curve of biomarker 2 has the AUC of 0.7 and the solid ROC

curve of biomarker 3 has the AUC of 0.5. Hence, biomarker 1 has the best performance on detecting

the case and control condition among the three biomarkers.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curves

FPR

T
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R
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Biomarker 2
Biomarker 3

Figure 1.1: ROC curves

Much work has been considered to estimate ROC curves using independent ROC data. In this

traditional setting, each subject has one biomarker result and the results are independent. Parametric

and nonparametric methods are commonly used (Zhou, Mcclish, and Obuchowski 2002; DeLong,

DeLong, and Clarke-Pearson 1988). A more complicated type of ROC data is clustered ROC data,

in which each patient has more than one biomarker results. The biomarker results can either be

from different locations on the patient or repeated results of the same location. Within each patient,

the biomarker results are correlated. The results from one patient are not correlated with the results

from another patient. Methods have been proposed to handle clustered ROC data, including Obu-

chowski’s nonparametric method and Li and Zhou’s unified nonparametric method (Obuchowski

2



1997; Li and Zhou 2008).

For clustered binary data, a novel within-cluster resampling method was originally proposed

by Hoffman, Sen, and Weinberg (2001) since the generalized estimating equations (GEE) methods

may not work well if the clustered binary data has different correlation structure and informative

cluster size, which occurs when the cluster size is affected by the outcome (Zeger and Liang 1986;

Liang and Zeger 1986). They have shown that WCR method works well with various within-cluster

correlations and eliminates the effect of informative cluster size. Hoffman, Sen, and Weinberg

(2001) developed the within-cluster resampling method and applied the method to angular data,

Bayesian inference, p-value, vector parameters, genetics data and random cluster sizes (Follmann,

Proschan, and Leifer 2003). Some authors developed Wilcoxon rank sum methods to handle the

cluster effect (Rosner, Glynn, and Lee 2003; Datta and Satten 2005).

The major goal of this dissertation research is to develop a method to deal with cluster effect,

including the within cluster correlation as well as an informative cluster size. We introduce within-

cluster resampling methods that can take into account the within-cluster correlation of the clustered

ROC data. Our methods estimate a more general class of ROC measures, and include the Wilcoxon

statistic proposed by Datta and Satten (2005) as a special case.

There is a fundamental difference between our methods and existing clustered ROC methods.

Our estimators based on independent observations from resampled data sets are on the patient level,

while methods by Obuchowski and Li and Zhou give location level estimators. Moreover, the

WCR estimator is a more meaningful estimator on measuring how accurate the diagnostic test is on

patients while location level estimator is more intuitive to measure the accuracy of the diagnostic

test on locations from patients. Additionally, the WCR methods generate smoother ROC curves so

that a more accurate sensitivity can be estimated at a fixed false positive rate.

1.2 One ROC Curve

Evaluating the accuracy of diagnostic biomarkers is important in diagnostic medicine research. A

common measure to estimate the accuracy of diagnostic biomarkers is the area under the ROC curve

(AUC), which is between 0 and 1. A biomarker with the AUC close to 1 indicates a highly accurate

3



biomarker. A biomarker with the AUC close to 0.5 indicates a poor biomarker. The ROC curve with

the AUC of 0.5 means that the diagnostic biomarker is not able to distinguish the case and control

groups.

Diagnostic biomarker results can be binary, ordinal and continuous. Some biomarkers have

positive and negative biomarker results under case/control conditions, which are called binary da-

ta. Some biomarkers results have some ordered values such as 1, 2, 3, which are called ordinal

data (Bamber 1975). Most of the medical diagnostic biomarkers, such as biomarker results in pro-

teomics and genetics, have continuous data (Shapiro 1999). The ROC curve is used to summarize

the accuracy of biomarkers with continuous or ordinal outcomes at different chosen thresholds.

In order to assess continuous diagnostic biomarkers, three common types of ROC methodolo-

gies are commonly used, including parametric, nonparametric and semiparametric ROC methods.

The parametric methods usually assume normal distributions for diagnostic biomarker results and

yield a smooth ROC curves. The nonparametric ROC methods do not have distribution at require-

ments. The semiparametric ROC methods could generate smooth ROC curves without distribution

assumptions for the biomarker results.

Denote continuous biomarker results for the ith case as T di , i = 1, . . . ,m, which follow a

distribution, F , and continuous biomarker results for the jth control as T d̄j , j = 1, . . . , n, which

follow a distribution, G. The ROC curve plots a pair of points (FPR(c), TPR(c)), where c is

the possible threshold, true positive rate TPR(c) = 1 − F (c) and false positive rate FPR(c) =

1−G(c). The TPR(c) is also denoted as a survivor function SD(c) = TPR(c) = P (T di > c) and

FPR(c) is denoted as a survivor function SD̄(c) = FPR(c) = P (T d̄j > c). Let u be FPR(c),

and let ROC(u) be TPR(c), and ROC(u) is given by

ROC(u) = 1− F (G−1(1− u)) = SD(S−1
D̄

(u)). (1.1)

4



So the area under the ROC curve is given by

AUC =

∫ 1

0
ROC(u)du = P (T di > T d̄j ). (1.2)

Wieand, Gail, James, and James (1989) proposed weighted area under the curve methods to estimate

the area under the curve, partial area under the curve and TPR at a fixed FPR by using the weighted

average of TPRs. The weighted AUC (wAUC) is given by

wAUC =

∫ 1

0
ROC(u)dW (u), (1.3)

where W (u) is a probability measure. We let W (u) = u, the weighted AUC becomes AUC in

Equation (1.2). Let W (u) be a FPR u0, the wAUC becomes the sensitivity at FPR u0, which is

ROC(u0). Let W (u) = (u − u0)/(u1 − u0), wAUC becomes the partial area under the curve

between FPRs u0 and u1, which is given by

pAUC(u0, u1) =
1

u1 − u0

∫ u1

u0

ROC(u)du. (1.4)

1.2.1 Parametric Methods

One popular parametric method is the normal ROC method (Faraggi and Reiser 2002), which as-

sumes the case and control results follow normal distributions N(µD, σ
2
D) and N(µD̄, σ

2
D̄

), respec-

tively. Then we have F̂PRBN (c) = 1−Φ((µ̂D−c)/σ̂D) and T̂PRBN (c) = 1−Φ((µ̂D̄−c)/σ̂D̄).

The ROC curve is plotted for all possible values of c and is given by

R̂OCBN (u) = Φ(â+ b̂Φ−1(u)). (1.5)

5



Therefore, we have

ŵAUCBN =

∫ 1

0
Φ(â+ b̂Φ−1(u))dW (u). (1.6)

Also the AUC is given by

ÂUCBN = Φ

(
â√

1 + b̂2

)
, (1.7)

where â = (µ̂D − µ̂D̄)/σ̂D and b̂ = σ̂D̄/σ̂D. But in some of the scenarios, the biomarker measure-

ments are not normal distributed. Zou, Tempany, Fielding, and Silverman (1998) suggested that a

Box-Cox power transformation should be used to transform the original data before estimating the

normal parameters and the AUC,

ψλ1(T di ) =
(T di )λ1 − 1

λ1
, ψλ2(T d̄j ) =

(T d̄j )λ2 − 1

λ2
,

where λ1, λ2 are the parameters of Box-Cox transformation, λ1 6= 0 and λ2 6= 0 and could be

estimated by maximum likelihood estimator.

The partial area under the ROC curve (pAUC) could be obtained when using the parametric

binormal method by Jiang and Nishikawa (1996) and Thompson and Zucchini (1989). The pAUC

is defined as the integral of the ROC curve between two FPRs u0 and u1,

p̂AUCBN (u0, u1) =

∫ u1

u0

R̂OCBN (u)du. (1.8)

Hillis and Metz (2012) presented an analytic expressions for two types of pAUC. They assume,

without loss of generality, the biomarker result for a control follows a standard normal distribution,

that is, Td̄ ∼ N(0, 1), and biomarker result for a case follows a normal distribution with mean µD
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and standard deviation σD, that is Td ∼ N(µD, σ
2
D). So that

pAUC(0, u1) = FBV N

 µD√
1 + σ2

D

,Φ−1(u1),
−1√

1 + σ2
D

 (1.9)

and

pAUC(u0, 1) = FBV N

 µD√
1 + σ2

D

,Φ−1(1−ROC(u0)),
−σD√
1 + σ2

D

 , (1.10)

where FBV N (td, td̄, ρ) is denoted as the standardized bivariate normal distribution function with

correlation ρ.

1.2.2 Nonparametric Methods

Goddard and Hinberg (1990) mentioned that if the normal distribution has been violated, the AUC

obtained using the parametric binomal model would be largely biased. But the nonparametric

method could overcome the distribution limitations since it does not assume distributions and could

estimate the AUC directly. The nonparametric ROC method is also called the empirical ROC

method. The estimated TPR(c) is the proportion of subjects with biomarker results larger than

or equal to a certain cutoff point c among the case subjects

T̂PREM (c) =
1

m

m∑
i

I(T di > c), (1.11)

and FPR(c) is estimated the proportion of subjects with biomarker results larger than a certain

cutoff point c among the control subjects

F̂PREM (c) =
1

n

n∑
j

I(T d̄j > c). (1.12)

7



Therefore, the ROC curve is given by

R̂OCEM (u) =
1

m

m∑
i

I[T di > (1− u)th percentile of {T d̄j }, j = 1, . . . , n]. (1.13)

The weighted AUC is

ŵAUCEM =

∫ 1

0
R̂OCEM (u)dW (u) (1.14)

The empirical AUC can be calculated by the Mann-Whitney-Wilcoxon statistics (Hanley and Mc-

Neil 1982),

ÂUCMW =
1

mn

m∑
i=1

n∑
j=1

Ψ(T di , T
d̄
j ), (1.15)

where

Ψ(T di , T
d̄
j ) =


1, T di > T d̄j

1
2 , T di = T d̄j

0, T di < T d̄j

.

Hence ÂUCMW = P (X > Y ) + 1
2P (X = Y ) to adjust for ties. Hsieh and Turnbull (1996) have

showed that the asymptotic properties of the empirical ROC curves and discussed the applications

of the results. The advantage of this nonparametric method is its robustness, however, the estimated

ROC curve is trapezoidal.

Another popular nonparametric method is a kernel smooth nonparametric method proposed by

Zou, Hall, and Shapiro (1997) and Lloyd (1998). It estimates the density functions by the kernel

estimator

F̂KN (t) =
1

mh

m∑
i=1

K

(
c− T di
h

)
, (1.16)
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ĜKN (t) =
1

nh

n∑
j=1

K

(
c− T d̄j
h

)
(1.17)

where c is the cutoff point, h is the kernel bandwidth and functionK(·) is the kernel. They discussed

how to choose the bandwidth h and claimed the kernel nonparametric method is robust and able

to create smooth ROC curve. And they indicated that if some of the data are close to zero, a log

transformation should be employed. Lloyd (1998) proposed the asymptotic expressions for variance

and bias as well as the algorithm for calculating the AUC and its properties for the kernel estimator.

Lloyd and Yong (1999) compared the kernel smoothing ROC estimator with the empirical estimator

and concluded that the kernel estimator is more efficient and robust than empirical estimator for

moderate to large sample sizes with an appropriate bandwidth. In Figure 1.2, the solid ROC curve

is fitted by empirical method and the dashed ROC curve is obtained by the kernel smoothing method.

They have the same AUC.
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Figure 1.2: Smooth and empirical ROC curves
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1.2.3 Semiparametric Methods

The third alternative method is semiparametric, which does not make any direct distribution as-

sumptions on the biomarker results. Recently developed semiparametric methods include semi-

parametric binormal models, ROC logistic regression models and semiparametric kernel smoothing

methods. Semiparametric binormal model is a simple semiparametric method to estimate the ROC

curve. Assume T d and T d̄ are independent but not normally distributed. After some unknown

monotonic transformation H , they follow normal distributions. Without loss of generality, assume

H(td) ∼ N(µD, σ
2
D) and H(td̄) ∼ N(0, 1) . A parametric model,

ROCSM (u) = g(β1 + β2h
−1(u)) (1.18)

was fitted for the ROC curve after some unknown monotonic transformation for the biomarker

results (Zou, Tempany, Fielding, and Silverman 1998). If we assume the binormal assumption, the

semiparametric model becomes the semiparametric binormal model

R̂OCSB(u) = Φ(â+ b̂Φ−1(u)). (1.19)

Due to the transformation invariant property of the ROC curve, the semiparametric model has the

same form as the parametric binormal model.

Many methods are developed to estimate the parameters of the binormal model. Hsieh and

Turnbull (Hsieh and Turnbull 1996) have researched on the empirical ROC estimator and its asymp-

totic theory and proposed a generalized least squares procedure for the semiparametric binormal

model as well as its asymptotic properties. The parameter a and b could be estimated by the least

square method since we have a linear regression form Φ−1(ROCSB(u)) = a + bΦ−1(u). They

compared the proposed procedure to Dorfman and Alf’s MLE procedure (Dorfman and Jr. 1969)

for grouped data. Zou, Tempany, Fielding, and Silverman (1998) and Zou and Hall (Zou and Hall

2000) recommended a semiparametric maximum likelihood function on the ranks of the combined

10



biomarker results based on the Hoeffding Theorem (Hoeffding 1948) and the two sample rank pro-

cedures to estimate the parameters. Metz, Herman, Shen, et al. (1998) proposed to categorize the

ordered raw biomarker results data and estimate the binormal parameters by applying Dorfman-Alf

method. They proposed two algorithms, LABROC4 algorithm, a true maximum likelihood estima-

tion, and LABROC5 algorithm, a quasi maximum likelihood estimation. Cai and Moskowitz (2004)

developed two methods for estimating the binormal parameters. One of their methods uses a max-

imum profile likelihood estimator and the other uses a pseudo maximum likelihood estimator. A

new robust and efficient semiparametric maximum likelihood method is proposed by Zhou and Lin

(2008). Li, Tiwari, and Wells (1999) studied a semiparametric sample quantile comparison between

a parametric model for the case group and a nonparametric model for the control population. The

authors proved that the semiparametric method has a smaller asymptotic variance.

Qin and Zhang (1997), Qin and Zhang (2003) developed a logistic regression model by assum-

ing a density ratio model for case and control populations and showed that the method was more

robust than the parametric model and more efficient than the nonparametric model. For a given

biomarker results T = t, the logistic model is given by

P (D = 1|T = t) =
exp{α+ β ∗ r(t)}

1 + exp{α+ β ∗ r(t)}
, (1.20)

where r(t) is a smooth function of t. Let f(t) and g(t) be the density distribution to F (t) and G(t),

respectively. The density ratio is given by

f(t)

g(t)
= exp{α∗ + β ∗ r(t)}. (1.21)

where α∗ = α + log(1 − P (D = 1)/P (D = 1)). Thus we have biomarker results with density

f(x) for cases and biomarker results with density f(x) = exp{α∗+β ∗ r(x)}g(x) for controls and
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the cdfs are given by

F̂LG(c) =
1

m

N∑
i=1

exp{α+ βr(Ti)}I(Ti ≤ c)
1 + ρexp{α+ βr(Ti)}I(Ti ≤ c)

, (1.22)

ĜLG(c) =
1

n

N∑
i=1

I(Ti ≤ c)
1 + ρexp{α+ βr(Ti)}I(Ti ≤ c)

, (1.23)

where N = n + m, ρ = m/n and (α, β) could be estimated by solving the score equations. The

ROC curve is estimated by

R̂OCLG(u) = 1− F̂LG(Ĝ−1
LG(1− u)). (1.24)

Wan and Zhang (2007) proposed a smooth semiparametric ROC estimator based on a kernel

distribution function estimator in the logistic regression model and showed that it was more efficient

than existing nonparametric, parametric and semiparametric binormal estimators. The proposed

semiparametric kernel estimators of case and control distributions are given by

F̂LK(c) =
1

m

N∑
i=1

exp{α+ βr(Ti)}
1 + ρexp{α+ βr(Ti)}

K

(
c− Ti
h

)
, (1.25)

ĜLK(c) =
1

n

N∑
i=1

1

1 + ρexp{α+ βr(Ti)}
K

(
c− Ti
h

)
, (1.26)

where h is the kernel bandwidth and K(t) is kernel density estimator.

1.3 Two ROC Curves

Another application of receiver operating characteristic curve is to compare the accuracy of two

diagnostic biomarkers to determine if the two biomarkers have the same performance. The ROC
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summary measures can be used for the comparison of biomarkers. These measures include the

AUC, pAUC and wAUC described in Section 1.2. If the AUCs are the same, the two diagnostic

biomarkers may have the same accuracy. But it is possible that the two ROC curves have the same

AUC but different shapes.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Crossing ROC curves

FPR

T
P

R

Biomarker 1
Biomarker 2

Figure 1.3: Crossing ROC curves

To compare the weighted areas under the two ROC curves, the null and alternative hypotheses

are

H0 : wAUC1 = wAUC2 v.s. H1 : wAUC1 6= wAUC2

or

H0 : ∆ = 0 v.s. H1 : ∆ 6= 0,

where wAUCl is the wAUC of the lth ROC curve, and we denote the difference as ∆ = wAUC1−

wAUC2. The test statistic of the hypotheses follows a normal distribution asymptotically and is

13



given by

Z =
∆̂√

var(∆̂)
=

ŵAUC1 − ŵAUC2√
var(ŵAUC1 − ŵAUC2)

,

where the variance of the difference ∆̂ is

var(∆̂) = var(ŵAUC1−ŵAUC2) = var(ŵAUC1)+var(ŵAUC2)−2cov(ŵAUC1, ŵAUC2)

and cov(ŵAUC1, ŵAUC2) is the covariance between ŵAUC1 and ŵAUC2, which is zero in an

unpaired design setting.

For independent continuous biomarker results, we could compare ROC summary measures us-

ing parametric, nonparametric and semiparametric methods. Suppose we have m case subjects,

n control subjects and ` diagnostic biomarkers, where ` = 1, 2. Denote the biomarker results on

case subjects are T d`i, where i = 1, . . . ,m, which has a distribution F`(x) and biomarker results on

control subjects are T d̄`j , where j = 1, . . . , n, which has a distribution G`(y). For a threshold c,

which is a constant in (−∞,+∞), we have SD,`(c) = TPR`(c) = 1 − F`(c) = P (T d`i > c) and

SD̄,`(c) = FPR`(c) = 1 − G` = P (T d̄`i > c). Denote FPR` = u, the `th ROC curves are given

by

ROC`(u) = 1− F`(G−1
` (1− u)) = SD,`(S

−1
D̄,`

(u)), (1.27)

and the `th wAUC is given by

wAUC` =

∫ 1

0
ROC`dW (u). (1.28)

When W (u) = u, the AUCs are given by

AUC` =

∫ 1

0
ROC`du = P (T d`i > T d̄`j). (1.29)
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1.3.1 Parametric Methods

In a binormal model, the case and control biomarker results of the first biomarker follow normal

distributions N(µ1,D, σ
2
1,D) and N(µ1,D̄, σ

2
1,D̄

),the case and control biomarker results of the sec-

ond biomarker follow normal distributions N(µ2,D, σ
2
2,D) and N(µ2,D̄, σ

2
2,D̄

). The ROC curve

ROCl(u) takes the same form as Equation (1.5) and difference of wAUCs is given by

∆̂BN =

∫ 1

0
R̂OC1,BN (u)dW (u)−

∫ 1

0
R̂OC2,BN (u)dW (u), (1.30)

and the difference of AUCs ∆A
BN can be estimated by,

∆̂A
BN = Φ

 â1√
1 + b̂21

− Φ

 â2√
1 + b̂22

 , (1.31)

where â1 = (µ̂1,D − µ̂1,D̄)/σ̂1,D, b̂1 = σ̂1,D̄/σ̂1,D and â2 = (µ̂2,D − µ̂2,D̄)/σ̂2,D, b̂2 = σ̂2,D̄/σ̂2,D.

The variance of estimated AUCs can be estimated by

var(ÂUC`) = f̂2
` var(â`) + ĝ2

` var(b̂`) + 2f̂`ĝ`cov(â`, b̂`), (1.32)

where f̂` = e−â
2
`/â`(1+b̂2` )/

√
2π(1 + b̂2` ), ĝl = −â`b̂le−â

2
l /â`(1+b̂2` )/

√
2π(1 + b̂2` )

3, and var(â`) =

(n(â2
` + 2) + 2mb̂2` )/2mn, var(b̂`) = (m+ n)b̂2`/2mn, cov(â`, b̂l) = âlb̂l/2m.
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1.3.2 Nonparametric Methods

Wieand, Gail, James, and James (1989) compared biomarkers based on their wAUCs for paired and

unpaired data. The difference of estimated weighted AUCs is estimated by

∆̂EM = ŵAUC1,WD − ŵAUC2,WD =

∫ 1

0
R̂OC1,EM (u)dW (u)−

∫ 1

0
R̂OC2,EM (u)dW (u)

=

∫ 1

0
ŜD,1(Ŝ−1

D̄,1
(u))dW (u)−

∫ 1

0
ŜD,2(Ŝ−1

D̄,2
(u))dW (u),

(1.33)

where ŜD,`(c) = 1
m

∑m
i=1 I(T d`i > c), ŜD̄,`(c) = 1

n

∑n
j=1 I(T d̄`j > c) and W (u) is a probability

measure. When W (u) = u, the difference of AUCs is given by

∆̂A
EM =

∫ 1

0
R̂OC1,EM (u)du−

∫ 1

0
R̂OC2,EM (u)du (1.34)

The asymptotic variance of ∆̂EM is given by σ2
∆EM

= vWD
x m + vWD

y /n, where vx and vy have

the following forms

vWD
x =

2∑
l=1

(∫ 1

0

∫ 1

0
SD,`{S−1

D̄,`
(s ∧ t)}dW (s)dW (t)−

[∫ 1

0
SD,`{S−1

D̄,`
(s)}dW (s)

]2
)

−2

∫ 1

0

∫ 1

0

[
SD{S−1

D̄,1
(s), S−1

D̄,2
(t)}−Sd,1{S−1

D̄,1
(s)}SD,2{S−1

D̄,2
(t)}
]
dW (s)dW (t),(1.35)

vWD
y =

2∑
l=1

[∫ 1

0

∫ 1

0
R′`(s)R

′
`(t)(s ∧ t)dW (s)dW (t)−

{∫ 1

0
R`(s)sdW (s)

}2
]

−2

∫ 1

0

∫ 1

0
R′1(s)R′2(t)[SD̄{S−1

D̄,1
(s), S−1

D̄,2
(t)} − st]dW (s)dW (t), (1.36)
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with the derivative of ROC`(u), R′`(u) = S′D,`{S
−1
D̄,`

(u)}/S′
D̄,`
{S−1

D̄,`
(u)}.

A popular nonparametric method to compare two AUCs is the Delong’s generalized U-statistics

method. DeLong, DeLong, and Clarke-Pearson (DeLong, DeLong, and Clarke-Pearson 1988) used

the Mann-Whitney Statistic to estimate the areas under the ROC curves for all biomarkers and

take the difference to compare the AUCs, denoted ∆DL-statistic . The difference between AUC

estimators is given by

∆̂DL = ÂUC1,DL − ÂUC2,DL =
1

mn

m∑
i=1

n∑
j=1

Ψ(T d1i, T
d̄
1j)−

1

mn

m∑
i=1

n∑
j=1

Ψ(T d2i, T
d̄
2j), (1.37)

where

Ψ(T d`i, T
d̄
`j) =


1, T d`i > T d̄`j

1
2 , T d`i = T d̄`j

0, T d`i < T d̄`j

, (1.38)

and the variance of ∆A
DL is given by σ2

∆A
DL

= vDLx /m+ vDLy /n, where vDLx and vDLy are

vDLx =
1

m− 1

m∑
i=1

{ 1

n

n∑
j=1

ψ(T d1i, T
d̄
1j)− ÂUC1,DL

2

+

 1

n

n∑
j=1

ψ(T d2i, T
d̄
2j)− ÂUC2,DL

2

− 2

 1

n

n∑
j=1

ψ(T d1i, T
d̄
1j)− ÂUC1,DL

 1

n

n∑
j=1

ψ(T d2i, T
d̄
2j)− ÂUC2,DL

}, (1.39)

vDLy =
1

n− 1

n∑
j=1

{[
1

m

m∑
i=1

ψ(T d1i, T
d̄
1j)− ÂUC1,DL

]2

+

[
1

m

m∑
i=1

ψ(T d2i, T
d̄
2j)− ÂUC2,DL

]2

− 2

[
1

m

m∑
i=1

ψ(T d1i, T
d̄
1j)− ÂUC1,DL

][
1

m

m∑
i=1

ψ(T d2i, T
d̄
2j)− ÂUC2,DL

]}
. (1.40)
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Another nonparametric method is the kernel smoothing ROC method proposed by Zou, Hall,

and Shapiro (1997) and Lloyd (1998). The distributions of case and control biomarker results could

be estimated by kernel smoothing estimators. In order to compare two ROC curves, the kernel

estimator of F` is

F̂`,KN (c) =
1

m

m∑
i=1

K1,`

(
c− T d`,i
h1,`

)
, (1.41)

and the kernel estimator of G` is

Ĝ`,KN (c) =
1

n

n∑
j=1

K2,`

(
c− T d̄`,j
h2,`

)
, (1.42)

where c is the possible threshold. So the difference of kernel smoothing wAUC estimators is given

by

∆̂KN =

∫ 1

0
ŜD,1,KN (Ŝ−1

D̄,1,KN
(u))dW (u)−

∫ 1

0
ŜD,2,KN (Ŝ−1

D̄,2,KN
(u))dW (u), (1.43)

where ŜD,`,KN (c) = 1 − F̂`,KN (c) and ŜD̄,`,KN (c) = 1 − Ĝ`,KN (c). Zou, Hall, and Shapiro

(1997) suggested that the variance of AUC estimated by kernel smoothing method is similar to the

one based on the Wilcoxon U-statistics since the kernel smoothing does not affect the true variance

to the first order of approximation. Lloyd (1998) gave the explicit form for the difference between

the variance of the kernel smoothing AUC and the empirical AUC,

var(ÂUCKN )− var(ÂUCMW ) =
1

mn
{h2(n− 1)(g

′
(0)A+ h3) + h2(m− 1)(g

′
(0)A+ k3)

− 2hα1g(0) + h2g
′
(A− 1

2
)},

where h3 and k3 are negative, h =
√
h2

1 + h2
2, g(.) is the density function of difference of case

and control results and A is the area under ROC curve, and ( nm)1/3 ≈ h2
h1

. The relative difference
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between the variance of AUCKN and variance of AUCMW is O(h2) and Lloyd also showed that

the AUC estimated by using the kernel smoothed method has no general advantage over the AUC

estimated by the Wilcoxon U-statistic unless h equals to o(N1) and is much smaller than the optimal

bandwidth. However, the explicit form of the covariance between kernel smoothing AUCs is not

available.

