
A Digital Media Similarity Measure for Triage of Digital Forensic Evidence

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Myeong Lyel Lim
Master of Science

The Pennsylvania State University, 1992
Bachelor in Economics
Korea Univsersity, 1984

Director: Dr. James H. Jones, Jr., Professor
Department of Information Technology

Fall Semester 2020
George Mason University

Fairfax, VA

Copyright © 2020 by Myeong Lyel Lim
All Rights Reserved

ii

Dedication

First, I dedicate this dissertation to my parents. I would not be the person I am today if
it was not for them. Second, I dedicate this to my wife, Miyoung Lee, for her unfaltering
support and patience while I was avoiding completing this thesis. Third, I dedicate this to
my two sons, Jongoh and Jongyeop. I hope they understand one day why dad spent lots of
his time on the computer at the old age of his life.

iii

Acknowledgments

I would like to thank the following people who made this possible: My advisor at George
Mason University, Dr. Jones, whose insight and knowledge into the subject matter steered
me through this research.

My wife, Miyoung Lee, whose support was essential for me to complete this Doctoral
program.

I would like to thank my son Jongyeop for proofreading this dissertation during its
compilation.

Finally, I would like to thank my co-worker at Fannie Mae, Dr. Andrei Chetcheprov,
who reviewed my paper with good comments.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . x

Abstract . xi

1 Introduction . 1

1.1 Problem statement . 2

1.2 Use cases . 3

1.3 Chapter outline . 3

2 Technical Background . 6

2.1 File hashing . 7

2.2 Sector hashing . 8

2.3 Sector hashing on various file systems . 10

2.4 Similarity measures . 14

2.4.1 Euclidean distance . 14

2.4.2 Manhattan distance . 15

2.4.3 Minkowski distance . 15

2.4.4 Edit distance . 16

2.4.5 Cosine similarity . 17

2.4.6 Jaccard index (JI) . 17

2.5 Entropy . 18

2.6 Bloom filter . 19

2.7 Hashing methods . 22

2.7.1 MD5 . 23

2.7.2 SHA . 23

3 Previous Work . 24

3.1 Forensic feature extraction and cross-drive analysis 24

3.1.1 Pseudo-unique identifier . 24

3.1.2 Feature extractors . 25

3.1.3 Cross-drive analysis (CDA) . 26

3.2 Bulk extractor . 28

v

3.3 Distinct sector hashes for target file detection 30

3.4 Impact of common blocks on similarity . 31

3.5 Contraband file detection . 32

3.6 Djb2 . 32

3.7 Proactive object fingerprinting and storage (PROOFS) 32

3.8 Sector signature analysis . 33

3.9 Hash-based carving . 34

3.10 M57-Patents datasets . 36

3.11 Random sampling and sector hashing . 37

3.12 Fuzzy hashing . 38

3.12.1 Spamsum . 38

3.12.2 Ssdeep . 39

3.12.3 Sdhash . 40

3.12.4 Mrsh-v2 . 40

3.12.5 TLSH . 40

4 Methodology . 42

4.1 Jaccard index in sector hashing . 43

4.1.1 Similarity measure with Jaccard index 43

4.1.2 The impact of a whitelist . 44

4.1.3 Whitelist candidates . 45

4.2 Similarity measure between two drives . 45

4.3 Similarity measure against a cluster of drives 46

4.4 Similarity measure with frequency . 47

4.5 Similarity measure with normalized frequency 49

4.6 E↵ectiveness of JINF . 51

4.7 Conclusion . 54

5 Results and Validation of JIWF and JINF . 55

5.1 Initial validation of the method . 55

5.2 Whitelist sector removal . 56

5.3 Jaccard index with frequency (JIWF) . 56

5.4 Similarity measure between a target drive and a cluster of drives 58

5.5 Jaccard Index with normalized frequency (JINF) 59

5.6 Comparison of JIWF and JINF . 62

6 Jaccard Index with Sampling (JIWS) . 68

6.1 How to create sampled images . 68

vi

6.2 Processing time with sampled images . 68

6.3 Analysis of JINF with sampled images . 69

6.4 Approach to solve the issue of JINF with sampled images 69

6.5 JIWS formula . 70

6.6 JIWS with an example . 70

6.7 Observation of CommonRatio . 74

6.8 Reasoning behind the JIWS formula . 74

6.9 JINF is bounded by CommonRatio . 76

6.10 Further analysis of JIWS . 78

6.11 Result and validation . 78

6.12 Conclusion . 80

7 Parallel Computing Experiments . 88

7.1 ARGO overview . 88

7.2 Simple linux utility for resource management 89

7.3 Performance using ARGO . 90

8 Jaccard Index with Split (JISPLIT) . 91

8.1 Overview of JISPLIT . 91

8.2 Parallel processing environment of JISPLIT 91

8.3 Intuitive heuristics and its analysis . 92

8.4 Solution for intuitive heuristics . 93

8.5 Example of JISPLIT . 96

8.6 Splitting both source and target . 98

8.7 Performance of JISPLIT . 101

8.8 Conclusion . 102

9 Conclusions, Limitations, and Future Work . 103

A Data conversion . 106

B ARGO Slurm batch file for SPLIT batch job . 107

C Slurm batch file input: inputSplit.txt . 110

D Python code for mySplit.py . 112

E Python code for jaccardMain.py . 135

F Python code for splitJaccardMain.py . 150

G Python code for util.py . 164

Bibliography . 171

vii

List of Tables

Table Page

4.1 Jaccard index comparison chart of cluster drives. 46

4.2 Jaccard index comparison chart of target drive against cluster drives. 47

4.3 Jaccard index comparison chart of target drive against imaginary drive. . . 47

4.4 Sector display of cluster and target drive. 48

4.5 Sector frequency display of Imaginary drive and target drives. 48

4.6 Hash value and frequency of source drive. 50

4.7 Hash value and frequency of target drive: target 1. 50

4.8 Intersection⇤ and Union⇤ of two normalized frequency values. 51

4.9 JINF comparison: target 2, target 3 and target 4. 52

4.10 JINF comparison: target 5, target 6 and target 7. 53

4.11 Hash value and frequency of new source drive. 53

4.12 Intersection⇤ and Union⇤ between new source and target 1. 54

5.1 Jaccard indices between snapshots in the same category. 57

5.2 Jaccard indices comparison between snapshots. 58

5.3 Performance comparison between JIWF and JINF. 64

6.1 Layout of Source and Target. 71

6.2 Hash count of Source and Target. 71

6.3 TRGT33 layout and hash count. 72

6.4 JINF(Source, Target) and JINF(Source, TRGT33). 72

6.5 Histogram analysis: low frequency hashes of c12-09. 74

6.6 Two Images to Compare. 77

6.7 Template for JINF(S, T) calculation. 77

6.8 JIWS C12-03 with daily sampled images. 80

8.1 Layout of the split files: T1 and T2. 92

8.2 Hash frequency of T1 and T2. 93

8.3 JINF(Source, T1). 94

8.4 JINF(Source, T2). 94

viii

8.5 Hash frequency and split files of Target. 96

8.6 JINF(Source, Ta). 97

8.7 JINF(Source, Tb). 97

8.8 Final Union* Column. 98

8.9 Hash frequency and split files of Source. 99

8.10 JINF(Sa, Ta). 99

8.11 JINF(Sb, Ta). 99

8.12 JINF(Sa, Tb). 100

8.13 JINF(Sb, Tb). 100

8.14 Final Int* from 4 working ARGO nodes. 100

8.15 Final Union* Column from 4 working ARGO nodes. 101

8.16 JISPLIT performance on ARGO platform. 102

ix

List of Figures

Figure Page

1.1 Flow of the research. 4

2.1 Bloom filter. k = 3, m = 9. 21

4.1 Two hard disks with three common sectors. 43

4.2 Display of whitelist sectors. 44

5.1 Jaccard index frequency of Charlie. 60

5.2 Jaccard index frequency of Jo. 61

5.3 Jaccard index frequency of Pat. 62

5.4 Jaccard index frequency of Terry. 63

5.5 Jaccard index normalized frequency of Charlie. 64

5.6 Jaccard index normalized frequency of Jo. 65

5.7 Jaccard index normalized frequency of Pat. 66

5.8 Jaccard index normalized frequency of Terry. 67

6.1 JIWS and JINF between 7 samples of Charlie 12-03 and daily images of

Charlie. 79

6.2 Enlarged peak view of Figure 6.1. 81

6.3 JIWS between 2 samples of Charlie 11-12 and daily images of Charlie. . . 82

6.4 JIWS between 2 samples of Charlie 11-24 and daily images of Charlie. . . 83

6.5 JIWS between 2 samples of Charlie 11-24 and daily images of Charlie. . . 84

6.6 JIWS between 2 samples of Charlie 12-03 and daily images of Charlie. . . 85

6.7 JIWS between 2 samples of Charlie 12-08 and daily images of Charlie. . . 86

6.8 JIWS between 2 samples of Charlie 12-11 and daily images of Charlie. . . 87

x

Abstract

A DIGITAL MEDIA SIMILARITY MEASURE FOR TRIAGE OF DIGITAL FORENSIC
EVIDENCE

Myeong Lyel Lim, PhD

George Mason University, 2020

Dissertation Director: Dr. James H. Jones, Jr.

As the volume of potential digital evidence increases, digital forensics investigators are

challenged to find the best allocation of their limited resources. While automation will

continue to partially mitigate this problem, the preliminary question of which media should

be examined by human or machine remains largely unsolved.

Prior work has established various methods to assess digital media similarity which

may aid in prioritization decisions. Similarity measures may also be used to establish links

between media, and by extension, links between the individuals or organizations associated

with that media. Existing similarity measures, however, have high computational costs

which can delay identification of digital media warranting immediate attention or render

link establishment across large collections of data impractical.

In this work, I propose, develop, and validate a methodology for assessing digital media

similarity to assist with digital media triage decisions. The application of my work is

predicated on the idea that unexamined media is likely to be relevant and interesting to an

investigator if this unexamined media is similar to other media previously determined to be

interesting and relevant. My methodology builds on prior work using sector hashing and

the Jaccard index similarity measure. I combine these methods in a novel way and

demonstrate the accuracy of my method against a test set of hard disk images with known

ground truth. My method is called Jaccard Index with Normalized Frequency (JINF) and

calculates the similarity measure between two disk images by normalizing the frequency of

the distinct sectors.

I also developed and tested two extensions to improve performance. The first extension

randomly samples sectors from digital media under examination and applies a modified

JINF method. I demonstrate that the JINF disk similarity measure remains useful with

sampling rates as low as 5%. The second extension takes advantage of parallel processing.

The method distributes the computation across multiple processors after partitioning the

digital media, then it combines the results into an overall similarity measure which preserves

the accuracy of the original method on a single processor. Experimental results provided

as much as a 51% reduction in processing time.

My work goes beyond interesting file and file fragment matching; rather, I assess the

overall similarity of digital media to identify systems which might share applications and

user content, and hence be related, even if some common files of interest are encrypted,

deleted, or otherwise not available. In addition to triage decisions, digital media similarity

may be used to infer links and associations between the disparate entities owning or using

the respective digital devices.

Chapter 1: Introduction

Digital forensics analysts, examiners, and investigators process and extract evidence from

digital sources and media, often but not exclusively to support the investigation of a crime.

Digital evidence is both fragile and volatile. It requires the attention of a trained specialist

to ensure that content of evidentiary value can be e↵ectively isolated and extracted in a

forensically sound manner that will bear the scrutiny of a court of law. One of the roles

of the digital forensic analyst is to find supporting evidence by recovering data such as

files, e-mails, and photos from computer hard drives and other data storage and processing

devices such as cell phones, flash drives, the RAM of such devices, and network flows. The

popularity and increasing use of cloud computing has expanded the scope of storage to mul-

tiple geographically dispersed machines, and systems such as game consoles, IoT devices,

and embedded systems are increasing proving useful in digital forensic investigations. As

more digital data is created and digital storage systems grow in size, forensic analysts are

overwhelmed by the sheer volume of data to be analyzed, and backlogs in digital forensic

labs are common. More than 15,000 digital devices and storage media were previewed and

six petabytes of data were processed by the FBI in the year 2017, according to the FBI Re-

gional Computer Forensics Laboratory report, and several local o�ces of the FBI Regional

Computer Forensics Laboratories set reducing backlog as an explicit goal [1]. In 2018, the

Digital Forensics unit of the DHS Cyber Crime Center alone processed seven petabytes of

data 1. Even with automated tools like EnCase [2], FTK, and Autopsy, additional human

review time is required before the drive is fully analyzed. With limited time, forensic ana-

lysts must pick and choose which digital media to review among the many available, making

media triage a necessity. While triage tools exist for explicit tasks like finding substrings of

1Private communication with a researcher doing work with the Cyber Crime Center.

1

interest or specific files, I propose a more general purpose triage method based on a similar-

ity measure between arbitrary size content and a labeled collection of digital media images.

For example, a hard disk image which shows high similarity against a cluster of previously

collected and labeled disk images of interest can be prioritized for further analysis, and this

similarity may be used to infer relationships between entities as well as serving as the basis

for examination of additional media.

On top of introducing a novel method for digital media similarity measurement, I de-

veloped methods to improve the performance of the basic algorithm by random sampling

and splitting drives for parallel computation.

1.1 Problem statement

Digital forensic examiners seek to prioritize data sources to be analyzed given limited time,

human resources, and computing resources. Manual and forensic-tool-based analyses may

take many hours to complete for each data source. Prior work has established various

computational methods to assess digital media similarity which may aid in prioritization

decisions, e.g., a hard drive similar to one used by a known criminal or terrorist organization

may be more likely to contain probative data or actionable intelligence.

Existing forensic tools and human analysis may take many hours to complete for each

data source. Analysts often do not have information upon which to make a decision about

which media to work on first, something that can only be determined by spending valuable

time and resources on each candidate source. The lack of e�cient tools and lack of knowledge

about potential evidence on a device causes ine�ciencies and can lead to critical deadlines

being missed or cause delays in the dissemination of actionable intelligence.

Forensic analysis work is often time-sensitive and investigators have limited time and

resources, so early triage and prioritization of digital evidence is necessary.

I propose a digital media similarity measure based on sector hashing and a variant of

the Jaccard index to help address this problem. This measure will improve the e�ciency

and accuracy of forensic analysts by quickly and accurately measuring the similarity of

2

unexamined digital media to other images which are known to be interesting and relevant.

A similar image is more likely to contain evidence of interest and may be used to discover

previously unknown links between entities.

1.2 Use cases

The two use cases I consider are:

1. I’ve got a bunch of digital media. Are any of these items similar to media I’ve seen before and

which of these do I care about?

2. I’ve got a bunch of digital media and I know where it came from. Are any of these items

similar to each other? Can such similarity tell me anything about connections between people

or devices?

Breitinger et al. [3] states that resemblance (R) and containment (C) are two common

types of similarity queries and a similarity identification algorithm should be able to handle

one of the following four cases: Object similarity detection (R), Cross correlation (R),

Embedded object detection (C), and Fragment detection (C). My use cases are similarity

detection and cross correlation between hard disk images. My method does not require two

digital evidence sources to be of the same size. I consider use cases from a forensics shop,

such as one that might be used by law enforcement or national security organizations. In

either case, the analysts may or may not know the source of each evidentiary item and its

relationship to a current investigation.

1.3 Chapter outline

The following chapters discuss several of the design issues for implementing sector hashes

for forensic triage analysis. Chapter 2 provides technical background such as Bloom filters,

hashing, file formats, and similarity measures. Chapter 3 discusses prior work about sim-

ilarity measure algorithms. Chapter 4 introduces Jaccard index with frequency (JIWF)

and Jaccard index with normalized frequency (JINF) methods. JIWF is based on Jaccard

3

Figure 1.1: Flow of the research.

index and sector hashing. JINF is designed to resolve the issue of JIWF coming from the

size di↵erence between two disk images. JINF is the primary contribution of my research,

and the two extensions are based on this.

Chapter 5 discusses the validation of both JIWF and JINF using a set of disk images

with known similarity. Comparison between these two methods is also discussed in this

chapter. Chapter 6 presents my extension called the Jaccard Index with Sample (JIWS).

It is modified from JINF, which changes linearly with sample rate and also depends on

the number of common hashes between two images. Chapter 7 introduces a parallel com-

puting environment (ARGO) at George Mason University. The ARGO platform was used

to implement the parallel computation method and experiments. Chapter 8 presents my

other extension called the Jaccard Index with Split (JISPLIT) which takes advantage of

the parallel processing to reduce the overall processing time. Input media is partitioned,

distributed to each processing unit of the parallel platform, and the partial results are

then combined in one processing node. Chapter 9 concludes the dissertation, discusses the

limitations of current implementations, and presents future work.

4

As shown in Figure 1.1, JINF, which is improved from JIWF, is the fundamental

method in my dissertation. The extensions JIWS and JISPLIT are independently devel-

oped but based on JINF.

The major contributions of this thesis are as follows: (1) A novel sector hash based sim-

ilarity measure between two disk images (JINF). (2) Two extensions of JINF to improve

performance: sampling (JIWS) and splitting (JISPLIT).

In conclusion, these methods will provide forensic analysts a fast media triage and

prioritization capability, as well as a means to identify previously unknown associations

between digital media and the entities using the devices containing that media.

5

Chapter 2: Technical Background

This section introduces technical background information about cryptographic hash func-

tions, file hashing, and sector hashing. In the forensic area, cryptographic hash functions

and sector hashes are used to identify evidence in traditional digital evidence processing. In

this section, both methods are explained to help with understanding the remaining sections.

The advantages and limitations of these methods are also discussed.

I also discuss well-known similarity measures, most of which measure similarity as a

distance as well as a Jaccard index.

A cryptographic hash function is a hash function that tries to guarantee a number

of security properties such that it is hard to find collisions or pre-images, and that the

output appears random. It computes a fixed size output for an arbitrary length input,

where changes in the input have unpredictable and equally significant e↵ects on the output

regardless of the scope or nature of the input change. Sector hashing is the process of

computing hashes for data stored in digital media sectors, and File hashing is the process

of computing hashes for data stored in digital media files. One advantage of sector hashing

vs. file hashing is that sector hashing does not require file system interpretation, nor does

it require the entire file to be present for the presence of common data to be inferred. In

general, finding more content from a file increases the likelihood that the full file was, in

fact, previously present and facilitates analysis, but recovering whole files is not necessary

to conduct triage and useful analysis. In my work, matched sectors may be the result of

deleted and partially overwritten data as well as other activity (temporary files, swap space

files, etc.).

6

2.1 File hashing

The hard drive may be the first thing that any forensic analyst will investigate. The

traditional hard drive forensic tool reads the entire contents of a hard drive and tries to

locate the data that would be useful to the investigator. These tools usually use the file

system to go through the directory listing and identify files. This method may take a

long time, especially when there are stacks of drives to sort through. Forensic analysts are

interested in finding evidence from seized hard disk images. For example, a security o�cer in

a company might examine the computer of a suspicious employee for unauthorized access to

company classified documents. A law enforcement agency (LEA) is any government agency

responsible for the enforcement of the laws. O�cers in these agencies might search a home

computer of a suspect for illegal child sexual abuse images. Network analysts might try to

reconstruct the network streams to identify that any malware is downloaded. As in these

examples and many other situations , the evidence is commonly a file that is a prohibited

image, or video files, and the contents of these files are known. These files are called target

files and forensic analysts try to identify them to prove their theory. A digital signature

is a mathematical technique used to validate the authenticity and integrity of a message,

software or digital document, which is often referred to as a file. Additionally, forensic

analysts use cryptographic hash functions to create digital signatures of target files. These

hash values are used to identify the file of known contents to which same hash functions are

applied and resulted hash values are stored to be matched. If the hash value of the target

file and the hash value of the file of interest match, this strongly indicates that the file in

question resides on that drive. Since it is highly unlikely that a cryptographic hash function

will generate the same hash value for two distinct files, known as strong collision resistance,

forensic analysts can have confidence in their claim. Finding key data that can be used

as evidence in criminal court cases is not an easy task for forensic analysts. They identify

files by computing hash values using MD5 or SHA1 hash algorithm and then look for a

database with known hash values. Most popular forensic packages have built-in support for

file identification by using hash values. The National Software Reference Library (NSRL)

7

Reference Data Set (RDS) is one of the well known databases.

Limitations of file hashing

Files hashes have inherent limitations in identifying the known contents. By changing

a single bit of a file, the computed hash value of a modified file can be totally di↵erent.

Malicious hackers, malware producers, pornographers and other authors of files whose con-

tents they do not want to be detected can change a comma to a period, add one space or

append few random bytes to evade detection. If the file is damaged or some section of the

file is deleted or some erroneous bytes are inserted by a network error, the file hash method

is not useful.