Other nonparametric methods have been developed. Zhou and Gatsonis (1996) developed a

nonparametric comparison method for incomplete paired data based on Delong’s method and derive

the covariance matrix of AUC estimators. Bandos, Rockette, and Gur (2005) proposed an exact

nonparametric procedure to compare the AUC of two ROC curves for paired data by modifying

Venkatraman and Begg’s permutation test method (Venkatraman and Begg 1996). It assumes the

two diagnostic biomarkers are exchangeable within the same subject and requires a transformation

of the original data. Braun and Alonzo (2008) developed a sign biomarker to compare AUCs in a

paired design setting based on between subjects permutations of the case and control subjects.

1.3.3 Semiparametric Methods

Semiparametric methods include generalized linear model and least square method. Pepe (2000)

proposed a semiparametric ROC estimator using a generalized linear model(GLM) binary regres-

sion techniques. She developed the binary regression framework to compare two ROC curves.

Suppose the parametric ROC curve model has the form

ROC`(u) = g{
2∑
`=1

βlh`(u)} = g{β11 + β12h
−1
1 (u`) + β21I + β22Ih

−1
2 (u`)}, (1.44)

where g is some special link function, h` is the basis functions and β` = (β`1, β`2) is the unknown

parameters, I the indicator variable corresponding to the two biomarkers, I = 0 when ` = 1 and

I = 1 when ` = 2. For the lth biomarker, the indicator variable U`ij has been introduced by using

all the possible pairs of biomarker results, U`ij = I[T d`i ≥ T d̄`j ] Since the ROC curve could be

19



written as a conditional probability such as,

P (T d` > T d̄` |S`,D̄(T d̄` ) = u) = P (T d` > T d̄` |T d̄` = S−1
l,D̄

(u`))

= P (T d` > S−1
`,D̄

(u))

= S`,D(S−1
`,D̄

(u))

= ROC`(u),

the ROC curve parametric model could be written as a conditional expectation of U`ij with the form

E(U`ij |S`,D̄(Y`) = u) = ROC`(u) = g{β11 + β12h
−1
1 (u) + β21I + β22Ih

−1
2 (u)}, (1.45)

and the parameters β` could be estimated by solving

m∑
i=1

n∑
j=1

U`ij − g{Σ2
`=1β`h`(uj)}

g{Σ2
`=1β`h`(uj)}(1− g{Σ2

`=1β`h`(uj)})
∂g{Σ2

`=1β`h`(uj)}
∂β`

= 0.

Besides GLM methods, the unknown parameters in binary regression model in Equation (1.44)

ROC`(u) = g{
∑2

`=1 β`h`(u)} could also be estimated by the least square methods proposed by

?). The general least square (LS) estimating procedure is as follows. For ` = 1, 2 biomarkers, we

can choose p partition points u`,p = (u`,1, . . . , u`,p)
T within the boundry interval [0, 1]. The `th

empirical ROC curve is

R̂OC`(u`,p) = ŜD,`(Ŝ
−1
D̄,`

(u`,p)). (1.46)

Let T̃ d̄`,p = g−1(R̂OC`(u`,p)) and let T̃ d̄ = (T̃ d̄1 , T̃
d̄
2 ), where T̃ d̄` = (T̃ d̄`,1, . . . , T̃

d̄
`,p)

T . Let the
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design matrix M be

M =

 M1 O

M2 M2

 ,

where

M1 =

 1 . . . 1

g−1(u1,1) . . . g−1(u1,p)


T

,

M2 =

 1 . . . 1

g−1(u2,1) . . . g−1(u2,p)


T

,

and O is a P × 2 matrix whose elements are all 0. We get the linear regression equation T̃ =

Mθ + ε. The least square estimator β̂LS = (MTM)−1MT T̃ and Tang and Zhou (2009) derived

the asymptotic results for the least square method for multivariate ROC models.

In the comparison of two AUCs setting, the GLM method and the LS method have similar

forms but different estimation equation. The ROC curve has the form in Equation (1.44). The

corresponding wAUC is

ŵAUC`,SM =

∫ 1

0
R̂OC`,SM (u)dW (u), (1.47)

and the difference between wAUCs is estimated by

∆̂SM = ŵAUC1 − ŵAUC2

=

∫ 1

0
g{β̂11 + β̂12h

−1
1 (u)}dW (u)−

∫ 1

0
g{β̂11 + β̂12h

−1
` (u) + β̂21 + β̂22h

−1
2 (u)}dW (u).

(1.48)
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Under the binormal assumption, the ROC curve takes the form

R̂OC`,SB(u) = Φ{β̂11 + β̂12Φ−1(u) + β̂21I + β̂22IΦ−1(u)}, (1.49)

where I = 0 when ` = 1 and I = 1 when ` = 2. The AUC difference estimator is

∆̂SB =

∫ 1

0
Φ{β̂11 + β̂12Φ−1(u)}du−

∫ 1

0
Φ{β̂11 + β̂12Φ−1(u) + β̂21 + β̂22Φ−1(u)}du

= Φ

 β̂11√
1 + β̂2

12

− Φ

 β̂11 + β̂21√
1 + (β̂12 + β̂22)2

 , (1.50)

1.4 Covariate Adjusted ROC Curves

In previous sections, we have discussed estimation of one ROC curve and comparison of two ROC

curves. In this section, we introduce covariate adjusted ROC curves. The patient covariates, such

as age, gender, disease history, severity of disease, etc., could affect the accuracy of a diagnostic

biomarker. Hence, we need to accommodate patient covariates to account for the covariate effects.

In recent years, many regression models have been developed to study the covariate effects on

the accuracy of a diagnostic biomarker. We introduce two regression models, including indirect

regression models and direct regression models, to study the covariate effects on ROC curves. Under

the location-scale family assumption, the indirect regression model fits a regression model for the

distribution of biomarker results using disease status and covariates of the patient. The distributions

of the biomarker results from diseased patients and nondiseased patients are estimated as functions

of covariates so that the covariate effects can be assessed on the ROC curves. The direct regression

model fits one regression model directly from all the biomarker results. The baseline function and

link function need to be specified and estimated. These two methods can be used for both discrete

and continuous covariates and the estimated ROC curves are called covariate adjusted ROC curves.
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1.4.1 Indirect ROC Regression Methods

Tosteson and Begg (1988) proposed an indirect regression method to adjust for the covariates. The

covariate effects on S1,x(c) and S0,x(c) is modeled first and then the covariate effects on ROC curve

is derived. The biomarker result T can be express in the following linear regression model

T = µ(D,X;β) + σ(D,X;α)ε, (1.51)

where ε is the residual term with mean 0 and variance 1 with distribution G0(.). The vectors of

location and scale parameters α and β represent the effects of disease status and covariates on the

mean and variance of T . It can be shown that Sd,x(c) = G0( c−µ(d,x;β)
σ(d,x;α) ). Let Sε = 1 − G0 be the

survival function of ε, hence, the ROC curve is given by

ROCx(u) = Sε(b(x;α)S−1
ε (u)− a(x;β, α)), (1.52)

where S−1
ε (.) is the inverse function of Sε(.), a(x;β, α) = µ(d,x;β)−µ(d,x;β)

σ(d,x;α) , and b(x;α) = σ(d,x;α)
σ(d,x;α) .

Consider an example with X = x1 and D = d to illustrate how the covariate works on the

ROC curve. We have µ(d, x1;β) = β0 + β1d+ β2x1 + β3(d× x1), where d = 1, 2. The variance

σ2(d, x;α) does not depend on covariate, therefore it can be written as σ2(d, x1;α) = σ2(d). The

parameters a(x;β, α) and b(x;α) are written as a(x1;β, α) = (β1 + β3x1)/σ(1) and b(x1;α) =

σ(0)/σ(1). The ROC curve with covariate X = x1 is given by

ROCx1(u) = Sε(
σ(0)

σ(1)
S−1
ε (u)− β1 + β3x1

σ(1)
).

With the discrete covariate x1 = 0, 1, 2, we have three covariate adjusted ROC curves.

ROCx1=0(u) = Sε(
σ(0)

σ(1)
S−1
ε (u)− β1

σ(1)
),
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ROCx1=1(u) = Sε(
σ(0)

σ(1)
S−1
ε (u)− β1 + β3

σ(1)
),

ROCx1=2(u) = Sε(
σ(0)

σ(1)
S−1
ε (u)− β1 + 2β3

σ(1)
).

To estimate the ROC curve, Zhou, Mcclish, and Obuchowski (2002) introduced a two-stage

procedure. The generalized estimating equations (GEE) method is first used to estimate location

and scale parameters β and α based on the mean and variance of the biomarker results. Then the

residuals are used to estimate the baseline function Sε and ROCx(u). In the situation that G0 is the

standard normal distribution, the AUC has an explicit form,

ÂUCx = Φ(
a(x; β̂, α̂)√

1 + (b(x; α̂))2
). (1.53)

The AUC for ROC curve with covariate X = x1 is given by

ÂUCx1 = Φ(
a(1; β̂, α̂)√

1 + (b(1; α̂))2
).

When the discrete covariate x1 = 0, 1, 2, the AUCs are

ÂUCx1=0 = Φ(
a(0; β̂, α̂)√

1 + (b(0; α̂))2
),

ÂUCx1=1 = Φ(
a(1; β̂, α̂)√

1 + (b(1; α̂))2
),

ÂUCx1=2 = Φ(
a(2; β̂, α̂)√

1 + (b(2; α̂))2
).
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1.4.2 Direct ROC Regression Methods

Zhou, Mcclish, and Obuchowski (2002) pointed out that, it is difficult to interpret the regression

parameters on the ROC curve estimated by the indirect regression model. Pepe (1997) proposed

the direct regression method which models the covariate effects on the ROC curve, and parametric

distributions for the biomarker results may or may not be needed. Let XD̄ be a vector of common

covariates to all the patients, and let XD be a vector of covariates to diseased patients. Denote

X = (XD̄, XD) as the vector of all the covariates. Let T1 and T0 be the abnormal and normal

biomarker results; let S1,z and S0,z be the survival function of T1 and T0 given covariates X = x.

The corresponding distributions of T1 and T0 given covariates X = x are F1,x and F0,x The ROC

curve associated with x = (xD̄, xD) is given by

ROCx(u) = S1,x(S−1
0,x(u)). (1.54)

The covariates effect on ROC curve can be modeled by the following equation,

ROCx(u) = g{H(u) + βx}, (1.55)

where g(.) is the link function; H(u) is a baseline monotone increasing function of u; βX is a

linear regression model which summarize the effect of the patient covariates X . Note that, when

g(.) = Φ(.) and H(.) = α0 + α1Φ−1(.), the model (1.55) becomes binormal model.

Zhou, Mcclish, and Obuchowski (2002) claimed that not only the direct regression method

models the effect of patient covariates directly, it is also more robust than indirect regression method

which makes assumptions on the distribution of biomarker results. Pepe (1998) showed that the

direct regression method allows a broader range of settings and can include interactions between

false positive rates and covariates. Also the direct regression model method enables comparing

ROC curves for tests with different scales for diseased and nondiseased populations.

To estimate the parameters of the direct regression model, Pepe (1997) proposed a two steps al-

gorithm. Denote the abnormal result as T1i, i = 1, . . . , n1 and normal result as T0j , j = 1, . . . , n0.
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First step is to estimate S0,x(u) by using likelihood-based score equations if the data are indepen-

dent, or using generalized estimating equations if data are not independent. The second step is to

estimate the baseline link function H(u) and parameters β by minimizing the following function

∑
(i:Di=1)

∫ 1

0
w(u)[I{Ti ≥ S−1

0,x(u)} − g{H(u) + βx}]2du, (1.56)

where w(u) is a weight function. Cai and Pepe (2002) extended the direct regression models to

allow nonparametric baseline functions. This semiparametric approach has two steps. For the

first step, define a survival function S0(c) = 1
nD

∑nD
j=1 I(T0j − γx > c), where γ is the solution

to
∑nD

j=1 I(T0j − γx) = 0, and then estimate S0,x(u) by equation S0,x(c) = S0(c − γx). For the

second step, define S0,x(c)−1 = S−1
0 (c)+γx, then estimate baseline functionH(u) and parameters

β by solving the same equations in Pepe’s paper (Pepe 1997).

Pepe (2000) and Dodd (2001) proposed a generalized linear model method to estimate the ROC

curve and AUC with covariates, which is easier to solve the estimating equations by standard soft-

ware. First, introduce the indicator variable Uij = I[T1i ≥ T0j ], which contains all the possible

pairs of the biomarker results. The parameters are estimated by solving

n1∑
i=1

n0∑
j=1

Uij − g{βx+ h(uj)}
g{βx+ h(uj)}(1− g{βx+ h(uj)})

∂g{βx+ h(uj)}
∂β

= 0. (1.57)

The AUC is given by AUCx = E(Uij |X = x) = P (T1i ≥ T0j |X = x). Alonzo and Pepe (2002)

consider the indicator variable of the form Uij = I[T1i ≥ S−1
0,x(u)]. They estimate S−1

0,x(u) by using

empirical estimates and then solve the same equations as in Pepe’s paper (Pepe 2000).
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1.5 Clustered ROC Data

In clustered ROC data, each subject is a cluster, which contains both case and control biomarker

results. The cluster size could be fixed or informative. To estimate the ROC curve, the within cluster

correlation should be considered. Obuchowski (1997) proposed a nonparametric method using

Wilcoxon-Mann-Whitney U statistics, is also an expansion of Delong’s nonparametric methods to

the clustered ROC data. Let T dij denote the jth continuous case biomarker result in ith cluster,

where i = 1, . . . , I and j = 1, . . . ,mi and T d̄ik denotes the kth continuous control biomarker result

in ith cluster, where k = 1, . . . , ni. The total number of case biomarker results in all clusters is

M =
∑I

i=1mi and the total number of control biomarker results in all clusters is N =
∑I

i=1 ni.

So the estimated estimated AUC for clustered ROC data was given by

ÂUCOB =
1

MN

I∑
i=1

I∑
i′=1

mi∑
j=1

ni′∑
k=1

ψ(T dij , T
d̄
i′k), (1.58)

where

ψ(T dij , T
d̄
i′k) =


1, T dij > T d̄i′k

1
2 , T dij = T d̄i′k

0, T dij < T d̄i′k

, (1.59)

In order to estimate the variance of ÂUCOB , first we can transform the case and control biomarker

results into X-components and Y -components, which are

V10(T dij) =
1

M

I∑
i′=1

ni′∑
k=1

ψ(T dij , T
d̄
i′k),
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for all T dij and

V01(T d̄i′k) =
1

N

I∑
i=1

mi∑
j=1

ψ(T dij , T
d̄
i′k),

for all T d̄i′k. Then let V10(T di.) and V01(Yi.) be the sum of the X-components and Y -components for

the ith cluster, and let S10 and S01 be the sum of squares of the T d-components and T d̄-components,

which are given by

S10 =
I

(I − 1)N

I∑
i=1

[V10(T di.)−miÂUCOB],

and

S01 =
I

(I − 1)M

I∑
i=1

[V01(T d̄i.)− niÂUCOB].

In order to take into account the correlation between case and control observations with in the same

cluster, they introduced

S11 =
I

I − 1

I∑
i=1

([V10(T di.)−miÂUCOB][V01(T d̄i.)− niÂUCOB]).

So that the variance of estimated AUC is estimated by

v̂ar(ÂUCOB) =
1

M
S10 +

1

N
S01 +

2

MN
S11, (1.60)

and (ÂUCOB − AUCOB)/

√
v̂ar(ÂUCOB) is asymptotically N(0, 1). The author also proposed

the covariance of two estimated AUCs for comparing two ROC curves. Denote ÂUC1,OB and
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ÂUC2,OB as the estimated area under the two ROC curves and define

S1,2
10 =

I

(I − 1)M

I∑
i=1

([V 1
10(T di.)−miÂUC1,OB][V 2

10(T di.)−miÂUC2,OB]),

S1,2
01 =

I

(I − 1)N

I∑
i=1

([V 1
01(T d̄i.)− niÂUC1,OB][V 2

01(T d̄i.)− niÂUC2,OB]),

S1,2
11 =

I

I − 1

I∑
i=1

([V 1
10(T di.)−miÂUC1,OB][V 2

01(T d̄i.)− niÂUC2,OB]),

and

S2,1
11 =

I

I − 1

I∑
i=1

([V 2
10(T di.)−miÂUC2,OB][V 1

01(T d̄i.)− niÂUC1,OB]),

where V `
10(T di.) and V `

01(T d̄i.) be the sum of the X-components and Y -components for the ith cluster

from the lth ROC curve. So thje estimated covariance between the areas under two ROC curve is

ĉov(ÂUC1,OB, ÂUC2,OB) =
S1,2

10

M
+
S1,2

01

N
+
S1,2

11

MN
+
S2,1

11

MN
, (1.61)

Li and Zhou (2008) proposed a unified approach to nonparametric comparisons of ROC curves

for clustered data. Let X`ij denote the jth continuous case biomarker result of `th marker in ith

cluster,which has distribution F` , where i = 1, . . . , I , ` = 1, 2 and j = 1, . . . ,m`i and Ylik denotes

the kth continuous control biomarker result of `th marker in ith cluster, which has distribution G`,

where k = 1, . . . , n`i. The total number of case results in all clusters is M` =
∑I

i=1m`i and the

total number of control results in all clusters is N` =
∑I

i=1 n`i. So the empirical ROC curve is

defined by

R̂OC`,LZ(u) = 1− F̂l,EM (Ĝ−1
`,EM (1− u)), (1.62)

29



where F̂`,EM (c) =
∑I

i=1

∑m`i
j=1 I(X`ij ≤ c)/N` and Ĝ`,EM (c) =

∑I
i=1

∑n`i
k=1 I(Y`ik ≤ c)/M`.

Assume that as I → ∞, I−1
∑`

i=1 n
v
`i → λ`v, and I−1

∑I
i=1m

v
`i → γ`v for some positive con-

stants λ`v and γ`v, ` = 1, 2 and v = 1, 2, 3. Then

√
n



F̂1,EM (c)− F1,EM (c)

F̂2,EM (c)− F2,EM (c)

Ĝ1,EM (c)−G1,EM (c)

Ĝ2,EM (c)−G2,EM (c)


→



WF1,EM
(c)

WF2,EM
(c)

WG1,EM
(c)

WG2,EM
(c)


as n→∞,

where (WF1,EM
(c),WF2,EM

(c),WG1,EM
(c),WG2,EM

(c))′ is a Gaussian processes vector with mean

0. Then assume F1,EM and G1,EM have derivatives F ′1,EM and G′1,EM . Then the joint limiting

distribution of (R̂OC1,LZ(u), R̂OC2,LZ(u)) is given by, as n→∞,

√
n

 R̂OC1,LZ(u)

R̂OC2,LZ(u)

→
 Z1(1− u)

Z2(1− u)

 as n→∞,

where

Z`,LZ(u) = −
G′`,EM (F−1

`,EM (u))

F ′`,EM (F−1
`,EM (u))

WF`,EM
(F−1

`,EM (u))) +WG`,EM
(F−1

`,EM (u))).

To compare the area under two ROC curves, let DLZ(u) = ROC1,LZ(u)−ROC2,LZ(u). Then as

n→∞,
√
n(D̂LZ(u)−DLZ(u))→ V (u) = Z2,LZ(1− u)− Z1,LZ(1− u),

where V (u) is the limiting process. Thus the difference between the AUCs could be estimated by
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weighted areas under two ROC curves

∆̂LZ =

∫ 1

0
D̂LZ(u)dW (u). (1.63)

1.6 Resampling Methods on Clustered Data

Marginal approaches have been developed for clustered data. Liang and Zeger (1986) and Zeger

and Liang (1986) proposed a class of generalized estimating equations (GEE) methods to handle

the dependent repeated data type, and they used the GEE methods on longitudinal data analysis.

However, their method may not work well for if the clustered binary data has different correlation

structure and informative cluster size, which occurs when the cluster size is affected by the out-

come. Hoffman, Sen, and Weinberg (2001) proposed within cluster resampling (WCR) methods

for clustered binary data. They have showed that WCR method worked well with different within

cluster correlations and eliminate the effect of informative cluster size. Follmann, Proschan, and

Leifer (2003) developed the within cluster resampling method and applied the method to angular

data, Bayesian inference, genetics data and data with random cluster sizes. Denote the observation

Xij as the jth observation for cluster i, where i = 1, . . . , I and j = 1, . . . ,mi. So the ensemble of

original data could be written as a row vector

X = (X11, . . . , X1m1 , X21, . . . , X2m2 , . . . , XI1, . . . , XImI
).

One observation is randomly selected from each cluster and the new resampled data has I indepen-

dent observations. For the qth resampling, let the random selected observation from ith cluster be

X∗qi, the qth resampled independent dataset is X∗q = {X∗q1, X∗q2, . . . , X∗qI}.

Hoffman, Sen, and Weinberg (2001) proposed the WCR estimator for GLM model. The gener-

alized linear model is fitted by the qth resampled dataset X∗q . The qth resampled model parameter

is β̂q, where q = 1, . . . , Q and the process is repeated Q times. Thus the within cluster resampling
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estimator is given by

β̄Q =
1

Q

Q∑
q=1

β̂q. (1.64)

Follmann, Proschan, and Leifer (2003) applied the WCR to other settings. Let β̂q = β̂{X∗q} be

the qth estimator obtained by any statistical function or procedure P using the qth resampled dataset

X∗q . The major steps are given in Table 1.1 and the variance of β̄Q is given by

Table 1.1: Schematic representation of WCR method

X
↓

1 X∗1 → P → β̂1, σ̂
2
1

2 X∗2 → P → β̂2, σ̂
2
2

...
...

...
...

...
...

Q X∗Q → P → β̂Q, σ̂
2
Q

⇓
β̄Q, σ̄

2
Q, S

2
β̂

v̂ar(β̄Q) =

∑Q
q=1 σ̂

2
q

Q
−
∑Q

q=1(β̂q − β̄Q)2

Q− 1
= σ̄2

Q − S2
β̂

Williamson, Datta, and Satten (2003) proposed the cluster weighted generalized estimating e-

quation method (CWGEE) to simplify the WCR for GEE the method under the informative cluster

size situation. The CWGEE method is to solve

U(β) =
I∑
i=1

1

mi

mi∑
j=1

Uij(β) = 0, (1.65)

to estimate the parameter β, where Ui(β) is an estimating function to be used in the ith cluster and

E{UI(β)} = 0 under the true marginal parameter β for marginal model. Denote the solution to
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U(β) = 0 as β̂CWGEE and define β̂WCR = limQ→∞ β̄Q, they showed that

β̂WCR − β̂CWGEE → 0.

They also showed the asymptotic distribution of CWGEE estimator

√
I(β̂CWGEE − β)→ N(0, Σ̂CWGEE),

where

Σ̂CWGEE = Ĥ−1V̂ Ĥ−1,

Ĥ = I−1
I∑
i=1

1

mi

mi∑
j=1

∂Uij(β)

∂β

∣∣∣∣∣∣
β=β̂CWGEE

,

and

V̂ = I−1
I∑
i=1

{ 1

mi

mi∑
j=1

Uij(β̂CWGEE)}{ 1

mi

mi∑
j=1

Uij(β̂CWGEE)}T .

The CWGEE method only needs to solve a single weighted score function and It avoids the compu-

tationally intensive resampling required in the WCR method, while achieving similar results.

Datta and Satten (2005) proposed a rank sum test for two sample clustered data motivated by

Hoffman, Sen, and Weinberg (2001) and Williamson, Datta, and Satten (2003). They simplified the

WCR method and derived explicit form for their rank sum test under hypothesis F = G. Denote

gij as the group membership of the jth observation in ith cluster and ni1 =
∑mi

j=1 gij . For the

qth resampling, assume that the randomly selected observation from ith cluster is X∗qi, the rank of

X∗qi among the resampled data is Rqi the group membership is gqi. Since the resampled data are

independent, the qth Wilcoxon rank sum statistic is given by

Wq =
1

I + 1

I∑
i=1

gqiRqi. (1.66)
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Then average Wq over all possible choice of qth resampled data X∗q given the original data and

conduct a Z test statistic, which is

Z =
S − E(S)√

ˆvar(S)
, (1.67)

where

S = E(Wq|X) =
1

I + 1

I∑
i=1

mi∑
j=1

gij
mi

[1 +
1

2

∑
i 6=k
{Fk(Xij) + Fk(Xij−)}],

with

Fi(x) =
1

ni

mi∑
j=1

I[Xij < x].

Then they got

E(S) = E(E(WR|(X,g)) = E(E(WR|g)) = E(
1

2

I∑
i=1

g(i)) =
1

2

I∑
i=1

ni1
ni
. (1.68)

The variance of S is given by

ˆvar(S) =
I∑
i=1

{Ŵi − E(Wi)}2, (1.69)

where

Ŵi =
1

2ni(I + 1)

mi∑
j=1

{(I − 1)gij −
I∑
k 6=i

nk1

nk
}{F (Xij) + F (Xij−)}

 ,
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and

E(Ŵi) =
1

2(I − 1)

(I − 1)
ni1
ni
−

I∑
k 6=i

ni1
ni



=
I

2(I − 1)

(
ni1
ni
− 1

M

I∑
k=1

ni1
ni

)
.

The asymptotic distribution is given by

S − E(S)√
ˆvar(S)

→ N(0, 1), as M →∞,

under the two conditions

I∑
i=1

(ni/
I∑
i=1

ni)
2 → 0, as M →∞,

and

lim inf
I→∞

1

I

I∑
i=1

var(Wi) > 0.