2.2 Sector hashing

An alternative method to file hashing is sector hashing. This method looks at the hash

values of chunks of files instead of the entire file as a means to identify target files from

digital storage. Garfinkel et al. [4] used blocks, which are broken up pieces of file into

4096 bytes, to identify the target files. 4096-byte sectors are hashed, and the hash value is

compared to block hash values of the target files. They listed the situations that need this

approach:

1. File systems and files may not be recoverable due to damage, media failure, partial

overwriting, or the use of an unknown file system.

2. There may be insu�cient time to read the entire file system, or a need to process data

in parallel.

3. File contents may be encrypted.

4. The tree structure of file systems makes it hard to parallelize many types of forensic

operations.

Sector hash does not depend on the underlying file structure. To identify the target

files in a large disk drives, cryptographic hashes on sectors of the disk can be used instead

8

of whole files. Most of the existing file systems align the starting point of the file with the

beginning of a disk sector. Thus, the first sector of a large file is stored in one disk sector and

the second sector is stored on anther disk sector, which is typically the adjacent disk sector,

and so on. Hence, it does not have to seek back and forth to follow the file system pointers.

It can read sectors sequentially o↵ the hard disk by reducing seek time. Sector hashing is

prone to produce high false positives compared to traditional file hashing because of the

common data block that can be present in many files. Parallelization can be achieved by

splitting the hard disk image into several chunks and processing each chunk simultaneously

with di↵erent CPUs. As mentioned before, the entire file does not have to be present to be

analyzed and to be matched on a hard disk drive. For example, when large video files are

removed and a few sectors are reused by the operating system for other purposes, most of

the video is still survived on the hard drive. A file recovery tool is applied and recovers as

much as it can. If we use the file hashes, the recovered segments of the video will not appear

in a database of file hashes. But if the sector hashing method is used for this recovered

video, some of the hash values of the block might match the block hash values of the target

video file. For in-depth analysis, looking for target content at the file-level is necessary and

useful but it is not ideal for e↵ective triage. It takes time for tools to parse the file system,

and it is not e↵ective if the program carves the files based on headers and footers. The

program has to know the information of the target media such as the operation system

versions etc. In general, file carving tools yield false positives also. Sector hashing can be

combined with random sampling to speed up the decision process of identifying whether or

not a target file is on a device. This random sampling uses the same methodology of sector

hashing but instead of reading all the data, only small portions of data is randomly read

and it gives results with high probability.

Limitations of sector hashing

For sector hashing method to be successful, the file has to be sector aligned on the hard

disk. Block hashes are generated from the beginning of a file. If the file is not sector aligned,

the sectors in a database cannot match the file blocks on the target media. As a solution,

9

we may pre-compute multiple hashes for each sector to prepare for the non-sector aligned

blocks. However, this method is not practical because we need lots of storage to save the

extra hashes. Similarity digest by Roussev [5] is suggested as another alternative which

does not use sector hashing at all. This method takes lots of processing time and needs

space. Most file systems are sector aligned. Examples include FAT, NTFS, Ext4, and ZFS.

The future file system for Linux, B-tree File System, also uses sectors. However, if a file in

a B-tree File System is smaller than 4 KiB, then it is packed in the leaf nodes of the B-tree

file system structure and it is not sector aligned. In general, though we cannot identify

small files that are less than sector size, most modern files these days are larger than 512 B

and 4 KiB, which is becoming the standard sector size.

Sector hashing’s real limitation is that it cannot do anything about encrypted file sys-

tems. Bitlocker for NTFS and ReFS and FileVault2 for HFS+ encrypt data when it is

written to the storage device and decrypt when it is read back. Since a di↵erent key is used

when data is encrypted, the resulted encrypted data will be di↵erent on di↵erent storage

mediums every time.

2.3 Sector hashing on various file systems

To take advantage of sector hashing, which does not require knowing the underlying file

system, the alignment of file data has to be on sector boundaries. Young and Foster [6]

explained the various file systems from the point of sector hashing. They distinguished the

terms: sector and block. Sector refers to a certain amount of data extracted from disk

image. Block means a chunk of data extracted from file or file systems. In this thesis, this

distinction is assumed.

FAT (File Allocation Table)

FAT was introduced by Microsoft with DOS. We can see this file system in Secure Digital

(SD) cards, thumb drives, floppy disks and external disks. It is the standard file system for

digital cameras also. This file system has improved as the capability of disk drives extended.

10

Now there are three major FAT variants: FAT12, FAT16 and FAT32. All three variants

are block-aligned data. FAT is supported by windows NT and uses the file allocation table

(FAT), which is a table that is stored at the top of the volume. Two copies of FAT are

maintained to protect the volume. The boot files can be located because the root directory

and the FAT tables are stored in a specific location. In 2006, exFAT (extended FAT) was

developed by Microsoft to resolve the FAT’s limitation of file size and performance. It

can support file sizes bigger than 4 GB which are allowed by FAT32, though the security

features of NTFS are lessened.

NTFS (New Technology File System)

This file system is the default one for the modern Windows system. The system drive is

formatted with NTFS when you install Windows. It was shown in the consumer version of

Windows XP. It has several features that FAT32 or exFAT do not have: file permissions for

security, encryption, disk quota limits, shadow copies for backups, hard links, and others.

NTFS was introduced with the following goals on mind:

• Reliability

• A platform for added functionality

• Support POSIX requirements

• Removal of the limitations of the FAT and HPFS file systems

The MFT (Master File Table) is used in NTFS and every file and directory has an entry

in the MFT. For large files, block-align is done in this file system. For files smaller than 1024

bytes, block-align cannot be done since whole contents of a small file can be stored in the

MFT. When a 4-KB pysical sector was introduced, the operating systems before Windows

8 and and Server 2012 could not support NTFS. An emulation mode was adopted, but it

can make file system clusters to go beyond the sector boundaries.

11

Ext4

Most Linux systems and later versions of Android adopt this file system. Ext4 uses extents

and Ext3 employs a block pointer system. Both of them are block-aligned. The file is

always aligned with the underlying media.

ZFS (Z file system)

Traditionally file systems were built over a single physical device. A volume manager was

designed to refer multiple devices, but this added some complexity and limited certain file

system improvement. In ZFS, the volume manager was removed. They use a storage pool

to place devices. File systems can be created on top of this storage pool and it works as an

arbitrary data storage so that they do not depend on individual devices. Any file systems

in the pool can share the storage space. File systems can grow automatically within the

pool and any file system in the pool can use additional space immediately.

In ZFS, blocks are aligned with the storage media. Sector hashing can be used without

any issue.

BTRFS (B-tree file system)

BTRFS is an open source file system which was introduced in 2007. It is adopted in some

versions of Linux as a default file system. An extent is a contiguous storage area saved for

a file in a file system. Since BRTFS is based on copy-on-write, snapshots and clones are

implemented e�ciently. Rodeh et al. [7] listed its main features:

• CRCs maintained for all metadata and data

• E�cient writeable snapshots, clones as first class citizens

• Multi-device support

• Online resize and defragmentation

• Compression

12

• E�cient storage for small files

• SSD optimizations and TRIM support

BTRFS uses extents of blocks to create large files. For small files, they can be packed

into the leaf block of the BTRFS. Thus for files smaller than 4KB, it might be sector-aligned.

AFF4 (Advanced Forensic Framework 4)

Cohen et al. [8] developed AFF4 to address limitation of the traditional forensic file formats.

A key feature of AFF4 is address space virtualization. A virtual bitstream is specified by

a Map stream. Maps can refer to arbitrary sources of bytes. Map uses the globally unique

referencing scheme which refers to objects in the AFF4 system.

Cohen et al. [9] introduced hash-based disk imaging using AFF4. AFF4 can divide the

disk into several byte ranges and save each run separately in an AFF4 volume. The image

map is created and is used to reconstitute the disk image at a later stage. An AFF4 volume

contains several number of byte streams with a URL of the form a↵4://encoded hash. There

can be one or more AFF4 volumes and a single AFF4 map object can represent the hard

disk image.

Current implementations of this dissertation do not have an interface to incorporate the

AFF4, which will be a future research goal.

Encrypted File systems

Some applications encrypt a file and move it to a di↵erent system. In this case, the encrypted

section of the data remains the same on a transferred system. As long as the encrypted data

is not encrypted again, the sector hashing method can be used to verify the evidence of the

existence of the encrypted file. However, the encrypted file system behaves di↵erently. In

most encrypted file systems, each drive is encrypted with a di↵erent key. This means that

identical data can be hashed into di↵erent hash values. This problem may be avoided by

reading the data after the decryption key is loaded.

13

2.4 Similarity measures

A similarity measure is a quantified characterization of how alike two data objects are. This

measure is sometimes represented by a distance. If this distance is small, there is a high

degree of similarity. Conversely, a large distance means there is a low degree of similarity.

Applying similarity measures is subjective and highly dependent on the domain and

application. For example, two fruits are similar or not because of color, size, or taste.

Care should be taken when calculating distance across dimensions/features that are unre-

lated. The relative values of each element must be normalized, or one feature could end

up dominating the distance calculation. Similarity is usually measured in the range 0 to 1

[0,1].

Two main considerations about similarity:

Similarity = 1 ifX = Y

Similarity = 0 ifX 6= Y

Where X and Y are two objects.

2.4.1 Euclidean distance

Euclidean distance is the most common distance-based similarity measure. In most cases

when people talk about distance, they are referring to Euclidean distance. When data is

dense or continuous, this is the best proximity measure.

The Euclidean distance between two points is the length of the path connecting them.

The Pythagorean theorem gives this distance between two points.

In general, for an n-dimensional space, the distance between p and q is :

Euclidean distance (p,q) =

vuut
NX

i=1

(xi � yi)2 (2.1)

14

where p = (x1, x2, . . . , xn) and q = (y1, y2, . . . , yn)

2.4.2 Manhattan distance

Manhattan distance is a metric in which the distance between two points is the sum of the

absolute di↵erences of their Cartesian coordinates. A simple way of saying this is the total

sum of the di↵erence between the x-coordinates and y-coordinates. Manhattan Distance

is used when we measure the distance between two data points in a grid-like path. To

find the Manhattan distance between A and B, we have to sum up the absolute x-axis and

y–axis variation. It means we have to find how these two points, A and B, are varying in

X-axis and Y-axis. A more mathematical way of saying Manhattan distance is that it is

the distance between two points measured along the axes at right angles.

In a plane with p at (x1, y1) and q at (x2, y2):

Manhattan distance (p,q) = |x1� x2|+ |y1� y2| (2.2)

This Manhattan distance metric is also known as Manhattan length, rectilinear distance,

L1 distance or L1 norm, Minkowski’s L1 distance, taxi-cab metric, or city block distance.

Manhattan distance can be generalized like Euclidean distance.

2.4.3 Minkowski distance

The Minkowski distance is a generalized metric form of Euclidean distance and Manhattan

distance.

The Minkowski distance of order � (where � is an integer) between two points

p = (x1, x2, . . . , xn) 2 Rn and q = (y1, y2, . . . , yn) 2 Rn

is defined as:

D (X,Y) =

nX

i=1

|xi � yi|�
! 1

�

(2.3)

15

Minkowski distance is typically used with � being 1 or 2, which corresponds to the

Manhattan distance (2.2) and the Euclidean distance (2.1), respectively. In the limiting

case of � reaching infinity, we obtain the Chebyshev distance:

lim
�!1

nX

i=1

|xi � yi|�
! 1

�

=
n

max
i=1

|xi � yi|. (2.4)

Synonyms of Minkowski: Di↵erent names for the Minkowski distance or Minkowski

metric arise from the order:

� = 1 is the Manhattan distance. Synonyms are L1-Norm, Taxicab or City-Block dis-

tance. For two vectors of ranked ordinal variables, the Manhattan distance is sometimes

called Foot-ruler distance.

� = 2 is the Euclidean distance. Synonyms are L2-Norm or Ruler distance. For two

vectors of ranked ordinal variables, the Euclidean distance is sometimes called Spear-man

distance.

� = 1 is the Chebyshev distance. Synonyms are Lmax-Norm or Chessboard distance.

2.4.4 Edit distance

Edit distance is a way of measuring the similarity between two strings. There are several

di↵erent definitions of edit distance. Levenshtein distance is used interchangeably with Edit

distance since it is the most common way of measuring edit distance [10]. It measures the

minimal number of operation to match two string by using three operations:

• insertions

• deletions

• substitutions

insertions, deletions or substitutions

The search problem is called “string matching with k di↵erences” in the literature.

16

Hamming distance is used to compare two binary strings. It allows substitution only

and applies to strings of the same length. It is often used in the data communication field

for error detection or error correction.

I looked at edit distance to devise an algorithm for my research: disk similarity. The

contents of each disk might be considered a long string. Edit distance can be applied to two

long strings. This approach fails in several aspects. When two disks to be compared do not

have the same size, edit distance is not meaningful. If two disks have the same contents, but

the location of the contents, (for example, sectors), are di↵erent, edit distance will return

very low similarity values. However, my algorithm will return a higher similarity value since

it does not depend on sector location.

2.4.5 Cosine similarity

The cosine similarity metric finds the normalized dot product of two attributes. By deter-

mining the cosine similarity, we e↵ectively try to find the cosine of the angle between the

two objects. The cosine of 0� is 1, and it is less than 1 for any other angle.

It is thus a judgement of orientation and not magnitude: two vectors with the same

orientation have a cosine similarity of 1, two vectors at 90� have a similarity of 0, and two

vectors diametrically opposed have a similarity of -1, independent of their magnitude.

Cosine similarity is particularly used in positive space, where the outcome is neatly

bounded in [0,1]. One of the reasons for the popularity of cosine similarity is that it is very

e�cient to evaluate, especially for sparse vectors.

2.4.6 Jaccard index (JI)

Jaccard index (JI), also known as the Jaccard similarity coe�cient, is a simple and

widely used similarity measure [11] applied to arbitrary sets of data. It measures similarity

between finite sample sets and is computed as follows:

JI(A,B) =
|A \B|
|A [B| =

|A \B|
|A|+ |B|� |A \B|

17

0 JI(A,B) 1

JI is defined as the magnitude of the intersection divided by the magnitude of the union

of two sets, A and B. In my work, the sets A and B consist of sector hashes from digital

media of potential interest.

Jaccard index can also be a measurement of asymmetric information on binary variables.

JIij =
p

p+ q + r

where p is the number of variables that are positive for both objects.

q is the number of variables that are positive for the ith object.

r is the number of variables that are positive for the jth object.

Weighted Jaccard index

If x =(x1, x2, . . . , xn) and y =(y1, y2, . . . , yn) are two vectors with all real xi, yi � 0,

then their weighted Jaccard index (JIw) is defined as

JIw =

P
n

i=1Min(xi, yi)P
n

i=1Max(xi, yi)

It is also known as Ruzicka1similarity. In my research, I adopted the weighted Jaccard

index for the calculation of JINF.

2.5 Entropy

Entropy or information entropy is the expected value or quantity in information theory. It

can be used to describe the average level of information for any random variable. Claude

Shannon introduced this concept of information entropy in his paper in 1948 [13].

Given a random variable X, the entropy H(X) is as follows:

1This Ruzicka work [12] appears to be relevant because several research papers cite this, but I was unable
to locate a copy of the original paper to confirm.

18

H(X) = �
NX

i

PX(xi) logb PX(xi)

where N is number of di↵erent outcomes and PX(xi) is the probability that outcome xi can

happen.

Data communication has three elements: data source, channel for communication and

a receiver. In his theory, the main issue of the communication is that the receiver has to

identify data that is based on the signal from the source through the channel. The entropy

can be regarded as an absolute mathematical limit of the lossless compression of data from

the data source on a noiseless channel. Entropy can be used as a measure of the relative

randomness of a data or the information density.

Entropy is loosely defined as the relative randomness of a given data unit. It can be

used as a measure of compression state of a data unit. ASCII text files and Bitmap Image

files can be compressed more than encrypted data. Thus, ASCII text has a lower entropy

value than encrypted data.

Hall and Davis [14] presented a method where the entropy and compressibility of file

fragments are used for identifying file type by using the sliding window technique.

2.6 Bloom filter

A Bloom filter is a compact data structure that can answer a membership query with

memory-e�ciency and speed. It is a probabilistic representation of a set to support the

query: is this element in a set?. It can tell if the element definitely is not in the set, and it

can tell if the element is possibly in the set.

A Bloom filter is implemented with a Bit Vector of size m, which is an array of bits.

Initially, all bits are set to 0. For the membership query, k di↵erent hash functions are

used. Each of the k di↵erent hash functions map or hash the element to one of the array

bits. These hash functions are expected to assign the elements to the bit vector with the

19

uniform random distribution. The number of hash functions are related to the error ratio

and is typically a small constant. The size of the bit vector depends on the number of hash

functions, k, and the size of the set. Figure 2.1 shows a Bloom filter with 3 hash functions

and bit array of size 9.

When an element is added, each of the k hash functions is evaluated and finds the

position in the bit array. The computed position in the bit array is set to 1. It is also

possible that two or more hash functions point to the same position in the bit array. To

insert a new element, X, in a Bloom filter, we calculate h1(X), h2(X) and h3(X), which will

return 2nd, 4th and 5th position respectively. These bits are set to 1 as shown in Figure

2.1. For the membership test of an element, the process is the same as the addition process

except it does not set the bit to 1. Instead, it checks the calculated position to see if the

bit in that position is set to 1 or not. If any of the bits that the hash functions calculated

equal 0, then the queried element is definitely not in the set. If all of the bits checked are

1, then the element is probably in the set. It can have a false positive result.

It is not possible to remove an element from a Bloom filter because we can not tell if a

bit is set by more than one element. For example, in Figure 2.1, to remove X from a Bloom

filter, we cannot reset the second bit from 1 to 0 since it was set by X and Z as well.

Though a Bloom filter has a problem of false positive results, it has a space advantage

compared to other data structures, such as binary search trees, hash tables, and linked lists.

Most of them need space to store the data items, while a Bloom filter does not store the

data.

A Bloom filter is used in various settings such as Web cache sharing [15], a compact

representation of a di↵erential file [16, 17], and Free text searching [18] where the set of

words in a text is represented by a Bloom filter.

20

Figure 2.1: Bloom filter. k = 3, m = 9.

21

2.7 Hashing methods

A hash value h is generated by a function H of the form

h = H(M)

where M is a variable-length message and H(M) is the fixed-length hash value. The purpose

of a hash function [19] is to produce a “fingerprint” of a file, message, or other block of

data. To be useful for message authentication, a hash function H must have the following

properties:

1. H(x) can be applied to a block of data of any size.

2. H(x) produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x, making both hardware and software

implementations practical.

4. For any given value h, it is computationally infeasible to find x such that H(x) = h.

This is sometimes referred to in the literature as the one-way property.

5. For any given block x, it is computationally infeasible to find y 6= x such that H(y) =

H(x). This is sometimes referred to as weak collision resistance.

6. It is computationally infeasible to find any pair (x, y) such that H(x) = H(y). This

is sometimes referred to as strong collision resistance.

There are several hashing methods such as MD5, SHA-1, CRC32 and CRC64.

Dandass et al. [20] shows their research results from the analysis of various hashing

methods such as MD5, SHA1, CRC32 and CRC64 by extracting over 500 million sectors

from a large number of files.

In my research, I use MD5 among many hashing methods for e�ciency. Though MD5

does not have the property of collision resistance, I do not have to worry about this known

weaknesses for the implementation of my algorithm.

22

I introduce MD5 and SHA-1 in this section.

2.7.1 MD5

The MD5 hashing algorithm was introduced by Rivest in 1992 for digital signature appli-

cations [21]. MD5 works with 512-bit blocks and each block is broken down into 16 words

which is 32 bits each. The output of MD5 is a 128 bit (16-byte) hash. To make sure that

the input can be divided by 512, padding the input is applied. It was originally intended

to be used in authentication of digital signatures. However, it is no longer classified as a

reliable method for cryptographic checksum. Though there are proven attacks to MD5, it is

still an e↵ective hashing method for my purposes since it is fast and attacks are not relevant

for my use cases.

2.7.2 SHA

SHA-1 was introduced in 1995 and was updated as FIPS PUB 180-2 [22] in 2002. The

output of SHA-1 is a 160-bit (20-byte) hash. Like the MD5 algorithm, SHA-1 also adopts

the padding method to input data in order to make sure that input data is divisible by 512.

Some weaknesses of this algorithm have also been reported, but SHA-1 remains suitable for

our purposes for the same reasons that MD5 is. SHA-2 was subsequently developed and

released in 2001 to address limitations and attacks against SHA-1, and my methods could

easily be adapted to use SHA-2 or any future hashing algorithm.