1.7 Organization of the Dissertation

In Chapter 2, we first introduce the WCR methods for clustered ROC data to evaluate one ROC

curve. We derive the WCR estimating rules to estimate the AUC and the corresponding variance. We

compare the proposed methods with the Obuchowski’s method and the traditional parametric and

nonparametric methods through extensive simulation studies. We illustrate the proposed methods

through two data examples. In Chapter 3, we introduce the WCR methods to compare two ROC

curves for clustered ROC data. We compare the proposed methods with the Obuchowski’s method

and the traditional parametric and nonparametric methods through extensive simulation studies. In

chapter 4, we introduce the WCR methods on estimating the covariate adjusted ROC curves and
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compare the proposed methods with the tradition methods through extensive simulation studies. In

Appendix A, we describe the data used in section 2. In Appendix B, we list the R functions and

packages used for our simulation studies. Appendix C displays the simulation settings which we

used to generate the datasets.

1.8 Contribution of the Dissertation

The major contribution of this dissertation is that it provides a patient level estimator from resampled

data sets for clustered ROC data. The proposed methods use one resampled observation to represent

a patient’s status. The traditional methods use one observation to represent the disease status of a

location from the patient. Hence, the ROC curve estimated by the proposed methods is to determine

how well a biomarker test works on distinguishing the diseased patient from nondiseased patient.

Also, the WCR methods provide a general framework on estimating the ROC curves for clus-

tered ROC data. We can estimate the ROC curves, as well as the corresponding ROC measures

including the AUC, the partial AUC and the TPR at a fixed FPR. We can also choose from the para-

metric WCR, the nonparametric WCR and the semiparametric WCR methods according to the data

type and distribution assumptions.
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Chapter 2: Within Cluster Resampling (WCR) Methods for One ROC

Curve

2.1 Evaluating One Biomarker

We propose within cluster resampling methods for cluster ROC data. Let T dij denote the jth contin-

uous diseased result in the ith cluster, where i = 1, . . . , I , j = 1, . . . ,mi, and T dij ∼ F . Let T d̄ik

denotes the kth continuous nondiseased result in the ith cluster, where k = 1, . . . , ni, and T d̄ik ∼ G.

The total number of diseased biomarker results in all clusters isM =
∑I

i=1mi and the total number

of nondiseased biomarker results in all clusters isN =
∑I

i=1 ni. For each cluster, there are diseased

and nondiseased biomarker results. The informative cluster size is ni +mi which is the number of

observations in the ith cluster. Hence the ensemble of data is denoted by a long vector

(Td,Td̄) = (T d11, . . . , T
d
1n1
, T d̄11, . . . , T

d̄
1m1

, . . . , T dI1, . . . , T
d
InI
, T d̄I1, . . . , T

d̄
ImI

).

The resampling process is similarly carried out as that in Hoffman, Sen, and Weinberg (2001)

and Follmann, Proschan, and Leifer (2003). For the qth resample, q = 1, . . . , Q, we randomly

select one biomarker result out of ni +mi from the ith cluster, and denote the selected observation

T ∗i,q, which could either be a diseased or nondiseased biomarker results. And to develop some no-

tation, we rearrange the resampled T ∗i,q and the first dq observations are diseased biomarker results,

denoted as T d∗i1,q, i1 = 1 . . . dq, and the rest of the observations are nondiseased biomarker results,

denoted as T d̄∗i2,q, i2 = dq + 1, . . . , I . The ROC curve and corresponding AUC could be estimated

by the resampled data (Td∗
i1,q
,Td̄∗

i2,q
) using the ROC methods, which could be either the parametric

binormal method, the nonparametric empirical method, or the semiparametric method. We have
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T d∗i1,q follows distribution F and T d̄∗i2,q follows distribution G. The ROC curve is

R̂OC
∗
q(u) = 1− F̂ ∗q (Ĝ∗q

−1(1− u)), (2.1)

and the corresponding wAUC is

ŵAUC
∗
q =

∫ 1

0
R̂OC

∗
q(u)dW (u). (2.2)

Hence the within cluster resampling (WCR) wAUC estimator is estimated by

ŵAUCWCR =
1

Q

Q∑
q=1

ŵAUC
∗
q . (2.3)

The within-cluster resampling (WCR) AUC estimator can be obtained by averaging all the ÂUC
∗
q

and is estimated by

ÂUCWCR =
1

Q

Q∑
q=1

ÂUC
∗
q . (2.4)

The variance of WCR AUC is estimated by

v̂ar(ÂUCWCR) =
1

Q

Q∑
q=1

v̂ar(ÂUC
∗
q)− S2

AUC , (2.5)

where

S2
AUC =

1

Q− 1

Q∑
q=1

(ÂUC
∗
q − ÂUCWCR)2, (2.6)

is the variability of the resampled AUC estimators. We note that, 1
Q

∑Q
q=1 v̂ar(ÂUC

∗
q) can be
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written in the sum of two parts, with one being the average of conditional expectation of variance

and the other one being the average of conditional variance of expectation on all the resampled data

sets.

1

Q

Q∑
q=1

v̂ar(ÂUC
∗
q) = v̂ar{E(

1

Q

Q∑
q=1

v̂ar(ÂUC
∗
q))|data}+ E{var(ÂUC

∗
q)|data}, (2.7)

where v̂ar{E( 1
Q

∑Q
q=1 v̂ar(ÂUC

∗
q))|data} is the WCR AUC variance is the conditional vari-

ance of the expectation of averaging all the resampled variance on all the resampled data sets and

E{var(ÂUC
∗
q)|data} is the average of conditional expectation of variance of the Q estimators on

all the resampled data sets (Td∗
i1,q
,Td̄∗

i2,q
). We denote E{var(ÂUC

∗
q)|data} as S2

AUC . So that, the

WCR AUC variance equals to 1
Q

∑Q
q=1 v̂ar(ÂUC

∗
q) subtract S2

AUC .

Table 2.1 gives the major steps of within cluster resampling method on cluster ROC data

Table 2.1: Schematic representation of WCR ROC methods on evaluating one biomarker

Td,Td̄

↓
1 Td∗

i1,1
,Td̄∗

i2,1
→ R̂OC

∗
1(u) → ÂUC

∗
1, v̂ar(ÂUC

∗
1)

2 Td∗
i1,2
,Td̄∗

i2,2
→ R̂OC

∗
2(u) → ÂUC

∗
2, v̂ar(ÂUC

∗
2)

...
...

...
...

...
...

Q Td∗
i1,Q

,Td̄∗
i2,Q

→ R̂OC
∗
Q(u) → ÂUC

∗
Q, v̂ar(ÂUC

∗
Q)

⇓
ÂUCWCR, v̂ar(ÂUCWCR), S2

AUC

Note that, comparing to Obuchowski’s and Li and Zhou’s methods, the ROC curve estimated

by the WCR methods is on a patient/subject level, which means, each resampled data set represents

the biomarker results of the corresponding patients, not the locations. The WCR methods average

all the possible resampled ROC curves. The TPR and FPR estimated by the WCR methods, are the

probability of identifying a diseased patient when the patient is truly diseased and the probability

of identifying a diseased patient when the patient is not diseased at different thresholds. For the qth
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resampled data, the TPR and FPR can be written as T̂PRq(c) = P (T d∗i1,q > c) and F̂PRq(c) =

P (T d̄∗i2,q > c), where c is the thresholds. Let ũ be the patient level false positive rate and R̂OCq(ũ)

be the patient level true positive rate, the qth ROC curve is given by R̂OCq(ũ) = 1− F̂q(Ĝ−1
q (1−

ũ)), where F̂q(c) = 1 − T̂PRq(c) and Ĝq(c) = 1 − F̂PRq(c). The WCR ROC curve can be

obtained by averaging all the ROC curves estimated using all the resampled data. The qth AUC

estimator is ÂUC
∗
q = P (T̃ d∗i1,q > T̃ d̄∗i2,q). By averaging all the ÂUC

∗
q , we can get the WCR AUC

estimator. It can be expressed in probability as ÂUCWCR = P (T̃ di > T̃ d̄i′′), where i and i′′ are

not the same. T̃ di and T̃ d̄i′ are the biomarker results of all the patients. Hence, ÂUCWCR is the

probability that a diseased result from a randomly selected subject being greater than a nondiseased

result from another randomly selected subject. Meanwhile, the AUC estimated by Obuchowski

and Li and Zhou is ÂUC = P (T dij > T d̄i′k), which is the probability that a diseased result from a

randomly selected location being greater than a nondiseased result from another randomly selected

location. The difference of proposed method and Obuchowski’s and Li and zhou’s methods is that,

the AUC of proposed method measures the accuracy of the biomarker on patients, but the AUC

from other methods measure the accuracy of the biomarker on locations of the patients.

2.1.1 Parametric WCR Methods

The parametric binormal method can be employed to estimate the ROC curve and the AUC. For

the qth resample, the diseased biomarker results T d∗i1,q follows a normal distribution N(µD, σ
2
D) and

nondiseased biomarker results T d̄∗i2,q follows a normal distribution N(µD̄, σ
2
D̄

). Under the normal

assumption, there are two approaches to estimate AUCWCR,BN . In the first approach, we first

estimate the parameter a and b by using each resampled data set, so that â∗q = (µ̂D,q − µ̂D̄,q)/σ̂D,q

and b̂∗q = σ̂D̄,q/σ̂D,q, where µ̂D,q =
∑dq

i1=1 T
d∗
i1,q
/dq, µ̂D̄,q =

∑I
i2=dq+1 T

d̄∗
i2,q
/(I − dq), σ̂2

D,q =

∑dq
i1=1(T d∗i1,q − µ̂D,q)/(dq − 1), σ̂2

D̄,q
=
∑I

i2=dq
(T d̄∗i2,q − µ̂D̄,q)/(I − dq − 1) are the sample means

and variances of resampled diseased and nondiseased biomarker results. The variance-covariance
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estimate of â∗q and b̂∗q , are estimated by the following equations, v̂ar(â∗q) = (dq(â
∗2
q + 2) + 2(I −

dq)b̂
∗2
q )/(2dq(I − dq)), v̂ar(b̂∗q) = (Ib̂∗2q )/(2dq(I − dq)) and ĉov(â∗q , b̂

∗
q) = (â∗q b̂

∗
q)/(2(I − dq)).

Then the WCR binormal model parameters can be estimated by averaging all the â∗q and b̂∗q , which

are given by âWCR = 1
Q

∑Q
q=1 â

∗
q , b̂WCR = 1

Q

∑Q
q=1 b̂

∗
q . The WCR ROC curve can be estimated

by the WCR binormal model parameters and the WCR ROC estimator is

R̂OCWCR,BN1 = Φ(âWCR + b̂WCRΦ−1(u)). (2.8)

The WCR AUC estimator can be estimated by taking the integral on the estimated WCR ROC curve,

that is,

ÂUCWCR,BN1 =

∫ 1

0
R̂OCWCR,BN1(u)du. (2.9)

The explicit form of the WCR AUC estimator using WCR binormal model parameters âWCR and

b̂WCR is,

ÂUCWCR,BN1 = Φ

 âWCR√
1 + b̂2WCR

 . (2.10)

Based on Equation 2.5, the WCR AUC variance is estimated by the following equations

v̂ar(ÂUCWCR,BN1) = f̂2
WCRv̂ar(âWCR)+ĝ2

WCRv̂ar(b̂WCR)+2ĝ2
WCRf̂

2
WCRĉov(âWCR, b̂WCR),

(2.11)

where the parameters f̂WCR and ĝWCR are given by f̂WCR = 1
Q

∑Q
q=1 f̂

∗
q , ĝWCR = 1

Q

∑Q
q=1 ĝ

∗
q

with f̂∗q = e−â
∗2
q /2(1+b̂∗2q )/

√
2π(1 + b̂∗2q ), ĝ∗q = (â∗q b̂

∗
qe
−â∗2q /2(1+b̂∗2q ))/

√
2π(1 + b̂∗2q )3 and the

variance-covariance estimates of âWCR, b̂WCR are estimated by

v̂ar(âWCR) =
1

Q

Q∑
q=1

v̂ar(â∗q)−
1

Q− 1

Q∑
q=1

(â∗q − âWCR)2,
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v̂ar(b̂WCR) =
1

Q

Q∑
q=1

v̂ar(b̂∗q)−
1

Q− 1

Q∑
q=1

(b̂∗q − b̂WCR)2,

ĉov(b̂WCR, b̂WCR) =
1

Q

Q∑
q=1

ĉov(b̂WCR, b̂
∗
q)−

1

Q− 1

Q∑
q=1

(â∗q − âWCR)(b̂∗q − b̂WCR).

In the second approach, after the parameters â∗q and b̂∗q are estimated for the qth resampled data

set, the qth ROC estimator is given by R̂OC
∗
q = Φ(â∗q + b̂∗qΦ

−1(u)), the qth AUC estimator is

ÂUC
∗
q =

∫ 1
0 R̂OC

∗
q(u)du, and explicit form of AUCq using qth resampled parameters â∗q and

b̂∗q is ÂUC
∗
q = Φ

(
â∗q√

1+b̂∗2q

)
. The variance of ÂUC

∗
q is given by v̂ar(ÂUC

∗
q) = f̂∗2q v̂ar(â

∗
q) +

ĝ∗2q v̂ar(b̂
∗
q) + 2f̂∗q ĝ

∗
q ĉov(â∗q , b̂

∗
q). So that the WCR AUC estimator is the average of all the ÂUC

∗
q ,

ÂUCWCR,BN2 =
1

Q

Q∑
q=1

ÂUC
∗
q , (2.12)

and the WCR AUC variance estimator is given by

v̂ar(ÂUCWCR,BN2) =
1

Q

Q∑
q=1

v̂ar(ÂUC
∗
q)− S2

AUC,BN2
, (2.13)

where

S2
AUC,BN2

=
1

Q− 1

Q∑
q=1

(ÂUC
∗
q − ÂUCWCR,BN2)2, (2.14)

is the variability of the resampled estimators.
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2.1.2 Nonparametric WCR Methods

We can also apply the WCR methods on clustered ROC data by using the nonparametric method

to estimate the ROC curve. For the qth resampled data, the empirical distributions of X∗i1,q and

Y ∗i2,q are F̂ ∗q,NP (c) = 1
dq

∑dq
i1=1 I(T d∗i1,q ≤ c) and Ĝ∗q,NP (c) = 1

I−dq
∑I

i2=dq+1 I(T d̄∗i2,q ≤ c). Since

the qth resampled data set is independent ROC data, the qth area under empirical ROC curve is

estimated by the Wilcoxon U statistics,

ÂUC
∗
q,NP =

1

dq(I − dq)

dq∑
i1=1

I∑
i2=dq+1

Ψ(T d∗i1,q, T
d̄∗
i2,q), (2.15)

where Ψ(T d∗i1,q, T
d̄∗
i2,q

) = 1 if T d∗i1,q > T d̄∗i2,q Ψ(T d∗i1,q, T
d̄∗
i2,q

) = 1
2 if T d∗i1,q = T d̄∗i2,q Ψ(T d∗i1,q, T

d̄∗
i2,q

) = 0 if

T d∗i1,q < T d̄∗i2,q. and the variance of ÂUC
∗
q,NP is estimated by

v̂ar(ÂUC
∗
q,NP ) =

V ∗
T d,q

dq
+

V ∗
T d̄,q

I − dq
, (2.16)

where V ∗
T d,q

and V ∗
T d̄,q

are the variance components generated by T d∗i1,q and T d̄∗i2,q, and they have the

following forms,

V ∗T d,q =
1

dq − 1

dq∑
i1=1

[
1

I − dq

I∑
i2=dq+1

Ψ(T d∗i1,q, T
d̄∗
i2,q)− ÂUC

∗
q,NP ]2,

and

V ∗
T d̄,q

=
1

I − dq − 1

I∑
i2=dq+1

[
1

dq

dq∑
i1=1

Ψ(T d∗i1,q, T
d̄∗
i2,q)− ÂUC

∗
q,NP ]2.
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The empirical WCR AUC estimator is the average of ÂUC
∗
q,NP

ÂUCWCR,NP =
1

Q

Q∑
q=1

ÂUC
∗
q,NP , (2.17)

and the WCR AUC variance can be estimated by the following equations,

v̂ar(ÂUCWCR,NP ) =
1

Q

Q∑
q=1

v̂ar(ÂUC
∗
q,NP )− S2

AUC,NP , (2.18)

where

S2
AUC,NP =

1

Q− 1

Q∑
q=1

(ÂUC
∗
q,NP − ÂUCWCR,NP )2, (2.19)

is the variability of the resampled estimators.

The nonparametric WCR methods are similar to the second approach of parametric WCR meth-

ods. They both estimate the resampled estimators ÂUC
∗
q and v̂ar(ÂUC

∗
q) first. And then take the

average of all the resampled estimators. Note that for WCR AUC variance, the variability of the re-

sampled estimators should be subtracted because all the resampled data are correlated. Meanwhile,

the first approach of parametric WCR method estimated the WCR parameter estimators âWCR and

b̂WCR first, and use the WCR parameter estimators to evaluate the WCR ROC curve, WCR AUC

and WCR AUC variance. In the second approach, we first average the Q empirical distributions

F̂ ∗q,NP (c) and Ĝ∗q,NP (c), where q = 1, . . . , Q. We then have the following estimators

F̂WCR,NP2 =
1

Q

Q∑
q=1

F̂ ∗q,NP (c), (2.20)
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ĜWCR,NP2 =
1

Q

Q∑
q=1

Ĝ∗q,NP (c), (2.21)

for F and G respectively. Then the empirical WCR ROC curve is estimated by

R̂OCWCR,NP2(u) = 1− F̂WCR,NP2(Ĝ−1
WCR,NP2

(1− u)), (2.22)

and the WCR wAUC is estimated by

ŵAUCWCR,NP2 =

∫ 1

0
R̂OCWCR,NP2(u)dW (u). (2.23)

The kernel estimator can be used to fit the resampled dataset to yield a smooth ROC estimator.

The distributions of the qth resampled dataset T d∗i1,q and T d̄∗i2,q are estimated by

F̂ ∗q,KN (c) =
1

dqh

dq∑
i1=1

K

(
c− T d∗i1,q

h

)
, (2.24)

Ĝ∗q,KN (c) =
1

(I − dq)h

I∑
i2=dq+1

K

(
c− T d̄∗i2,q

h

)
, (2.25)

where h is the kernel bandwidth and the function K() is the kernel. In order to ÂUCWCR, we can

use two approaches here. In the first approach, we fit the qth ROC curve ROC∗q,KN using the qth

estimated kernel distributions F̂ ∗q,KN (c) and Ĝ∗q,NP (c). The corresponding weighted area under the

qth ROC curve AUC∗q,KN is estimated by

ŵAUCWCR,KN =

∫ 1

0
R̂OCWCR,KN (u)dW (u). (2.26)
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Then we average the Q wAUC∗q,KN by

ŵAUCWCR,KN1 =
1

Q

Q∑
q=1

ŵAUC
∗
q,KN . (2.27)

In the other approach, the average of Q distributions F̂ ∗q,NP (c) and Ĝ∗q,NP (c), where q = 1, . . . , Q,

are obtained. Then, we fit the WCR ROC curve by

R̂OCWCR,KN2(u) = 1− F̂WCR,KN (Ĝ−1
WCR,KN (1− u)), (2.28)

and the WCR wAUC is estimated by

ŵAUCWCR,KN2 =

∫ 1

0
R̂OCWCR,KN2(u)dW (u). (2.29)

2.1.3 Semiparametric WCR Methods

For the semiparametric WCR methods, we could employ the generalized linear model. For the

generalized linear model in Equation (1.44), we have one biomarker and the model became

ROC(u) = g{βh(u)} = g{β1 + β2h
−1(u)}, (2.30)

For the qth resample, we use the generalized linear model method estimating equation to estimate

the parameters β̂∗q,GLM . Let the indicator variable U∗q,i1i2 = I[T d∗q,i1 ≥ T d̄∗q,i2 ], we solve β̂∗q,GLM by

solving

dq∑
i1=1

Q∑
i2=dq+1

U∗q,i1i2 − g{β
∗
q,GLMh(uq)}

g{β∗q,GLMh(uq)}(1− g{β∗q,GLMh(uq)})
∂g{β∗q,GLMh(uq)}

∂β∗q,GLM
= 0 (2.31)
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The ROC curve is estimated from the qth resample by

R̂OC
∗
q,GLM (uq) = g{β̂∗q,GLMh(uq)},

and the wAUC is

ŵAUC
∗
q,GLM =

∫ 1

0
R̂OC

∗
q,GLM (u)dW (u).

So the ÂUC
∗
q,GLM are averaged to obtain an estimator for the AUC.

The other way to estimate the parameters is the least square method. The least square estimator

is

β̂∗q,LS = (MT
q Mq)

−1MT
q T̃

d̄∗
q ,

where Mq is the design matrix and T̃ d̄∗q = g−1(ROC∗q (uq)). So that we could estimate the qth

ROC curve and corresponding wAUC. The WCR wAUC estimator is the average of Q ŵAUC
∗
q,LS

2.2 Simulation Study

2.2.1 Simulation Study for the AUC Estimator

In this section, we report simulation studies to evaluate the performance of the proposed WCR

methods. In particular, we are interested in whether the proposed methods can account for the

within-cluster correlation and provide valid AUC and variance estimators. We focus primarily on the

coverage percentage of the confidence intervals estimated by the proposed methods. We perform our

methods on simulated clustered ROC data and estimate the WCR AUC and the WCR AUC variance

by the parametric WCR methods and the nonparametric WCR method. We compare our methods

with the traditional methods and show the bias in using the traditional methods on clustered ROC

data. The WCR methods are also compared with Obuchowski’s method. The simulation results

from these two methods are on different levels. The WCR methods are on patient level and the

Obuchowski’s method is on location level. We consider the situation where, for a diseased subject,
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there are either 2 or 5 diseased results plus 1 nondiseased result, for a nondiseased subject, all

biomarker results in the same cluster are nondiseased.

Let I1 and I0 denote the number of clusters in the diseased group and the nondiseased group.

We let the two groups have the same number of clusters, so that I1 = I0 = I/2. The clusters in

the diseased group have a cluster size mi = 3 with probability p and a cluster size mi = 6 with

probability 1 − p, where as the clusters in the nondiseased group have a cluster size nj = 2 with

probability 1 − p and a cluster size nj = 5 with probability p. We simulate 1000 clustered ROC

data from normal and lognormal distributions, respectively:

1. T d ∼ N(µT d ,ΣT d) and T d̄ ∼ N(µT d̄ ,ΣT d̄), where µT d = (1, 1, 0) when mi = 3 and

µT d = (1, 1, 1, 1, 1, 0) when mi = 6, µT d̄ = (0, 0) when nj = 2 and µT d̄ = (0, 0, 0, 0, 0)

when nj = 5. The variance-covariance matrix ΣT d is a mi × mi matrix with diagonal

elements equal to 1 and correlation coefficients equal to ρ and ΣT d̄ is a nj × nj matrix with

diagonal elements equal to 1 and correlation coefficients equal to ρ

2. T d ∼ LogNormal(µT d ,ΣT d) and T d̄ ∼ LogNormal(µT d̄ ,ΣT d̄), with the same settings

on µT d , ΣT d , µT d̄ , ΣT d̄ , mi, nj and ρ.

We let p, the informative cluster size correlation, be 0.3, 0.4 and 0.5. Note that when p 6= 0.5, the

cluster size is different between the two groups. Under each setting, we let ρ, the within-cluster

correlation, be 0.2, 0.5, 0.9 and I/2, the number of clusters in each group, be 25, 50 and 100.

For the simulated normal clustered ROC data, we employ the proposed parametric WCR meth-

ods and nonparametric WCR method, as well as traditional parametric and nonparametric methods

and Obuchowski’s method. For the simulated lognormal clustered ROC data, we apply the nonpara-

metric WCR method, traditional nonparametric method and Obuchowski’s method. Li and Zhou’s

method gives the same estimator as Obuchowski’s method, and is not compared in the simulation

study. We obtain the AUC estimators and 95% confidence intervals from all the methods. Biases,

square root of mean squared errors, and simulated coverage percentage of 95% confidence intervals

under various scenarios are shown in the tables.

In Table 2.2, we compare the proposed parametric WCR methods with the traditional parametric
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method when the data are normal. In Tables 2.3 and 2.4, we compare the proposed nonparametric

WCR methods, traditional nonparametric method (DeLong, DeLong, and Clarke-Pearson 1988),

and the Obuchowski’s nonparametric method (Obuchowski 1997) using simulated normal and log-

normal data. It is clear that the coverage percentages obtained by our methods are close to the

nominal level and do not change as the within-cluster correlation becomes larger. Also the biases

obtained by the proposed methods are close to zero. This indicates that proposed WCR methods

have a good performance on clustered ROC data and can account for the within-cluster correlation.

On the contrary, the coverage percentages obtained by the traditional methods are not close to 95%

and as within-cluster correlation increases, the coverage percentages decrease. Our methods han-

dle the within-cluster correlation better than the traditional methods do. The simulation results for

the average length of 95% confidence intervals show that the WCR and the Obuchowski’s method-

s give similar confidence interval length but the traditional method estimate a smaller length. As

ρ increases, the length increases. As sample size increases, the length decreases. In Table 2.4,

we compare the nonparametric WCR methods with the traditional nonparametric method when the

normal assumption is violated. The WCR methods work well on lognormal data and obtain better

coverage percentages than those from the traditional nonparametric method. The results obtained

by the WCR methods and the Obuchowski’s method are similar, which indicate that the biomarker

has similar accuracy on patients and locations.

In Figures 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6. we visualize the simulation results for the coverage

percentage of the 95% confidence intervals and the average length of the 95% confidence intervals.

2.2.2 Simulation Study for the ROC Curve

In this section, we report simulation studies for the empirical WCR ROC curves and traditional

empirical ROC curves. In particular, we are interested in whether the proposed methods can fit a

smoother ROC curve for clustered ordinal ROC data. We focus primarily on the visualization of the

simulation and the standard deviation of the adjoint point difference of the empirical WCR ROC

curves and traditional empirical ROC curves. We perform our methods on simulated normal and

lognormal clustered ordinal ROC data and fit the empirical WCR ROC curves for each simulation.
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Table 2.2: Simulation results for normal clustered ROC data using three parametric methods
WCR1 WCR2 Parametric

p ρ n Bias RMSE CP Length Bias RMSE CP Length Bias RMSE CP Length
(%) (%) (%)

0.3 0.2 25 0.2314 0.0499 0.930 0.1609 -0.1819 0.0436 0.928 0.1644 -0.1655 0.0494 0.866 0.1514
50 0.1751 0.0333 0.955 0.1181 -0.0241 0.0292 0.952 0.1190 -0.1831 0.0336 0.873 0.1071
100 0.1809 0.0253 0.945 0.0840 0.0846 0.0218 0.946 0.0843 -0.1339 0.0250 0.872 0.0758

0.5 25 0.6092 0.0583 0.932 0.1894 0.2584 0.0507 0.926 0.1917 -0.0396 0.0614 0.796 0.1505
50 0.1842 0.0417 0.949 0.1366 0.0185 0.0364 0.931 0.1372 -0.1217 0.0434 0.789 0.1066
100 -0.0780 0.0295 0.943 0.0977 -0.1586 0.0251 0.950 0.0979 0.0656 0.0299 0.788 0.0757

0.9 25 0.4248 0.0677 0.935 0.2237 0.1942 0.0578 0.929 0.2261 0.4044 0.0742 0.688 0.1498
50 0.0186 0.0491 0.953 0.1599 -0.0920 0.0412 0.943 0.1607 -0.1787 0.0528 0.681 0.1067
100 -0.0154 0.0336 0.957 0.1142 -0.0697 0.0297 0.938 0.1144 0.2235 0.0363 0.702 0.0755

0.4 0.2 25 0.2494 0.0486 0.955 0.1598 -0.1618 0.0444 0.927 0.1636 0.0835 0.0474 0.875 0.1487
50 0.1085 0.0346 0.943 0.1178 -0.0904 0.0311 0.930 0.1188 -0.0352 0.0342 0.861 0.1054
100 -0.0527 0.0234 0.935 0.0842 -0.1493 0.0210 0.951 0.0845 -0.1123 0.0231 0.902 0.0746

0.5 25 0.1288 0.0599 0.940 0.1881 -0.2210 0.0509 0.935 0.1907 -0.2606 0.0645 0.741 0.1485
50 0.1849 0.0408 0.950 0.1360 0.0141 0.0353 0.938 0.1367 0.1816 0.0432 0.759 0.1054
100 0.1579 0.0297 0.951 0.0971 0.0757 0.0257 0.946 0.0973 -0.0836 0.0310 0.776 0.0746

0.9 25 0.2459 0.0691 0.947 0.2212 0.0006 0.0597 0.929 0.2237 0.2469 0.0762 0.651 0.1474
50 0.0151 0.0477 0.955 0.1587 -0.1020 0.0424 0.933 0.1595 -0.1064 0.0518 0.662 0.1049
100 0.0417 0.0339 0.944 0.1130 -0.0151 0.0276 0.958 0.1133 0.0215 0.0369 0.686 0.0745

0.5 0.2 25 0.2137 0.0489 0.933 0.1588 -0.2019 0.0433 0.928 0.1631 0.1707 0.0477 0.881 0.1476
50 0.2414 0.0355 0.938 0.1168 0.0406 0.0301 0.937 0.1180 -0.0498 0.0344 0.869 0.1045
100 0.1091 0.0244 0.951 0.0841 0.0100 0.0215 0.939 0.0844 -0.0641 0.0244 0.891 0.0739

0.5 25 0.3181 0.0584 0.947 0.1860 -0.0416 0.0487 0.941 0.1891 -0.1598 0.0604 0.777 0.1474
50 -0.1308 0.0407 0.952 0.1345 -0.2997 0.0358 0.935 0.1354 -0.2823 0.0424 0.787 0.1041
100 -0.0882 0.0294 0.950 0.0963 -0.1726 0.0245 0.947 0.0966 -0.0445 0.0311 0.778 0.0739

0.9 25 0.0674 0.0704 0.942 0.2167 -0.1827 0.0562 0.941 0.2198 0.0325 0.0763 0.670 0.1456
50 -0.0079 0.0487 0.938 0.1566 -0.1303 0.0413 0.940 0.1575 0.1576 0.0526 0.672 0.1039
100 0.0203 0.0342 0.938 0.1117 -0.0398 0.0290 0.944 0.1120 -0.1594 0.0369 0.687 0.0738

WCR1-the first parametric WCR method proposed in Section 2.1.1;
WCR2-the second parametric WCR method proposed Section 2.1.2;
Parametric-the parametric ROC method for independent data;
RMSE-square root of mean squared error;
Coverage-the coverage percentage of 95% confidence intervals;
Length- the average length of the 95% confidence intervals.
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Figure 2.1: The coverage percentage of the 95% confidence intervals of the traditional parametric
method and the two proposed parametric WCR methods for normal clustered ROC data
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Figure 2.2: The average length of the 95% confidence intervals of the traditional parametric method
and the two proposed parametric WCR methods for normal clustered ROC data
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Table 2.3: Simulation results for normal clustered ROC data using three nonparametric methods
WCR1 Obuchowski Nonparametric

p ρ n Bias RMSE CP Length Bias RMSE CP Length Bias RMSE CP Length
(%) (%) (%)

0.3 0.2 25 0.1566 0.0499 0.930 0.1788 0.0833 0.0418 0.932 0.1642 -0.0961 0.0484 0.899 0.1441
50 0.1954 0.0333 0.955 0.1244 0.1712 0.0291 0.951 0.1160 0.0788 0.0356 0.876 0.1016
100 -0.0034 0.0253 0.945 0.0870 0.0171 0.0207 0.954 0.0821 -0.0694 0.0249 0.874 0.0717

0.5 25 -0.0060 0.0583 0.932 0.2058 0.1459 0.0498 0.925 0.1935 -0.0424 0.0609 0.800 0.1442
50 -0.0917 0.0417 0.949 0.1428 -0.0939 0.0349 0.947 0.1370 -0.1225 0.0425 0.802 0.1016
100 -0.0471 0.0295 0.943 0.1002 -0.0504 0.0250 0.942 0.0968 -0.0562 0.0310 0.792 0.0717

0.9 25 0.2794 0.0677 0.935 0.2405 0.6393 0.0595 0.924 0.2323 -0.2002 0.0724 0.711 0.1442
50 -0.3751 0.0491 0.953 0.1676 -0.1642 0.0417 0.942 0.1639 0.0695 0.0498 0.719 0.1017
100 0.0555 0.0336 0.957 0.1175 0.1503 0.0289 0.950 0.1158 -0.0015 0.0388 0.686 0.0716

0.4 0.2 25 0.2331 0.0486 0.955 0.1790 0.1652 0.0403 0.947 0.1669 -0.0022 0.0487 0.874 0.1444
50 0.2728 0.0346 0.943 0.1248 0.2575 0.0308 0.948 0.1179 -0.0671 0.0349 0.881 0.1018
100 0.0318 0.0234 0.935 0.0868 0.0172 0.0221 0.932 0.0833 -0.0508 0.0235 0.888 0.0719

0.5 25 -0.2004 0.0599 0.940 0.2037 -0.0781 0.0523 0.926 0.1965 0.0497 0.0602 0.794 0.1440
50 0.0916 0.0408 0.950 0.1424 0.1968 0.0357 0.938 0.1405 -0.0031 0.0420 0.798 0.1018
100 0.0851 0.0297 0.951 0.1000 0.0717 0.0253 0.947 0.0992 0.0452 0.0317 0.777 0.0718

0.9 25 0.1880 0.0691 0.947 0.2377 0.4304 0.0597 0.934 0.2386 0.3803 0.0773 0.692 0.1441
50 0.0511 0.0477 0.955 0.1654 0.2071 0.0425 0.943 0.1681 -0.2059 0.0536 0.697 0.1013
100 0.0180 0.0339 0.944 0.1162 0.1191 0.0305 0.951 0.1189 0.0966 0.0372 0.687 0.0717

0.5 0.2 25 0.0931 0.0489 0.933 0.1783 0.1562 0.0432 0.933 0.1683 0.0268 0.0485 0.878 0.1452
50 0.1172 0.0355 0.938 0.1238 0.1032 0.0299 0.952 0.1186 0.1153 0.0350 0.884 0.1024
100 -0.1124 0.0244 0.951 0.0873 -0.0899 0.0204 0.963 0.0845 0.0338 0.0243 0.885 0.0723

0.5 25 -0.0994 0.0584 0.947 0.2028 -0.0291 0.0507 0.947 0.2010 -0.0839 0.0617 0.785 0.1449
50 0.0330 0.0407 0.952 0.1411 0.0732 0.0364 0.942 0.1426 -0.1848 0.0427 0.805 0.1026
100 -0.0651 0.0294 0.950 0.0990 0.0064 0.0251 0.954 0.1008 0.0316 0.0296 0.814 0.0723

0.9 25 0.0149 0.0704 0.942 0.2364 0.0791 0.0621 0.932 0.2446 0.2142 0.0774 0.672 0.1452
50 0.3122 0.0487 0.938 0.1641 0.4309 0.0453 0.925 0.1717 0.1994 0.0553 0.672 0.1021
100 0.0075 0.0342 0.938 0.1151 0.0638 0.0317 0.936 0.1214 0.0789 0.0390 0.667 0.0721

WCR-the proposed nonparametric WCR method;
Obuchowski-Obuchowski’s nonparametric method for clustered ROC data;
Nonparametric-the nonparametric ROC method for independent ROC data;
RMSE-square root of mean squared error;
CP-coverage percentage of 95% confidence intervals;
Length- the average length of the 95% confidence intervals.
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Figure 2.3: The coverage percentage of the 95% confidence intervals of the nonparametric method,
Obuchowski’s nonparametric method and proposed nonparametric WCR method for normal clus-
tered ROC data

54



rho=0.2 rho=0.5 rho=0.9

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.10

0.15

0.20

0.25

0.10

0.15

0.20

0.25

0.10

0.15

0.20

0.25

p=
0.3

p=
0.4

p=
0.5

25 50 100 25 50 100 25 50 100

Sample Size

A
ve

ra
ge

 L
en

gt
h 

of
 9

5%
 C

on
fid

en
ce

 In
te

rv
al

s

Method

● Nonparametric

Obuchowski

WCR

Confidence Interval Length vs. Sample Size

Figure 2.4: The average length of the 95% confidence intervals of the traditional nonparametric
method, Obuchowski’s nonparametric method and proposed nonparametric WCR methods for nor-
mal clustered ROC data
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Table 2.4: Simulation results for lognormal clustered ROC data using three nonparametric methods
WCR1 Obuchowski Nonparametric

p ρ n Bias RMSE CP Length Bias RMSE CP Length Bias RMSE CP Length
(%) (%) (%)

0.3 0.2 25 -0.0018 0.0451 0.935 0.1797 -0.0051 0.0432 0.928 0.1643 0.1292 0.0495 0.879 0.1443
50 -0.0773 0.0318 0.948 0.1249 -0.1095 0.0303 0.943 0.1161 0.0394 0.0344 0.878 0.1016
100 -0.0506 0.0221 0.949 0.0873 -0.0522 0.0215 0.943 0.0821 0.0824 0.0242 0.893 0.0718

0.5 25 0.3747 0.0522 0.933 0.2056 0.3418 0.0506 0.933 0.1931 0.1829 0.0620 0.779 0.1437
50 -0.1874 0.0365 0.946 0.1433 -0.1052 0.0352 0.944 0.1370 -0.0218 0.0426 0.801 0.1017
100 -0.0623 0.0257 0.945 0.1005 -0.0390 0.0249 0.951 0.0968 -0.1638 0.0307 0.784 0.0718

0.9 25 -0.1356 0.0596 0.944 0.2406 0.1290 0.0587 0.936 0.2318 0.0777 0.0746 0.700 0.1438
50 0.1068 0.0431 0.942 0.1678 0.2727 0.0423 0.930 0.1641 0.1251 0.0545 0.676 0.1014
100 -0.0730 0.0301 0.940 0.1174 0.0214 0.0298 0.939 0.1160 -0.1281 0.0388 0.696 0.0717

0.4 0.2 25 0.3092 0.0451 0.941 0.1790 0.3334 0.0429 0.933 0.1662 -0.2417 0.0477 0.897 0.1443
50 0.0184 0.0303 0.952 0.1241 0.0322 0.0291 0.937 0.1176 -0.0871 0.0348 0.889 0.1018
100 0.0970 0.0213 0.957 0.0872 0.1051 0.0207 0.947 0.0832 -0.0339 0.0246 0.873 0.0719

0.5 25 0.1131 0.0504 0.945 0.2040 0.2309 0.0503 0.936 0.1973 0.3286 0.0605 0.783 0.1441
50 -0.0163 0.0352 0.953 0.1422 0.1101 0.0357 0.943 0.1401 0.0457 0.0440 0.786 0.1017
100 -0.0564 0.0270 0.929 0.0996 -0.0062 0.0263 0.940 0.0989 0.1139 0.0314 0.777 0.0718

0.9 25 0.2177 0.0587 0.937 0.2385 0.3996 0.0597 0.921 0.2385 -0.0269 0.0758 0.679 0.1439
50 -0.1680 0.0422 0.948 0.1665 -0.0590 0.0438 0.947 0.1693 0.4538 0.0522 0.700 0.1017
100 0.0611 0.0283 0.958 0.1165 0.1165 0.0290 0.954 0.1194 -0.0110 0.0382 0.684 0.0719

0.5 0.2 25 -0.0079 0.0452 0.936 0.1794 -0.0267 0.0441 0.943 0.1696 -0.0168 0.0504 0.873 0.1457
50 -0.0249 0.0302 0.952 0.1244 0.0092 0.0301 0.945 0.1194 0.1180 0.0332 0.897 0.1024
100 0.0619 0.0220 0.942 0.0867 0.0546 0.0213 0.952 0.0841 0.0096 0.0244 0.882 0.0723

0.5 25 0.0863 0.0509 0.942 0.2042 0.1184 0.0522 0.931 0.2027 -0.0806 0.0600 0.796 0.1459
50 0.0459 0.0358 0.947 0.1419 0.0882 0.0361 0.947 0.1425 0.0288 0.0423 0.795 0.1022
100 -0.1065 0.0252 0.946 0.0991 -0.1444 0.0258 0.945 0.1008 -0.0785 0.0304 0.795 0.0723

0.9 25 -0.1002 0.0584 0.935 0.2349 0.1372 0.0627 0.920 0.2429 0.1327 0.1022 0.500 0.1446
50 0.0394 0.0410 0.949 0.1639 0.1798 0.0436 0.936 0.1718 0.1184 0.0525 0.703 0.1020
100 -0.0084 0.0294 0.951 0.1151 0.0638 0.0312 0.951 0.1217 -0.0073 0.0374 0.691 0.0722

WCR-the proposed nonparametric WCR method;
Obuchowski-Obuchowski’s nonparametric method for clustered ROC data;
Nonparametric-the nonparametric ROC method for independent ROC data;
RMSE-square root of mean squared error;
CP-coverage percentage of 95% confidence intervals;
Length- the average length of the 95% confidence intervals.
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Figure 2.5: The coverage percentage of the 95% confidence intervals of the traditional nonparamet-
ric method, Obuchowski’s nonparametric method and proposed nonparametric WCR method for
lognormal clustered ROC data
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Figure 2.6: The average length of the 95% confidence intervals of the traditional nonparametric
method, Obuchowski’s nonparametric method and proposed nonparametric WCR methods for log-
normal clustered ROC data
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We also plot the empirical ROC curve for each simulated data. We calculated the averages of

the standard deviation of the adjoint point difference of the empirical WCR ROC curves and the

empirical curves.

The simulation settings are similar as Section 2.2.1. Let I1 and I0 denote the number of clusters

in the diseased group and the nondiseased group. We let the two groups have the same number of

clusters, so that I1 = I0 = I/2. The clusters in the diseased group have a cluster size mi = 3

with probability p and a cluster size mi = 6 with probability 1 − p, where as the clusters in the

nondiseased group have a cluster size nj = 2 with probability 1− p and a cluster size nj = 5 with

probability p. We simulate clustered continuous ROC data from normal and lognormal distributions:

1. T d ∼ N(µT d ,ΣT d) and T d̄ ∼ N(µT d̄ ,ΣT d̄), where µT d = (1, 1, 0) when mi = 3 and

µT d = (1, 1, 1, 1, 1, 0) when mi = 6, µT d̄ = (0, 0) when nj = 2 and µT d̄ = (0, 0, 0, 0, 0)

when nj = 5. The variance-covariance matrix ΣT d is a mi × mi matrix with diagonal

elements equal to 1 and correlation coefficients equal to ρ and ΣT d̄ is a nj × nj matrix with

diagonal elements equal to 1 and correlation coefficients equal to ρ

2. T d ∼ LogNormal(µT d ,ΣT d) and T d̄ ∼ LogNormal(µT d̄ ,ΣT d̄), with the same settings

on µT d , ΣT d , µT d̄ , ΣT d̄ , mi, nj and ρ.

After we generate clustered continuous ROC data, we round the data to no decimal. So that we have

clustered ordinal data. We consider the informative cluster size correlation p of 0.3, 0.4 and 0.5.

Note that when p 6= 0.5, the cluster size is different between the two groups. Under each setting,

we consider the within-cluster correlation ρ of 0.2, 0.5, 0.9 and number of clusters in each group

I/2 of 25, 50 and 100.

For the simulated clustered ordinal ROC data, we employ the proposed nonparametric WCR

methods, as well as traditional nonparametric method. We obtain the averages of the standard

deviation of the adjoint point difference of the empirical WCR ROC curves and the empirical curves.

In Tables 2.5 and 2.6, the averages of the adjoint point difference of the first derivatives of the

empirical WCR ROC curves are smaller than those from the empirical curves. It means that the

59



nonparametric WCR methods can estimate a smoother ROC curve than the traditional nonparamet-

ric method for clustered ordinal data. We can estimate more accurate ROC summary measures,

including the pAUC and the TPR at a fixed FPR if the ROC curve is smoother.

In Figures 2.7, and 2.8, we visualize the ROC curves by simulated clustered ordinal ROC data

under two simulation settings. Figure 2.7 is under simulation setting one where we let n = 50,

p = 0.3, ρ = 0.2. Figure 2.8 is under simulation setting two where we let n = 50, p = 0.3, ρ = 0.9.

In both figures, the top left panel shows five empirical ROC curves and five empirical WCR ROC

curves. The top right panel shows the averaged empirical ROC curve and averaged empirical WCR

ROC curve. The bottom right panel shows ten empirical ROC curves and ten empirical WCR ROC

curves. The bottom right panel shows the averaged empirical ROC curve and averaged empirical

WCR ROC curve. It is obvious that the empirical WCR ROC curves are smoother. The averaged

curves become smoother when the number of simulation becomes larger.

2.3 Data example

An motivating example is the eye exam data in the Sorbinil Retinopathy trial (Rosner, Glynn, and

Lee 2003). Patients in the trial were randomized into three groups: each eye of the patients received

the same treatment with an active drug in Group 1; both eyes of the patients received the same

treatment with a placebo in Group 2; both eyes of each patient received the placebo and the other

eye received the active drug in Group 3. The itching scores were measured at the third visit, which

were from 0 (no itch at all) to 4 (severe itch) in an increments of 0.5. The resulting data are clustered

with a fixed cluster size two. The number of itching scores that are from active drug treatment can

be zero, one or two.

Another example is in the detection of glaucomatous deterioration. In order to detect visual

field deterioration in glaucoma patients, Jiang developed a Bayesian hierarchical modeling method

to predict the probability of the early diagnosis of glaucomatous progression using longitudinal

visual field image data. The patients can either have none, one or two abnormal eye ratings. This

generates the clustered data with cluster size two.

We now apply the procedure described in Section 2.1.2 with the example data sets from the
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Table 2.5: Simulation results for normal clustered ordinal ROC data using two nonparametric meth-
ods

WCR Empirical
p ρ n SD of APD SD of APD

0.3 0.2 25 0.0328 0.1552
50 0.0259 0.1498

100 0.0247 0.1486
0.5 25 0.0328 0.1561

50 0.0268 0.1520
100 0.0251 0.1485

0.9 25 0.0364 0.1628
50 0.0309 0.1531

100 0.0281 0.1501
0.4 0.2 25 0.0326 0.1535

50 0.0251 0.1515
100 0.0241 0.1485

0.5 25 0.0342 0.1570
50 0.0263 0.1518

100 0.0245 0.1500
0.9 25 0.0365 0.1634

50 0.0306 0.1554
100 0.0273 0.1502

0.5 0.2 25 0.0319 0.1547
50 0.0249 0.1506

100 0.0234 0.1480
0.5 25 0.0335 0.1582

50 0.0265 0.1525
100 0.0252 0.1495

0.9 25 0.0354 0.1631
50 0.0301 0.1558

100 0.0284 0.1514
WCR-the proposed nonparametric WCR method;
Empirical-the nonparametric ROC method for independent ROC data;
SD of APD - the average of standard deviation of the adjoint point difference of the ROC curve.
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Table 2.6: Simulation results for lognormal clustered ordinal ROC data using two nonparametric
methods

WCR Empirical
p ρ n SD of APD SD of APD

0.3 0.2 25 0.0198 0.0733
50 0.0149 0.0662

100 0.0148 0.0587
0.5 25 0.0207 0.0735

50 0.0153 0.0660
100 0.0153 0.0598

0.9 25 0.0222 0.0810
50 0.0170 0.0715

100 0.0168 0.0649
0.4 0.2 25 0.0195 0.0742

50 0.0148 0.0662
100 0.0147 0.0601

0.5 25 0.0198 0.0744
50 0.0151 0.0688

100 0.0152 0.0597
0.9 25 0.0214 0.0823

50 0.0168 0.0728
100 0.0167 0.0645

0.5 0.2 25 0.0193 0.0738
50 0.0146 0.0661

100 0.0146 0.0597
0.5 25 0.0193 0.0756

50 0.0149 0.0670
100 0.0151 0.0604

0.9 25 0.0211 0.0806
50 0.0166 0.0721

100 0.0166 0.0649
WCR-the proposed nonparametric WCR method;
Empirical-the nonparametric ROC method for independent ROC data;
SD of APD - the average of standard deviation of the adjoint point difference of the ROC curve.
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Figure 2.7: Comparison of the empirical WCR ROC curves and empirical ROC curves under the
first setting, where n = 50, p = 0.3, ρ = 0.2
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Figure 2.8: Comparison of the empirical WCR ROC curves and empirical ROC curves under the
second setting, where n = 50, p = 0.3, ρ = 0.9
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Sorbinil Retinopathy trial and the detection of glaucomatous deterioration. Table 2.7 gives the

AUC, the variance and 95% confidence interval estimates using the Sorbinil Retinopathy trial data

set. Compared to Rosner’s Wilcoxon rank sum test, the WCR method and Obuchowski’s method

give similar AUC, variance and 95% confidence interval estimates. Their estimated 95% confidence

intervals are larger than 0.5, which means that the biomarker has some diagnostic accuracy. Li

and Zhou’s method gives a smaller AUC estimate, and a larger variance. For the estimated 95%

confidence interval, the lower bound is smaller than the lower bound by other methods, and the

upper bound is similar to the upper bounds estimated by other methods. Since the interval covers

0.5, the biomarker might not have good diagnostic accuracy. Li’s method did not perform well on

this data set because the scores are ordinal and Li’s method does not adjust for ties while the other

three methods can handle with ties.

Table 2.7: Comparison of WCR method and other methods for the first data example

Methods AUC var(AUC) 95% confidence interval

Rosner 0.6283 0.00334 (0.5150, 0.7416)
Obuchowski 0.6283 0.00259 (0.5286, 0.7280)

Li&Zhou 0.5304 0.01015 (0.3329, 0.7279)
WCR 0.6277 0.00283 (0.5234, 0.7320)

Figure 2.9 shows that, compared to the empirical method, the WCR method gives a smoother

ROC curve since we can estimate the WCR ROC curve by connecting all the WCR true positive

rates, which can be estimated by averaging all the resampled true positive rates at the corresponding

false positive rates. In the figure, we choose 20 false positive rates; correspondingly, there are 20

WCR true positive rates. The ROC curve would be smoother if we choose more false positive rates.

Table 2.8 gives the AUC, the AUC variance and 95% confidence interval estimates using de-

tection of glaucomatous deterioration data set by Li and Zhou’s method, Obuchowski’s method and

WCR method. They give similar AUC estimates since the data are continuous. Since there are

some ties, Li and Zhou’s method gives a slightly smaller AUC estimate. But Li’s method gives

larger variance, which leads to a bigger 95% confidence interval. The other two methods give sim-

ilar confidence intervals, which are larger than 0.5 and indicate a good diagnostic accuracy of the

biomarker.
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Figure 2.9: WCR empirical ROC curve and empirical ROC curve for the first data example

Table 2.8: Comparison of WCR method and other methods for the second data example

Methods AUC var(AUC) 95% confidence interval

Li&Zhou 0.9442 0.00226 (0.8510, 1.0373)
Obuchowski 0.9602 0.00018 (0.9339, 0.9865)

WCR 0.9566 0.00023 (0.9269, 0.9863)
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Figure 2.10 shows that, compared to the empirical method, the WCR method gives a smoother

ROC curve. The more false positive rates we choose, the smoother the ROC can be. Since the

biomarker has high diagnostic accuracy, the ROC curve is close to the upper left and the AUC is

close to one.
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Figure 2.10: WCR empirical ROC curve and empirical ROC curve for the second data example
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Chapter 3: Within Cluster Resampling (WCR) Methods for Two ROC

Curve

3.1 Comparing Two Biomarkers

The within cluster resampling method for comparison of cluster ROC data of two biomarker is

proposed. Let T d`ij denote the jth continuous case result of `th biomarker in ith cluster, where

i = 1, . . . , I , j = 1, . . . ,m`i, and ` = 1, 2. Let T d̄`ik denotes the kth continuous control result of `th

biomarker in ith cluster, where k = 1, . . . , n`i. The total number of case results of `th biomarker

in all clusters is M` =
∑I

i=1m`i, and the total number of control results of lth biomarker in all

clusters is N` =
∑I

i=1 n`i. For each cluster, there are case and control results of the `th biomarker.