23

Chapter 3: Previous Work

This chapter focuses on closely related similarity measure work. Some of them inspired my

research method and others provided valuable guidance for future research.

3.1 Forensic feature extraction and cross-drive analysis

Garfinkel [23] identified an issue with typical forensic analysis. The problem was that the

hard disk image did not correlate to other images. They listed three problems: (1) im-

proper prioritization, (2) lost opportunities for data correlation, and (3) improper emphasis

on document recovery. They tried to address these problems by introducing Forensic Fea-

ture Extraction (FFE) and Cross-Drive Analysis (CDA). Various lexigraphic techniques are

applied for extracting information from hundreds of hard disk images.

3.1.1 Pseudo-unique identifier

Many forensic tools and algorithms use string search as their basis. These strings can be

user-specified regular expressions that match features such as email addresses, telephone

numbers, social security numbers, credit card numbers, network IP addresses, and other

kinds of information that might be pseudo-unique identifiers [4, 24–26]. “A pseudo-unique

identifier is an identifier that has su�cient entropy such that within a given corpus it is

highly unlikely that the identifier will be repeated by chance [23].” Email Message-ID is a

typical example of pseudo-unique identifier. Having the same Message-ID on two di↵erent

machines strongly implies that the identifier is transferred from one machine to another

machine. They have found that the following properties exist in a good pseudo-unique

identifier.

1. They are long enough so that collisions are unlikely to occur by chance.

24

2. They can be recognized using a regular expression and do not require parsing or

semantic analysis.

3. They do not change over time.

4. They can be correlated with specific documents, people or organizations.

Since all identifiers in a particular class of identifiers do not have to be pseudo-unique,

any forensic tool which utilizes pseudo-unique identifiers needs to know how to distinguish

between ubiquitous identifiers and truly pseudo-unique identifiers.

3.1.2 Feature extractors

They have built a program called feature extractors which can scan a hard disk image,

extract pseudo-unique features and store the output in a file. This program can extract the

following features:

1. An email address.

2. An email Message-ID.

3. An email Subject.

4. A Date from which data and time stamps can be extracted in a variety of forms.

5. A cookie which distinguishes from Set-Cookie:header in web page cache files.

6. A US social security number.

7. A Credit card number.

Feature extractors run over the extracted string files and write their results to feature files.

These extracted features are then applied to a multi-drive corpus to identify associations

between di↵erent drives. They used those features from feature extractors for disk image

attribution and also built a tool which scans disk images to report the potential information

that should have been destroyed under the Fair and Accurate Credit Transactions Act. For

25

rapid ownership determination, they created a histogram of the email addresses on the disk

images which are obtained from feature extractors. The most frequent email address on

that drive is likely the address of the owner of that machine.

3.1.3 Cross-drive analysis (CDA)

Cross-drive analysis is the term that they have coined to describe their method used in

forensic analysis for a data set that spans multiple hard drives. Their theory behind CDA

is that data acquired from multiple hard disks can improve the analysis of a drive in both

situations: multiple drives are related to a given drive and they are not related. They created

a stop list for features that can be ignored in forensic analysis because they are ubiquitous.

They can prioritize the drives by the number of extracted features and this process is named

hot drive identification. For the second order CDA, the CDA developers raise a di↵erent

question: Which drives in the corpus have the largest number of features in common? To

answer this question, they implemented a program called Multi Drive Correlator (MDC).

The MDC is a function whose input is a set of drive images with a feature to be correlated,

and whose output is a list of (feature, drive-list) tuples. This program reads multiple feature

files and generates a report. This report shows the number of drives on which each feature

was identified, the total number of times that feature was identified on all drives, and a

list of drives on which that feature occurs. Once the correlation list is generated, a report

is generated to tell which drives are most highly correlated. They used three weighting

functions for the purpose of scoring the correlation between each pair of drives.

Let:

D = number of drives

F = number of extracted features

d0...dD = drives in corpus

f0...FF = Extracted feature

26

FP (fn, dn) =

8
><

>:

0 fn not present on dn

1 fn present on dn

S1 is to add up the numbers of features that two drivers have in common:

S1(d1, d2) =
FX

i=0

FP (fn, d1)FP (fn, d2)

S2 is to discount features by the number of drives on which they appear, which makes

correlations resulting from pseudo-unique features more important than correlations based

on ubiquitous features:

DC(f) =
DX

i=0

FP (f, dn) = # of drives with feature f

S2(d1, d2) =
FX

i=0

FP (fn, d1)FP (fn, d2)

DC(fn)

S3 accounts for the case that rare features that are present in high concentrates on drive

d1 and/or d2 need to increase the weight:

FC(f, d) = count of feature f on drive d

S3(d1, d2) =
FX

i=0

FC(fn, d1)FC(fn, d2)

DC(fn)

They applied an MDC using the social security number and also credit card number ex-

tracted. By using this method they were able to find their own clerical mistake with the help

of metadata that they recorded. They pointed out that a more accurate scoring method

27

is needed between drive pairs and to cluster drives. They also noted that better feature

extractors are also necessary.

3.2 Bulk extractor

Beverly et al. [27] extended this work using Ethernet MAC (Media Access Control) ad-

dresses extracted from validated IP packets. A MAC address is a hardware identification

number that identifies each device uniquely on a network. Ethernet Media Access Con-

trol(MAC) addresses can be important in forensic analysis. Every network card such as an

Ethernet card or Wi-Fi card is assigned with this unique number and cannot be changed.

Millions of networkable devices exist and each device requires a unique MAC address. Since

there must be a vast range of possible addresses, MAC addresses consist of six two-digit

hexadecimal numbers which are separated by colons. For example, an Ethernet card may

have a MAC address of 00:0e:83:b2:c0:3e. The first three octets of MAC are assigned to

specific manufacturers and can be used to derive some information about the device which

uses this specific MAC address. War driving, also called access point mapping, is the act

of exploiting and locating connections to wireless local area networks while driving around

buildings in a city or elsewhere. For war driving, you need a computer, a vehicle, a wireless

Ethernet card which is set to work in promiscuous mode, and an antenna which can be

mounted on the vehicle, maybe on top of the vehicle or inside the vehicle. A wireless LAN

may have a range which goes beyond a building and a user who is outside of that build-

ing may be able to intrude into the network to get a free Internet connection. The MAC

addresses of wireless routers can be correlated with the database of war driving. The fact

that a device has been associated with a physical network can be used to derive information

about membership in an organization or a physical location. They expanded the scope of

network forensics to encompass the findings of long terminated network data on fixed media

and in memory. They created the ground truth dataset for verifying their network carver.

For collecting ground truth data, all data on a test machine was securely erased and a virgin

copy of the operating system was installed. They transferred the four files of various sizes

28

from three di↵erent systems by using HTTP or SCP. All the packets were captured when

they enter or leave the system by using a promiscuous recorder. This ground truth dataset

was used to develop their carving strategy. For their network carver, this dataset and a

method to generalize discriminatory patterns were needed.

To achieve better heuristics, they wrote software that scans for the byte patterns of the

known IP addresses and calculates the frequency of n-gram byte patterns which exist before

and after the addresses at di↵erent o↵sets within a specified window. Hibernation files were

processed with this new carver, which uses these signatures and all the IP address that were

found were tabulated. On the basis of the signature analysis, a new software package was

created for bulk extractor, which is an open source tool for forensics. The following data

structures were carved with this tool:

• IP Packets

• Socket Structures

• Windows

• Ethernet

They also implemented various technique of validating IP addresses to reduce the false

positive rate.

1. Checksum: A checksum value over the IP header in an IP packet is provided as a

means of self-validation. They examined that a correct checksum exists for all IP

packets that were discovered.

2. Filtering: Some IP addresses are reserved, invalid, or not likely to be exist. They

found bogus IP address by using this filtering method.

3. Frequency analysis: A histogram were created with the IP address that were discov-

ered during the process of carving data structures. More frequent IP addresses are

likely to be the outcome of actual system activity.

29

4. Correlation between modalities: Correlation using various technologies can give con-

fidence in inferring valuable information. For example, IP addresses from two data

structures hold a greater likelihood of coming from prior tra�c than IP addresses

from a single data structure.

They did a CDA with MAC addresses using the method introduced in [23]. They treated

both the MAC addresses and disk images as nodes and an address on a hard disk image

as a link in a graph. From the partitioned graph, they were able to create distinct clusters

from the collection of disk images. For future work, they want to extend their work to other

platforms such as smartphones which are becoming more complex and sophisticated. One

of the strong points of my methods is that it does not depend on platforms.

3.3 Distinct sector hashes for target file detection

Young, Foster, Garfinkel, and Fairbanks [6] introduced a file agnostic approach leveraging

the speed of hashing. They use sector hashes instead of file hashes. They compared blocks,

which are fixed sized file fragments, to a large data set of sector hashes, and they considered

individual sectors and collections of contiguous sectors (blocks or clusters). They identified

the file with sector hashing by checking if there is a distinct file block or blocks. They

defined a distinct block as “one that does not occur anywhere more than once except as a

block in a copy of the original file”. Their method is based on two hypotheses:

• If a block of data from a file is distinct, then a copy of that block found on a data storage

device is evidence that the file is or was present.

• If the blocks of that file are shown to be distinct with respect to a large and representative

corpus, then those blocks can be treated as if they are universally distinct.

They suggested that it will be more accurate and faster for the analysis of any digital

media if they use a database of hash values computed from fixed sized blocks of data. Large

corpora - Govdocs [28] and the NSRL RDS [29] - were used to populate a database of

hashes. Three types of sectors, singleton, paired, and common sectors, were analyzed to

30

understand the root causes of non-distinct blocks. When they counted the number of blocks

in large corpora, if a block occurred once or twice, they were called singleton and paired,

respectively. If the count was greater than two, it was called common blocks. Their logic

behind counting the frequency of the sector is that if paired and common are rare, then

singleton blocks are universally distinct. Also by looking at the context of those blocks,

they tried to analyze the root causes of occurring more than once. They used a 512 byte

block and a 4 KB block to analyze since modern hard drives use 4 KB sectors instead of

512 byte sectors. The most common block was all NUL(0x00) bytes. Also, a data structure

which is used internally in Adobe PDF occurred more than 200,000 times in the GovDocs

corpus. Microsoft O�ce had several common blocks in its internal data structure. The

di↵erent versions of the same malware had common blocks at the same o↵set of the files.

The major finding for common sectors was that the same block existed in many files

due to malware code reuse and common file container formats. For the goal of field de-

ployment on a laptop, they suggested sampling of sectors instead of processing all media

sectors. Several database implementations were considered and a Bloom filter front end

was implemented to speed up generic query time [30].

They analyzed several file systems to demonstrate the generality of the approach. The

authors noted that file encryption and encrypted file systems present a problem since the

same data of interest will be stored di↵erently when encrypted.

3.4 Impact of common blocks on similarity

Moia et al. [31] assessed the impact of common blocks on similarity. They showed how

common data can be identified and how those are spread over various file types and their

frequencies. They also found out that this common data is often generated by the appli-

cation and not by the user. Their experiment shows that by removing common data, they

were able to reduce about 87% of the number of matches.

31

3.5 Contraband file detection

Penrose et al. [32] used a Bloom filter for initial fast contraband file detection. A Bloom

filter reduces the size of a database (hashes in this case) by an order of magnitude, but

incurs a small false positive rate in return. The authors implemented a larger Bloom filter

to provide faster access, achieving 99% accuracy while scanning for contraband files in

minutes using a test data set.

3.6 Djb2

Roussev et al. [33] introduced an approach which calculates similarity scores by using the

djb2 hash function. Two kinds of hash functions are commonly used: polynomial hash,

and cryptographic hash. Polynomial hash is geared for speed and the main function of

cryptographic hash is for collision-resistance. Djb2 is a simple polynomial hash and it was

introduced by Dan Bernstein [34]. These scores obtained by djb2 hash are used to find

similar files.

The same authors show an approach for prallelizing forensics tools on GPUs [35].

3.7 Proactive object fingerprinting and storage (PROOFS)

Shields et al. [36] presented Proactive Object Fingerprinting and Storage (PROOFS) which

is a forensic acquisition and monitoring system named over a network. It is a continuous

forensic evidence collection system for file system forensics. They create and store signatures

for files that are modified or changed within a network. After creating a dictionary of

statistically important terms, text fingerprints are generated which will be the part of a

signature. IDF (inverse document frequency) is used as a selection criteria for terms. IDF

is the log of the sum of all the documents divided by the number of documents which contain

the term. The fingerprints of the source files are compared to all other fingerprints using

cosine similarity matching. PROOF can identify similar files even if the format of the files

32

are changed.

3.8 Sector signature analysis

File systems usually store files in clusters that are made up of contiguous sectors on disks.

An example can be seen in Windows XP’s file system, NTFS. In this system’s default

configuration, it distributes file space in continuous increments of eight contiguous sectors.

A sector is 512 bytes, which means one cluster is 4096 bytes. Consecutive clusters in a file

will not always be stored contiguously. When the file system has to distribute a cluster

to a file, the free space is used up. In other words, the clusters that other files are not

using. Multiple cycles of adding and removing files will cause the free space of the drive

to be fragmented. This fragmentation will, in turn, cause new files to be scattered over

non-contiguous clusters.

Whenever a file is deleted from the disk, the file’s contents are not actually zeroized.

Instead, the file system will usually set the file as available for reuse. This means that,

barring a situation in which the user overwrites the file with another file, a deleted file can

be recovered. Even in a situation where the deleted file’s cluster is occupied by another

file that has overwritten the cluster partially, the fragment data leftover in the cluster can

be analyzed. This analysis is known as the sector signature analysis technique. This is

done by looking at the file system’s data structures. If the data structures responsible for

mapping the file contents onto disk clusters have not been overwritten, a deleted file can be

recovered with relative ease. If the metadata is overwritten, however, recovery is much less

likely. The sector signature matching technique can still be used on sectors that have not

been overwritten with new files.

Small files approximately under 900 bytes are stored by NTFS into the master file table

(MFT). Metadata and file directory information is stored in MFT. Thus, the files would

not align to disk sector boundaries. Files of interest are usually larger than what the NTFS

stores and as such are stored in clusters not in the MFT. This means that these larger files

will definitely align on 512-byte sector boundaries.

33

3.9 Hash-based carving

Garfinkel et al. [37] presented a method based on hash values of blocks instead of whole-file

hashing, and the basic idea of my similarity measure method comes from this block hashing

method.

They implemented rules to identify non-probative blocks [37]:

• The ramp test: There is a common block pattern where 32-bit numbers increase

monotonically. They implemented a simple test which returns True if half of the

bytes in a bu↵er matches the increasing pattern (ramp).

• The white space test: If a block contains the three quarters or more whitespace, they

treat it as non-probative.

• The 4-byte histogram test: If any single 4-gram exists more than 256 times in a sector,

it is removed. This pattern appears in Apple QuickTime and Microsoft file formats.

On top of these three rules, they also did the entropy test. After experimenting their

rules and entropy test, they conclude that a rule-based method works better than the

entropy method.

They presented the HASH-SETS algorithm that can identify the existence of files, and

the HASH-RUN algorithm which reassembles files using a database of file block hashes. A

fixed block size (e.g., 4 KiB) may become a problem due to file system alignment. They

overcame this issue by hashing overlapping blocks with a 4 KiB sliding window over the

entire drive, moving the window one sector at a time.

They presented real-world experience to use hash-based carving. Hash-based carving is

an alternative approach that relies on comparing hashes of physical sectors of the media to

a database of hashes created by hashing every block of the target files [37,38]. Hash-based

carving is the process of identifying a target file on a media to be searched by hashing blocks

from both the target file and the media and checking for hash matches. Those blocks have to

be the same size. The primary obstacle to implement hash-based carving is a high demand

34

of the block hash database. Conventional databases cannot meet performance requirements,

which require lots of hash lookups per second. They developed hashdb [39] for this end and

used this specially designed database to implements HASH-SETS which can determine the

existence of the target files on media being searched. They found out that a major hurdle to

hash-based carving was to resolve chance matches that happen between individual blocks on

the media being searched and individual blocks on the database. These happened because

identical blocks exist in many di↵erent files not because the target files once existed on the

media being searched. They used the MD5 hash algorithm because it has fast calculation

capability and the fact that MD5 is not collision resistant [40] was not an issue since they

used MD5 to search for the known content. In my research, I used MD5 for the same

e�ciency reason and even if there are couple collisions, which is extremely unfeasible, the

impact on the result of the methods presented in this dissertation is negligible. They used

the term probative instead of distinct to describe data which has a high probability that a

whole content of the file was once present. The reason they change the terminology is that

many blocks which seem to be distinct in a small data sets are not distinct when a larger

file corpus is investigated. They listed several scenarios that hash matches can happen:

• A copy of the target file is present on the media being searched.

• A copy of the target file was deleted and overwritten partially.

• On search media, a file which shares several sectors with the target file exists.

• A target file is embedded in a larger encompassing file.

A good hash-based carving method is expected to address all these scenarios simultaneously.

Their hash-based carving has four steps:

• Database building.

• Media scanning.

• Candidate selection

35

• Target assembly.

They identified the common blocks, which are present in many di↵erent target files. The

most common block consists of all NULLs, which is also deleted in my method in the process

of whitelist removal. The second most common block is a block consisting of 32-bit numbers

which increase monotonically. I did not incorporate this type of common block in whitelist

removal. Common block analysis is an area to be further researched for whiltelist removal

process in my research. For their experiment setup, they used M57-Patents datasets [41].

3.10 M57-Patents datasets

One of the problems in forensic research is that we do not have proper, real data suitable

for research purposes because information can be confidential, sensitive, or proprietary. As

a result, many researchers and teachers in digital forensics fields spend a good amount of

their time preparing forensic materials such as dumps of memory, disk images, and network

packet dumps. However, achieved data is not realistic enough and also often unnecessarily

complex. Creating test data which resolves these problems is very di�cult. Hence Woods et

al. [41] created realistic forensic datasets, known as M57-Patents, to support cyber security

and digital forensics researcher. It is a multi-modal corpus which includes memory and hard

drive images, network packet captures and images from USB drives and cellphones.

A scripted scenario is prepared for creating this corpus. It is simpler than real world

data but complex enough to be used by the forensics researchers and students. With this

corpora, forensic tools can be verified and data preparation time is reduced. This corpus

can be redistributed without worrying about non-public information and licenses. I used

this corpus for my research as a known truth to validate the algorithm. The scenario uses a

fictitious company called M57 whose business is in patent prior art searches. All the actions

of the employees are recorded on a private network.

This scenario records activities from a 17-day period in November and December, 2009.

The fictitious company, M57, has four employees: a CEO (Pat), two patent researcher

36

(Charlie and Jo) and one IT administrator (Terry). They imaged the daily activities of

each employee except for holidays and weekends. Three workstations which belong to Pat,

Charlie and Jo have installed Windows XP and on Terry’s machine, Windows Vista Business

32-bit was installed.

This corpus can be used for disk and network forensic exercises by teachers, students,

and researchers since the memory, hard drives, thumb drives, and network tra�c for each

employee were captured, and hard disks were imaged daily. To address the Microsoft

licensing issue and provide as complete a disk image as possible, libraries and executables

proprietary to Microsoft were disabled before the corpus was public distributed.

3.11 Random sampling and sector hashing

Taguchi [42] experimented with di↵erent sample sizes by using random sampling and sector

hashing for drive triage. Given a drive, the goal was to give analysts information about the

worthiness of continuing further investigation. If a block hash value of target data is found

in a database, then it is very probable that the target file is contained in the drive. If no

hashes are found with sampling, a confidence level is computed indicating the likelihood that

the target data is not on the media. Taguchi tried to find the target data, which is defined

as “any known files that the user is interested in findings”. By taking equally sized chunks

of a file, target data are organized into target blocks. If the target data is not present,

the target blocks are either missed while sampling or non-existent. Instead of proving that

target data do not exist, the probability that they are missed while sampling is calculated.

Confidence is defined as one minus this probability. Sample sizes were calculated with two

parameters: the size of target data and a confidence level. They found out that only 1.4%

of a 1 TB drive is needed for 99% confidence and 10 MiB target data.

37

3.12 Fuzzy hashing

Fuzzy hashing (FH) is also called context triggered piecewise hashing (CTPH). Traditional

hashes can determine if two object are the same or not. Instead, CTPH often gives an

answer with a score percentage between 0 and 100. The higher the score is , the more

similar two objects are. It can be conceived as a combination of cryptographic hashes,

piecewise hashes, and rolling hashes.

Breitinger et al. [3] provided a definition and terminology for approximate matching

(a.k.a. similarity hashing or fuzzy hashing). They divided approximate matching methods

into three main categories: Bytewise, Syntactic and Semantic matching. They described

the Bytewise matching method by saying that it “ ... relies only on the sequences of bytes

that make up a digital object, without reference to any structures within the data stream,

or to any meaning the byte stream may have when appropriately interpreted.” My method

in this dissertation can be regarded as one of the Bytewise matching methods since it does

not rely on any internal structure of the hard drive and does not give any meaning of the

byte stream.

Bjelland et al. [43] present common scenarios where approximate matching can be

applied: Search, Streaming and Clustering. In search mode, the data space is large compared

to streaming mode. In clustering mode, input and data space is the same. For large sets,

approximate matching is impractical due to its high latency.

Moia et al. [44] present steps to develop new approximate matching functions. Approx-

imate matching functions are used because of limitations on cryptographic hash functions,

which cannot detect non-identical but similar data. They present a list of requirements for

forensic investigation, evaluation approaches, and design problems that these functions face

in the development of a new approximate matching function.

3.12.1 Spamsum

Tridgell [45] presented context triggered piecewise hashing to find updates of files, imple-

mented as the spamsum program. It identifies email messages which are similar to already

38

known spam mails.

3.12.2 Ssdeep

Kornblum [46] developed ssdeep in 2006. It is a program for calculating and matching

context triggered piecewise hashing values. It is based on the spamsum program previously

developed by Trigdell [45]. It identifies the contexts in a binary data object and in between

contexts, while chunks are hashed. The sequence of hashes are saved for finding similarity

between two objects. The context is not a fixed size, instead its size is decided by the

contents of the object. In ssdeep, the sequence of hashes is a string sequence and each

character corresponds to a chunk of the binary data object. To compare two objects, it uses

a weighted version of edit distance.

Allison defined the edit distance [47]:

The edit distance of two strings, s1 and s2, is defined as the minimum number

of point mutations required to change s1 into s2, where a point mutation is one

of the following:

• Changing a letter,

• Inserting a letter or

• Deleting a letter

Ssdeep is more appropriate for relatively small objects that are similar sizes. It is

vulnerable to a basic attack which inserts trigger sequences at the beginning of the file by

exploiting the fact that an ssdeep signature value can have, at most, 64 characters [48].

The attack randomly generates trigger sequences and inserts them at the beginning of the

file. The order is also important in the sequence generated by Ssdeep. My method does not

depend on the order.

39

3.12.3 Sdhash

Roussev et al. [5,49,50] introduced the Similarity Digests Hashing method with a program

called sdhash in 2010. It finds the features from a neighborhood that has the lowest prob-

ability of being encountered by chance. Each of the selected features, which is a 64 byte

sequence, is hashed and put into a Bloom filter. When a filter reaches its full capacity,

a new filter is generated. Thus, a similarity digest is a collection of a sequence of Bloom

filters. A normalized entropy measure between digest are calculated and similarity score is

returned. Sdhash compares the files using Hamming distance.

3.12.4 Mrsh-v2

Breitinger et al. [51] proposed mrsh-v2, which is based on MRS hash [33] and Context

triggered piecewise hashing (CTPH). This algorithm uses a sequence of Bloom filters for

fast comparison instead of a Base64 encoded fingerprint. It divides an input into chunks

using a rolling hash. Each chunk is hashed and inserted into a Bloom filter. Like sdhash,

mrsh-v2 will have a variable length fingerprint, where it tries to have 0.5% of the input

length. It has two modes: fragment detection and file similarity.

3.12.5 TLSH

Oliver et al.[52] presented TLSH, which is a locality sensitive hash. It populates an array of

bucket counts by processing an input byte sequence using a sliding window. Quartile points

are calculated from the array and then the digest header and digest body are constructed.

Digest header values are based on the quartile points, the length of the file, and a checksum.

The digest body consists of a sequence of bit pairs determined by each bucket’s value in

relation to the quartile points. TLSH assigns a distance score between two digests, which is

a summed-up distance between the digest headers and the digest bodies. An approximate

Hamming distance is used to calculate the distance between the two digest bodies. The

distance between two digest headers is based on file lengths and quartile ratios. According

to the experiments done in this paper [53], TLSH seems to be more robust to random

40

adversarial manipulations than ssdeep and sdhash.

41

Chapter 4: Methodology

The digital media similarity measure I propose uses sector hashes as the input to a modified

Jaccard index calculation, where the modifications are (1) a whitelist to remove low-entropy

sectors, (2) a frequency weight to reflect content uniqueness, and (3) a normalization to

account for di↵erences in media size.

My proposed method is based on a modified Jaccard index similarity measure computed

over digital media sector hashes. I compute similarity based on sectors present in di↵erent

digital media, after adjusting for known common sectors (e.g., OS, low entropy) and weight-

ing for sector frequency. I use a sector size of 512-bytes regardless of the media’s actual

sector size so that fragments will match across devices with di↵erent sector sizes, which I

assume to be 512 bytes or 4096 bytes in most cases. I assume that files are stored on sector

(cluster) boundaries, which is generally accepted to be true in the digital forensics domain.

I note that sector hashing and other content-specific techniques, including my method, will

not match the same data encrypted with di↵erent keys.

I introduce the foundational Jaccard index calculation over sector hashes in section 4.1.1.

A whitelist is evaluated to remove low-entropy (non-discriminatory) sectors in sections 4.1.2

and 4.1.3. Sections 4.2 and 4.3 discuss the computation of this basic similarity for a single

comparison drive and a set of comparison drives, respectively. In section 4.4, I modify this

calculation to account for hash frequency, i.e., sector content uniqueness, and in section 4.5,

I normalize my similarity measure calculation to account for di↵erences in digital media

sizes. This normalized similarity measure is named the Jaccard index with normalized

frequency (JINF) and is the basic method for other improved methods.

42

Figure 4.1: Two hard disks with three common sectors.

4.1 Jaccard index in sector hashing

In my work, the Jaccard index can be understood as the number of common sectors from

two sources (e.g., hard disks A and B), divided by the number of all sectors from the two

sources minus the number of common sectors in the two sources.

As shown in Figure 4.1, hard disks A and B have 10 sectors each, and the values in each

square represent the hash values of each sector. Both have three of the same sectors. In

this scenario, the Jaccard index will be 0.1765 : 3/(10 + 10� 3).

In the sections that follow, I present the basis for my refinements to the Jaccard index

in the context of digital media image similarity.

4.1.1 Similarity measure with Jaccard index

In this section, I present the general approach for computing the Jaccard index between

two hard disks. Given two hard disks, each one is divided by sectors. For example, if we

have a 1 Terabyte (240 bytes) hard disk and the sector size is 512 bytes, then 231 sectors

exist. If both hard disks are exactly same, for example one hard disk is an image copied

43

Figure 4.2: Display of whitelist sectors.

from another hard disk, then the Jaccard index will be 1 (one), indicating high (perfect)

similarity level between these two hard disks. If two hard disks have no common sectors at

all, then the Jaccard index will be zero, i.e., no similarity. To calculate the Jaccard index

JI(A, B), where A is the set of all the sectors from the first drive and B is the set of all

sectors from the second drive, I replace A with the set of all hash values which correspond

to each sector in the first drive. Likewise, B is replaced with the set of all hash values from

the second drive. I applied the method in the previous section.

4.1.2 The impact of a whitelist

As seen in Figure 4.2, the seven non-matching sectors from drive A contain only NULL

bytes and the seven non-matching sectors from drive B contain only SPACE characters.

For convenience, assume in Figure 4.2 that the hash value of a NULL byte sector is NUL

and the hash value of a SPACE sector is SPA. If I use the general method of Jaccard index,

the Jaccard index value will be the same as Figure 4.1. However, the similarity level in

the Figure 4.2 case should be higher than that of the case in Figure 4.1 because all the

44

meaningful sectors match in 4.2 (the NULL and SPACE sectors are not meaningful). In

fact, the similarity level should be the highest, i.e., 1. If I consider this situation in the

calculation of the Jaccard index, I can get a more realistic Jaccard index value. In practice,

it is better to report that these two drives match exactly instead of giving low similarity

level based on the unadjusted Jaccard index, which would be 0.1765. I can achieve this goal

by removing these NULL byte sectors or SPACE byte sectors from the sets being compared.

Once removed from both drives, the total number of sectors are now three each. And all

three sectors from both drives match exactly, hence I get 1 as the Jaccard index value.

These NULL and SPACE byte sectors are members of my whitelist, which are removed

prior to Jaccard index calculation.

4.1.3 Whitelist candidates

In addition to NULL byte and SPACE byte sectors, other candidates for the whitelist are

low entropy sectors and sectors from a clean operating system (OS) install. If I install an

operating system on a clean machine, any sectors written during the installation of the

operating system will not contribute to a similarity measure and are good candidates for

the whitelist. I collected the sector hashes of the OS on my test drives and saved them in a

database for pre-filtering (exclusion) purposes. In practice, I could keep an inventory of OS

sector hashes and update when new versions are released. Though the publicly available

Known File Filter (KFF) method can be used, I applied simple filtering method since my

test drives are M57-Patent scenario.

4.2 Similarity measure between two drives

Computing a similarity measure between two drives is straightforward but relies on the

construction of a good whitelist. Once all the sectors are filtered with the whitelist, I can

calculate the Jaccard index between two data sources (e.g., hard drives) as shown later

in this chapter. In this dissertation, I use the term target drive for the drive which will

be triaged using a similarity measure against a known and established source drive. For

45

Table 4.1: Jaccard index comparison chart of cluster drives.

d1 d2 dk
d1 1 JI(1,2) ... JI(1,k)
d2 JI(2,1) 1 JI(2,k)
... 1
dk JI(k,1) JI(k,2) 1

Note: JI(i,j) = JI(j,i)

example, a collection of hard drives from a known criminal organization are source drives.

If I subsequently obtain a drive and want to know if it is similar to any of the criminal

organization drives, then this new drive is a target drive.

4.3 Similarity measure against a cluster of drives

As a triage tool, we are often interested in the similarity of one target (hard drive) against

di↵erent groups of sources (e.g., multiple hard drives), where these groups might represent

di↵erent priorities, levels of interest, or specific sta↵ or organizations. The drives in a

cluster might be hard disks confiscated from terrorist groups or collections of hard disks

that contain some malicious programs that are of interest. In other words, we have multiple

di↵erent groups of source media. Once the whitelist is constructed and saved in a database,

sectors of target drives and clusters of interest can be scanned and ignored based on this

database, which will improve the speed and accuracy of the similarity measure calculation.

Given an image of interest and a cluster of labeled drives, one approach to assess the

image of interest is to first calculate the Jaccard index between any two drives in the cluster.

If we have k number of drives in the cluster, Table 4.1 shows the comparison chart among

them.

Next, the image of interest can be compared against each drive in the cluster and the

Jaccard index can be calculated, resulting in the comparison chart of Table 4.2. The last

row (dt) in Table 4.2 can be compared against the rows (di). From this table, I can give a

statistically meaningful assessment by looking at the values from these two sets.

46

Table 4.2: Jaccard index comparison chart of target drive against cluster drives.

d1 d2 dk
d1 1 JI(1,2) ... JI(1,k)
d2 JI(2,1) 1 JI(2,k)
... 1
dk JI(k,1) JI(k,2) 1
dt JI(t,1) JI(t,2) JI(t,k)

Another approach is to create an imaginary drive containing all the sectors of the cluster

drives. This imaginary drive is just the union of all sectors from drives in a cluster. If there

are any sectors which are shared by multiple drives, they are each counted only once. I

create a Jaccard index between the target sectors and this imaginary drive, resulting in the

comparison chart of Table 4.3.

Table 4.3: Jaccard index comparison chart of target drive against imaginary drive.

Imaginary drive I

d1 JI(1,I)
d2 JI(2,I)
...
dk JI(k,I)
dt JI(t,I)

4.4 Similarity measure with frequency

To make the analysis simple, I will use an imaginary drive I which will be used to simulate

the source drive as shown in Table 4.5 and two target drives: tA, and tF . Imaginary drive I

is created by combining all three drives: c1, c2 and c3 in the cluster as shown in Table 4.4.

Let us assume that both target drives, tA and tF , each have a single but di↵erent sector,

A and F, respectively. Sector A in an imaginary drive is shared by every source drive in a

cluster and sector F comes from only one cluster drive, c2. In this case, intuitively I can

feel that the tA drive has more similarity than tF in the cluster comparison since sector A is

47

Table 4.4: Sector display of cluster and target drive.

Cluster drives. Target drives.

C1 C2 C3
A A A
B B C
C E E
D F G

t1 t2
A C
E D
F F
G G
H H

Table 4.5: Sector frequency display of Imaginary drive and target drives.

Frequency display of I. Frequency display of Target drives.
Imaginary Drive I
A 3
B 2
C 1
D 1
E 2
F 1
G 1

Total 11

t1 t2
A 3 C 1
E 2 D 1
F 1 F 1
G 1 G 1
H 1 H 1
Total 8 Total 5

contained in every cluster drive. To prove this intuition with calculation, the frequency of

the individual sector is used as an adjusting factor in the Jaccard index calculation. Table

4.4 shows the sectors in each drive (c1, c2, c3) of a cluster and the sectors in each target

drive (t1, t2). Table 4.5 shows the frequency of the sectors in the Imaginary drive and each

target drive (t1, t2).

The standard Jaccard index for both JI(t1, I) and JI(t2, I) will be 4/8 (0.5).

JI(t1, I) =
A,E, F,G

(A,E, F,G,H) + (A,B,C,D,E, F,G)� (A,E, F,G)
(4.1)

JI(t2, I) =
C,D, F,G

(C,D, F,G,H) + (A,B,C,D,E, F,G)� (C,D, F,G)
(4.2)

However, t1 is more similar than t2 since t1 has sector A, which is shared by all cluster

48

drives (c1, c2 and c3) and it has sector E which is shared by two drives (c2 and c3). A new

modified Jaccard index with frequency (JIWF) between two drives (d1, d2) is introduced

here.

JIWF (d1, d2) =
number of common sectors with frequency fromd1 and d2

number of all sectors with frequency fromd1 and d2
(4.3)

When JIWF is calculated, if a sector is shared by n number of drives, that sector is

counted n times. The numerator of JIWF(t1, I) is 7 because there are four common sectors

(A, E, F, and G) and A is counted 3 times and E is counted 2 times. The denominator

of JIWF(t1, I) is 12 because there are a total of 8 sectors (A, B, C, D, E, F, G, H) and

A is counted 3 times and B and E are counted 2 times respectively. Now JIWF(t1, I) is

7
12(0.583) and JIWF(t2, I) is 4

12(0.333). This new method, JIWF, shows that t1 is more

similar than t2 since it incorporates frequency in the calculation of Jaccard index.

4.5 Similarity measure with normalized frequency

So far, the assumption that I used in the experiment was that the sizes of the target and

cluster drives are similar. If the target drive is a thumb drive and the cluster drive is a

drive of several terabytes, then I ask:

• Can we use the same method we suggested here in the previous sections?

• If we can use the same method, how do we interpret the value of similarity measure?

• If we cannot use the same method, how can we approach this issue?

To answer the above questions, a new approach is proposed. For the standard calculation

of Jaccard Index, intersection and union are used. For the new approach, I come up with a

modified definition of Intersection and Union: Intersection⇤ (I⇤) and Union⇤ (U⇤). Given

two numbers, the Intersection* and Union* of these two numbers are defined below.

49

Table 4.6: Hash value and frequency of source drive.

Hash value Frequency Normalized Frequency
A 5 0.3333
B 4 0.2667
C 3 0.2
D 2 0.1333
E 1 0.0667

total 15 1

Table 4.7: Hash value and frequency of target drive: target 1.

Hash value Frequency Normalized Frequency
A 1 0.0667
B 2 0.1333
C 3 0.2
D 4 0.2667
E 5 0.3333

total 15 1

Intersection⇤(N1, N2) = Min(|N1|, |N2|)

Union⇤(N1, N2) = Max(|N1|, |N2|)

where N1, N2 are normalized frequencies.

I also use the normalized frequency. Given a frequency, C, and total frequency, T, The

normalized frequency of C: N = C/T. This normalization is introduced to take care of the

size di↵erence between target and cluster drives. In this method, T is the total number of

sectors in a drive and C is the frequency of a certain sector hash value. For each hash value,

I can calculate its normalized frequency.

Suppose we have a simplified source and target drive as shown in Table 4.6 and Table

4.7 respectively.

To calculate the Jaccard index, I compute the two normalized values for each hash

value: one from the source and the other from the target. The following Table 4.8 shows

the Intersection⇤ and Union⇤ of the two normalized values.

50

Table 4.8: Intersection⇤ and Union⇤ of two normalized frequency values.

Hash value Normalized Normalized Intersection⇤ Union⇤

frequency of source frequency of target
A 0.3333 0.0667 0.0667 0.3333
B 0.2667 0.1333 0.1333 0.2667
C 0.2 0.2 0.2 0.2
D 0.1333 0.2667 0.1333 0.2667
E 0.0667 0.3333 0.0667 0.3333

total 0.6 1.4
JINF = 0.4286

When I add all the Intersection⇤ values of each hash, the total is 0.6. Likewise, the

sum of all Union⇤ values is 1.4. Here I define the Jaccard Index with Normalized Frequency

(JINF) of two drives: S and T.

JINF(S, T) =
sum of all Intersection⇤(S, T)

sum of all Union⇤(S, T)
(4.4)

In this example, the JINF value will be 0.6/1.4 = 0.4286. As a note, the JINF value

of the two same drives will be 1.0 with this approach since Intersection⇤and Union⇤ values

of normalized frequency of each sector hash are the same.

4.6 E↵ectiveness of JINF

Tables 4.9 and 4.10 demonstrate how the JINF value is changing when the frequency of

sector hash A increases by one. In these tables, the normalized frequency of each drive

is hidden. As the frequency of the first block of the target drive, A, moves toward the

frequency of the same sector hash, A, of the source drive, the similarity level should be

increased. We may consider each case as a new target drive to be checked against the

source drive. In each case, we see that the JINF value showing similarity level increases

when the frequency of sector hash A increases. We also note that the total number of blocks

increases by one as we increase the frequency of sector hash A by one. This increase of

total number of blocks will bring down the similarity level since the portion of each block

51

Table 4.9: JINF comparison: target 2, target 3 and target 4.

target 2 target 3 target 4
Hash Frq I⇤ U⇤ Frq I⇤ U⇤ Frq I⇤ U⇤

A 2 0.125 0.3333 3 0.1764 0.3333 4 0.2222 0.3333
B 2 0.125 0.2667 2 0.1176 0.2667 2 0.1111 0.2667
C 3 0.1875 0.2 3 0.1764 0.2 3 0.1667 0.2
D 4 0.1333 0.25 4 0.1333 0.2352 4 0.1333 0.2222
E 5 0.0667 0.3125 5 0.0666 0.2941 5 0.0667 0.2778

Sum 16 0.6375 1.3625 17 0.6705 1.3294 18 0.7 1.3
JINF 0.4678 0.5044 0.5384

against the total number of blocks decreases. However, the positive e↵ect of increasing the

frequency of sector hash A is greater than the negative e↵ect of increasing the total number

of blocks. Similarity level increases when we add the frequency of the sector hash A. For

example, let us create a new target drive 6 from target drive 5. If we reduce the frequency

of sector hash E from 5 to 4 in target drive 6, we get 0.6071 as the JINF value of target

6. This is higher than the JINF value of target 5, which is 0.5702. The reason is that the

total number of blocks of target drive 6 is now closer to the value of the source drive and

has less negative impact to the calculation of the JINF compared to target 5.

To show how well this method copes with the size di↵erence of the source and target

drives, I created a target drive 7. The frequency of each block is copied from target drive

1 shown in Table 4.7 and multiplied by 10. The JINF value of both drives, target 1 and

target 7, are the same because the normalized frequency of each hash block is the same

for both drives. Therefore, this method does not depend on the size of the drives to be

measured.

So far, example tables contain the same hashes with di↵erent frequency. For example,

if the source has an uncommon hash, F, that the target 1 does not have, we can expect

that this JINF(new source, target 1) will be smaller than the other JINF(source, target

1), which is shown in Table 4.8. In the new source, the normalized frequencies of each hash

will be smaller than those of the source because of increased total sectors, which is shown

in Table 4.11. Intersection⇤ of the uncommon hash F will be 0. This will decreases the

52

Table 4.10: JINF comparison: target 5, target 6 and target 7.

target 5 target 6 target 7
Hash Frq I⇤ U⇤ Frq I⇤ U⇤ Frq I⇤ U⇤

A 5 0.2631 0.3333 5 0.2778 0.3333 10 0.0667 0.3333
B 2 0.1052 0.2667 2 0.1111 0.2667 20 0.1333 0.2667
C 3 0.1578 0.2 3 0.1667 0.2 30 0.2 0.2
D 4 0.1333 0.2106 4 0.1333 0.2222 40 0.1333 0.2667
E 5 0.0667 0.2631 4 0.0667 0.2222 50 0.0667 0.3333

Sum 19 0.7263 1.2736 18 0.7556 1.2444 150 0.6 1.4
JINF 0.5702 0.6071 0.4286

Table 4.11: Hash value and frequency of new source drive.