For the `th biomarker, the cluster size is n`i + m`i, which is the number of observation of the lth

biomarker in ith cluster.

To compare the areas under two ROC curves, we first apply the within cluster resampling to

the clustered ROC data of each biomarker. Then we apply the ROC methods of independent data

to the resampled data and average the resampled results. For the qth resample, we randomly select

one biomarker result of the `th biomarker, where ` = 1, 2, out of n`i + m`i from the ith cluster,

and denote the selected observation T ∗`i,q, which could either be a case or a control. To develop

some notation, we rearrange the resampled T ∗`i,q so that the first d`q observations are case biomarker

results, denoted as T d∗`i1,q, i1 = 1 . . . d`q, and the rest of the observations are control biomarker

results, denoted as Y ∗`i2,q, i2 = d`q+1, . . . , I . The two ROC curves and the difference of AUCs could

be obtained from the qth resampled dataset (Td∗
`i1,q

,Td̄∗
`i2,q

) by either parametric, nonparametric or

semiparametric ROC methods. Assume T d∗`i1,q follows distribution F` and T d̄∗`i2,q follows distribution
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G`. The ROC curves are

R̂OC
∗
`q(u) = 1− F̂ ∗`q(Ĝ∗`q

−1(1− u)), (3.1)

and the corresponding difference of wAUCs is

∆̂∗q = ŵAUC
∗
1q − ŵAUC

∗
2q =

∫ 1

0
R̂OC

∗
`q(u)dW (u)−

∫ 1

0
R̂OC

∗
2q(u)dW (u). (3.2)

Denote R̂OC
∗
`q the ROC curve estimated from the qth resampled dataset and ŵAUC

∗
`q and ∆̂∗q the

estimated qth wAUCs and the estimated difference of two wAUCs. Hence the WCR difference of

wAUCs estimator is estimated by

∆̂WCR =
1

Q

Q∑
q=1

∆̂∗q . (3.3)

The variance is estimated by

∆̂WCR =
1

Q

Q∑
q=1

∆̂∗q , (3.4)

v̂ar(∆̂WCR) =
1

Q

Q∑
q=1

v̂ar(∆̂∗q)− S2
∆, (3.5)

where

S2
∆ =

1

Q− 1

Q∑
q=1

(∆̂∗q − ∆̂WCR)2, (3.6)

is the variability of the resampled ∆̂∗q estimators.

Table 3.1 gives the major steps of within cluster resampling method on cluster ROC data
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Table 3.1: Schematic representation of WCR ROC methods on comparing two biomarkers

Td
` ,T

d̄
`

↓
1 Td∗

`i1,1
,Td̄∗

`i2,1
→ R̂OC

∗
`1(u) → ∆̂∗1, v̂ar(∆̂

∗
1)

2 Td∗
`i1,2

,Td̄∗
`i2,2

→ R̂OC
∗
`2(u) → ∆̂∗2, v̂ar(∆̂

∗
2)

...
...

...
...

...
...

Q Td∗
`i1,Q

,Td̄∗
`i2,Q

→ R̂OC
∗
`Q(u) → ∆̂∗Q, v̂ar(∆̂

∗
Q)

⇓
∆̂WCR, v̂ar(∆̂WCR), S2

∆

3.1.1 Parametric WCR Methods

If we assume normal distribution, for the qth resampled dataset, the case and control results of the

first biomarker follow a normal distribution N(µ1,D, σ
2
1,D) and N(µ1,D̄, σ

2
1,D̄

),the case and control

results of the second biomarker follow a normal distribution N(µ2,D, σ
2
2,D) and N(µ2,D̄, σ

2
2,D̄

).

There are two approach to estimate the WCR difference of AUCs. In the first approach, we first

estimate the parameters a and b from qth resampled dataset by â∗`q = (µ̂`q,D − µ̂`q,D̄)/σ̂`q,D, b̂∗`q =

(σ̂`q,D̄)/σ̂`q,D, where µ̂`q,D =
∑dq

i1=1 T
d∗
`i1,q

/d`q, µ̂`q,D̄ =
∑I

i2=dq+1 T
d̄∗
`i2,q

/(I − d`q), σ̂
2
`q,D =

∑dq
i1=1(T d∗`i1,q−µ̂`q,D)/(d`q−1), σ̂2

`q,D̄
=
∑I

i2=dq
(T d̄∗`i2,q−µ̂`q,D̄)/(I−d`q−1) are the sample means

and variances of resampled case and control results for the `th biomarker. The variance-covariance

estimate of â∗q and b̂∗q , are estimated by the following equations, v̂ar(â∗`q) = (d`q(â
∗2
`q + 2) + 2(I −

d`q)b̂
∗2
`q )/(2d`q(I−d`q)), v̂ar(b̂∗`q) = Ib̂∗2`q /(2d`q(I−d`q)) and ĉov(â∗`q, b̂

∗
`q) = â∗`q b̂

∗
`q/(2(I−d`q)).

The ROC curves estimated from the qth resampled dataset are

R̂OC
∗
`q,BN = Φ(â∗`q + b̂∗`qΦ

−1(u)), (3.7)
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Then we estimate the difference of AUCs, ∆̂A∗
q,BN , from the qth resampled dataset by

∆̂A∗
q,BN = ˆAUC

∗
1q,BN − ˆAUC

∗
2q,BN = Φ

 â∗1q√
1 + b̂∗1q

2

− Φ

 â∗2q√
1 + b̂∗2q

2

 . (3.8)

The variance of ∆̂A∗
q,BN can be expressed in the following form,

var(∆̂A∗
q,BN ) = var( ˆAUC

∗
1q,BN ) + var( ˆAUC

∗
2q,BN )− 2cov( ˆAUC

∗
1q,BN ,

ˆAUC
∗
2q,BN ), (3.9)

where

v̂ar(ÂUC
∗
`q) = f̂∗2`q v̂ar(â

∗
`q) + ĝ∗2`q v̂ar(b̂

∗
`q) + 2f̂∗`q ĝ

∗
`q ĉov(â∗`q, b̂

∗
`q), (3.10)

ĉov(ÂUC
∗
1q,BN , ÂUC

∗
2q,BN ) =f̂∗1qf̂

∗
2q ĉov(â∗1q, â

∗
2q) + ĝ∗1q ĝ

∗
2q ĉov(b̂∗1q, b̂

∗
2q)

+ ĝ∗1qf̂
∗
2q ĉov(b̂∗1q, â

∗
2q) + f̂∗1q ĝ

∗
2q ĉov(â∗1q, b̂

∗
2q), (3.11)

with

f̂∗`q =
e−â

∗2
`q /2(1+b̂∗2`q )√

2π(1 + b̂∗2`q )
,

ĝ∗`q =
â∗`q b̂

∗
`qe
−â∗2`q /2(1+b̂∗2`q )√

2π(1 + b̂∗2`q )3
,

ĉov(â∗1q, â
∗
2q) =

I − dq
d2
q

+
b̂∗1q b̂

∗
2q

dq
+

(I − dq)â∗1qâ∗2q
2d2

q

,

ĉov(b̂∗1q, b̂
∗
2q) =

b̂∗1q b̂
∗
2q(1 + (I − dq)/dq)

2dq
,
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ĉov(â∗1q, b̂
∗
2q) =

(I − dq)â∗1q b̂∗2q
2d2

q

,

and

ĉov(â∗2q, b̂
∗
1q) =

(I − dq)â∗2q b̂∗1q
2d2

q

.

The WCR difference of AUCs estimator is the average of all the resampled difference of AUCs,

which is estimated by

∆̂A
WCR,BN =

1

Q

Q∑
q=1

∆̂A∗
q,BN . (3.12)

The variance is estimated by

v̂ar(∆̂A
WCR,BN ) =

1

Q

Q∑
q=1

v̂ar(∆̂A∗
q,BN )− S2

∆A , (3.13)

where

S2
∆A =

1

Q− 1

Q∑
q=1

(∆̂A∗
q,BN − ∆̂A

WCR,BN )2, (3.14)

is the variability of the resampled ∆̂A∗
q,BN .

3.1.2 Nonparametric WCR Methods

We could also use the empirical method to fit the ROC curve for the qth resampled dataset. The

difference of AUCs could then be obtained by Delong’s method (DeLong, DeLong, and Clarke-

Pearson 1988) using Equation (1.37). For the qth resampled dataset (Td∗
i1,q
,Td̄∗

i2,q
), the estimated

ROC curve is

R̂OC
∗
`q,EM =

1

d`q

d`q∑
i1

I[T d∗`i1,q > (1− u)th percentile of {T d̄∗`i2,q}, i2 = 1, . . . , I − d`q]. (3.15)
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The qth difference of AUCs is given by

∆̂A∗
q,DL =

1

d1q(I − d1q)

d1q∑
i1=1

I∑
i2=d1q+1

Ψ(T d∗1i1,q, T
d̄∗
1i2,q)−

1

d2q(I − d2q)

d2q∑
i1=1

I∑
i2=d2q+1

Ψ(T d∗2i1,q, T
d̄∗
2i2,q),

(3.16)

where

Ψ(T d∗`i1,q, T
d̄∗
`i2,q) =


1, T d∗`i1,q > T d̄∗`i2,q

1
2 , T d∗`i1,q = T d̄∗`i2,q

0, T d∗`i1,q < T d̄∗`i2,q

. (3.17)

The variance of ∆̂A∗
q,DL is estimated by

∆̂A∗
q,DL = vq,DLx /d1q + vq,DLy /(I − d1q), (3.18)

where vq,DLx and vq,DLy are

vq,DLx =
1

d1q − 1

d1q∑
i1=1

{ 1

I − d1q − 1

I−d1q−1∑
i2=1

ψ − ÂUC1,DL

2

+

 1

I − d1q − 1

I−d1q−1∑
i2=1

ψ − ÂUC2,DL

2

− 2

 1

I − d1q − 1

I−d1q−1∑
i2=1

ψ − ÂUC1,DL

 1

I − d1q − 1

I−d1q−1∑
i2=1

ψ − ÂUC2,DL

},
(3.19)
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vq,DLy =
1

I − d1q − 1

I−d1q∑
j=1

{ 1

d1q

d1q∑
i1=1

ψ − ÂUC1,DL

2

+

 1

d1q

d1q∑
i1,q=1

ψ − ÂUC2,DL

2

− 2

 1

d1q

d1q∑
i1=1

ψ − ÂUC1,DL

 1

d1q

d1q∑
i1=1

ψ − ÂUC2,DL

}, (3.20)

where ψ = ψ(T d1i1,q, T
d̄
1i2,q

).

The WCR difference of AUCs estimator is given by

∆̂A
WCR,DL =

1

Q

Q∑
q=1

∆̂A∗
q,DL. (3.21)

The variance is estimated by

v̂ar(∆̂A
WCR,DL) =

1

Q

Q∑
q=1

v̂ar(∆̂A∗
q,DL)− S2

∆A , (3.22)

where

S2
∆A =

1

Q− 1

Q∑
q=1

(∆̂A∗
q,DL − ∆̂A

WCR,DL)2, (3.23)

is the variability of the resampled ∆̂A∗
q,BN .

74



3.1.3 Semiparametric WCR Methods

The binary regression method (Pepe 2000) could be used to fit the ROC curve and estimate the

difference of AUCs. For the qth resampling, the binary regression model in Equation (1.44) is

R̂OC
∗
q(u) = g{

2∑
`=1

β̂∗`qh`q(u)} = g{β̂∗11,q + β̂∗12,qh
−1
q (u) + β̂∗21,qI + β̂∗22,qIh

−1
q (u)}, (3.24)

where I is the indicator variable corresponding to the two biomarkers, with I = 0 when ` = 1 and

I = 1 when ` = 2. The parameters β∗`q could be estimated by GLM method (Pepe 2000) or LS

method (?). Let U∗i1i2,q = I[T d∗i1,q ≥ T
d̄∗
i2,q

]

dq∑
i1=1

I∑
i2=1

U∗i1i2,q − g{Σ
2
`=1β

∗
`qh`q(ui2)}

g{Σ2
`=1β

∗
`qh`q(ui2)}(1− g{Σ2

`=1β
∗
`qh`q(ui2)})

∂g{Σ2
`=1β

∗
`qh`q(ui2)}

∂β∗`q
= 0 (3.25)

Under the normal assumption, the AUC difference estimator is

∆̂A∗
q,SM =

∫ 1

0
Φ{β̂∗11,q + β̂∗12,qΦ

−1(u)}du−
∫ 1

0
Φ{β̂∗11,q + β̂∗12,qΦ

−1(u) + β̂∗21,q + β̂∗22,qΦ
−1(u)}du

= Φ

 β̂∗11,q√
1 + β̂∗12,q

2

− Φ

 β̂∗11,q + β̂∗21,q√
1 + (β̂∗12,q + β̂∗22,q)

2

 . (3.26)

Tang and Zhou (2009) derived the asymptotical properties for the aforementioned GLM method

and LS method. For GLM estimator,

var(∆A∗
q,SM ) = var(AUC∗1q) + var(AUC∗2q)− cov(AUC∗1q, AUC

∗
2q),

where

var(AUC∗1q) = B∗T1,qΣ
∗
11,qB

∗
1,q, var(AUCGLM2q ) = B∗T2,qΣ

∗
22,qB

∗
2,q,
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and

cov(AUC∗1q, AUC
∗
2q) = B∗T1,q(Σ

∗
11,q + Σ∗21,q)B

∗
2,q,

with

B∗1,q = {φ

 β̂∗11,q√
1 + β̂∗212,q

 1√
1 + β∗212,q

,−φ

 β∗11,q√
1 + β∗212,q

 β∗11,q

(
√

1 + β∗212,q)
3/2
}T ,

B∗2,q = {φ

 β̂∗11,q + β̂∗21,q√
1 + (β̂∗12,q + β̂∗22,q)

2

 1√
1 + (β̂∗12,q + β̂∗22,q)

2
,

− φ

 β̂∗11,q + β̂∗21,q√
1 + (β̂∗12,q + β̂∗22,q)

2

 β̂∗11,q + β̂∗21,q

(
√

1 + (β̂∗12,q + β̂∗22,q)
2)3/2

}T ,

Σ∗11,q = cov(β̂∗11,q, β̂
∗
12,q), Σ∗22,q = cov(β̂∗21,q, β̂

∗
22,q), Σ∗21,q = cov(β̂∗12,q, β̂

∗
22,q).

Here Σ∗
kk̃,q

is the 2× 2 submatrices of

Σ∗q =

 Σ∗11,q,Σ
∗
12,q

Σ∗21,q,Σ
∗
22,q

 ,

The WCR AUC difference can be obtained by averaging all ∆̂A
q,SM ,

∆̂A
WCR,SM1

=
1

Q

Q∑
q=1

∆̂A∗
q,SM . (3.27)
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The variance is estimated by

v̂ar(∆̂A
WCR,SM1

) =
1

Q

Q∑
q=1

v̂ar(∆̂A∗
q,SM1

)− S2
∆A , (3.28)

where

S2
∆A =

1

Q− 1

Q∑
q=1

(∆̂A∗
q,SM1

− ∆̂A
WCR,SM1

)2, (3.29)

is the variability of the resampled ∆̂A∗
q,BN .

Another approach to obtain the WCR AUC difference estimator is, first we estimate the param-

eters β̂∗`q. Then we average the estimated parameter to get the WCR parameters β̂`,WCR. Next we

plug β̂`,WCR into Equation (1.44) and get ∆̂A
WCR,SM2

, which is given by

∆̂A
WCR,SM2

= Φ

 β̂11,WCR√
1 + β̂2

12,WCR

− Φ

 β̂11,WCR + β̂21,WCR√
1 + (β̂12,WCR + β̂22,WCR)2

 . (3.30)

3.2 Simulation Study

In this section, we report simulation studies to evaluate the performance of the proposed WCR

methods. In particular, we are interested in whether the proposed methods can account for the

within-cluster correlation and give us valid ∆A and variance estimators. We focus primarily on the

coverage percentage of the confidence interval estimated by the proposed methods. We perform our

methods on the simulated clustered ROC data and estimate the WCR ∆A and the WCR variance

by the parametric WCR methods and the nonparametric WCR method. We compare our methods

with the traditional methods and show the bias in using the traditional methods on clustered ROC

data. We consider the situation where, there are two biomarkers within each subject, for a diseased

subject, there are either 2 or 5 nondiseased results plus 1 diseased result for each biomarker, for a

nondiseased subject, all biomarker results in the same cluster are normal for each biomarker.
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Let I`1 and I`0 denote the number of clusters in the diseased group and the nondiseased group

for the `th biomarker, and I11 = I21, I10 = I20. We let the two groups have the same number of

clusters, so that I`1 = I`0 = I/2. For the `th biomarker, the clusters in the diseased group have a

cluster size m`i = 3 with probability p and a cluster size m`i = 6 with probability 1− p, where as

the clusters in the nondiseased group have a cluster size n`j = 2 with probability 1−p and a cluster

size n`j = 5 with probability p. We simulate 1000 clustered ROC data from normal and lognormal

distributions, respectively:

1. T d` ∼ N(µT d
`
,ΣT d

`
) and T d̄` ∼ N(µ

T d̄
`
,Σ

T d̄
`
), where µT d

1
= (1, 1, 0) and µT d

2
= (0.7, 0.7, 0)

when m`i = 3 and µT d
1

= (1, 1, 1, 1, 1, 0) and µT d
2

= (0.7, 0.7, 0.7, 0.7, 0) when m`i =

6, µ
T d̄
`

= (0, 0) when n`j = 2 and µ
T d̄
`

= (0, 0, 0, 0, 0) when n`j = 5. The variance-

covariance matrix ΣT d
`

is am`i×m`i matrix with diagonal elements equal to 1 and correlation

coefficients equal to ρ and Σ
T d̄
`

is a n`j × n`j matrix with diagonal elements equal to 1 and

correlation coefficients equal to ρ

2. T d` ∼ LogNormal(µT d
`
,ΣT d

`
) and T d̄` ∼ LogNormal(µ

T d̄
`
,Σ

T d̄
`
), with the same settings

on µT d
`

, ΣT d
`

, µ
T d̄
`

, Σ
T d̄
`

, m`i, n`j and ρ.

We let p, the informative cluster size correlation, be 0.3, 0.4 and 0.5. Note that when p 6= 0.5, the

cluster size is different between the two groups. Under each setting, we let ρ, the within-cluster

correlation, be 0.2, 0.5, 0.9 and I/2, the number of clusters in each group, be 25, 50 and 100.

For the simulated normal clustered ROC data, we employ the proposed parametric WCR meth-

ods and nonparametric WCR method, as well as traditional parametric and nonparametric methods

and Obuchowski’s method. For the simulated lognormal clustered ROC data, we apply only non-

parametric WCR method, traditional nonparametric method and Obuchowski’s method. Li and

Zhou’s method gives the same estimator as Obuchowski’s method, and is not compared in the sim-

ulation study. We obtain the AUC estimators and 95% confidence intervals from all the methods.

Biases, square root of mean squared errors, and simulated coverage percentage of 95% confidence

intervals under various scenarios are shown in the tables.
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In Table 3.2 , we compare the proposed parametric WCR methods with the traditional para-

metric method when the data is normally distributed. In Table 3.3 and Table 3.4, we compare the

proposed nonparametric WCR method, traditional nonparametric method (DeLong, DeLong, and

Clarke-Pearson 1988), and Obuchowski’s nonparametric method (Obuchowski 1997) using simu-

lated normally and lognormal data. It is clear that the coverage percentages obtained by our methods

are close to the nominal level and do not change as the within-cluster correlation becomes larger.

Also the biases obtained by proposed methods are close to zero. This indicates that proposed WCR

methods have a good performance on clustered ROC data and can account for the within-cluster

correlation. On the contrary, the coverage percentages obtained by traditional methods are not close

to 95% and as within-cluster correlation increases, the coverage percentages decreases. Our method

handles the within-cluster correlation better than the traditional methods do. In Table 2.4, we com-

pare the nonparametric WCR methods with the traditional nonparametric method when the normal

assumption is violated. The WCR methods work well on lognormal data and obtain better cov-

erage percentages than those from the traditional nonparametric method. The results obtained by

WCR method and Obuchowski’s method are similar, which indicate that the biomarker has similar

accuracy on patients and locations.

In Figures, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6. we visualized the simulation results for the coverage

percentage of the 95% confidence intervals and the average length of the 95% confidence intervals.
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Table 3.2: Simulation results for normal clustered ROC data using three parametric methods
WCR1 WCR2 Parametric

p ρ n Bias RMSE CP Length Bias RMSE CP Length Bias RMSE CP Length
(%) (%) (%)

0.3 0.2 25 0.1962 0.0445 0.937 0.1292 0.0259 0.0438 0.944 0.1715 -0.3692 0.0686 0.954 0.2792
50 0.1742 0.0312 0.936 0.0928 0.0866 0.0310 0.945 0.1195 -0.1412 0.0490 0.927 0.1948
100 -0.0616 0.0229 0.934 0.0666 -0.1055 0.0228 0.927 0.0843 -0.2049 0.0346 0.931 0.1385

0.5 25 0.4155 0.0400 0.935 0.1228 0.2855 0.0394 0.952 0.1560 -0.2365 0.0580 0.921 0.2354
50 -0.0289 0.0280 0.926 0.0837 -0.0952 0.0279 0.929 0.1065 0.0516 0.0400 0.896 0.1649
100 -0.0949 0.0198 0.934 0.0598 -0.1277 0.0198 0.940 0.0752 -0.0485 0.0278 0.914 0.1161

0.9 25 -0.0762 0.0343 0.933 0.1206 -0.1203 0.0341 0.938 0.1304 -0.2253 0.0279 0.827 0.1611
50 -0.1195 0.0236 0.930 0.0860 -0.1422 0.0235 0.961 0.0921 -0.2019 0.0187 0.824 0.1110
100 0.1379 0.0175 0.928 0.0606 0.1265 0.0175 0.938 0.0648 0.0126 0.0135 0.825 0.0773

0.4 0.2 25 0.1735 0.0442 0.930 0.1278 -0.0049 0.0436 0.949 0.1699 -0.0920 0.0765 0.945 0.3051
50 0.1822 0.0319 0.932 0.0918 0.0937 0.0316 0.936 0.1192 0.1897 0.0536 0.943 0.2110
100 0.0253 0.0218 0.941 0.0662 -0.0190 0.0217 0.945 0.0839 0.0072 0.0374 0.923 0.1490

0.5 25 0.6662 0.0404 0.920 0.1200 0.5167 0.0396 0.937 0.1536 -0.2020 0.0590 0.912 0.2566
50 0.0217 0.0283 0.941 0.0831 -0.0446 0.0281 0.930 0.1061 0.0043 0.0438 0.904 0.1791
100 -0.0093 0.0199 0.923 0.0592 -0.0439 0.0199 0.932 0.0746 -0.0728 0.0301 0.901 0.0010

0.9 25 -0.0520 0.0348 0.938 0.1190 -0.0992 0.0345 0.949 0.1288 -0.3950 0.0309 0.811 0.1742
50 -0.1105 0.0242 0.916 0.0847 -0.1340 0.0241 0.934 0.0909 -0.2175 0.0203 0.814 0.0009
100 0.0451 0.0176 0.944 0.0601 0.0330 0.0175 0.932 0.0644 -0.1024 0.0145 0.793 0.0838

0.5 0.2 25 0.2026 0.0438 0.938 0.1291 0.0270 0.0432 0.942 0.1711 -0.5119 0.0833 0.949 0.3315
50 0.0736 0.0304 0.930 0.0916 -0.0161 0.0302 0.949 0.1187 0.0071 0.0610 0.937 0.2326
100 -0.0127 0.0220 0.950 0.0657 -0.0560 0.0219 0.935 0.0835 -0.0814 0.0429 0.933 0.1629

0.5 25 0.2696 0.0401 0.911 0.1191 0.1279 0.0395 0.936 0.1532 -0.1903 0.0700 0.898 0.2827
50 0.1321 0.0288 0.925 0.0825 0.0622 0.0286 0.912 0.1054 -0.3207 0.0476 0.907 0.1967
100 0.1870 0.0202 0.919 0.0585 0.1522 0.0201 0.930 0.0739 0.0010 0.0348 0.893 0.1379

0.9 25 -0.2061 0.0331 0.933 0.1170 -0.2563 0.0329 0.934 0.1272 -0.5015 0.0337 0.789 0.1934
50 -0.1290 0.0242 0.935 0.0838 -0.1540 0.0241 0.934 0.0901 -0.2124 0.0229 0.761 0.1325
100 -0.0480 0.0173 0.939 0.0593 -0.0607 0.0172 0.931 0.0635 -0.1384 0.0161 0.772 0.0921

WCR-the proposed parametric WCR method proposed;
Parametric-the parametric ROC method for independent data;
RMSE-square root of mean squared error; Coverage-the coverage percentage of 95% confidence intervals;
Length- the average length of the 95% confidence intervals.
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Figure 3.1: The coverage percentage of the 95% confidence intervals of traditional parametric
method and the two proposed parametric WCR methods for normal clustered ROC data
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Figure 3.2: The average length of the 95% confidence intervals of traditional parametric method
and the two proposed parametric WCR methods for normal clustered ROC data
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Table 3.3: Simulation results for normal clustered ROC data using three nonparametric methods
WCR1 Obuchowski Nonparametric

p ρ n Bias RMSE CP Length Bias RMSE CP Length Bias RMSE CP Length
(%) (%) (%)

0.3 0.2 25 0.1850 0.0445 0.965 0.1847 -0.0234 0.0381 0.946 0.1591 0.1044 0.0416 0.935 0.1555
50 0.0809 0.0305 0.950 0.1239 -0.0248 0.0269 0.948 0.1122 0.0441 0.0283 0.947 0.1091
100 0.0163 0.0218 0.945 0.0867 0.0915 0.0191 0.951 0.0794 0.0204 0.0204 0.937 0.0769

0.5 25 0.0456 0.0398 0.959 0.1685 0.1184 0.0332 0.953 0.1470 0.0708 0.0374 0.927 0.1333
50 -0.0630 0.0283 0.953 0.1147 -0.0126 0.0236 0.949 0.1036 -0.0694 0.0267 0.921 0.0935
100 0.0273 0.0203 0.944 0.0796 -0.0770 0.0166 0.952 0.0732 0.0095 0.0191 0.915 0.0660

0.9 25 -0.0457 0.0353 0.956 0.1491 -0.3693 0.0274 0.933 0.1343 -0.2128 0.0348 0.805 0.0938
50 0.1214 0.0238 0.958 0.1009 -0.0936 0.0187 0.954 0.0929 0.0177 0.0228 0.835 0.0650
100 -0.0275 0.0161 0.952 0.0694 -0.1087 0.0133 0.949 0.0650 -0.0717 0.0160 0.860 0.0456

0.4 0.2 25 -0.1280 0.0435 0.971 0.1862 0.4147 0.0395 0.926 0.1591 -0.1879 0.0414 0.942 0.1556
50 -0.0621 0.0312 0.947 0.1244 0.1907 0.0265 0.939 0.1127 -0.1291 0.0293 0.928 0.1091
100 -0.0914 0.0210 0.953 0.0863 0.0617 0.0202 0.928 0.0794 -0.0691 0.0198 0.949 0.0769

0.5 25 0.1354 0.0395 0.953 0.1687 0.0488 0.0341 0.929 0.1481 0.0455 0.0373 0.926 0.1333
50 0.0372 0.0279 0.959 0.1147 0.0982 0.0237 0.951 0.1050 0.0413 0.0267 0.921 0.0937
100 -0.0611 0.0198 0.949 0.0796 -0.0156 0.0169 0.945 0.0738 -0.0487 0.0185 0.927 0.0659

0.9 25 -0.0526 0.0343 0.944 0.1495 -0.2709 0.0282 0.927 0.1379 -0.2111 0.0344 0.809 0.0942
50 -0.0735 0.0230 0.952 0.1005 -0.0952 0.0194 0.954 0.0950 -0.0897 0.0228 0.849 0.0651
100 0.0538 0.0166 0.952 0.0693 -0.0887 0.0139 0.940 0.0667 -0.0034 0.0170 0.827 0.0456

0.5 0.2 25 -0.1611 0.0439 0.960 0.1861 -0.1324 0.0376 0.938 0.1599 -0.1405 0.0409 0.942 0.1561
50 0.0040 0.0294 0.945 0.1249 0.0603 0.0266 0.951 0.1136 0.0512 0.0277 0.952 0.1100
100 -0.1000 0.0217 0.942 0.0871 0.0480 0.0181 0.956 0.0803 -0.0604 0.0201 0.944 0.0775

0.5 25 0.2082 0.0393 0.959 0.1699 -0.1505 0.0343 0.920 0.1500 0.1161 0.0377 0.918 0.1344
50 0.0174 0.0275 0.946 0.1152 0.0743 0.0248 0.941 0.1061 -0.0584 0.0259 0.924 0.0944
100 -0.0336 0.0196 0.950 0.0802 0.0105 0.0168 0.939 0.0747 -0.0362 0.0191 0.921 0.0663

0.9 25 0.1363 0.0350 0.953 0.1489 -0.2233 0.0278 0.948 0.1396 -0.0346 0.0358 0.804 0.0943
50 0.1175 0.0239 0.952 0.1005 -0.0575 0.0195 0.947 0.0971 0.0442 0.0251 0.800 0.0655
100 0.1205 0.0167 0.953 0.0693 -0.0791 0.0136 0.951 0.0681 0.0941 0.0177 0.808 0.0458

WCR-the proposed nonparametric WCR method;
Obuchowski-Obuchowski’s nonparametric method for clustered ROC data;
Nonparametric-the nonparametric ROC method for independent ROC data;
RMSE-square root of mean squared error;
CP-coverage percentage of 95% confidence intervals;
Length- the average length of the 95% confidence intervals.
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Figure 3.3: The coverage percentage of the 95% confidence intervals of traditional nonparamet-
ric method, Obuchowski’s nonparametric method and proposed nonparametric WCR method for
lognormal clustered ROC data
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Figure 3.4: The average length of the 95% confidence intervals of nonparametric method, Obu-
chowski’s nonparametric method and proposed nonparametric WCR methods for lognormal clus-
tered ROC data
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Table 3.4: Simulation results for lognormal clustered ROC data using three nonparametric methods
WCR1 Obuchowski Nonparametric

p ρ n Bias RMSE CP Length Bias RMSE CP Length Bias RMSE CP Length
(%) (%) (%)

0.3 0.2 25 0.0249 0.0436 0.972 0.1841 -0.0910 0.0368 0.953 0.1581 -0.0343 0.0411 0.950 0.1544
50 0.0742 0.0307 0.956 0.1247 0.1141 0.0259 0.955 0.1122 0.0665 0.0288 0.937 0.1089
100 0.0009 0.0221 0.936 0.0863 0.0335 0.0188 0.949 0.0791 -0.0195 0.0211 0.930 0.0768

0.5 25 0.2235 0.0397 0.965 0.1695 0.1241 0.0339 0.945 0.1469 0.1921 0.0378 0.915 0.1334
50 0.0088 0.0286 0.945 0.1144 0.0796 0.0231 0.959 0.1040 -0.0121 0.0271 0.908 0.0939
100 -0.0645 0.0196 0.961 0.0798 -0.1292 0.0177 0.931 0.0733 -0.1108 0.0184 0.926 0.0660

0.9 25 -0.1384 0.0346 0.962 0.1494 -0.3484 0.0267 0.937 0.1337 -0.3238 0.0338 0.826 0.0939
50 -0.0593 0.0240 0.963 0.1001 -0.0050 0.0188 0.948 0.0925 -0.1547 0.0235 0.819 0.0649
100 -0.0672 0.0165 0.965 0.0694 -0.1051 0.0136 0.939 0.0651 -0.1517 0.0165 0.821 0.0456

0.4 0.2 25 -0.1327 0.0424 0.972 0.1860 0.0036 0.0382 0.937 0.1603 -0.2158 0.0415 0.931 0.1554
50 -0.0451 0.0320 0.938 0.1244 -0.0087 0.0261 0.962 0.1126 -0.0154 0.0298 0.924 0.1092
100 0.0303 0.0217 0.956 0.0868 0.0515 0.0191 0.945 0.0796 0.0320 0.0202 0.943 0.0771

0.5 25 -0.0769 0.0396 0.961 0.1685 -0.1375 0.0331 0.940 0.1479 -0.0817 0.0380 0.916 0.1334
50 -0.0553 0.0285 0.936 0.1148 -0.1261 0.0236 0.948 0.1046 -0.0411 0.0270 0.910 0.0937
100 0.0744 0.0194 0.951 0.0798 0.0279 0.0166 0.947 0.0741 0.0836 0.0186 0.918 0.0662

0.9 25 0.2069 0.0349 0.958 0.1493 -0.1887 0.0277 0.942 0.1370 0.1186 0.0357 0.804 0.0937
50 0.1123 0.0248 0.948 0.1008 -0.1598 0.0197 0.932 0.0956 0.0409 0.0249 0.801 0.0653
100 -0.0407 0.0173 0.954 0.0691 -0.0013 0.0138 0.944 0.0667 -0.1026 0.0173 0.814 0.0456

0.5 0.2 25 -0.1236 0.0436 0.974 0.1874 0.0694 0.0390 0.926 0.1608 -0.1494 0.0410 0.936 0.1565
50 0.1181 0.0300 0.961 0.1254 0.0599 0.0269 0.944 0.1135 0.1206 0.0288 0.946 0.1101
100 0.1051 0.0218 0.949 0.0873 0.0006 0.0182 0.957 0.0803 0.1690 0.0199 0.955 0.0776

0.5 25 -0.0092 0.0406 0.971 0.1699 -0.1033 0.0325 0.951 0.1496 -0.0042 0.0393 0.902 0.1343
50 -0.0598 0.0275 0.961 0.1151 0.0823 0.0242 0.946 0.1059 -0.0509 0.0268 0.916 0.0944
100 -0.1076 0.0193 0.958 0.0800 0.0480 0.0173 0.943 0.0749 -0.1055 0.0189 0.920 0.0664

0.9 25 -0.1962 0.0336 0.952 0.1495 -0.2603 0.0283 0.936 0.1404 -0.2467 0.0353 0.805 0.0947
50 -0.0655 0.0241 0.955 0.1007 -0.1511 0.0200 0.932 0.0973 -0.1697 0.0249 0.812 0.0656
100 0.0425 0.0167 0.963 0.0692 -0.0741 0.0137 0.946 0.0680 0.0135 0.0174 0.811 0.0459

WCR-the proposed nonparametric WCR method;
Obuchowski-Obuchowski’s nonparametric method for clustered ROC data;
Nonparametric-the nonparametric ROC method for independent ROC data;
RMSE-square root of mean squared error;
CP-coverage percentage of 95% confidence intervals;
Length- the average length of the 95% confidence intervals.
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Figure 3.5: The coverage percentage of the 95% confidence intervals of traditional nonparamet-
ric method, Obuchowski’s nonparametric method and proposed nonparametric WCR method for
lognormal clustered ROC data
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Figure 3.6: The average length of the 95% confidence intervals of nonparametric method, Obu-
chowski’s nonparametric method and proposed nonparametric WCR methods for lognormal clus-
tered ROC data
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Chapter 4: WCR Methods for Covariate Adjusted ROC Curves

4.1 Estimating Covariate Adjusted ROC Curves

Let Tij denote the jth continuous biomarker result in the ith cluster, where i = 1, . . . , I , j =

1, . . . , ni. Each cluster might have either diseased results, or nondiseased results or both of them.

Denote X as the vector of patient covariates. The location disease status is denoted as D, where

D = 1 for a diseased location andD = 0 for a nondiseased location. Assume T follows distribution

Fd,x(c) = P (T < c|D = d,X = x) given D = d and X = x and let Sd,x(c) = 1− Fd,x(c) be the

survival function of T .

For the qth resample, q = 1, . . . , Q, we randomly select one biomarker result out of ni from

the ith cluster, and denote the selected observation T ∗i,q, which can either be from a diseased or a

nondiseased location. The qth ROC curve and corresponding AUC can be estimated by the resam-

pled data, T ∗i,q, i = 1, . . . , I , using either indirect regression model or direct regression model to

adjust for the covariate effects. We have T ∗i,q follows distribution F̂d,x(c) given D = d and X = x

and its survival function is Ŝd,x(c). The qth ROC curve associated with covariate X , R̂OC
∗
x,q(u),

is estimated by

R̂OC
∗
x,q(u) = Ŝ∗1,x(Ŝ−1∗

0,x (u)), (4.1)

where Ŝ−1∗
0,x (u) is the inverse function of Ŝ∗0,x(c). So the qth weighted AUC (wAUC) is estimated

by

ŵAUC
∗
x,q(u) =

∫ 1

0
R̂OC

∗
x,q(u)dW (u). (4.2)
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The qth area under ROC curve is estimated by

ÂUC
∗
x,q =

∫ 1

0
R̂OC

∗
x,q(u)du. (4.3)

The qth partial area under the curve between FPRs u0 and u1, which is estimated by

p̂AUC
∗
x,q(u0, u1) =

1

u1 − u0

∫ u1

u0

R̂OC
∗
x,q(u)du. (4.4)

To obtain the WCR wAUC and WCR AUC estimators, we can simply take the average on all

the resampled wAUC or AUC estimators, that is,

ŵAUCWCR =
1

Q

Q∑
q=1

ŵAUC
∗
q , (4.5)

and

ÂUCWCR =
1

Q

Q∑
q=1

ÂUC
∗
q . (4.6)

In order to estimate the variance of the WCR ROC curve and the wAUC estimator, we fist

estimate the variance of the qth ROC curve and the wAUC estimator using the bootstrap method.

For the qth resampled data, each bootstrap sample is generated by sampling with replacement from

the data, and a bootstrap ROC curve R̂OC
∗
x,b,q where b = 1, . . . , B as well as a bootstrap wAUC

estimator ÂUC
∗
x,b,q could be estimated by the bootstrap data. If we bootstrap B times, we got B

bootstrap ROC curves and bootstrap wAUC estimators. The bootstrap variance of the qth ROC

curve and variance of the qth wAUC estimator are estimated by

v̂ar(ROC∗q ) =
1

B − 1

B∑
b=1

(R̂OC
∗
x,b,q − R̂OC

∗
x,q). (4.7)
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v̂ar(wAUC∗q ) =
1

B − 1

B∑
b=1

(ŵAUC
∗
x,b,q − ŵAUC

∗
x,q). (4.8)

Thus, we could apply the WCR method to get the variance of the WCR ROC curve and the variance

of the WCR wAUC estimator by

v̂ar(R̂OCWCR) =
1

Q

Q∑
q=1

v̂ar(R̂OC
∗
q)− S2

ROC , (4.9)

and

v̂ar(ŵAUCWCR) =
1

Q

Q∑
q=1

v̂ar(ÂUC
∗
q)− S2

AUC , (4.10)

where

S2
ROC =

1

Q− 1

Q∑
q=1

(R̂OC
∗
q − R̂OCWCR)2, (4.11)

and

S2
wAUC =

1

Q− 1

Q∑
q=1

(ŵAUC
∗
q − ŵAUCWCR)2. (4.12)

4.1.1 WCR Indirect Regression Methods

Firstly, we propose WCR indirect regression methods for clustered ROC data with covariates. For

the qth resample, q = 1, . . . , Q, we randomly select one biomarker result from the ith cluster, and

denote the selected observation as T ∗i,q, i = 1, . . . , I , which can be expressed in the following linear

regression model

T ∗q = µ̂(D,X; β̂∗q ) + σ̂(D,X; α̂∗q)ε̂, (4.13)

where X denotes the covariates, D denotes the disease status and the residual ε has mean 0 and

variance 1 with an unknown survival function Sε. Hence, for covariate X = x and D = d, the qth
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ROC curve is given by

R̂OC
∗
x,q(u) = Ŝ∗ε (b̂∗q(x; α̂∗q)Ŝ

−1∗
ε (u)− a∗q(x; β̂∗q , α̂

∗
q)), (4.14)

where Ŝ−1∗
ε (.) is the inverse function of Ŝ∗ε (.), â∗q(x; β̂∗q , α̂

∗
q) = (µ̂(d, x; β̂∗q )−µ̂(d, x; β̂∗q ))/(σ̂(d, x; α̂∗q)),

and b̂∗q(x; α̂∗q) = σ̂(d, x; α̂∗q)/σ̂(d, x; α̂∗q).

The corresponding AUC could be estimated by integrating on R̂OC
∗
x,q(u) between 0 and 1.

ÂUC
∗
x,q =

∫ 1

0
R̂OC

∗
x,q(u)du. (4.15)

Assume Sε is the standard normal distribution, the qth AUC is estimated by,

ÂUC
∗
x,q = Φ(

a∗q(x; β̂∗q , α̂
∗
q)√

1 + (b∗q(x; α̂∗q))
2
). (4.16)

To obtain the WCR ROC curve, we can first average all the resampled parameters,

âWCR(x) =
1

Q

Q∑
q=1

â∗q(x; β̂∗q , α̂
∗
q), (4.17)

and

b̂WCR(x) =
1

Q

Q∑
q=1

b̂∗q(x; α̂∗q). (4.18)

The WCR ROC curve is estimated by

R̂OCx,WCR(u) = Ŝε(b̂WCR(x)Ŝ−1
ε (u)− aWCR(x)), (4.19)
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The corresponding WCR AUC could be estimated by taking integral on R̂OCx,WCR(u) between 0

and 1,

ÂUCx,WCR =

∫ 1

0
R̂OCx,WCR(u)du. (4.20)

For the case where Sε is the standard normal distribution, we can estimate WCR AUC by plug-

ging in WCR parameters,

ÂUCx,WCR = Φ(
âWCR(x)√

1 + (b̂WCR(x))2

). (4.21)

Another way to estimate WCR ROC curve and corresponding AUC is to take the average on all

the resampled R̂OC
∗
x,q and ÂUC

∗
x,q

R̂OCx,WCR =
1

Q

Q∑
q=1

R̂OC
∗
x,q, (4.22)

and

ÂUCx,WCR =
1

Q

Q∑
q=1

ÂUC
∗
x,q. (4.23)

Consider a simple example with X = x1 and D = d to illustrate how the WCR method

works on estimating the parameters and the ROC curve. For the qth resampled data T∗q, we have

µ(d, x1;β∗q ) = β∗0,q + β∗1,qd + β∗2,qx1 + β∗3,q(d ∗ x1). The variance σ2∗
q (d, x;α) does not depend

on covariates, therefore it can be written as σ2(d, x1;α∗q) = σ2∗
q (d). The parameters a(x;β, α) and

b(x;α) are given by a∗q(x1;β∗q ) = (β∗1,q+β∗3,qx1)/σ(1) and b∗q(x1;α∗q) = σ(0)/σ(1). The qth ROC

curve associated with covariates X = x1 is estimated by

R̂OC
∗
x1,q(u) = Ŝε(

σ̂(0)

σ̂(1)
Ŝ−1
ε (u)−

β̂∗1,q + β̂∗3,qx1

σ̂(1)
). (4.24)
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The corresponding AUC is estimated by integrating on R̂OC
∗
x1,q(u) between 0 and 1.

ÂUC
∗
x1,q =

∫ 1

0
R̂OC

∗
x,q(u)du. (4.25)

To estimate the WCR ROC curve, we can obtain the WCR parameters β̂1,WCR,β̂3,WCR by averag-

ing all the resampled estimators (β̂∗1,q,β̂
∗
3,q), that is

β̂1,WCR =
1

Q

Q∑
q=1

β̂∗1,q. (4.26)

and

β̂3,WCR =
1

Q

Q∑
q=1

β̂∗3,q. (4.27)

So the WCR ROC curve is estimated by

R̂OCx1,WCR(u) = Ŝε(
σ̂(0)

σ̂(1)
Ŝ−1
ε (u)−

β̂1,WCR + β̂3,WCRx1

σ̂(1)
). (4.28)

The WCR wAUC and WCR AUC are estimated by integrating on R̂OC
∗
x1,WCR(u) between 0 and

1, that is

ŵAUCx1,WCR =

∫ 1

0
R̂OCx1,WCR(u)dW (u), (4.29)

and

ÂUCx1,WCR =

∫ 1

0
R̂OCx1,WCR(u)du. (4.30)
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The WCR AUC could also be estimated by averaging all the resampled ÂUC
∗
x,q,

ÂUCx1,WCR =
1

Q

Q∑
q=1

ÂUC
∗
x1,q. (4.31)

4.1.2 WCR Direct Regression Methods

We propose within-cluster resampling direct regression method in this section. For the qth resam-

pled data T ∗i,q, q = 1, . . . , Q, we rearrange the data so that the first dq selected observations are

diseased biomarker results, denoted as T ∗i1,q, i1 = 1 . . . dq, and the rest of the selected observations

are nondiseased biomarker results, denoted as T ∗i2,q, i2 = dq + 1 . . . I .

The qth ROC curve associated with covariates X = x is,

ROC∗x,q(u) = g{H(u) + β∗qx}, (4.32)

where g(.) is the link function, H(u) is a baseline monotone increasing function of, and β∗qX is

a linear regression model which summarizes the effect of the patient covariates X . For binormal

model, we have

ROC∗x,q(u) = Φ{α∗0,q + α∗1,qΦ
−1(u) + β∗qx}, (4.33)

To estimate the WCR ROC estimators, we could first estimate the qth ROC estimators by the

generalized linear model method. The qth indicator variable U∗i1i2,q = I[T ∗i1,q ≥ T ∗i2,q] contains all

the possible pairs of the qth resampled biomarker results. The qth parameters β∗q are estimated by

solving the estimating equation

dq∑
i1=1

I∑
i2=1

U∗i1i2,q − g{β
∗
qx+ h(ui2)}

g{β∗qx+ h(ui2)}(1− g{β∗qx+ h(ui2)})
∂g{β∗qx+ h(ui2)}

∂β∗q
= 0. (4.34)
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The qth ROC curve then is

R̂OC
∗
x,q(u) = g{H(u) + β̂∗qx}. (4.35)

The qth wAUC is estimated by

ŵAUC
∗
x,q =

∫ 1

0
R̂OC

∗
x,q(u)dW (u). (4.36)

If we choose the weight W = 1, the qth AUC is estimated by

ÂUC
∗
x,q =

∫ 1

0
R̂OC

∗
x,q(u)du. (4.37)

To estimate the WCR ROC estimators. We can simply average all the resampled ROC parameter

estimators. We have

β̂WCR =
1

Q

Q∑
q=1

β̂∗q . (4.38)

So the WCR ROC curve associated with covariates X = x is estimated by plugging in the WCR

parameter estimators, that is,

R̂OCx,WCR(u) = g{H(u) + β̂WCRx}, (4.39)

and the WCR wAUC and AUC estimators are

ŵAUCx,WCR =

∫ 1

0
R̂OCx,WCR(u)dW (u), (4.40)

and

ÂUCx,WCR =

∫ 1

0
R̂OCx,WCR(u)du. (4.41)
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The second way to estimate WCR ROC curves, WCR wAUC and AUC estimators associated

with covariatesX = x is to average all the resampled ROC curves and resampled wAUCs and AUC

estimators, that is,

ŵAUCx,WCR =
1

Q

Q∑
q=1

ŵAUC
∗
q , (4.42)

and

ÂUCx,WCR =
1

Q

Q∑
q=1

ÂUC
∗
q . (4.43)

In order to estimate the AUC estimator using qth resampled data, we could also fit a direct model

using AUC regression method (Dodd 2001). The model is similar to ROC regression model,

g(AUC∗q ) = β∗qx, (4.44)

which is a generalized linear regression model for the binary variables U∗i1i2,q. Thus, to estimate the

model parameters, we could solve the estimating function

dq∑
i1=1

I∑
i2=1

U∗i1i2,q − g
−1{β∗qx}

g−1{β∗qx}(1− g−1{β∗qx})
∂g−1{β∗qx}

∂β∗q
= 0. (4.45)

Two natural link functions are logit and probit. For a binary covariate, the logit link function

could be used and the model is

logit(AUC∗q ) = β∗0,q + β∗1,qx. (4.46)

For a continuous covariate, the probit link function is used and the model becomes

AUC∗q = Φ{β∗0,q + β∗1,qx}. (4.47)
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To create the indicator variable U∗i1i2,q, all the possible pairs T ∗i1,q and T ∗i2,q are created. The

nature of the covariates need to be considered for pairing. For ordinal or categorical covariates,

assume there are sufficient observations at each covariate level, the pairs are created with in each

covariate level. For continuous data, pairs are created for all diseased and nondiseased observations

and a difference of covariates term should be added in the model. For the qth resampled data, denote

the covariates for the diseased and nondiseased biomarker results as Xi1,D and Xi2,D̄. The qth

resample ROC curve associated with continuous covariates XD = xD and XD̄ = xD̄ is estimated

by

ROC∗xD,xD̄,q(u) = g{H(u) + β∗q,1xD + β∗q,2(xD − xD̄)}. (4.48)

Another way to accommodate for the continuous covariates is to pair all the observations with

covariate values within a pre-specified range, which is denoted as

| Xi1,D −Xi2,D̄ |6 δ. (4.49)

Thus the number of pairs depends on the choice of δ. For δ = 0. the pairing is only created with the

same covariate value. For δ =∞, we have all the pairs to estimate the ROC curve.

4.2 Simulation Study

In this section, we report the simulation studies to evaluate the performance of the proposed WCR

indirect regression methods and WCR direct regression methods. We perform our methods on the

simulated clustered ROC data to estimate the WCR parameters, AUC estimators and the corre-

sponding WCR variance. We compare our methods with the traditional indirect regression method

and show the bias in using the traditional method on clustered ROC data. We consider the situation

where, for a diseased subject, there are either 2 or 5 diseased results plus 1 nondiseased result, for a

nondiseased subject, all biomarker results in the same cluster are nondiseased.

Let I1 and I0 denote the number of clusters in the diseased group and the nondiseased group. We

98



let the two groups have the same number of clusters, so that I1 = I0 = I/2. The clusters in the dis-

eased group have a cluster sizemi = 3 with probability p and a cluster sizemi = 6 with probability

1 − p, where as the clusters in the nondiseased group have a cluster size nj = 2 with probabil-

ity 1 − p and a cluster size nj = 5 with probability p. For a simplified ROC regression model,

we simulate clustered ROC data such that , for the diseased group, T ∼ N(µX ,Σ1), where µX =

(µD,X , µD,X , µD̄,X) whenmi = 3 andµX = (µD,X , µD,X , µD,X , µD,X , µD,X , µD̄,X) whenmi =

6. For the nondiseased group, T ∼ N(µD̄,X ,Σ2), where µD̄,X = (µD,X , µD̄,X , µD,X , µD̄,X)

when nj = 2 and µY = (µD̄,X , µD̄,X , µD̄,X , µD̄,X , µD̄,X) when nj = 5. The variance-covariance

matrix Σ1 is ami×mi matrix with firstmi−1 diagonal elements equal to σ1, the last one diagonal

elements equal to σ0 and correlation coefficients equal to ρ and Σ2 is a nj×nj matrix with diagonal

elements equal to σ0 and correlation coefficients equal to ρ.

We consider the informative cluster size correlation p of 0.3, 0.4 and 0.5. Note that when

p 6= 0.5, the cluster size is different between the two groups. Under each setting, we consider the

within-cluster correlation ρ of 0.2, 0.5, 0.9 and number of clusters in each group I/2 of 25, 50 and

100. For equal variance scenario, we consider σ1 = σ0 = 1. For unequal variance scenario, we

consider σ1 = 2 and σ0 = 1.

4.2.1 Simulation Study for WCR Indirect Regression Methods

For the simulated clustered ROC data associated with covariate x1, we employ the proposed WCR

indirect methods as well as the traditional indirect regression method. We assume a simple regres-

sion model with covariateX = x1, so that µD,x1 = β0 +β1 +β2x1 +β3x1 and µD̄,x1
= β0 +β2x1.