Hash value Frequency Normalized Frequency
A 5 0.25
B 4 0.2
C 3 0.15
D 2 0.1
E 1 0.05
F 5 0.25

total 20 1

sum of Intersection⇤ from 0.6 to 0.5. However, Union⇤ of F has a positive value, which

will increase sum of Union⇤ from 1.4 to 1.5. The final result of JINF(new source, target

1) is 0.3333 and it is smaller than JINF(source, target 1), which is 0.4286.

Table 4.12 shows the calculation of JINF values when the new source image has an

uncommon hash, F.

53

Table 4.12: Intersection⇤ and Union⇤ between new source and target 1.

Hash value Normalized Normalized Intersection⇤ Union⇤

Frequency of new source Frequency of target
A 0.25 0.0667 0.0667 0.25
B 0.2 0.1333 0.1333 0.2
C 0.15 0.2 0.15 0.2
D 0.1 0.2667 0.1 0.2667
E 0.05 0.3333 0.05 0.3333
F 0.25 0.0 0.0 0.25

total 0.5 1.5
JINF = 0.3333

4.7 Conclusion

JINF is a digital media similarity measure based on digital media sector content compar-

isons and a variant of the Jaccard index. The modified Jaccard Index calculation adjusts

set intersection and union counts based on the underlying frequency of the set members,

which are hash values and represent the contents of digital media sectors in my work. My

normalization methods allow JINF to apply to digital media of di↵erent sizes. The method

is also independent of file system information and form factor, so applies across operating

systems, file systems, and di↵erent physical devices.

54

Chapter 5: Results and Validation of JIWF and JINF

I validated both proposed similarity measures (JIWF and JINF) introduced in the previous

chapter using a set of disk images with known similarity. Comparison between these two

methods is discussed in this chapter. The M57 Patents Scenario dataset [28] consists of 68

hard disk images. These images are taken from four distinct systems (named Pat, Terry,

Jo, and Charlie) over a 25-day period (each system was imaged 17 times during the 25-day

experiment).

For my purposes, each of the four systems represents a similar set of images. This is due

to the fact that they are the same source systems, with the only di↵erences being due to

the normal use incurred by the experiment. I build sets of similar images using a subset of

one user’s images, then compare one of that user’s other images to the set. I would expect

high similarity, which in fact is what I found. My validation was intended as a preliminary

confirmation that the proposed measure is computationally correct and not as a scalability

test; additional testing is planned against the Real Data Corpus, a data set of thousands of

disparate media sources with no ground truth.

5.1 Initial validation of the method

For the initial validation of the methods described in section 4, sequential snapshots of a

single drive were used. On a clean drive, the following sequence of actions are performed

after the Windows operating system is installed:

• (a) an application is installed,

• (b) an application is opened,

• (c) an application is closed,

55

• (d) an application is uninstalled, and

• (e) system is rebooted.

The above procedure is repeated for three clean drives with three di↵erent applications:

Wireshark, Firefox, and Safari. Let us call these generic drives as WS, FF and SA. After

each step in the above sequence, snapshots of the hard disk image are saved for each drive.

They are named as WSa, WSb, WSc, WSd and WSe for drive WS. For example, WSc

is the snapshot of drive WS after Wireshark is closed, which is action (c) in the above

sequence. Likewise, I name the snapshot of the drive for Firefox and Safari as FFx and

SAx respectively, where x is one of {a, b, c, d, e}, and here I say that every FFx are in the

same category. For example, WSa and WSb are in the same category with WSc, but not

in the same category with any snapshots of FF drive.

5.2 Whitelist sector removal

As described above, sectors collected after Windows O/S installation and action (a) cor-

respond to whitelist candidates. Therefore, sectors from snapshots WSa, FFa and SAa

were added to the whitelist database. The elimination of these sectors from consideration

reduces the computational e↵ort and enhances the accuracy of the Jaccard index.

5.3 Jaccard index with frequency (JIWF)

For this research, I used the hashdb [37] tool. To compute the Jaccard Index between two

drives, A and B, first I remove all the sectors of the Windows OS from each drive and

then construct a hashdb for each slimmed drive: h-A and h-B. An intersection of hashdbs,

say Int(h-A, h-B), is constructed by the hashdb command intersect hash (h-A, h-B) and

union of hashdbs, Un(h-A, h-B), is done by add multiple (h-A, h-B). I also used the result

of the hashdb size command as input to the Jaccard index calculation. The size command

returns hash data store and hash store values. I use the hash store value as the input

56

Table 5.1: Jaccard indices between snapshots in the same category.

WSb WSc WSd

WSb 0.08858 0.0339
WSc 0.08858 0.4419
WSd 0.0339 0.4419
WSe 0.0193 0.2756 0.6160

to the Jaccard index calculation.

TheJaccardIndex(A,B) =
hash store value of Int(h-A, h-B)

hash store value of Un(h-A, h-B)

The above formula is used to approximate the Jaccard index with frequency, JIWF .

To create an imaginary drive I(h-A, h-B, h-C) from three hard disk images: A, B, and C,

the hashdb add multipe command is used.

I(h-A, h-B, h-C) = add multiple(h-A, h-B, h-C)

Next, all the JI values between each snapshot were calculated: JI(WSb,WSc),

JI(WSb,WSd), JI(WSb,WSe), JI(WSc,WSd), JI(WSc,WSe) and JI(WSd,WSe). Jaccard

indices between WSb and other instances becomes smaller after each sequence of actions as

shown in Table 5.1. This is expected since a drive with an installed application and a drive

with the same application uninstalled are less similar. Once the system is rebooted after

uninstallation, previously matching sectors are overwritten and no longer match. A similar

trend was observed between WSc and other instances.

The Jaccard indices of any two drives from di↵erent categories were very low compared

to Jaccard indices of any two drives within the same category, as shown in Table 5.2

When I have not calculated the Jaccard indices between pairs, I left the corresponding

cell as empty in Table 5.1 and Table 5.2.

57

Table 5.2: Jaccard indices comparison between snapshots.

FFc FFd

FFc 0.5478
FFd 0.5478
FFe 0.1694 0.2807
WSc 0.00049 0.00042
WSd 0.00227 0.00193
WSe 0 0.00451

5.4 Similarity measure between a target drive and a cluster

of drives

In the previous section, I used simple drive images to validate my methodology. A single

application was installed on top of the Windows 7 OS, and I took snapshots after each action.

For this next test, I use realistic data sets created by a project funded by the National

Science Foundation. One of these data sets is the 2009-M57-Patents scenario[54]. This

scenario involves a small company called M57, which was engaged in prior art searches for

patents. The employees’ actions in the fictitious patents research firm are recorded on a

private network. The 2009-M57-Patents scenario consists of activities for a 17 day period

in the months of November and December, 2009. The company has four employees: Pat

(CEO), Charlie (patent researcher), Jo (patent researcher), and Terry (IT administrator).

The hard drive of each employees’ workstation was imaged daily, except for weekends and

holidays. Three workstations have windows XP installed, and Windows Vista Business

32-bit was installed on Terry’s workstation.

From each drive, I created a corresponding hashdb instance. I also created a hashdb

isntance for a clean hard drive, which has only the Windows OS (XP and 7). I used the

hashdb subtract command to remove Windows OS sectors from each employees’ hashdb.

I call these slimmed hashdbs. From the list of slimmed hashdbs, I created an imaginary

drive by choosing five random slimmed hashdbs.

I created I S Charlie.hdb, an Imaginary hashdb from Nov-11, Nov-20, Nov-30, Dec-04

58

and Dec-10 hashdbs of slimmed Charlie hashdbs. This imaginary drive simulates the cluster

of drives that I want to find similarity with when compared to a target drive. For each target

drive hashdb, I generated the Jaccard index against I S Charlie.hdb. If a target drive and

cluster drives are from di↵erent categories, I expect that the similarity measure will be much

lower.

5.1 shows some results of this scenario. I again used the same method which was

explained in the previous section.

The hashdb size command returns the number of entries in the LMDB database [55].

It returns two values: hash data store value and hash store value. The LMDB Hash

Store is a highly compressed optimized store of all the block hashes in the database. When

scanning for a hash, if it is not in this store, then it is not in the database. Because of the

degree of optimization, there can be false positives. To compensate, when a hash is found

in the LMDB Hash Store, hashdb reads the LMDB Hash Data Store to be sure the hash

actually exists. The LMDB Hash Data Store is a multi-map store of all hashes and their

associated data and source information [56].

I created an Imaginary cluster drive for each employee and calculated the Jaccard Index.

Figure 5.1 shows the Jaccard index between the Charlie Imaginary cluster drive and each

employee. As days go by, the Jaccard Index of Charlie’s daily hard drive shows higher

values compared to other employees. The hard disk images which were used to generate

Charlie’s imaginary drive are marked with @ in Figure 5.1. For the other three employees, I

see a similar pattern, as shown in Figures 5.2, 5.3, and 5.4. For Terry, the absolute Jaccard

Index is lower compared to other employees because the size of Terry’s daily hard drive is

bigger than other employee’s drive. Except for the first few Jo images, all indicated the

correct result.

5.5 Jaccard Index with normalized frequency (JINF)

In the previous section, I introduced the Jaccard index with frequency method (JIWF).

I applied this method to the 2009-M57-Patents scenario. After building hashdb for each

59

Figure 5.1: Jaccard index frequency of Charlie.

day of each employee, the hashdb subtract command was used to remove OS blocks from

each hashdb. I also created one imaginary source drive for each employee by combining 5

random hashdbs from that employee’s own daily drive image list. The hard disk images

which were used to generate Charlie’s imaginary drive are marked with @ in Figure5.5.

Similarly, randomly chosen daily images are marked with @ for Jo, Pat and Terry in Figure

5.6, 5.7, and 5.8 respectively. Each figure shows the Jaccard index value comparing four

imaginary drives and target drives for each employee. For example, Figure 5.5 for Charlie

compares four imaginary source drives with Charlie’s daily target drive images. The x-axis

shows the list of target drives from Charlie and the Y-axis shows the Jaccard index value.

The asterisk, (*), shows the Jaccard index value against Charlie’s Imaginary drive. As

you can see, all four employee’s target drives show a higher Jaccard index value when they

are checked against their own imaginary source drives. As a common behavior, the Jaccard

index value of all four employees against their own imaginary disks increases steadily for the

60

Figure 5.2: Jaccard index frequency of Jo.

first 10 days, stabilizes, and then drops during the last few days. This can be explained. As

time passes, the similarity level between each day and the imaginary disk increases, and once

it reaches a certain usage level, the similarity level between two days has little distinction.

The last few days, the similarity level drops because files are deleted and sector contents

overwritten, leaving fewer sectors to match the static imaginary drive. The similarity level

between the USBs of Jo and the imaginary hard disk is almost zero, which I expected. In

this test, a total of 305 hard disk images were compared to 4 imaginary disk images. Except

the first five of Jo’s images (see Figure 5.6), all showed the correct results, which is more

than 98% accuracy. Those five incorrect results are from images taken chronologically prior

to images forming the cluster set, and even so are still near the top candidates on the same

day.

From the given daily 40-gigabyte hard disk image, it took 90 minutes on average to

obtain a JINF value onto a personal computer with an Intel(R) Core(TM) i7 @ 2.30GHz

61

Figure 5.3: Jaccard index frequency of Pat.

CPU and a 2-terabyte SSD memory.

5.6 Comparison of JIWF and JINF

In the previous section, I showed the results of applying these two methods, JIWF and

JINF, to the same M57 data set. Both provide accurate results and would support triage

decisions. But the Jaccard index with normalized frequency shows a greater gap between

the correct results and the next highest similarity score. Consider both of Pat’s graphs on

the date of Dec 4th in Figure 5.3 and 5.7. Both graphs show the calculated Jaccard index

of every drive in M57 against Pat’s imaginary drive. Hence, I expect a higher similarity

measure for any of Pat’s drives. In Figure 5.7, where Jaccard index of normalized frequency

is applied, Pat’s hard drive has a similarity measure of 0.7, while Charlie and Jo’s drives

show a 0.3 similarity measure. On the other hand, in Figure 5.3, where the non-normalized

method is applied, Pat’s drive has 0.8 and Charlie and Jo’s drives have 0.55 as the similarity

62

Figure 5.4: Jaccard index frequency of Terry.

measure. The gap 0.4 (0.7-0.3) when using the normalized frequency method is bigger than

0.25 (0.8-0.55) for the non-normalized frequency method. For all four employees I can

observe similar behavior: a bigger gap for the normalized method, as shown in Table 5.3.

As a side note, for Jaccard index with normalized frequency method, when I eliminated high

frequency sector hashes in the calculations, the resulting similarity measure was greater.

As I gradually lower the cut-o↵ value of high frequency sector hashes from 5000 to 50, the

similarity value increases accordingly, which I expected. In other words, lowering the sector

hash frequency cuto↵ reduces ”noise” hashes and concentrates the calculation on the most

significant matches.

63

Figure 5.5: Jaccard index normalized frequency of Charlie.

Table 5.3: Performance comparison between JIWF and JINF.

JIWF JINF
Charlie 0.229789 0.265333

Jo 0.085746 0.139794
Pat 0.146044 0.279771
Terry 0.244807 0.283844
Avg 0.176597 0.242186

64

Figure 5.6: Jaccard index normalized frequency of Jo.

65

Figure 5.7: Jaccard index normalized frequency of Pat.

66

Figure 5.8: Jaccard index normalized frequency of Terry.

67

Chapter 6: Jaccard Index with Sampling (JIWS)

In this chapter, I introduce a modified JINF which can be used for sampled images. The

computation time it takes to calculate similarity is a critical factor for field analysts, es-

pecially whose purpose is to pre-triage of the huge list of evidence images. To reduce the

processing time to calculate the JINF between Source and Target images, I created several

sampled images from the Target image by varying the sampling rate.

6.1 How to create sampled images

To create a sampled image, I choose a random sector by using a random number generator.

Once a sector is selected, I check if this is a Null byte sector or an OS sector . If it is a Null

byte sector or an OS sector, it is discarded and I choose another one. This step is repeated

until the decided sampling rate is achieved.

I sampled from all the daily images of 4 employees of M57 with 7 di↵erent sampling

rates. Each daily image is slimmed by removing white sectors such as OS sectors or Null

byte sectors as a pre-processing step, known as whitelist removal. The sampling rates were

5, 10, 20 , 30, 40, 50 and 75 percent. TRGT10 represents the sampled image from a slimmed

Target image with a 10 percent sampling rate.

6.2 Processing time with sampled images

It takes a few minutes for a 10 GB hard drive and 25 minutes for a 40 GB hard drive

to extract sampled images from whole images. Once sampled images are created, JINF

method is applied to them. The JINF calculation time between two images of 10 GB takes

16 minutes. The average JINF calculation time for each sample rate takes an average of 8,

68

9, 10, 11, 12, 13 and 14 minutes for the sample rates of 5, 10, 20, 30, 40, 50 and 75 percent,

respectively, onto a personal computer with an Intel(R) Core(TM) i7 @ 2.30GHz CPU and

a 2-terabyte SSD memory.

6.3 Analysis of JINF with sampled images

We observe how the JINF between Source and sampled images from Target di↵ers from

the JINF between Source and Target.

Each sampled image is compared to the daily images. As a guide, the JINF between full

images are calculated also. I re-wrote the algorithm with Python and the groupby function

call of the Pandas module to simplify the code and improve e�ciency. If I get a similar

value for the JINF between Source and sampled images, then sampling from Target is

worth doing to save time. If the JINF works even with a sampled image of low sampling

rate, this is better since I can save time in creating a sampled image and processing JINF.

Unfortunately, this is not the case.

In the previous calculation of JINF, I overcame the low value of similarity, which came

from the size di↵erence of source and target images by normalizing the hash count. However,

I notice that the low sample rate generates low JINF not because of small image size, but

because of the small number of common hash counts between source and target images.

6.4 Approach to solve the issue of JINF with sampled images

If the sampling rate is doubled, then JINF also increases accordingly. Therefore, to be

more reasonable in deciding similarity, I conclude that to decide the similarity, the set of

sectors collected from the sampled image should be weighted more than other sectors from

the source. It is not fair that the not-chosen sectors in sampling are treated the same as the

chosen sectors. Some kind of normalization of JINF method was needed to apply JINF to

sampled images. Thus, I came up with a new novel method called the Jaccard Index with

Sample (JIWS). This approach is based on JINF which changes linearly with sample rate

69

and also depends on the number of common hashes between two images.

When I design my heuristics, JIWS, I have two goals in mind. Since I already vali-

dated JINF, my first goal is to have heuristics behave similarly to JINF. Meaning, given

two target drives, T1 and T2, if JINF(Source, T1) is higher than JINF(Source, T2),

JIWF(Source, T1) should be higher than JIWS(Source, T2). Finally, my second goal is

that heuristics should not be impacted by the sample size.

6.5 JIWS formula

For the sampled images, the new approach, which is JIWS between Source and Tar-

get(sample image), is presented here.

JIWS = CommonRatio ⇤ [JINF+ CommonRatio ⇤ (1� JINF)] (6.1)

CommonRatio(Source, Target) =
unique hash count of common

total unique hash count of Target
(6.2)

The CommonRatio is defined in the formula (6.2) for the common hashes between two

images. The denominator count is selected from Target, which is assumed to be smaller

than Source. If the sampled image is bigger than Source, I use the count from Source image

in the denominator.

6.6 JIWS with an example

I will explain JIWS with an example. As seen in Table 6.1 , Source and Target have 15

total sectors. Each has 11 unique sectors with di↵erent hash frequencies as shown in Table

6.2.

Table 6.3 shows the 33 percent sample image, TRGT33, from Target image and its

frequency of each hash. We will calculate JIWS(Source, TRGT33) in this section.

JINF(Source, Target) and JINF(Source, TRGT33) are calculated in Table 6.4. Their

70

Table 6.1: Layout of Source and Target.

Source layout. Target layout.
Sector number Hash

1 K
2 B
3 C
4 I
5 J
6 K
7 G
8 H
9 I
10 D
11 J
12 E
13 A
14 K
15 F

Sector number Hash
1 A
2 Z
3 Q
4 A
5 B
6 C
7 D
8 E
9 F
10 G
11 Y
12 Q
13 Y
14 Z
15 Z

Table 6.2: Hash count of Source and Target.

Hash count of Source. Hash count of Target.
Hash Count
A 1
B 1
C 1
D 1
E 1
F 1
G 1
H 1
I 2
J 2
K 3

Hash Count
A 2
B 1
C 1
D 1
E 1
F 1
G 1
Q 2
Y 2
Z 3

values are 0.3043 and 0.1304 respectively. As I discussed in section 6.3, JINF(Source,

TRGT33) is proportionally smaller than JINF(Source, Target).

71

Table 6.3: TRGT33 layout and hash count.

TRGT33 layout. Hash count of TRGT33.
O↵set of Target Hash

1 A
3 Q
6 C
9 F
12 Q
15 Z

Hash Count
A 1
Q 2
C 1
F 1
Z 1

Table 6.4: JINF(Source, Target) and JINF(Source, TRGT33).

Source, Target Source, TRGT33

Normalized Normalized
Hash Count Int* Union* Hash Count Int* Union*

A: (1/15, 2/15) 1/15 2/15 A: (1/15, 1/6) 1/15 1/6
B: (1/15, 1/15) 1/15 1/15 B: (1/15, 0) 0 1/15
C: (1/15, 1/15) 1/15 1/15 C: (1/15, 1/6) 1/15 1/6
D: (1/15, 1/15) 1/15 1/15 D: (1/15, 0) 0 1/15
E: (1/15, 1/15) 1/15 1/15 E: (1/15, 0) 0 1/15
F: (1/15, 1/15) 1/15 1/15 F: (1/15, 1/6) 1/15 1/6
G: (1/15, 1/15) 1/15 1/15 G: (1/15, 0) 0 1/15
H: (1/15, 0/15) 0 1/15 H: (1/15, 0) 0 1/15
I: (2/15, 0/15) 0 2/15 I: (1/15, 0) 0 1/15
J: (2/15, 0/15) 0 2/15 J: (1/15, 0) 0 1/15
K: (3/15, 0/15) 0 3/15 K: (1/15, 0) 0 1/15
Q: (0, 2/15) 0 2/15 Q: (0, 2/6) 0 2/6
Y: (0, 2/15) 0 2/15 Y: (0, 0) 0 0
Z: (0, 3/15) 0 3/15 Z: (0, 1/6) 0 1/6

Sum 7/15 23/15 Sum 3/15 23/15

JINF(Source, Target) = (7/15)
(23/15) = 0.3043 JINF(Source, TRGT33) =

(3/15)
(24/15) = 0.1304

72

Detailed calculation of JINF(Source, TRGT33), which is in Table 6.4, is explained

below.