To simplify the model, we let β0 = β1 = β2 = 0 and β3 = 0.3. Thus the ROC curve associated

with covariate X = x1 is

ROCx1(u) = Sε(
σ(0)

σ(1)
S−1
ε (u)− β3x1

σ(1)
). (4.50)

We generate random variable x1 following Uniform (0,10). to estimate the ROC curve model

99



parameter β̂3 and β̂3/σ̂1, we fit a simple regression model using least square method iF the diseased

and nondiseased groups have equal variance. We fit a simple regression model using weighted least

square iF the diseased and nondiseased groups have unequal variances. We let x1 = 2, 5, 9 to

estimate the AUCs, ÂUCx1=2, ÂUCx1=5 and ÂUCx1=9. The variance of the parameter estimator

β̂3, ˆvar(β̂3), is estimated by the least square method or the weighted least square method. The

variances of other estimators v̂ar(β̂3/σ̂1) v̂ar(ÂUC)x1=2, v̂ar(ÂUC)x1=5 and v̂ar(ÂUC)x1=9

are estimated by the bootstrap method. We obtain the parameter estimators β̂3 and β̂3/σ̂1, the AUC

estimators, ÂUCx1=2, ÂUCx1=5 and ÂUCx1=9, and the corresponding 95% confidence intervals

from both methods.

Tables 4.1, 4.3, 4.5, 4.7, 4.9 show the simulation results to compare the proposed WCR indirect

method with traditional indirect method using β3, β3/σ1, AUCx1=2, AUCx1=5 and AUCx1=9

under equal variance scenario. It is clear that the coverage percentages obtained by our methods

are close to the nominal level and do not change as the within-cluster correlation becomes larger.

Also the biases obtained by the proposed methods are very small. This indicates that proposed

WCR method has a good performance on clustered ROC data associated with covariate X and can

account for the within-cluster correlation. On the contrary, the coverage percentages obtained by

the traditional indirect methods are not close to 95% and as within-cluster correlation increases, the

coverage percentages decreases. Our method handles the within-cluster correlation better than the

traditional methods do.

Tables 4.2, 4.4, 4.6, 4.8, 4.10 show the simulation results to compare the proposed WCR indirect

method with the traditional indirect method using β3, β3/σ1, AUCx1=2, AUCx1=5 and AUCx1=9

under unequal variance scenario. The same conclusions could be conduct as the conclusions under

the equal variance scenario.

In Tables 4.1 and 4.2, we also compare the average length of the 95% confidence intervals of

model coefficient β3 from WCR indirect method and traditional indirect method. The proposed

indirect method generate a larger length. As the within cluster correlation increases, the lengths of

both methods increase. As the sample size increases, both lengths decrease.
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We also visualize the simulation results through Figures 4.1, 4.2, 4.3, 4.2.

Table 4.1: Simulation results for β3 using two indirect methods under equal variance setting

WCR Indirect
p rho n Bias RMSE CP Length Bias RMSE CP Length

(%) (%)
0.3 0.2 25 -0.2404 0.0702 0.920 1.6456 0.1454 0.0659 0.891 1.3396

50 -0.1515 0.0475 0.948 1.1309 0.1547 0.0442 0.917 0.9305
100 0.0879 0.0328 0.957 0.7972 0.0624 0.0312 0.916 0.6540

0.5 25 0.2470 0.0788 0.935 1.3396 0.1250 0.0755 0.851 1.3280
50 0.0982 0.0563 0.947 1.3100 0.0062 0.0542 0.821 0.9274
100 0.0525 0.0375 0.952 0.9152 0.0476 0.0361 0.864 0.6513

0.9 25 0.1614 0.0927 0.935 2.1783 0.0965 0.0890 0.772 1.3180
50 0.2149 0.0645 0.940 1.5129 0.2513 0.0636 0.767 0.9230
100 0.0931 0.0430 0.955 1.0556 0.0773 0.0417 0.795 0.6507

0.4 0.2 25 -0.1301 0.0678 0.935 1.6421 0.0348 0.0648 0.919 1.3498
50 0.0398 0.0486 0.935 1.1302 0.1118 0.0461 0.907 0.9323
100 -0.0788 0.0328 0.944 0.7870 0.0232 0.0312 0.923 0.6548

0.5 25 0.2759 0.0783 0.950 1.8754 0.1438 0.0780 0.842 1.3297
50 -0.0987 0.0527 0.950 1.2929 -0.1000 0.0525 0.852 0.9285
100 0.1546 0.0365 0.959 0.9124 0.1391 0.0366 0.847 0.6552

0.9 25 -0.1663 0.0907 0.937 2.1735 0.0761 0.0914 0.771 1.3181
50 -0.2391 0.0632 0.950 1.4953 -0.1134 0.0646 0.759 0.9215
100 0.0971 0.0449 0.935 1.0394 0.1438 0.0449 0.776 0.6505

0.5 0.2 25 -0.0909 0.0708 0.924 1.6481 0.0261 0.0676 0.897 1.3562
50 0.0059 0.0481 0.934 1.1319 0.0249 0.0469 0.903 0.9400
100 -0.2086 0.0345 0.947 0.7957 -0.1481 0.0337 0.886 0.6595

0.5 25 0.2279 0.0782 0.928 1.8516 0.1381 0.0800 0.834 1.3343
50 0.0359 0.0517 0.954 1.2800 0.1179 0.0539 0.864 0.9332
100 0.2183 0.0374 0.949 0.9020 0.2480 0.0384 0.835 0.6577

0.9 25 -0.2938 0.0898 0.946 2.1219 0.3172 0.0930 0.750 1.3163
50 0.1373 0.0601 0.949 1.4750 0.1171 0.0645 0.757 0.9288
100 -0.3579 0.0425 0.952 1.0336 -0.3061 0.0449 0.765 0.6570

WCR-the proposed WCR indirect method;
Indirect-the indirect ROC method;
RMSE-square root of mean squared error;
CP-coverage percentage of 95% confidence intervals;
Length- the average of simulated confidence interval lengths.
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Figure 4.1: The coverage percentage of the 95% confidence intervals of indirect regression method
and the proposed WCR indirect method under different settings
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Figure 4.2: The average length of the 95% confidence intervals of indirect regression method and
the proposed WCR indirect method under different settings
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Table 4.2: Simulation results for β3 using two indirect methods under unequal variance setting

WCR Indirect
p rho n Bias RMSE CP Length Bias RMSE CP Length

(%) (%)
0.3 0.2 25 0.0031 0.0737 0.921 0.3074 0.0195 0.0722 0.916 0.2491

50 -0.0163 0.0501 0.911 0.2087 0.0095 0.0501 0.907 0.1724
100 0.0452 0.0367 0.923 0.1416 0.0144 0.0360 0.904 0.1206

0.5 25 0.1541 0.0848 0.912 0.3456 0.0294 0.0856 0.844 0.2468
50 -0.1308 0.0590 0.921 0.2362 -0.1627 0.0594 0.845 0.1730
100 0.0670 0.0427 0.917 0.1623 0.1219 0.0433 0.834 0.1204

0.9 25 0.2431 0.1006 0.919 0.3896 0.3676 0.1030 0.772 0.2456
50 -0.2344 0.0657 0.951 0.2682 -0.2464 0.0684 0.778 0.1706
100 -0.2970 0.0485 0.939 0.1889 -0.3178 0.0500 0.769 0.1201

0.4 0.2 25 0.1698 0.0789 0.905 0.3235 0.2391 0.0786 0.893 0.2577
50 -0.2182 0.0528 0.942 0.2111 -0.2088 0.0512 0.915 0.1790
100 0.0736 0.0010 0.926 0.1449 0.1017 0.0366 0.906 0.1248

0.5 25 0.3677 0.0855 0.901 0.3534 0.2924 0.0859 0.854 0.2581
50 0.0169 0.0599 0.925 0.2384 0.0053 0.0601 0.863 0.1793
100 -0.1058 0.0420 0.944 0.1646 -0.1104 0.0424 0.871 0.1249

0.9 25 -0.2300 0.1007 0.911 0.3889 -0.1731 0.1040 0.769 0.2539
50 0.1245 0.0691 0.934 0.2694 0.2601 0.0724 0.786 0.1765
100 -0.0079 0.0506 0.938 0.1891 0.0769 0.0523 0.749 0.1240

0.5 0.2 25 -0.1614 0.0786 0.921 0.3289 -0.0615 0.0770 0.907 0.2699
50 0.2207 0.0018 0.925 0.2184 0.1780 0.0018 0.893 0.1863
100 -0.0299 0.0390 0.929 0.1521 -0.0200 0.0379 0.911 0.1307

0.5 25 -0.0041 0.0903 0.914 0.3573 0.0840 0.0903 0.859 0.2681
50 0.0570 0.0005 0.924 0.2432 0.0497 0.0005 0.847 0.1860
100 0.1731 0.0449 0.924 0.1700 0.1320 0.0453 0.855 0.1307

0.9 25 -0.0067 0.1004 0.917 0.3987 -0.1417 0.1053 0.795 0.2651
50 0.0497 -0.0023 0.936 0.2777 0.2338 0.0736 0.801 0.1866
100 -0.1486 0.0497 0.942 0.1909 -0.1967 0.0514 0.786 0.1297

WCR-the proposed WCR indirect method;
Indirect-the indirect ROC method;
RMSE-square root of mean squared error;
CP-coverage percentage of 95% confidence intervals;
Length- the average of simulated confidence interval lengths.
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Figure 4.3: The coverage percentage of the 95% confidence intervals of indirect regression method
and the proposed WCR indirect method under different settings
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Figure 4.4: The average length of the 95% confidence intervals of indirect regression method and
the proposed WCR indirect method under different settings
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Table 4.3: Simulation results for β3

σ1
using two indirect methods under equal variance setting

WCR Indirect
p rho n Bias RMSE CP Bias RMSE CP

(%) (%)
0.3 0.2 25 -5.4661 0.0597 0.934 -5.7874 0.0616 0.872

50 -6.0869 0.0636 0.951 -6.1800 0.0641 0.898
100 -6.2225 0.0634 0.941 -6.2901 0.0639 0.901

0.5 25 -5.5387 0.0636 0.925 -5.6706 0.0632 0.802
50 -5.7045 0.0603 0.976 -5.7702 0.0605 0.787
100 -6.0284 0.0618 0.961 -6.0800 0.0621 0.793

0.9 25 -5.8340 0.0695 0.938 -5.6687 0.0672 0.691
50 -6.2062 0.0664 0.946 -6.1373 0.0652 0.687
100 -6.2329 0.0646 0.913 -6.2156 0.0643 0.669

0.4 0.2 25 -5.4250 0.0600 0.971 -5.7889 0.0627 0.911
50 -5.9674 0.0623 0.958 -6.0821 0.0629 0.886
100 -6.1192 0.0624 0.944 -6.1780 0.0628 0.891

0.5 25 -5.6920 0.0637 0.953 -5.8725 0.0652 0.784
50 -5.8032 0.0609 0.934 -5.8456 0.0613 0.793
100 -6.1203 0.0628 0.939 -6.1293 0.0628 0.776

0.9 25 -5.8024 0.0669 0.918 -5.6402 0.0656 0.689
50 -6.1505 0.0664 0.962 -6.0354 0.0651 0.697
100 -6.1829 0.0641 0.929 -6.1241 0.0636 0.702

0.5 0.2 25 -5.4510 0.0604 0.981 -5.7876 0.0626 0.875
50 -5.9829 0.0625 0.936 -6.1039 0.0635 0.869
100 -6.1570 0.0628 0.964 -6.1599 0.0628 0.885

0.5 25 -5.7440 0.0643 0.955 -5.8816 0.0647 0.787
50 -6.1508 0.0646 0.928 -6.2093 0.0651 0.769
100 -6.3342 0.0648 0.911 -6.3487 0.0649 0.795

0.9 25 -5.9243 0.0693 0.919 -5.7730 0.0687 0.711
50 -6.0552 0.0648 0.933 -6.0450 0.0649 0.684
100 -6.1497 0.0639 0.972 -6.0458 0.0632 0.695

WCR-the proposed WCR indirect method;
Indirect-the indirect ROC method;
RMSE-square root of mean squared error;
CP-coverage percentage of 95% confidence intervals.
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Table 4.4: Simulation results for β3

σ1
using two indirect methods under unequal variance setting

WCR Indirect
p rho n Bias RMSE CP Bias RMSE CP

(%) (%)
0.3 0.2 25 -5.8095 0.0621 0.915 -6.0516 0.0637 0.901

50 -5.9657 0.0619 0.921 -6.0847 0.0627 0.892
100 -6.2135 0.0633 0.923 -6.2515 0.0635 0.887

0.5 25 -5.7665 0.0633 0.902 -5.8732 0.0635 0.763
50 -6.0708 0.0637 0.935 -6.1349 0.0640 0.784
100 -6.1811 0.0633 0.931 -6.1952 0.0633 0.797

0.9 25 -5.8294 0.0662 0.917 -5.6683 0.0644 0.687
50 -5.9543 0.0641 0.928 -5.8182 0.0626 0.692
100 -6.1901 0.0639 0.926 -6.1495 0.0633 0.641

0.4 0.2 25 -5.5864 0.0604 0.913 -5.8699 0.0624 0.915
50 -6.0807 0.0630 0.909 -6.2073 0.0639 0.887
100 -6.1204 0.0623 0.934 -6.1865 0.0628 0.903

0.5 25 -5.6862 0.0628 0.927 -5.7823 0.0633 0.748
50 -6.0619 0.0638 0.941 -6.1002 0.0639 0.763
100 -6.0819 0.0624 0.925 -6.0915 0.0623 0.721

0.9 25 -5.6905 0.0656 0.928 -5.5077 0.0638 0.624
50 -6.0546 0.0653 0.938 -5.8951 0.0640 0.671
100 -6.1611 0.0636 0.925 -6.1024 0.0631 0.608

0.5 0.2 25 -5.6912 0.0614 0.937 -5.9279 0.0632 0.898
50 -5.9261 0.0618 0.933 -6.0680 0.0629 0.887
100 -6.1403 0.0626 0.926 -6.2171 0.0632 0.893

0.5 25 -5.6198 0.0622 0.922 -5.7326 0.0631 0.785
50 -5.9082 0.0625 0.914 -5.9925 0.0632 0.763
100 -6.1385 0.0629 0.916 -6.1382 0.0629 0.739

0.9 25 -5.6573 0.0658 0.931 -5.5027 0.0649 0.634
50 -6.0671 0.0654 0.922 -5.9606 0.0648 0.619
100 -6.1912 0.0645 0.932 -6.1391 0.0641 0.674

WCR-the proposed WCR indirect method;
Indirect-the indirect ROC method;
RMSE-square root of mean squared error;
CP-coverage percentage of 95% confidence intervals.
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Table 4.5: Simulation results for AUC2 using two indirect methods under equal variance setting

WCR Indirect
p rho n Bias RMSE CP Bias RMSE CP

(%) (%)
0.3 0.2 25 0.7000 0.0241 0.923 0.8068 0.0238 0.884

50 1.0094 0.0210 0.934 1.0098 0.0209 0.876
100 0.8365 0.0177 0.912 0.8517 0.0184 0.893

0.5 25 0.8246 0.0289 0.925 0.9528 0.0302 0.810
50 0.6523 0.0225 0.934 0.6591 0.0236 0.823

100 0.9571 0.0162 0.936 0.9299 0.0157 0.802
0.9 25 0.7647 0.0347 0.944 0.7806 0.0366 0.724

50 0.8175 0.0272 0.921 0.7115 0.0285 0.731
100 0.9702 0.0210 0.937 1.0157 0.0222 0.711

0.4 0.2 25 0.6271 0.0234 0.947 0.7021 0.0236 0.865
50 0.7925 0.0198 0.957 0.8083 0.0197 0.891

100 0.8185 0.0156 0.938 0.8294 0.0153 0.889
0.5 25 0.8881 0.0309 0.964 0.9427 0.0321 0.823

50 0.7765 0.0236 0.928 0.7550 0.0241 0.812
100 0.8289 0.0179 0.939 0.8509 0.0185 0.837

0.9 25 0.7735 0.0339 0.934 0.7260 0.0352 0.768
50 0.6930 0.0281 0.961 0.7195 0.0303 0.741

100 0.8727 0.0210 0.921 0.8393 0.0215 0.727
0.5 0.2 25 0.7102 0.0241 0.933 0.7208 0.0236 0.895

50 0.6934 0.0202 0.921 0.7137 0.0199 0.889
100 0.8403 0.0148 0.941 0.8963 0.0153 0.893

0.5 25 0.5977 0.0288 0.934 0.6172 0.0292 0.741
50 0.8609 0.0224 0.935 0.8250 0.0232 0.813

100 0.8070 0.0178 0.954 0.7919 0.0183 0.792
0.9 25 0.7621 0.0342 0.945 0.7417 0.0360 0.681

50 0.8087 0.0277 0.946 0.8109 0.0296 0.732
100 0.6844 0.0206 0.941 0.6715 0.0219 0.714

WCR-the proposed WCR indirect method;
Indirect-the indirect ROC method;
RMSE-square root of mean squared error;
CP-coverage percentage of 95% confidence intervals.
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Table 4.6: Simulation results for AUC2 using two indirect methods under unequal variance setting

WCR Indirect
p rho n Bias RMSE CP Bias RMSE CP

(%) (%)
0.3 0.2 25 -2.0016 0.0650 0.964 1.2391 0.0673 0.871

50 -1.9873 0.0670 0.921 -1.2080 0.0659 0.863
100 -1.3203 0.0571 0.967 -0.6907 0.0546 0.911

0.5 25 -1.9555 0.0730 0.945 -1.2993 0.0777 0.781
50 -2.0198 0.0740 0.927 -1.2471 0.0759 0.735
100 -0.9836 0.0676 0.931 -0.6722 0.0670 0.745

0.9 25 -1.9493 0.0842 0.946 -1.5216 0.0917 0.710
50 -2.0623 0.0851 0.955 -1.4161 0.0890 0.675
100 -1.1916 0.0678 0.941 -1.1658 0.0671 0.745

0.4 0.2 25 -1.5927 0.0735 0.945 -0.7532 0.0716 0.856
50 -1.3639 0.0664 0.938 -0.7089 0.0677 0.901
100 -0.9492 0.0462 0.962 -0.6097 0.0458 0.893

0.5 25 -2.5139 0.0829 0.937 -1.4631 0.0823 0.871
50 -1.3516 0.0786 0.968 -0.8475 0.0807 0.875
100 -0.9680 0.0531 0.924 -0.7311 0.0539 0.865

0.9 25 -2.6385 0.0947 0.948 -1.6462 0.0955 0.768
50 -1.3253 0.0888 0.951 -0.9799 0.0937 0.712
100 -1.9351 0.0815 0.953 -1.3459 0.0858 0.645

0.5 0.2 25 -2.9234 0.0794 0.955 -1.8001 0.0769 0.895
50 -1.2909 0.0684 0.914 -0.5812 0.0676 0.871
100 -1.6530 0.0632 0.941 -1.0884 0.0604 0.912

0.5 25 -2.9560 0.0859 0.931 -1.8928 0.0860 0.841
50 -1.2417 0.0763 0.922 -0.5671 0.0781 0.787
100 -1.8732 0.0736 0.938 -1.2513 0.0757 0.805

0.9 25 -3.0579 0.0964 0.945 -2.1563 0.1001 0.831
50 -1.1757 0.0855 0.915 -0.6633 0.0900 0.746
100 -0.6392 0.0775 0.925 -0.2918 0.0800 0.763

WCR-the proposed WCR indirect method;
Indirect-the indirect ROC method;
RMSE-square root of mean squared error;
CP-coverage percentage of 95% confidence intervals.
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Table 4.7: Simulation results for AUC5 using two indirect methods under equal variance setting

WCR Indirect
p rho n Bias RMSE CP Bias RMSE CP

(%) (%)
0.3 0.2 25 1.0016 0.0207 0.971 1.1424 0.0216 0.899

50 1.2074 0.0184 0.919 1.2780 0.0188 0.852
100 1.3296 0.0163 0.937 1.3622 0.0166 0.901

0.5 25 1.0469 0.0252 0.966 1.1505 0.0264 0.877
50 1.1187 0.0209 0.937 1.1780 0.0217 0.791

100 1.3237 0.0181 0.924 1.3524 0.0185 0.757
0.9 25 2.5203 0.0291 0.965 1.2802 0.0302 0.713

50 1.2145 0.0241 0.912 1.2043 0.0251 0.732
100 1.3599 0.0201 0.951 1.3690 0.0207 0.663

0.4 0.2 25 1.0139 0.0222 0.953 1.1588 0.0225 0.911
50 1.2591 0.0189 0.926 1.3758 0.0197 0.878

100 1.2346 0.0156 0.914 1.2891 0.0162 0.894
0.5 25 1.1299 0.0253 0.961 1.2104 0.0267 0.731

50 1.0935 0.0211 0.926 1.1389 0.0221 0.765
100 1.1821 0.0174 0.932 1.1760 0.0176 0.777

0.9 25 0.9608 0.0280 0.942 0.9756 0.0289 0.751
50 1.0828 0.0242 0.942 1.0468 0.0253 0.656

100 1.2072 0.0194 0.938 1.2376 0.0200 0.577
0.5 0.2 25 1.0714 0.0220 0.926 1.2385 0.0230 0.874

50 1.1060 0.0185 0.953 1.2116 0.0192 0.806
100 1.3018 0.0164 0.959 1.3479 0.0169 0.856

0.5 25 1.0690 0.0253 0.921 1.1520 0.0264 0.772
50 1.2191 0.0221 0.966 1.2775 0.0229 0.733

100 1.2071 0.0174 0.912 1.1944 0.0177 0.765
0.9 25 1.1903 0.0288 0.926 1.1763 0.0314 0.664

50 1.1234 0.0240 0.961 1.1148 0.0251 0.674
100 1.2663 0.0192 0.921 1.2528 0.0201 0.664

WCR-the proposed WCR indirect method;
Indirect-the indirect ROC method;
RMSE-square root of mean squared error;
CP-coverage percentage of 95% confidence intervals.
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Table 4.8: Simulation results for AUC5 using two indirect methods under unequal variance setting

WCR Indirect
p rho n Bias RMSE CP Bias RMSE CP

(%) (%)
0.3 0.2 25 -1.8284 0.0328 0.974 -1.1803 0.0288 0.915

50 -1.4182 0.0250 0.911 -1.0836 0.0225 0.873
100 -1.0370 0.0174 0.934 -0.8498 0.0161 0.913

0.5 25 -1.6712 0.0335 0.930 -1.1191 0.0309 0.861
50 -1.2887 0.0265 0.942 -1.0288 0.0257 0.858
100 -1.1919 0.0206 0.929 -1.0345 0.0197 0.789

0.9 25 -1.6691 0.0392 0.941 -1.2931 0.0379 0.702
50 -1.1123 0.0287 0.896 -0.8698 0.0283 0.730
100 -1.1500 0.0224 0.910 1.0162 0.0224 0.654

0.4 0.2 25 -1.8440 0.0331 0.932 -1.1965 0.0295 0.899
50 2.8685 0.0252 0.933 -1.1855 0.0232 0.869
100 -1.1833 0.0189 0.906 1.0091 0.0177 0.980

0.5 25 -1.8064 0.0365 0.941 -1.3422 0.0347 0.696
50 -1.4483 0.0286 0.944 1.1427 0.0272 0.756
100 -1.1438 0.0199 0.913 1.0089 0.0194 0.810

0.9 25 -1.7695 0.0389 0.902 -1.3031 0.0379 0.724
50 -1.5046 0.0328 0.927 1.2421 0.0321 0.641
100 -1.1331 0.0222 0.952 -1.0128 0.0222 0.575

0.5 0.2 25 -1.6361 0.0336 0.944 1.0450 0.0299 0.919
50 -1.5364 0.0269 0.976 -1.1162 0.0239 0.901
100 -1.0383 0.0188 0.948 -0.8622 0.0178 0.879

0.5 25 -1.7873 0.0379 0.945 1.2395 0.0361 0.704
50 -1.2371 0.0256 0.915 -0.9033 0.0242 0.816
100 -1.0657 0.0205 0.937 -0.8831 0.0195 0.776

0.9 25 -1.6382 0.0375 0.885 1.1146 0.0372 0.702
50 -1.2278 0.0309 0.960 -0.9619 0.0308 0.680
100 -1.1947 0.0231 0.936 -1.0530 0.0231 0.671

WCR-the proposed WCR indirect method;
Indirect-the indirect ROC method;
RMSE-square root of mean squared error;
CP-coverage percentage of 95% confidence intervals.
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Table 4.9: Simulation results for AUC9 using two indirect methods under equal variance setting

WCR Indirect
p rho n Bias RMSE CP Bias RMSE CP

(%) (%)
0.3 0.2 25 0.1980 0.0096 0.964 0.4628 0.0098 0.901

50 0.4645 0.0079 0.953 0.6151 0.0087 0.912
100 0.5344 0.0070 0.933 0.6041 0.0075 0.898

0.5 25 0.3149 0.0104 0.911 0.5010 0.0111 0.835
50 0.3967 0.0089 0.923 0.5051 0.0094 0.842

100 0.5290 0.0078 0.964 0.5789 0.0084 0.851
0.9 25 0.1361 0.0136 0.931 0.1951 0.0143 0.797

50 0.4066 0.0110 0.912 0.4666 0.0114 0.789
100 0.5459 0.0085 0.918 0.5639 0.0090 0.756

0.4 0.2 25 0.1766 0.0100 0.927 0.4413 0.0101 0.878
50 0.4145 0.0082 0.926 0.5693 0.0088 0.881

100 0.5017 0.0067 0.934 0.5762 0.0072 0.868
0.5 25 0.1883 0.0114 0.923 0.3924 0.0117 0.831

50 0.3722 0.0091 0.941 0.4968 0.0097 0.854
100 0.5399 0.0080 0.949 0.5994 0.0084 0.828

0.9 25 0.1527 0.0141 0.954 0.2674 0.0145 0.787
50 0.4501 0.0102 0.937 0.4832 0.0108 0.742

100 0.5079 0.0084 0.957 0.5401 0.0088 0.758
0.5 0.2 25 0.2039 0.0092 0.913 0.4782 0.0099 0.921

50 0.3932 0.0078 0.948 0.5617 0.0085 0.873
100 0.5188 0.0070 0.956 0.6020 0.0076 0.895

0.5 25 0.2012 0.0116 0.926 0.3973 0.0119 0.846
50 0.3791 0.0087 0.962 0.5037 0.0095 0.827

100 0.4894 0.0075 0.934 0.5424 0.0081 0.839
0.9 25 0.2338 0.0131 0.955 0.3267 0.0145 0.775

50 0.4511 0.0109 0.915 0.4962 0.0116 0.764
100 0.5598 0.0085 0.942 0.5980 0.0092 0.725

WCR-the proposed WCR indirect method;
Indirect-the indirect ROC method;
RMSE-square root of mean squared error;
CP-coverage percentage of 95% confidence intervals.
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Table 4.10: Simulation results forAUC9 using two indirect methods under unequal variance setting

WCR Indirect
p rho n Bias RMSE CP Bias RMSE CP

(%) (%)
0.3 0.2 25 -1.3265 0.0186 0.912 -0.6213 0.0126 0.798

50 -0.9229 0.0133 0.973 -0.5021 0.0098 0.919
100 -0.7192 0.0102 0.966 -0.4267 0.0079 0.926

0.5 25 -1.3376 0.0202 0.899 -0.7017 0.0152 0.725
50 -0.8852 0.0137 0.986 -0.5379 0.0112 0.812
100 -0.6813 0.0107 0.967 -0.4316 0.0087 0.838

0.9 25 -1.3613 0.0226 0.921 -0.8434 0.0189 0.644
50 -0.9017 0.0152 0.961 -0.6177 0.0136 0.523
100 -0.6962 0.0115 0.943 -0.4983 0.0099 0.416

0.4 0.2 25 -1.2584 0.0188 0.965 -0.5316 0.0122 0.913
50 1.5248 0.0117 0.966 -0.4274 0.0087 0.891
100 -0.6913 0.0105 0.931 -0.4214 0.0083 0.921

0.5 25 -1.1979 0.0185 0.968 -0.5599 0.0131 0.784
50 -0.8278 0.0129 0.916 -0.4957 0.0102 0.723
100 -0.8423 0.0128 0.932 -0.5505 0.0102 0.718

0.9 25 -1.1958 0.0204 0.948 -0.6560 0.0161 0.623
50 -0.8176 0.0141 0.957 -0.5528 0.0121 0.691
100 -0.6445 0.0129 0.934 -0.4518 0.0112 0.532

0.5 0.2 25 -1.6464 0.0250 0.926 -0.8488 0.0183 0.885
50 -0.8633 0.0137 0.986 -0.4679 0.0109 0.919
100 -0.7743 0.0115 0.953 -0.4920 0.0093 0.865

0.5 25 -1.3486 0.0204 0.954 -0.6787 0.0148 0.712
50 -0.8517 0.0133 0.959 -0.4961 0.0107 0.744
100 -0.7866 0.0116 0.938 -0.5480 0.0097 0.756

0.9 25 -1.2711 0.0213 0.966 -0.7580 0.0173 0.402
50 -0.9008 0.0149 0.959 -0.6422 0.0137 0.704
100 -0.6747 0.0106 0.947 -0.4685 0.0091 0.732

WCR-the proposed WCR indirect method;
Indirect-the indirect ROC method;
RMSE-square root of mean squared error;
CP-coverage percentage of 95% confidence intervals.
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4.2.2 Simulation Study for WCR Indirect Regression Methods

For the simulated clustered ROC data associated with continuous covariate x1, The proposed WCR

direct methods are used as well as traditional indirect regression method. We set the pairing margin

δ =∞ so that all the pairs can be included in the model

ROCxD,xD̄(u) = Φ{α0 + α1Φ−1(u) + β1xD + β2(xD − xD̄)}. (4.51)

The resulting AUC is given by,

AUCxD,xD̄(u) = Φ−1{β0 + β1xD + β2(xD − xD̄)}. (4.52)

We also generate clustered ROC data with a categorical covariate x1 = 1, 2, 3, 4 and 5. We

create all the pairs within each level and fit the models to estimate the ROC curves and the AUC by

ROCxD,xD̄(u) = Φ{α0 + α1Φ−1(u) + β1xD}, (4.53)

and

AUCxD,xD̄(u) = Φ−1{β0 + β1xD}. (4.54)

The parameter estimator β̂1 and the AUC estimator when x1 = 1, ÂUCx1=1 are obtained. Biases

and square root of mean squared errors under various scenarios are shown in the tables.

Table 4.11, 4.12, and 4.13 show the simulation results to compare the proposed WCR indirect

regression methods with traditional indirect method using β1 and AUCx1=1 under continues data

and ordinal data. The biases obtained by the proposed methods are very small. This indicates

that the proposed WCR methods have a good performance on clustered ROC data associated with

covariateX . Note that, the traditional method provides similar bias and RMSE but the two methods

are on difference levels. The WCR methods are on a patient/subject level and the traditional method

is on the location level. We do not report the coverage percentage of 95% confidence interval since

the bootstrap method did not work well to estimate the variance of β1 and the variance ofAUCx1=1.
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Further research on estimating the variance is needed for this WCR methods.

Table 4.11: Simulation results for β1 using two direct methods under continuous data setting

WCR Direct
p rho n Bias RMSE Bias RMSE

(%) (%)
0.3 0.2 25 3.3905 0.0751 0.8074 0.0574

50 2.7895 0.0658 0.6359 0.0524
100 1.4871 0.0509 0.3217 0.0442

0.5 25 4.4960 0.1032 1.9697 0.0817
50 2.4036 0.0755 0.9539 0.0676
100 1.4687 0.0585 0.3336 0.0533

0.9 25 2.3745 0.1006 1.0071 0.0968
50 2.2644 0.0903 1.4482 0.0857
100 1.9500 0.0752 1.4003 0.0722

0.4 0.2 25 4.1896 0.0796 1.3721 0.0597
50 2.6498 0.0631 0.5102 0.0518
100 1.9822 0.0550 0.6539 0.0489

0.5 25 3.4862 0.0928 1.1125 0.0777
50 2.3407 0.0710 0.5359 0.0637
100 2.1212 0.0601 1.0164 0.0541

0.9 25 3.6568 0.1195 2.2070 0.1079
50 3.0022 0.0928 2.1884 0.0896
100 2.1327 0.0789 1.5601 0.0760

0.5 0.2 25 3.3933 0.0809 0.6523 0.0636
50 2.6191 0.0644 0.6712 0.0532
100 2.0545 0.0523 0.7630 0.0452

0.5 25 3.9982 0.0947 1.5693 0.0783
50 2.7592 0.0766 1.0361 0.0682
100 2.0294 0.0615 0.9549 0.0572

0.9 25 4.0270 0.1223 2.4030 0.1094
50 2.3574 0.0916 1.5129 0.0913
100 1.6858 0.0709 1.1866 0.0718

WCR-the proposed WCR indirect method;
Direct-the direct ROC method;
RMSE-square root of mean squared error;
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Table 4.12: Simulation results for β3 using two direct methods under ordinal data setting

WCR Direct
p rho n Bias RMSE Bias RMSE

(%) (%)
0.3 0.2 25 0.1082 0.1774 -0.7181 0.1722

50 0.8929 0.0557 -5.4982 0.0759
100 0.5103 0.0372 -5.6146 0.0676

0.5 25 1.6048 0.2189 1.1021 0.2221
50 0.2899 0.0637 -5.8925 0.0869
100 0.5025 0.0433 -5.8461 0.0717

0.9 25 0.3177 0.1552 -0.0736 0.1533
50 1.5492 0.0746 -4.2181 0.0879
100 0.7934 0.0511 -4.9839 0.0716

0.4 0.2 25 2.7662 0.2004 1.9246 0.2023
50 1.0559 0.0609 -5.5751 0.0804
100 0.4791 0.0371 -5.4747 0.0664

0.5 25 -0.1018 0.2336 -0.0142 0.244
50 0.7705 0.0633 -5.2361 0.0826
100 0.1338 0.0444 -5.9394 0.0755

0.9 25 0.3224 0.1589 -0.1953 0.1569
50 0.7925 0.0461 -5.5946 0.0723
100 -0.2469 0.0516 -5.8739 0.0801

0.5 0.2 25 1.1535 0.1415 0.2504 0.1358
50 0.9302 0.0441 -5.2282 0.0688
100 0.4687 0.0387 -5.3873 0.0651

0.5 25 2.5461 0.1711 2.3547 0.1786
50 0.5766 0.0521 -4.9761 0.0708
100 -0.0821 0.0419 -5.6777 0.0757

0.9 25 1.0082 0.2112 0.7919 0.2246
50 0.6114 0.0639 -5.4357 0.0878
100 0.6017 0.0569 -5.2836 0.0799

WCR-the proposed WCR indirect method;
Direct-the direct ROC method;
RMSE-square root of mean squared error;
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Table 4.13: Simulation results for AUCx1=1 using two direct methods under ordinal data setting

WCR Direct
p rho n Bias RMSE Bias RMSE

(%) (%)
0.3 0.2 25 -0.7586 0.077 -0.5594 0.0729

50 0.0131 0.0613 0.2083 0.0591
100 0.0149 0.0487 0.1731 0.0482

0.5 25 -0.3097 0.0794 -0.1871 0.0755
50 -0.3865 0.0748 -0.1539 0.0743
100 0.0125 0.0553 -0.0816 0.0536

0.9 25 -0.1666 0.1159 -0.1616 0.1164
50 -0.0627 0.0969 0.1857 0.0973
100 -0.4054 0.0651 -0.4508 0.0666

0.4 0.2 25 -1.6225 0.0798 -1.2971 0.0735
50 -0.5851 0.0687 -0.3946 0.0667
100 0.1678 0.0501 0.1431 0.0481

0.5 25 0.3678 0.0797 0.4377 0.0798
50 -0.0564 0.0727 -0.0267 0.0726
100 -0.4418 0.0555 -0.3444 0.0567

0.9 25 -0.7141 0.1055 -0.7796 0.1085
50 -0.3936 0.0961 -0.2848 0.0997
100 0.2325 0.0652 0.2201 0.0654

0.5 0.2 25 0.0518 0.0736 0.3007 0.0744
50 -0.4993 0.0666 -0.1496 0.0652
100 0.0671 0.0468 0.2549 0.0469

0.5 25 -0.4788 0.0791 -0.2581 0.0822
50 -0.9019 0.0814 -1.0971 0.0838
100 -0.6744 0.0526 -0.4888 0.0561

0.9 25 -0.4978 0.0961 -0.2091 0.1027
50 0.4204 0.0927 0.9662 0.1011
100 0.0018 0.0604 0.1766 0.0627

WCR-the proposed WCR indirect method;
Direct-the direct ROC method;
RMSE-square root of mean squared error;
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Chapter 5: Conclusion and Future Research

In this dissertation, we propose within cluster resampling methods to deal with clustered ROC data.

They have been shown to be valid analysis methods to estimate the ROC curve and the ROC sum-

mary measures. We applied the within cluster resampling methods on evaluating one ROC curve,

comparing two ROC curves and estimating covariate adjusted ROC curves. The methods provide

unbiased estimators as well as valid variance estimators since they can deal with the within cluster

correlation. We illustrate how well the proposed methods perform through extensive simulation

studies in Sections 2, 3 and 4.

Compared to the current methods, the within cluster resampling methods have many advan-

tages. First, the WCR methods give us a general framework on estimating the ROC curve using

the clustered ROC data. We can obtain all the ROC measures including the AUC, the pAUC, the

TPR at a fixed FPR, and etc. The Obuchowski’s method can only estimate the AUC. It cannot esti-

mate the ROC curves, the pAUC or TPR at a fixed FPR. The Li and Zhou’s method (Li and Zhou

2008) cannot adjust for ties in ordinal data since they use a simulated standard normal distribution

to estimate the variance. Second, the existing methods for clustered ordinal data yield a rough ROC

curve but the WCR method can generate a smoother curve so that more accurate ROC measures,

including the pAUC and the TPR at a fixed FPR, can be obtained. Third, the WCR method provides

a more flexible way to estimate the ROC curves. For each resampled dataset, we can choose among

the parametric, the nonparametric or the semiparametric methods. If the normal assumption stands,

the parametric method is preferred because it is easy and accurate. If the normal assumption is

violated, the nonparametric method and semiparametric method should be employed. Fourth, to the

best of our knowledge, methods are not available to deal with clustered ROC data with covariates.

The WCR method is the first and only method to estimate the covariate adjusted ROC curves for

the clustered ROC data. The WCR indirect regression and the WCR direct regression method are

proposed to estimate the ROC curve associated with covariates. Sixth, the simulation results also
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show that WCR methods can account for the informative cluster size since it weighs each cluster

equally. In other methods, the clusters with a large number of observations may contribute more.

The coverage percentages are close to the nominal level under different settings. Finally, the WCR

methods give the subject/patient level ROC estimators while the existing methods give the obser-

vation/location level ROC estimators. The choice of those methods depends on the objective of the

study, if the study is to measure how accurate the biomarker performs on the patients, the WCR

methods should be employed; if the study is to measure the biomarker diagnostic accuracy on the

locations from the patients, the existing methods should be employed.

Although the proposed methods have many advantages, they are more computationally intensive

to obtain estimators comparing to Obuchowski’s methods. When the cluster size is large, the pro-

posed methods require a large number of resamplings. For the proposed WCR methods in Chapters

2 and 3, the variance estimators have explicit forms, the simulation was not very slow. However, the

variance estimators have no explicit forms when estimating the covariate adjusted ROC curves. In

that case, the bootstrapped variance should be used. But it can be more computationally intensive if

we use both the WCR method and the bootstrap method.

Future research work includes the derivation of the asymptotic normality of the WCR AUC esti-

mator. The Central Limit Theorem, the Cauchy-Schwarz Inequality and conditions may be applied.

We will also derive the consistency of the variance of the WCR AUC estimator. The conditional

variance representation will be used. The Markov’s Theorem may be applied. The second future

research topic is to determine the adequate number of resamplings to achieve a stable parameter and

variance estimates. We will investigate this topic through different numbers of resamplings under

different sample sizes. For each sample size and simulation setting, the bias and RMSE are expected

to decrease as the number of resamplings increases. The adequate number of resamplings will be

determined when the change of bias and RMSE are in an acceptance region. The third future topic

is the application of the WCR method to estimate other ROC summary measures, including the

pAUC and the TPR at a fixed FPR as well as the asymptotic normality of the corresponding WCR

estimators and consistency of the variance of the corresponding WCR estimators. Also, informative

cluster sizes have an important cluster effect in clustered ROC data, which is another interesting
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area to investigate. The informative cluster size might have a certain distribution and it may affect

the ROC estimator if we use traditional methods. The WCR methods can weigh all the clusters

equally so that they can handle the informative cluster size.
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Appendix A: Data Description for the Examples in Section 2.3

A.1 First Data Example in Section 2.3

This dataset is from Rosner, Glynn, and Lee (2003). They recruited 497 patients who were ran-

domized to three groups: each eye of the patients received the same treatment with an active drug

in Group 1; both eyes of the patients received the same treatment with a placebo in Group 2; both

eyes of each patient received the placebo and the other eye received the active drug in Group 3. The

patients were examined at 1 year and then at 9 months intervals, up to 48 months. They had a final

visit at the end of the trial. Sixteen patients did not follow up and three patients were miss at the

baseline. So the analysis used 478 patients, of whom 237 were randomized to the active drug and

241 to the placebo. The itching scores were measured at the third visit, which were from 0 (no itch

at all) to 4 (severe itch) in an increments of 0.5. The resulting data are clustered with a fixed cluster

size two. The number of itching scores that are from active drug treatment can be zero, one or two.

The sample data used is a subset of the entire data.

Figure A.1 displays the histogram of the diseased and nondiseased ratings. The left panel shows

the histogram of the diseased ratings. The right panel shows the histogram of the nondiseased

ratings.
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Figure A.1: The left panel shows the histogram of the diseased ratings. The right panel shows the
histogram of the nondiseased ratings.
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A.2 Second Data Example in Section 2.3

The second data set is from Li and Zhou (2008). In order to detect visual field deterioration in

glaucoma patients, Jiang (2005) developed a Bayesian hierarchical modeling method to predict

the probability of the early diagnosis of glaucomatous progression using longitudinal visual field

image data. The patients can either have none, one or two abnormal eye ratings. This generates the

clustered data with cluster size of two.

Figure A.2 displays the histogram of the probability of the early diagnosis of glaucomatous

progression for the diseased and nondiseased groups. The left panel shows the histogram of the

probability of the early diagnosis of glaucomatous progression for the diseased ratings. The right

panel shows the histogram of the probability of the early diagnosis of glaucomatous progression for

the nondiseased ratings. Figure A.3 displays the histogram of the probability of the early diagnosis

of glaucomatous progression for the left and right eye ratings. The left panel shows the histogram

of the early diagnosis of glaucomatous progression for the left eyes. The right panel shows the

histogram of the early diagnosis of glaucomatous progression for the right eyes.
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Figure A.2: The left panel shows the histogram of the probability of the early diagnosis of glauco-
matous progression for the diseased ratings. The right panel shows the histogram of the probability
of the early diagnosis of glaucomatous progression for the nondiseased ratings.
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Figure A.3: The left panel shows the histogram of the early diagnosis of glaucomatous progression
for the left eyes. The right panel shows the histogram of the early diagnosis of glaucomatous
progression for the right eyes.
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Appendix B: Simulation Settings

B.1 Simulation Settings for Section 2.2

Let I1 and I0 denote the number of clusters in the diseased group and the nondiseased group. We

let the two groups have the same number of clusters, so that I1 = I0 = I/2. The clusters in

the diseased group have a cluster size mi = 3 with probability p and a cluster size mi = 6 with

probability 1 − p, where as the clusters in the nondiseased group have a cluster size nj = 2 with

probability 1 − p and a cluster size nj = 5 with probability p. We simulate 1000 clustered ROC

data from normal and lognormal distributions, respectively:

1. T d ∼ N(µT d ,ΣT d) and T d̄ ∼ N(µT d̄ ,ΣT d̄), where µT d = (1, 1, 0) when mi = 3 and

µT d = (1, 1, 1, 1, 1, 0) when mi = 6, µT d̄ = (0, 0) when nj = 2 and µT d̄ = (0, 0, 0, 0, 0)

when nj = 5. The variance-covariance matrix ΣT d is a mi × mi matrix with diagonal

elements equal to 1 and correlation coefficients equal to ρ and ΣT d̄ is a nj × nj matrix with

diagonal elements equal to 1 and correlation coefficients equal to ρ

2. T d ∼ LogNormal(µT d ,ΣT d) and T d̄ ∼ LogNormal(µT d̄ ,ΣT d̄), with the same settings

on µT d , ΣT d , µT d̄ , ΣT d̄ , mi, nj and ρ.

We let p, the informative cluster size correlation, be 0.3, 0.4 and 0.5. Note that when p 6= 0.5, the

cluster size is different between the two groups. Under each setting, we let ρ, the within-cluster

correlation, be 0.2, 0.5, 0.9 and I/2, the number of clusters in each group, be 25, 50 and 100.

B.2 Simulation Settings for Section 3.2

Let I`1 and I`0 denote the number of clusters in the diseased group and the nondiseased group for

the `th biomarker, and I11 = I21, I10 = I20. We let the two groups have the same number of

clusters, so that I`1 = I`0 = I/2. For the `th biomarker, the clusters in the diseased group have a

cluster size m`i = 3 with probability p and a cluster size m`i = 6 with probability 1− p, where as
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the clusters in the nondiseased group have a cluster size n`j = 2 with probability 1−p and a cluster

size n`j = 5 with probability p. We simulate 1000 clustered ROC data from normal and lognormal

distributions, respectively:

1. T d` ∼ N(µT d
`
,ΣT d

`
) and T d̄` ∼ N(µ

T d̄
`
,Σ

T d̄
`
), where µT d

1
= (1, 1, 0) and µT d

2
= (0.7, 0.7, 0)

when m`i = 3 and µT d
1

= (1, 1, 1, 1, 1, 0) and µT d
2

= (0.7, 0.7, 0.7, 0.7, 0) when m`i =

6, µ
T d̄
`

= (0, 0) when n`j = 2 and µ
T d̄
`

= (0, 0, 0, 0, 0) when n`j = 5. The variance-

covariance matrix ΣT d
`

is am`i×m`i matrix with diagonal elements equal to 1 and correlation

coefficients equal to ρ and Σ
T d̄
`

is a n`j × n`j matrix with diagonal elements equal to 1 and

correlation coefficients equal to ρ

2. T d` ∼ LogNormal(µT d
`
,ΣT d

`
) and T d̄` ∼ LogNormal(µ

T d̄
`
,Σ

T d̄
`
), with the same settings

on µT d
`

, ΣT d
`

, µ
T d̄
`

, Σ
T d̄
`

, m`i, n`j and ρ.

We let p, the informative cluster size correlation, be 0.3, 0.4 and 0.5. Note that when p 6= 0.5, the

cluster size is different between the two groups. Under each setting, we let ρ, the within-cluster

correlation, be 0.2, 0.5, 0.9 and I/2, the number of clusters in each group, be 25, 50 and 100.

B.3 Simulation Settings for Section 4.2

Let I1 and I0 denote the number of clusters in the diseased group and the nondiseased group. We let

the two groups have the same number of clusters, so that I1 = I0 = I/2. The clusters in the diseased

group have a cluster size mi = 3 with probability p and a cluster size mi = 6 with probability

1 − p, where as the clusters in the nondiseased group have a cluster size nj = 2 with probability

1 − p and a cluster size nj = 5 with probability p. For a simplified ROC regression model, we

simulate clustered ROC data such that , for the diseased group, T ∼ N(µX ,Σ1), where µX =

(µD,X , µD,X , µD̄,X) whenmi = 3 andµX = (µD,X , µD,X , µD,X , µD,X , µD,X , µD̄,X) whenmi =

6. For the nondiseased group, T ∼ N(µD̄,X ,Σ2), where µD̄,X = (µD,X , µD̄,X , µD,X , µD̄,X)

when nj = 2 and µY = (µD̄,X , µD̄,X , µD̄,X , µD̄,X , µD̄,X) when nj = 5. The variance-covariance
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matrix Σ1 is ami×mi matrix with firstmi−1 diagonal elements equal to σ1, the last one diagonal

elements equal to σ0 and correlation coefficients equal to ρ and Σ2 is a nj×nj matrix with diagonal

elements equal to σ0 and correlation coefficients equal to ρ.

B.3.1 Simulation Settings for Section 4.2.1

For the simulated clustered ROC data associated with covariate x1, we employ the proposed WCR

indirect methods as well as the traditional indirect regression method. We assume a simple regres-

sion model with covariateX = x1, so that µD,x1 = β0 +β1 +β2x1 +β3x1 and µD̄,x1
= β0 +β2x1.

To simplify the model, we let β0 = β1 = β2 = 0 and β3 = 0.3. Thus the ROC curve associated

with covariate X = x1 is

ROCx1(u) = Sε(
σ(0)

σ(1)
S−1
ε (u)− β3x1

σ(1)
). (2.1)

We generate random variable x1 following Uniform (0,10). to estimate the ROC curve model

parameter β̂3 and β̂3/σ̂1, we fit a simple regression model using least square method if the diseased

and nondiseased groups have equal variance. We fit a simple regression model using weighted least

square iF the diseased and nondiseased groups have unequal variances. We let x1 = 2, 5, 9 to

estimate the AUCs, ÂUCx1=2, ÂUCx1=5 and ÂUCx1=9. The variance of the parameter estimator

β̂3, ˆvar(β̂3), is estimated by the least square method or the weighted least square method. The

variances of other estimators v̂ar(β̂3/σ̂1) v̂ar(ÂUC)x1=2, v̂ar(ÂUC)x1=5 and v̂ar(ÂUC)x1=9

are estimated by the bootstrap method. We obtain the parameter estimators β̂3 and β̂3/σ̂1, the AUC

estimators, ÂUCx1=2, ÂUCx1=5 and ÂUCx1=9, and the corresponding 95% confidence intervals

from both methods.

B.3.2 Simulation Settings for Section 4.2.2

For the simulated clustered ROC data associated with continuous covariate x1, The proposed WCR

direct methods are used as well as traditional indirect regression method. We set the pairing margin
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δ =∞ so that all the pairs can be included in the model

ROCxD,xD̄(u) = Φ{α0 + α1Φ−1(u) + β1xD + β2(xD − xD̄)}. (2.2)

The resulting AUC is given by,

AUCxD,xD̄(u) = Φ−1{β0 + β1xD + β2(xD − xD̄)}. (2.3)

We also generate clustered ROC data with a categorical covariate x1 = 1, 2, 3, 4 and 5. We

create all the pairs within each level and fit the models to estimate the ROC curves and the AUC by

ROCxD,xD̄(u) = Φ{α0 + α1Φ−1(u) + β1xD}, (2.4)

and

AUCxD,xD̄(u) = Φ−1{β0 + β1xD}. (2.5)

The parameter estimator β̂1 and the AUC estimator when x1 = 1, ÂUCx1=1 are obtained.
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Appendix C: R Packages

1. library(MASS): The library is used to generate multivariate normal random variables and

multivariate lognormal random variables. The command, mvrnorm(), is used to generate

multivariate normal random variables in the simulation studies, including the simulation s-

tudies to estimate the AUC for one ROC curve in Section 2.2, the AUC difference for two

ROC curves in Section 3.2 and the regression coefficients and the AUC for covariate adjusted

ROC curves in Section 4.2.

2. library(ggplot): The library is used to generate graphs. The command, ggplot(), is used to

obtain the graphs for simulation results to compare the coverage percentage and confidence

interval length under difference settings for simulation studies. The figures are in Sections

2.2, 3.2 and 4.2.

3. library(lattice): The library is used to generate graphs. The command, histogram(), is used

to show the distribution of the ratings used in our examples. The figures are in Appendix A.

The descriptions of the libraries and functions above are from R-CRAN.
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