Total(Drive) = total hash count of Drive

Union⇤ofHashi = max(
Hashi count of Source

Total(Source)
,
Hashi count of TRGT33

Total(TRGT33)
)

Intersect⇤ofHashi = min(
Hashi count of Source

Total(Source)
,
Hashi count of TRGT33

Total(TRGT33)
)

JINF(Source, TRGT33) =
Sum of all Intersect⇤ofHashi

Sum of all Union⇤ of Hashi

=
3
15
23
15

= 0.1304

The CommonRatio is calculated in the formula (6.3) for the common hashes between

Source and TRGT33. It does not consider the frequency of each hash unlike JINF calcu-

lation. The denominator count is selected from sample image, TRGT33. Since Source and

TRGT33 share hashes A, C and F, the nominator value is 3 and the denominator values is

5 for total 5 unique hashes.

The calculation of JIWS(Source, TRGT33) is shown in equation 6.4 by applying for-

mula 6.1. We can observe that JIWS(Source, TRGT33), 0.3913, is normalized when we

compared the JINF(Source, TRGT33)) value which is 0.1304. And this value is similar

with JINF(Source, Target), which is 0.3043.

CommonRatio(Source, TRGT33) =
unique hash count of common

total unique hash count of TRGT33
=

3

5
= 0.6 (6.3)

JIWS(Source, TRGT33) = 0.6 ⇤ [0.1304 + 0.6 ⇤ (1� 0.1304)] = 0.3913 (6.4)

73

Table 6.5: Histogram analysis: low frequency hashes of c12-09.

Freq Count Total Freq Count Total Freq Count Total
1 5904230 5904230 2 1049561 2099122 3 428063 1284189
4 151555 606220 5 66062 330310 6 16567 99402
7 19434 136038 8 7540 60320 9 7988 71892
10 14555 145550 11 3094 34034 12 1533 18396
...

Total = 7708412

6.7 Observation of CommonRatio

Table 6.5 shows a histogram analysis of Charlie’s December 9th image. As we can see for

this image (c12-09), the ratio of unique hash counts (5904230) is 77 percent of the total

hashes (7708412). Most images have similar statistics in histogram analysis.

As we can observe in the Table 6.8, the CommonRatio among samples are very similar

and the unique hash count of sample images are 40 to 85 percent of the total hash count of

the most sample images. Therefore, I arrange the Source and Target images in Table 6.1

based on these observed statistics.

6.8 Reasoning behind the JIWS formula

Though JIWS formula is heuristics, but it came from the observation that JINF changes

proportionally to the size of sample image, and commonRatio remains near constant among

the sample images from the same source. The commonRatio increases if the JINF value

increases, which is expected because a high JINF means that both images are more similar.

For normalization of Jaccard Index, (1-JINF) and JINF in the JIWS formula (6.1) work

inversely. If we have a high JINF value, a small portion of commonRatio will be added with

JINF and then this added value is multiplied to commonRatio. If JINF is low, then a high

portion of commonRatio is added to JINF, and this sum is multiplied by commonRatio.

Since Source and Target share hashes A, B, C, D, E, F and G, the CommonRatio is

74

calculated.

CommonRatio(Source, Target) =
unique hash count of common

total unique hash count of Target
=

7

11
= 0.6364 (6.5)

JIWS(Source, Target) = 0.6364 ⇤ [0.3043 + 0.6364 ⇤ (1� 0.3043)] = 0.4754

75

6.9 JINF is bounded by CommonRatio

In the JINF calculation, JINF is bounded by CommonRatio, meaning the value of JINF

can be at most CommonRatio. I proved this to be lemma 1.

Lemma 1. JINF cannot be greater than CommonRatio

Proof. I will prove this with the example as shown in Table 6.6. Both images, S and T,

have common hashes, c1, c2, ... and cn. Non-common hashes of image S are s1, s2, ... and

sr. And t1, t2 .. tr represent the non-common hashes of image T respectively. For better

understanding, the template for calculating the JINF of these two images is shown in Table

6.7. Let Cn represent the total count of common sectors, while Sn and Tn represent the

total hash count of image S and image T. The total hash count of T is equal or less than that

of image S. For simplicity, let’s assume that there is only one occurrence for each unique

hash value. I will relax this assumption later.

Sum of Intersect⇤ = (0 +
Cn

Sn
+ 0)

Sum of Union⇤ = (
Sr

Sn
+

Cn

Tn
+

Tr

Tn
).

JINF(S, T) =
Cn

Sn

Sr

Sn
+ Cn+Tr

Tn

=
Cn

Sn

Sr

Sn
+ Tn

Tn

=
Cn

Sn

Sr

Sn
+ 1

=
Cn

Sn

Sr+Sn

Sn

=
Cn

Sr + Sn

CommonRatio(S, T) =
Cn

Tn

Since Tn Sn, Tn (Sr + Sn). Therefore,
Cn

Tn
� Cn

Sr + Sn

JINF equals commonRatio only when Sr is 0. If I relax the assumption that each hash has only

one occurrence, the nominator part of JINF becomes smaller. Hence the proof is still valid.

76

Table 6.6: Two Images to Compare.

S T
s1 c1
s2 c2
... c3
sr ...
c1 ...
c2 cn
... t1
... t2
cn ...

tr

Table 6.7: Template for JINF(S, T) calculation.

S T Normalized (Min, Max)

Sr (0, Sr/Sn)

Cn Cn (Cn/Sn, Cn/Tn)

Tr (0, Tr/Tn)

77

6.10 Further analysis of JIWS

The similarity value of JINF(Source, Target) and JIWS(Source, Target) is 0.3043 and

0.4754, respectively. However, the JIWS (Source, TRGT33) value of 0.3913 is a better

result than the JINF (Source, TRGT33) value of 0.1304 for a sample image, TRGT33,

because the the gap ratio of JIWS is less than the one of JINF. My method explains

this well when I measure the similarity between the source and the sample image from the

source itself. The ideal similarity measuring method should return 1 as a perfect match.

My JINF method returns 1 when two same images are compared. Let’s say SRC10 is the

10 percent sample image of the source, Source. The subscript value 10 in SRC10 represents

the sample ratio. The JINF(Source, SRC10) value will be around 0.1.

However, the common ratio between SRC10 and Source should be 1.0 since all the

sectors of SRC10 are from Source. Since CommonRatio is 1.0, JIWS becomes 1.0 *[jinf +

1.0 * (1-jinf)] = 1.0. JIWS values for SRC5, SRC10, SRC20, SRC30, SRC40, SRC50 and

SRC75 with Source are all 1.0.

6.11 Result and validation

Table 6.8 shows JINF, CommonRatio (cr), and JIWS values between a December 3rd

whole image without OS sectors of Charlie and sample images from a couple daily images

of Charlie.

Figure 6.1 shows the JIWS between daily images of Charlie and Charlie’s 7 samples

of the December 3rd image. Figure 6.2 shows the enlarged peak view of Figure 6.1. Each

dot under the top solid line represents JIWS values of sampled images. The highest solid

line represents the JIWS between daily images of Charlie and December 3rd whole image

without OS sectors of Charlie. The middle connected dotted line shows the JINF between

daily images of Charlie and December 3rd whole image without OS sectors of Charlie. The

bottom solid line shows the JIWS between daily images of Charlie and December 3rd

whole image without OS sectors of Jo. Sampled images of Charlie reveal the higher value

78

Figure 6.1: JIWS and JINF between 7 samples of Charlie 12-03 and daily images of
Charlie.

79

Table 6.8: JIWS C12-03 with daily sampled images.
Day 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1

C11-12 jinf 0.0498 0.0777 0.1263 0.1685 0.2052 0.2382 0.3103 0.3785
cr 0.7907 0.7857 0.7790 0.7739 0.7697 0.7661 0.7593 0.7546
jiws 0.6334 0.6303 0.6286 0.6284 0.6289 0.6296 0.6332 0.63951

C11-23 jinf 0.0719 0.1152 0.1869 0.2482 0.2997 0.3503 0.4637 0.5907
cr 0.8317 0.8276 0.8205 0.8159 0.8118 0.8082 0.8017 0.7970
jiws 0.7019 0.7014 0.7008 0.7029 0.7049 0.7075 0.7164 0.7308

C12-02 jinf 0.0841 0.1321 0.2152 0.2871 0.3527 0.4168 0.5697 0.7588
cr 0.9195 0.9166 0.9125 0.9094 0.9068 0.9043 0.8985 0.8934
jiws 0.8518 0.8502 0.8498 0.8507 0.8521 0.8539 0.8593 0.8704

C12-03 jinf 0.0922 0.1473 0.2443 0.3315 0.4110 0.4931 0.6899 1
cr 1 1 1 1 1 1 1 1
jiws 1 1 1 1 1 1 1 1

C12-10 jinf 0.0738 0.1120 0.1748 0.2291 0.2740 0.3151 0.4040 0.4967
cr 0.764 0.7570 0.7511 0.7470 0.7444 0.7424 0.7386 0.7360
jiws 0.5970 0.5932 0.5968 0.6013 0.6062 0.6114 0.6236 0.6383

for JIWS than for the whole image of Jo of the same day.

Figure 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8 show the JIWS between daily images of Charlie

and two sample images of Nov-11, Nov-18, Nov-24, Dec-03, Dec-08 and Dec-11 of Charlie.

As a guide, the top solid line of every graph shows the JIWS between daily images of

Charlie and non-sampled images of the listed days of Charlie. The jiws C11 12 05 line in

the legend represents the result of JIWS with Charlie(C) 5% image on November 12th.

The bottom solid line shows the JIWS between daily images of Charlie and non-sampled

image from Dec 3rd image of Jo, which I choose as a known non-related image.

6.12 Conclusion

As we can see, most JIWS values with only a 5-percent sampled image of the Target image

follow the trajectory of JIWS(Source, Target). They distinguish with not-related images

and perform better than JINF. The sample images of Charlie on Nov-12, which is the

first day the M57 experiment, shows low performance. JIWS values between the sampled

images from the first day of Charlie and images after two weeks of use from Charlie, and

JIWS values between Dec 3rd image of Jo and images after two weeks of use from Charlie

80

Figure 6.2: Enlarged peak view of Figure 6.1.

are less distinguishable. I believe that this is because the sampled images of the first day

do not have much activity to distinguish themselves from other images.

81

Figure 6.3: JIWS between 2 samples of Charlie 11-12 and daily images of Charlie.

82

Figure 6.4: JIWS between 2 samples of Charlie 11-24 and daily images of Charlie.

83

Figure 6.5: JIWS between 2 samples of Charlie 11-24 and daily images of Charlie.

84

Figure 6.6: JIWS between 2 samples of Charlie 12-03 and daily images of Charlie.

85

Figure 6.7: JIWS between 2 samples of Charlie 12-08 and daily images of Charlie.

86

Figure 6.8: JIWS between 2 samples of Charlie 12-11 and daily images of Charlie.

87

Chapter 7: Parallel Computing Experiments

In this chapter, I introduce the ARGO parallel processing platform at George Mason Uni-

versity, and show how much I can gain in performance by using ARGO.

7.1 ARGO overview

The ARGO Cluster is a batch computing resource available to all faculty and their students

at George Mason University. It was assembled by Dell technicians during the week of March

11th, 2013 and consists of the following hardware:

• 2 Login nodes

– Dell PowerEdge R720, with Intel Xeon E5-2670

– 16 core CPUs, 1 TB hard drive, 64 GB RAM

• 2 ”Fat” nodes

– 2 Dell PowerEdge R815, with quad AMD Opteron 6276

– 64 core CPUs, 1 TB hard drive, 512 GB RAM

• 71 Dell Compute Nodes

– Dual Intel Xeon CPUs

– 16 to 28 cores, 64 GB to 1.5 TB RAM

• 10 GPU nodes

– 4 nodes with NVIDIA K80 GPUs (nodes 40,50,55 and 56).

∗ 12 GB onboard memory per GPU

88

∗ 24 core CPUs

∗ 128 to 512 GB RAM per node

– 6 nodes with NVIDIA V100 GPUs (nodes 76-81).

∗ 32 GB onboard memory per GPU

∗ 2 nodes have NVLink for fast GPU-to-GPU communication (nodes 77 and

79)

∗ 28 core CPUs

∗ 750 GB to 1.5 TB RAM per node

• Dell NSS PowerEdge R620 with 150 TB storage space.

• Interconnect networks are InfiniBand (for message passing), Gigabit Ethernet (for

I/O).

• 20 Gbit (bonded) external connections for each head node.

7.2 Simple linux utility for resource management

The Simple Linux Utility for Resource Management (Slurm) is an open source, fault-

tolerant, and highly scalable cluster management and job scheduling system for large and

small Linux clusters. It has similarities with the Sun Grid Engine Scheduler and the Univa

Grid Engine Scheduler, which were used previously on ARGO. It also shares similarities

with the open source resource manager known as TORQUE. The Slurm batch-queueing

system provides the mechanism by which all jobs are submitted to the ARGO Cluster and

are scheduled to run on the compute nodes. If we want to get the Jaccard index between

19 daily images of Charlie with 21 daily images of Pat, we assign 19 nodes in the Slurm

batch file and the same python code is executed at each node.

In reality, a job is killed by timeout or when it is short of memory. Instead of being

killed, it can be delayed by priority.

89

After all the jobs at every node are finished with or without success, the Slurm batch job

is executed again and it picks the leftover comparison at each node and continues until it is

completed or killed. We can repeat this steps until all the jobs are completed successfully.

7.3 Performance using ARGO

Each employee of M57 has an average of 20 daily images. For each day, 7 sampled images

are created. The total sample images of 4 employees are close to 600 and these sample

images are to be compared to 80 daily images, which requires 48000 calculations. In a

single computer environment, these calculations will take forever. Therefore, I used the

Slurm batch command in the ARGO parallel processing platform.

When a job starts at each node in ARGO, it recognizes its own node id and chooses the

corresponding day among Charlie’s 19 daily images. The selected daily image of Charlie will

be used a source image and the target list is built from Pat’s daily images. For example,

if node 10 chooses the Dec 1st image of Charlie as the source, JINF1(C12 � 01, P11 �

12), JINF2(C12 � 01, P11 � 16), JINF3(C12 � 01, P11 � 17)... and JINF21(C12 � 01, P12 � 10)

are calculated at node 10.

At every 19 nodes, 21 JINF are calculated. It takes an average of 20 minutes to calculate

the JINF between whole images. To finish a total of 399 JINF calculations, it takes around

7 hours in the ARGO platform. Otherwise, it will take 133 hours in a single machine.

90

Chapter 8: Jaccard Index with Split (JISPLIT)

In this chapter, I propose, develop, and test a method to parallelize the computation of an

existing digital media similarity measure called Jaccard Index with Normalized Frequency

(JINF) [57] and reduce the time to obtain a similarity measure. The proposed method

partitions the digital media under examination and distributes the computation across

multiple processors or systems, then combines the results into an overall similarity measure

which preserves the accuracy of the original method (JINF) when run on a single processor.

8.1 Overview of JISPLIT

To speed up computation as much as possible, I tried to split the target files into a number

of smaller files and tried to get the similarity measure between source images and small

target files. The proposed parallelization method splits the digital media of interest into N

equal partitions. Each partition is then distributed to a separate processor for computation

of the necessary precursor values for the JINF similarity measure.

This precursor operation is the most computationally intensive part of the JINFmethod,

as it requires operations over each sector of the media being compared. These precursor

values are then passed back to the central processing node, which aggregates the results

and computes the final similarity measure.

8.2 Parallel processing environment of JISPLIT

In order to distribute computing process to other cores on a laptop, the Pool class in the

Python multiprocessing library is normally used. Although this approach also works on a

cluster, it does not utilize the available computing power fully. For ARGO, up to 64 cores

91

Table 8.1: Layout of the split files: T1 and T2.

T1 T2
1 A 1 E
2 Z 2 F
3 Q 3 G
4 A 4 Y
5 B 5 Q
6 C 6 Y
7 D 7 Z

8 Z

are assigned to a job. I used a pool-like class, mpi4py library, which is very similar to the one

in the multiprocessing library. I set up an environment by using mpi4py and took advantage

of a larger number of cores. A Python Virtual Environment was created for the job and

Python modules are installed in the virtual environment. The MPIPoolExecutor.map()

function actually handles all the complexity of coordinating communications with workers,

farming out the di↵erent tasks, and then collecting the results.

8.3 Intuitive heuristics and its analysis

Let’s say Target is split into 10 small files, namely TRGTsp1 ,TRGTsp2 ,TRGTsp3 , ... TRGTspi

... and TRGTsp10 . Each TRGTspi can be regarded as an individual image for the calculation.

Initially, I divide the target media to roughly equal size and distribute the calculation of

JINF(Source, TRGTspi) to each core of ARGO. I expected that sum of all JINF(Source,

TRGTspi) values matches JINF(Source,Target) value.

Preliminary experiments established that the sum result of the JINF values from the

split files does not match the JINF(Source, Target), which is 0.3043, as shown in Table

6.4.

I analyzed the reason. I will explain the reason using the same Source and Target in

Table 6.1 as an example. I split Target into two split target files T1 and T2 as in Table

8.1. Hash frequencies of the two split files are shown in Table 8.2.

92

Table 8.2: Hash frequency of T1 and T2.

T1 T2
Hash Frequency Hash Frequency
A 2 E 1
B 1 F 1
C 1 G 1
D 1 Q 1
Q 1 Y 2
Z 1 Z 2

Now I will calculate JINF(Source, T1) and JINF(Source, T2), as shown in Table 8.3

and Table 8.4

The total sum of these two JINF values will be 0.22222 + 0.15 = 0.37222. But the

JINF(Source, Target) is 0.3043, as shown in Table 6.4. This discrepancy happens because

Hash Q and Hash Z are split into two di↵erent split files. When a hash is split into more

than one split target file, the Union* value of that hash cannot have the same Maximum

value that it does in the non-split JINF calculations. If I sum Union* from all pairs of

(Source, TRGTspi), the Union* value of the split hash is always less than the maximum

Union* value between (Source, Target), unless I split the file intelligently. What I want is

to have the same maximum value (23/15) as in Table 6.4 even after I sum Union* from all

pairs of (Source, TRGTspi).

However, if I sum the Int* values from all pairs of (Source, TRGTspi), the result will be

the same as the sum of Int* between Source and Target.

8.4 Solution for intuitive heuristics

To handle this issue, I have to do pre-processing and post-processing before and after using

the ARGO platform.

For the pre-processing step, I apply the panda groupby operation on the hash field, which

sorts the hash. This makes sure that when a split is done, the same hash has to be put in

93

Table 8.3: JINF(Source, T1).

Normalized Hash Count (Source, T1) Int* Union*
A: (1/15, 2/15) 1/15 2/15
B: (1/15, 1/15) 1/15 1/15
C: (1/15, 1/15) 1/15 1/15
D: (1/15, 1/15) 1/15 1/15
E: (1/15, 0) 0 1/15
F: (1/15, 0) 0 1/15
G: (1/15, 0) 0 1/15
H: (1/15, 0) 0 1/15
I: (2/15, 0) 0 2/15
J: (2/15, 0) 0 2/15
K: (3/15, 0) 0 3/15
Q: (0, 1/15) 0 1/15
Y: (0, 0) 0 0

Z: (0, 1/15) 0 1/15
Sum 4/15 18/15

JINF(Source, T1) = (4/15)
(18/15) = 0.2222

Table 8.4: JINF(Source, T2).

Normalized Hash Count (Source, T2) Int* Union*
A: (1/15, 0) 0 1/15
B: (1/15, 0) 0 1/15
C: (1/15, 0) 0 1/15
D: (1/15, 0) 0 1/15

E: (1/15, 1/15) 1/15 1/15
F: (1/15, 1/15) 1/15 1/15
G: (1/15, 1/15) 1/15 1/15
H: (1/15, 0) 0 1/15
I: (2/15, 0) 0 2/15
J: (2/15, 0) 0 2/15
K: (3/15, 0) 0 3/15
Q: (0, 1/15) 0 1/15
Y: (0, 2/15) 0 2/15
Z: (0, 2/15) 0 2/15

Sum 4/15 18/15

JINF(Source, T2) = (3/15)
(20/15) = 0.15

94

the same file. In the previous example, hash values Q and Z had to be either T1 or T2,

but not in both. Once the ARGO platform finishes the parallel processing for each pair of

(source, trgtspliti), each ARGO node will return a 2-tuple:

(valuei, {(h1, NF (h1)), (h2, NF (h2)), ..., (hk,NF (hk))}i)

where NF(h) is the normalized frequency of a hash, h, and k is the total number of

unique hashes assigned to each ARGO node i.

The first element in the tuple is the sum of Int* and the second element is the Union*

column, which is the last column as shown in Table 8.3 and 8.4.

One ARGO working node will be assigned for each pair of JINF(Source, TRGTspi)

calculation. Note that each working node does not complete the normal JINF calculation.

Instead, they return an intermediate result as a 2-tuple.

JISPLIT(Source, Target) =
final sum of Int⇤

final sum of Union⇤ (8.1)

final sum of Int⇤ =
NX

i=1

sum of Int* from each ARGO nodei. (8.2)

final sum of Union⇤ =
HX

j=1

Union ⇤j row from Final Union* column (8.3)

Where N is the number of split files and H is the number of unique hashes.

I add up all the sum of Int* and use this value as the numerator for the final JIS-

PLIT(Source, Target) calculation, which is straightforward.

For the denominator of the final JINF calculation, I construct the Final Union*

column using all of the Union* columns returned from each ARGO node.

The normalized frequency of each hash value, h, of the Final Union* column, is the

95

Table 8.5: Hash frequency and split files of Target.

Hash Freq Split file
A 2 Ta

B 1 Ta

C 1 Ta

D 1 Ta

E 1 Ta

F 1 Ta

G 1 Tb

Q 2 Tb

Y 2 Tb

Z 3 Tb

Max(NF (h)1, NF (h)2, ..., NF (h)H) where NF (h)i is the normalized frequency of a hash,

h, from ARGO node i.

I sum up all the rows of the Final Union* column and use it as the denominator of

the final JISPLIT(Source, Target).

8.5 Example of JISPLIT

We can take a look at the example for better understanding. I split the target into two

files: Ta and Tb after applying the groupby operation on the hash field of the Target. Table

8.5 shows the hash frequency and which hash belongs to which split file.

Let’s assume the working nodea of ARGO calculates JINF(Source, Ta) and the working

nodeb calculates JINF(Source, Tb).

Nodea will return 6/15 as the sum of Int* and the Union* column, which is the last

column of Table 8.6. Nodeb will return 1/15 as the sum of Int* and the Union* column

which is the last column of Table 8.7. The returned 2-tuple from Nodea will be (6/15,

{(A, 2/15), (B, 1/15), (C, 1/15), ... (K, 3/15))}). As a post processing, the nominator will

be the sum of (6/15, 1/15) which is 7/15. The Final Union* column is constructed as

shown in Table 8.8 by selecting the Max of two columns returned by each working node.

The denominator value is the sum of the Final Union* column, which is 23/15.

96

Table 8.6: JINF(Source, Ta).

Normalized Hash Count (Source, Ta) Int* Union*
A: (1/15, 2/15) 1/15 2/15
B: (1/15, 1/15) 1/15 1/15
C: (1/15, 1/15) 1/15 1/15
D: (1/15, 1/15) 1/15 1/15
E: (1/15, 1/15) 1/15 1/15
F: (1/15, 1/15) 1/15 1/15
G: (1/15, 0) 0 1/15
H: (1/15, 0) 0 1/15
I: (2/15, 0) 0 2/15
J: (2/15, 0) 0 2/15
K: (3/15, 0) 0 3/15
Q: (0, 0) 0 0
Y: (0, 0) 0 0
Z: (0, 0) 0 0
Sum 6/15

Table 8.7: JINF(Source, Tb).

Normalized Hash Count (Source, Tb) Int* Union*
A: (1/15, 0) 0 1/15
B: (1/15, 0) 0 1/15
C: (1/15, 0) 0 1/15
D: (1/15, 0) 0 1/15
E: (1/15, 0) 0 1/15
F: (1/15, 0) 0 1/15

G: (1/15, 1/15) 1/15 1/15
H: (1/15, 0) 0 1/15
I: (2/15, 0) 0 2/15
J: (2/15, 0) 0 2/15
K: (3/15, 0) 0 3/15
Q: (0, 2/15) 0 2/15
Y: (0, 2/15) 0 2/15
Z: (0, 3/15) 0 3/15

Sum 1/15

97

Table 8.8: Final Union* Column.

Hash Union* of Ta Union* of Tb Final Union* column
A 2/15 1/15 Max(2/15, 1/15) = 2/15
B 1/15 1/15 1/15
C 1/15 1/15 1/15
D 1/15 1/15 1/15
E 1/15 1/15 1/15
F 1/15 1/15 1/15
G 1/15 1/15 1/15
H 1/15 1/15 1/15
I 2/15 2/15 2/15
J 2/15 2/15 2/15
K 3/15 3/15 3/15
Q 0 2/15 2/15
Y 0 2/15 2/15
Z 0 3/15 3/15

Sum 1/15 22/15 23/15

JISPLIT will be 7/15
23/15 = 0.3043 which matches the JINF(Source, Target) value as

shown in Table 6.4.

8.6 Splitting both source and target

So far I have split the target file only. I can also split the source file. Table 8.9 also shows

how I split Source. I apply the same pre-processing step as I explained previously.

I need four working nodes of ARGO since there are 4 pairs of split file combination:

(Sa, Ta), (Sa, Tb), (Sb, Ta) and (Sb, Tb). Table 8.10, 8.11, 8.12 and 8.13 show the JINF

calculation for each combination.

Table 8.14 shows the return value of Int* from each working node. The sum 7/15 will

be used as a nominator of JISPLIT(Source, Target) calculation.

Table 8.15 shows the return Union* column from each working node. The sum 23/15

will be used as a denominator of JISPLIT(Source, Target) calculation. The final JISPLIT

result, found by splitting both Source and Target, matches the JINF(Source, Target) value

in Table ?? as well.

98

Table 8.9: Hash frequency and split files of Source.

Hash Frequency split file
A 1 Sa

B 1 Sa

C 1 Sa

D 1 Sa

E 1 Sa

F 1 Sb

G 1 Sb

H 1 Sb

I 2 Sb

J 2 Sb

K 3 Sb

Table 8.10: JINF(Sa, Ta).

Normalized hash frequency (Sa, Ta) Int* Union*
A: (1/15, 2/15) 1/15 2/15
B: (1/15, 1/15) 1/15 1/15
C: (1/15, 1/15) 1/15 1/15
D: (1/15, 1/15) 1/15 1/15
E: (1/15, 1/15) 1/15 1/15
F: (0, 1/15) 0 1/15

Sum 5/15

Table 8.11: JINF(Sb, Ta).

Normalized hash frequency (Sb, Ta) Int* Union*
A: (0, 2/15) 0 2/15
B: (0, 1/15) 0 1/15
C: (0, 1/15) 0 1/15
D: (0, 1/15) 0 1/15
E: (0, 1/15) 0 1/15

F: (1/15, 1/15) 1/15 1/15
G: (1/15, 0) 0 1/15
H: (1/15, 0) 0 1/15
I: (2/15, 0) 0 2/15
J: (2/15, 0) 0 2/15
K: (3/15, 0) 0 3/15

Sum 1/15

99

Table 8.12: JINF(Sa, Tb).

Normalized hash frequency (Sa, Tb) Int* Union*
A: (1/15, 0) 0 1/15
B: (1/15, 0) 0 1/15
C: (1/15, 0) 0 1/15
D: (1/15, 0) 0 1/15
E: (1/15, 0) 0 1/15
G: (0, 1/15) 0 1/15
Q: (0, 2/15) 0 2/15
Y: (0, 2/15) 0 2/15
Z: (0, 3/15) 0 3/15

Sum 0

Table 8.13: JINF(Sb, Tb).

Normalized hash frequency (Sb, Tb) Int* Union*
F: (1/15, 0) 0 1/15

G: (1/15, 1/15) 1/15 1/15
H: (1/15, 0) 0 1/15
I: (2/15, 0) 0 2/15
J: (2/15, 0) 0 2/15
K: (3/15, 0) 0 3/15
Q: (0, 2/15) 0 2/15
Y: (0, 2/15) 0 2/15
Z: (0, 3/15) 0 3/15

Sum 1/15

Table 8.14: Final Int* from 4 working ARGO nodes.

Pair of split files Int*
(Sa, Ta) 5/15
(Sb, Ta) 1/15
(Sa, Tb) 0/15
(Sb, Tb) 1/15
Sum 7/15

100

Table 8.15: Final Union* Column from 4 working ARGO nodes.

Hash U* (Sa Ta) U* (Sb Ta) U* (Sa Tb) U* (Sb Tb) Final U* column
A 2/15 2/15 1/15 N/A 2/15
B 1/15 1/15 1/15 N/A 1/15
C 1/15 1/15 1/15 N/A 1/15
D 1/15 1/15 1/15 N/A 1/15
E 1/15 1/15 1/15 N/A 1/15
F 1/15 1/15 1/15 1/15 1/15
G N/A 1/15 1/15 1/15 1/15
H N/A 1/15 1/15 1/15 1/15
I N/A 2/15 2/15 2/15 2/15
J N/A 2/15 2/15 2/15 2/15
K N/A 3/15 3/15 3/15 3/15
Q N/A N/A 2/15 2/15 2/15
Y N/A N/A 2/15 2/15 2/15
Z N/A N/A 3/15 3/15 3/15

Sum 23/15

8.7 Performance of JISPLIT

I measured the performance of JISPLIT in ARGO. For a 10 GB source file and a 10 GB

target file, the processing time improved around 15 percent, from 13 minutes to 11 minutes.

When I increased the number of Split files to more than a certain number, which depends on

the original size of pre-split file, it took more time compared to calculating JINF without

split. I believe that this is because of the pre- and post-processing overhead, which includes

multiple file access operations. For a 10 GB source file and a 40 GB target file, JISPLIT

shortens the processing time by about half (51% reduction), as shown in Table 8.16. To

calculate the JINF between two huge images in my implementation is computationally

intensive, especially with respect to the system memory. By partitioning the source and

target media into smaller sized files and by distributing the computation, I can reduce the

overall time to compute a similarity measure.

Even a single processor system can take advantage of my splitting method by calculating

piece-by-piece and then post-processing the piecemeal results without using the parallel

platform. By splitting the source and target to a manageable size and by giving it to a

101

Table 8.16: JISPLIT performance on ARGO platform.

No of target split files Processing time
1 22 min 15 sec
3 12 min 41 sec
6 10 min 49 sec
9 11 min 57 sec
12 12 min 29 sec
source: 10 GB, target: 40 GB

process such as ARGO working node, which does not require high-end specification, I can

improve the performance. The optimal number of splits for a certain sized hard disk image

is an area to be further researched. It may depends not only the size but also on the hash

layout.

8.8 Conclusion

In this chapter I showed how I can utilize parallel processing by splitting the images of

interest. And I proved that the combined partial JINF results from each processor matches

the single JINF value without splitting.

Experimental results provided as much as a 51% reduction in processing time. Pro-

cessing time reductions varied based on the number of splits chosen and the specific digital

media under examination, suggesting potential optimization strategies which I identified as

future work.

102

Chapter 9: Conclusions, Limitations, and Future Work

Conclusions

Early triage and prioritization of digital evidence is an important task for the forensics

analysts. The main goal of my research is to compute digital media image similarity to

enable e�cient triage and association discovery.

Most of the existing similarity measures work at the file level or the object level, while

my approach works at the sector level and hence is robust in the face of deleted and partially

overwritten data.

JINF is the first similarity method which compares hard disk images and provides more

than 98% accuracy when it was validated with 400 image pairs.

I provide a novel algorithm for computing digital media similarity, JINF, and two ex-

tensions which can improve performance: JIWS and JISPLIT. My digital media similarity

measure is based on a modified Jaccard index using sector hash values. My method has

three key di↵erences when compared to a basic Jaccard index calculation, specifically the

exclusion of a white list of low-entropy sectors, a hash frequency weight to account for con-

tent uniqueness (JIWF), and a normalization factor to allow for the accurate comparison

of media of di↵erent sizes (JINF). I validated the methods using disk images with known

similarity, and I confirmed the highest accuracy and discrimination using the full JINF

method.

The first performance extension, JIWS, samples media sectors instead of processing the

whole image. Even with as little as 5% of the whole image, this method provided satisfactory

results. To improve performance another way, I utilized parallel processing in my JISPLIT

method. By partitioning the input media intelligently, and making necessary adaptations

to re-combine the distributed results, I was able to reduce the computation time by up to

51%. JIWS can also utilize JISPLIT for more combined performance improvement.

103

I conclude that sector content comparisons, when appropriately computed, can provide

an accurate and fast measure of digital media similarity, which in turn can assist with digital

image triage decisions and link discovery across sources and entities.

Limitations

My approach may be vulnerable to a determined adversary willing to:

• Selectively delete and overwrite content in common with another digital device

• Plant false fragments to mislead the algorithm and examiner

• Wipe digital media at a low level

• Encrypt di↵erent media with unique keys

While these actions would severely limit the e↵ectiveness of my approach, the first two

require a considerable investment of time and skill on the adversary’s part, and may be

detectable after the fact. The last two items are e↵ective but would also be obvious to an

investigator, and so are more likely to lead to no result rather then false results. It should

also be noted that my method will work on compressed and encrypted files, as long as

the compression methods or encryption keys are the same across systems, and my method

will work on damaged media or partially recovered content, as I do not require file system

information.

Future work

Future research will expand the size of the validation test set, will confirm the utility of

the normalization factor, and will evaluate the speed and performance tradeo↵ of statistical

sampling. Practical and optimal partitioning schemes for the JISPLIT method will also

be investigated.

As digital forensics data volumes and velocities continue to grow, future work may

leverage and apply tools and methods from Big Data research to digital forensics. For

example, Hadoop is an open-source software framework used for storing and processing

Big Data in a distributed manner on large clusters of commodity hardware. Hadoop was

developed and based on the paper written by Google on the MapReduce system, and it

104

applies concepts of functional programming. Though I have not implemented the JINF,

JIWS, and JISPLIT methods in Big Data frameworks such as Hadoop or Spark, these

methods are suitable for Big Data approaches.

Other future work will give more weight to key sectors, where the criteria for key remains

to be determined, as well as incorporating the relative positions of matching sectors. Future

work will also consider using matching sectors to direct analysts to specific files or remnants

on a piece of digital media.

Moia et al. [31] researched common data which repeats over many files. Common data

which repeats over many files is less relevant from a forensic analyst perspective. When

similarity methods are applied, these data should be avoided. Common data can be gen-

erated by system processes, applications, or user actions. Those which are created by the

user are typically more meaningful to forensic analysts. It would be valuable information to

know the source and characteristics of these common sectors, and future work will investi-

gate how such knowledge might be incorporated into the similarity measures. Reducing less

meaningful common blocks also would improve the e�ciency and accuracy of any similarity

algorithm.

In my methods, OS sectors which are created by a clean OS install and sequence of

NULL bytes are used as a whitelist. These sectors are removed as a pre-processing step

before any similarity method. A deeper analysis of whitelisting may improve the algorithm’s

accuracy and e�ciency.

105

Appendix A: Data conversion

###

This appendix chapter explains how to convert

M57 data to vmdk files or hash files.

#

Author: Myeong L. Lim

mlim4@masonlive.gmu.edu

Nov, 2020

###

M57 daily images are located at:

http://downloads.digitalcorpora.org/corpora/scenarios/2009-m57-patents/drives-redacted/

Since the file format of these images are E01, I used FTK Imager Lite to convert E01 files

to img files.

From FTK Imager Lite, I add an E01 file to the evidence tree by choosing Add Evi-

dence Item with Image File option. After right-clicking the evidence item, I choose Export

Disk Image and click Add Button. After selecting the Raw(dd) option, type the case file

information. On the Select Image Destination page, set Image Fragment Size(MB) as 0.

To convert E01 file to vmdk file, I used the following command:

$ qemu-img convert -O vmdk file.E01 file.vmdk

To convert img file to a sector hash file, I used the following command:

$ md5deep -p 512 file.img > md5hash.txt

106

Appendix B: ARGO Slurm batch file for SPLIT batch job

###

This file is the Slurm batch file, which is used for

splitting source and target.

inputSplit.txt contains the list of source and target files.

Detailed information about ARGO can be found from:

http://wiki.orc.gmu.edu/index.php/About_ARGO

#

Author: Myeong L. Lim

mlim4@masonlive.gmu.edu

Nov, 2020

###

#!/bin/sh

Give your job a name to distinguish it from other jobs you run.

#SBATCH --job-name=mySplit

General partitions: all-HiPri, bigmem-HiPri -- (12 hour limit)

all-LoPri, bigmem-LoPri, gpuq (5 days limit)

Restricted: CDS_q, CS_q, STATS_q, HH_q, GA_q, ES_q, COS_q (10 day limit)

#SBATCH --partition=all-HiPri

Separate output and error messages into 2 files.

NOTE: %u=userID, %x=jobName, %N=nodeID, %j=jobID, %A=arrayID, %a=arrayTaskID

107

#SBATCH --output=/scratch/%u/%x/%x-%N-%j.out # Output file

#SBATCH --error=/scratch/%u/%x/%x-%N-%j.err # Error file

##SBATCH --output=/scratch/%u/%x-%N-%j.out # Output file

##SBATCH --error=/scratch/%u/%x-%N-%j.err # Error file

Slurm can send you updates via email

#SBATCH --mail-type=BEGIN,END,FAIL # ALL,NONE,BEGIN,END,FAIL,REQUEUE,..

#SBATCH --mail-user=mlim4@gmu.edu # Put your GMU email address here

Specify how much memory your job needs. (2G is the default)

#SBATCH --mem=25G # Total memory needed per task (units: K,M,G,T)

Specify how much time your job needs. (default: see partition above)

##SBATCH --time=0-11:50 # Total time needed for job: Days-Hours:Minutes

#SBATCH --time=0-02:00

#SBATCH --ntasks=51 # 50 workers, 1 manager

C:19, J:21, P:18, T:20

C_SNo:126, P_SNo : 119

####SBATCH --array=1-497

Load the relevant modules needed for the job

module load openmpi/4.0.0

module load python/3.7.4

source ~/MPIpool/bin/activate

108

Run your program or script

mpirun -np $SLURM_NTASKS python -m mpi4py.futures mySplit.py X inputSplit.txt

109

Appendix C: Slurm batch file input: inputSplit.txt

###

inputSplit.txt

#-------------------------------

This file is used as an input file for Slurm batch.

Each csv file from SRC and TRGT will be made as a pair

and then sent to ARGO working node.

#

Author: Myeong L. Lim

mlim4@masonlive.gmu.edu

Nov, 2020

###

SRC

/projects/jjones/mlim4/M57/CSVFrImageNoOS/C/c11_12_NoOS.csv

/projects/jjones/mlim4/M57/CSVFrImageNoOS/C/c11_16_NoOS.csv

/projects/jjones/mlim4/M57/CSVFrImageNoOS/C/c11_17_NoOS.csv

/projects/jjones/mlim4/M57/CSVFrImageNoOS/C/c11_18_NoOS.csv

/projects/jjones/mlim4/M57/CSVFrImageNoOS/C/c11_19_NoOS.csv

/projects/jjones/mlim4/M57/CSVFrImageNoOS/C/c11_20_NoOS.csv

/projects/jjones/mlim4/M57/CSVFrImageNoOS/C/c11_23_NoOS.csv

TRGT

/projects/jjones/mlim4/M57/CSVFrImageNoOS/P/p11_12_NoOS.csv

/projects/jjones/mlim4/M57/CSVFrImageNoOS/P/p11_16_NoOS.csv

/projects/jjones/mlim4/M57/CSVFrImageNoOS/P/p11_17_NoOS.csv

/projects/jjones/mlim4/M57/CSVFrImageNoOS/P/p11_18_NoOS.csv

/projects/jjones/mlim4/M57/CSVFrImageNoOS/P/p11_19_NoOS.csv

/projects/jjones/mlim4/M57/CSVFrImageNoOS/P/p11_20_NoOS.csv

110

/projects/jjones/mlim4/M57/CSVFrImageNoOS/P/p11_23_NoOS.csv

/projects/jjones/mlim4/M57/CSVFrImageNoOS/P/p11_24_NoOS.csv

111

Appendix D: Python code for mySplit.py

###

This program implements JISPLIT method.

JISPLIT (Source, Target)

Source is split into (S1, S2 ... Sn)

Target is split into (T1, T2 ... Tm)

#--

It reads the split source and split target list:

(S1, S2..Sn) and (T1, T2..Tm).

It makes a pair (Si, Tj) from the source and target list.

Sends each pair to an ARGO working node.

Collects the intermediate outputs from each

working node and does the final calculation for JISPLIT.

Core subroutine is in splitJaccardMain.py

getJaccardIndexBetweenSrcAndTrgtSplitFile()

#

Author: Myeong L. Lim

mlim4@masonlive.gmu.edu

Nov, 2020

###

MPIpool.py

from mpi4py.futures import MPIPoolExecutor

import math

import textwrap

from datetime import datetime

112

import os

import sys

from pathlib import Path

import jaccardMain as jm

import splitJaccardMain as sp

import util as utl

import pandas as pd

from subprocess import call

#Md5Csv=’/projects/jjones/mlim4/M57/Md5Csv/’

Md5Csv=’/projects/jjones/mlim4/M57/CSVFrImageNoOS/’

SampleWithOS=’/projects/jjones/mlim4/M57/SampleWithOS/’

SampleNoOS=’/projects/jjones/mlim4/M57/SampleNoOS/’

#

C_Days is a Dictionary : "SLURM_ARRAY_TASK_ID" will be the key

#

Days dictionary

src_Days = []

targetList = []

targetSumDict = {} # target List element will be Key

splitToTrgtMap = {}

#======================================

input file format

113

#==

SRC

sfilename1

sfilename2

TRGT

tfilename1

tfilename3

#=======================================

Main()

#----------------------------

#==

python mySplit.py opt paramFile

opt = X

#==

def Main():

set up Src_Days and targetSplitList

if processCommandArgs() == False:

return

maxSplit = 15

forceSplit = True

print("src_Days\n")

print(src_Days)

print("targetList\n")

for t in targetList:

114

print(t)

if forceSplit :

for src in src_Days:

for trgt in targetList:

if cleanSplitAndMinMaxFolders(src, trgt) == False:

return

create split files from all target files

bResult, splitBaseDirList =

createSplitFilesFromTargetList(maxSplit, forceSplit)

dumpSplitBaseDirList(splitBaseDirList)

if bResult == False:

return

dumpTargetSumDict()

#---------------------------------------

if you want to manually set up Src_Days and targetList

set here

src_Days

targetList : Dictionary

#---------------------------------------

split the target list into subranges

subranges = [(1,10),(10,20)..]

115

#i in this program actual subrange will be :

subranges = [(1,1),(2,2)..]

for src in src_Days:

for trgtPath in splitBaseDirList:

start = datetime.now() # for calc

trgtBaseDirName = os.path.basename(os.path.normpath(trgtPath))

srcBaseName= os.path.basename(src)

splitKey = srcBaseName + ’, ’+ trgtBaseDirName +’.csv’

split files are under trgtPath

subranges = determine_subranges(src, trgtPath)

dumpSubranges(subranges)

utl.printTimeWithInfoString

(" executor is calling ("+srcBaseName+’, ’+trgtBaseDirName +")")

executor = MPIPoolExecutor()

JI_sets = executor.map(calc_JI_Split, subranges)

executor.shutdown()

utl.printTimeWithInfoString

("executor.map is done ... JI_sets :\n")

jiwsSum = 0.0

jinfSum = 0.0

crSum = 0.0

splitCount = 0

jiwsList=[]

jinfList=[]

crList=[]

116

primes = [p for plist in prime_sets for p in plist]

flatten = [p for plist in JI_sets for p in plist]

print(’flatten’)

print(flatten)

’’’

print(’plist’)

for plist in JI_sets :

print(plist)

#print(JI_sets)

x = next(JI_sets)

print(x)

’’’

for jiInfo in flatten:

utl.printTimeWithInfoString

(str(splitCount)+ ’: jiInfo\n’)

idx = jiInfo.find(’jiws=’)

idx1 = jiInfo[idx+6:].find(’,’)

jiwsSplit =jiInfo[idx+6: idx+6 + idx1]

print(jiwsSplit)

jiwsList.append(jiwsSplit)

jiwsSum = jiwsSum + float(jiwsSplit)

idx = jiInfo.find(’jinf=’)

idx1 = jiInfo[idx+6:].find(’,’)

117

jinfSplit = jiInfo[idx+6: idx+6+idx1]

jinfList.append(jinfSplit)

jinfSum = jinfSum + float(jinfSplit)

idx = jiInfo.find(’comRatio=’)

idx1 = jiInfo[idx+10:].find(’,’)

crSplit =jiInfo[idx+10: idx+10+idx1]

crList.append(crSplit)

crSum = crSum + float(crSplit)

splitCount = splitCount + 1

jiSplitFinal = ’JISPLIT(’ +splitKey +’:’+str(jinfSum/splitCount)

’JISPLIT(’+splitKey +’) jinfSum’ + str(jinfSum) + ’, jiwsAvg’

+ str(jiwsSum/splitCount)+’: comRatioAvg’+str(crSum/splitCount)

jiwsListString= " ".join(str(x)+’,’ for x in jiwsList)

jinfListString= " ".join(str(x)+’,’ for x in jinfList)

crListString= " ".join(str(x)+’,’ for x in crList)

jiwsListFinal =’JIWS_LIST(’+splitKey +’)=[’ + jiwsListString +’]’

jiwsListFinal =jiwsListFinal.replace(’,]’, ’]’)

jinfListFinal =’JINF_LIST(’+splitKey+’)=[’ + jinfListString +’]’

jinfListFinal =jinfListFinal.replace(’,]’,’]’)

crListFinal =’COMRATIO_LIST(’+splitKey+’)=[’ + crListString +’]’

crListFinal = crListFinal.replace(’,]’, ’]’)

jm.saveFinalJaccardSplitIndexToFile(jiSplitFinal)

jm.saveFinalJaccardSplitIndexToFile(jiwsListFinal)

jm.saveFinalJaccardSplitIndexToFile(jinfListFinal)

jm.saveFinalJaccardSplitIndexToFile(crListFinal)

utl.printTimeWithInfoString(jiSplitFinal)

118

utl.printTimeWithInfoString(jiwsListFinal)

utl.printTimeWithInfoString(jinfListFinal)

utl.printTimeWithInfoString(crListFinal)

sp.readMinMaxFileAndGetJisplit(src, trgtPath)

end = datetime.now() # calc for one pair(src,target)

hours, minutes, seconds = sp.calcDuration(end, start)

timeString =

"{:2.0f} hr, {:2.0f}min, {:3.1f}sec".format(hours,minutes,seconds)

utl.printTimeWithInfoString(splitKey + ’:’ + timeString)

#==

def cleanSplitAndMinMaxFolders(srcfile, trgtfile)

#--

def cleanSplitAndMinMaxFolders(srcfile, trgtfile):

splitDirName = getSplitDir(trgtfile)

#call("cd " + splitDirName +"; rm *", shell=True)

if splitDirName == "" :

utl.printTimeWithInfoString

("<<<ERROR>> check the directory for input file:" + trgtfile)

return False

list = listOfCSVFiles(splitDirName)

if len(list) > 0 :

utl.printTimeWithInfoString

("<<<ERROR>> remove files from splitDirName =" + splitDirName)

return False

119

minMaxDir = sp.getMinMaxDirNames(srcfile, trgtfile)

list = listOfCSVFiles(minMaxDir)

if len(list) > 0 :

utl.printTimeWithInfoString

("<<<ERROR>> remove files from minMaxDir =" + minMaxDir)

return False

return True

#==

def readSourceAndTargetList(inFullFile)

#--

def readSourceAndTargetList(inFullFile):

with open(inFullFile, ’r’) as paramF:

Lines = paramF.readlines()

state = ’N’ # none

src_cnt = 1

trgt_cnt = 1

for line in Lines :

if state ==’N’ and line.find(’SRC’)>= 0 :

state = ’S’ # Source

continue

if state ==’S’ and line.find(’TRGT’)< 0 :

src_Days.append(line.rstrip(’\n’))

src_cnt = src_cnt + 1

if state ==’S’ and line.find(’TRGT’)>= 0 :

state = ’T’ # Trgt

120

continue

if state ==’T’ and line.find(’EXCLUDE’) < 0:

#targetSplitList[trgt_cnt] = line.rstrip(’\n’)

targetList.append(line.rstrip(’\n’))

trgt_cnt = trgt_cnt + 1

if state ==’T’ and line.find(’EXCLUDE’) >= 0:

state = ’X’ # Trgt

continue

if state ==’X’ and line.find(’EXCLUDE’) < 0:

targExcludeList.append(line.rstrip(’\n’)) # Exclude

trgtExclude_cnt = trgtExclude_cnt + 1

#==

def listOfCSVFiles(path)

#--

def listOfCSVFiles(path):

r=root, d=directories, f = files

files = []

for r, d, f in os.walk(path):

for file in f:

if ’.csv’ in file:

files.append(os.path.join(r, file))

return files

121

#==

def dictOfSplitFiles(path)

#--

def dictOfSplitFiles(path):

r=root, d=directories, f = files

dictSplit={}

cnt =0

fileCnt = 0

singlefile =’’

for r, d, f in os.walk(path):

for file in f:

utl.printTimeWithInfoString

("dictOfSplitFiles . file found : " + file)

if ’_split’ in file:

dictSplit[cnt] = os.path.join(r, file)

cnt = cnt + 1

fileCnt = fileCnt + 1

else:

singlefile = os.path.join(r, file)

fileCnt = fileCnt + 1

if cnt == 0 and fileCnt == 1 :

check if single file without ’_split’ in the file name

dictSplit[cnt] = singlefile

else:

utl.printTimeWithInfoString

("<<WARNING>> check the directory for split files:" + path)

122

return dictSplit

def dumpSplitDict(splitDict):

print("===== dumpSplitDict ===== length =" + str(len(splitDict)))

for k in splitDict.keys():

print(str(k) +":" + splitDict[k])

#==

def determine_subranges(src, trgtPath)

#--

def determine_subranges(src, trgtPath):

print("d_s: trgtPath:" + trgtPath)

trgtSum = targetSumDict[trgtPath]

subranges = []

splitDict = dictOfSplitFiles(trgtPath)

print("d_s: after dictOfSplitFiles")

dumpSplitDict(splitDict)

for k in splitDict.keys():

subranges.append((src, [splitDict[k], trgtSum]))

return(subranges)

#==

def splitLengthIntoRanges(length, noSplit)

#--

def splitLengthIntoRanges(length, noSplit):

intervalList =[]

123

interval = length // noSplit

cummulatedInterval = 0

for i in range(noSplit):

intervalList.append(cummulatedInterval)

cummulatedInterval = cummulatedInterval + interval

print(intervalList)

return intervalList

#==

def checkSplitFileExist(path)

#--

def checkSplitFileExist(path):

if len(listOfCSVFiles(path)) == 0:

return False

return True

#==

def checkSplitFileExist(path)

#--

Split the taget file and save them to destDir

#--

def splitTarget(trgtFile, destDir, noSplit, force):

colNames = [’hash’, ’offset’]

df = pd.read_csv(trgtFile, names=colNames, header=None, sep=’,’)

124

trgtGrpDict = df.groupby([’hash’]).groups

sumTrgt = df[’hash’].count()

bFileExist = checkSplitFileExist(destDir)

if force == True and bFileExist:

utl.printTimeWithInfoString

("Split files already exist in " + destDir)

utl.printTimeWithInfoString

("<WARNING> Either set ’forceSplit’ to False

or clean directory: {}".format(destDir))

return -1

if force != True and checkSplitFileExist(destDir):

utl.printTimeWithInfoString

("Using Split files which are already exist in " + destDir)

return sumTrgt

intervalList = splitLengthIntoRanges(sumTrgt, noSplit)

print("===== ST:intervalList ======")

print(intervalList)

print("===== ST: noSplit =" + str(noSplit))

totalNoDicts = 0

splitDictList =[]

for i in range(noSplit):

strt = intervalList[i]

if i < noSplit-1 :

end = intervalList[i + 1]

curDict = dict(list(trgtGrpDict.items())[strt:end])

125

if len(curDict.keys()) != 0 :

splitDictList.append(curDict)

totalNoDicts = totalNoDicts + 1

print(str(i) + ":totalNoDict=" + str(totalNoDicts) +

" cond1(" + str(strt) + ":" +

str(end) +") length=" + str(len(curDict)))

else:

print(str(i) + " Breaking out:totalNoDict=" +

str(totalNoDicts) + " cond1(" + str(strt) +

":" + str(end) +") length=" + str(len(curDict)))

break

else:

curDict = dict(list(trgtGrpDict.items())[strt:])

if len(curDict.keys()) != 0 :

splitDictList.append(curDict)

totalNoDicts = totalNoDicts + 1

print(str(i)+":* totalNoDict="+str(totalNoDicts)+

" cond2("+str(strt)+":) length="+str(len(curDict)))

else:

print(str(i) + ": Breaking out ** totalNoDict=" +

str(totalNoDicts)+" cond2("+str(strt)+ ":) len="+

str(len(curDict)))

break

#print("ST: i=" + str(i) + " --curDict dump ---")

#print(curDict)

no of dictionary can be made less than the noSplit

’’’

126

if len(curDict.keys()) != 0 :

splitDictList.append(curDict)

else:

break

’’’

print(" --ST: totalNoDicts ---" + str(totalNoDicts))

#dumpSplitDictList(splitDictList)

start = datetime.now() # for calc

trgtBasename = os.path.basename(trgtFile)

for i in range(totalNoDicts) :

trgtBasename = trgtBasename.replace(’.csv’,’’)

splitFName = trgtBasename + ’_split_’ + str(i) +’.csv’

splitFileName = Path(destDir) / splitFName

splitToTrgtMap[splitFileName]= trgtFile

print(str(i)+": createSplitFile called with "+str(splitFileName))

createSplitFile(splitFileName, splitDictList[i])

return sumTrgt

#==

def createSplitFile(splitFileName, dict)

#--

def createSplitFile(splitFileName, dict):

start = datetime.now()

with open(splitFileName, ’w’) as splitF:

127

for key, val in dict.items():

for v in val:

splitF.write(key+’,’+ str(v) +’\n’)

end = datetime.now()

hours, minutes, seconds = sp.calcDuration(end, start)

timeString =

"{:2.0f}hr, {:2.0f}min, {:3.1f}sec".format(hours, minutes, seconds)

#timeString =

str(hours) +"hr " + str(minutes) +"min, " + str(seconds) + "sec"

utl.printTimeWithInfoString

("Split file: "+str(splitFileName)+" created. Time : "+timeString)

return

#==

def getSplitDir(t)

#--

def getSplitDir(t):

print(t)

baseDir = os.path.splitext(t)[0]

if baseDir.find(’CSVFrImageNoOS’) > 0 :

baseDir = baseDir.replace(’CSVFrImageNoOS’ ,’SPLIT’)

return baseDir

else:

utl.printTimeWithInfoString

("Error: File is not under CSVFrImageNoOS .")

return ""

128

#==

def createSplitFilesFromTargetList(maxSplit, force)

#--

def createSplitFilesFromTargetList(maxSplit, force):

create SPLIT files under

utl.printTimeWithInfoString(" Split files ... starting.")

splitBaseDirList = []

for t in targetList:

print(t)

baseDir = getSplitDir(t)

if baseDir == "" :

return False, []

utl.createDirIfNotExist(baseDir)

sum = splitTarget(t, baseDir, maxSplit, force)

if sum < 0 :

utl.printTimeWithInfoString

("<<WARNING>> splitTarget returns sum LE 0. return False.")

return False, []

targetSumDict[baseDir] = sum

utl.printTimeWithInfoString

("targetSumDict["+baseDir+"] =" + str(sum))

splitBaseDirList.append(baseDir)

utl.printTimeWithInfoString(" Split files ... end.")

#dumpTargetSumDict()

return True, splitBaseDirList

#==

129

def dumpSplitDictList(splitDictList)

#--

def dumpSplitDictList(splitDictList):

print("= splitDictList =length :" + str(len(splitDictList)))

for e in splitDictList:

print(e)

#==

def dumpSubranges(subranges)

#--

def dumpSubranges(subranges):

print("=== subranges === length :" + str(len(subranges)))

for e in subranges:

print(e)

#==

def dumpTargetSumDict()

#--

def dumpTargetSumDict():

print("=== targetSumDict === length :" + str(len(targetSumDict)))

for e in targetSumDict:

print(e)

#==

def dumpSplitBaseDirList(splitBaseDirList)

#--

130

def dumpSplitBaseDirList(splitBaseDirList):

print("=== splitBaseDirList === length :" + str(len(splitBaseDirList)))

for e in splitBaseDirList:

print(e)

#==

def calc_JI_Split(range_tuple)

#--

range tuple will have (src, split_target)

#----------------------------

def calc_JI_Split(range_tuple):

f1, f2_list = range_tuple

f2 = f2_list[0]

trgtSum = f2_list[1]

utl.printTimeWithInfoString

(os.path.basename(f1) +’,’+os.path.basename(f2)+’:begin calc_JI_Split’)

#jiInfoList =[]

#jiSplitInfo = []

#jiSplitInfo.append(calcOneJi(f1, f2))

#jiInfoList.append(jiSplitInfo)

’’’

if type(jiSplitInfo) is list:

jiInfoString = " ".join(str(x) for x in jiSplitInfo)

utl.printTimeWithInfoString

(’jiSplitInfo(list):’ + jiInfoString)

else:

131

utl.printTimeWithInfoString

(’jiSplitInfo:’ + jiSplitInfo)

’’’

utl.printTimeWithInfoString(".....ending calc_JI_Split ")

return calcOneJi(f1, f2, trgtSum)

#==

def processCommandArgs()

#--

def processCommandArgs():

if len(sys.argv) != 3 :

utl.printTimeWithInfoString

("Requires inputFile to read. usage:’mySplit.py X fName’")

return False

if sys.argv[1] == ’X’: # we use Slurm

if Path(sys.argv[2]).is_file():

readSourceAndTargetList(sys.argv[2])

else :

utl.printTimeWithInfoString

(sys.argv[2] + " is not a file or does not exist.")

return False

else :

utl.printTimeWithInfoString

("Override option ’X’ or ’Y’ is the only option.")

return False

utl.printTimeWithInfoString("argc={},argv={} {}".

132

format(str(len(sys.argv)),sys.argv[1],sys.argv[2]))

return True

#==

def calcOneJi(f1, f2, totalF2)

f1 and f2 are fullPath file name

#--

def calcOneJi(f1, f2, totalF2):

if utl.JI_SplitAlreadyCalculated

(os.path.basename(f1), os.path.basename(f2)) :

utl.printTimeWithInfoString

(os.path.basename(f1)+’,’+os.path.basename(f2)+’:already created’)

return ’Already Calculated’

else:

#totalF2 = 8498819

#totalF2 = 15

trgtName = splitToTrgtMap[f2]

totalF2 = sumTrgtDict[trgtName]

#print(’trgtname =’+trgtName+’, sumFrDict=’+str(sumTrgtDict[trgtName]))

ji_Info=sp.getJaccardIndexBetweenSrcAndTrgtSplitFile(f1,f2,totalF2)

utl.printTimeWithInfoString

(os.path.basename(f1) +’,’ + os.path.basename(f2) + ’: ends’)

jm.dumpJaccardIndex()

return ji_Info

133

if __name__ == ’__main__’:

Main()

134

Appendix E: Python code for jaccardMain.py

###

This program implements JINF method.

JINF (Source, Target).

#--

It can read several Source images

and multiple Target images.

(Source_1, Source_2 ... Source_k)

(Target_1, Target_2 ... Target_n)

#--

It reads the source and target lists.

It makes a pair from source and target list.

Sends each pair to an ARGO working node.

Each working node individually calculates

the JINF for each pair.

#

Author: Myeong L. Lim

mlim4@masonlive.gmu.edu

Nov, 2020

###

import numpy as np

import pandas as pd

import ntpath

import time

from datetime import datetime

from time import gmtime, strftime

135

import util

import os

#==

def MinMaxFind(n1, n2)

#--

def MinMaxFind(n1, n2):

if (n1 < n2):

return n1, n2

else:

return n2, n1

#==

def path_leaf(path)

#--

def path_leaf(path):

head, tail = ntpath.split(path)

return tail or ntpath.basename(head)

jaccard = {}

#==

def getSizeAdjustFactor(sum1, sum2)

#--

def getSizeAdjustFactor(sum1, sum2) :

if (sum1 > sum2):

factor1 = 1.0

136

factor2 = sum1 / sum2

else:

factor1 = sum2 / sum1

factor2 = 1.0

return factor1, factor2

#==

def getJaccardIndexBetweenTwoWithSampleAndRatioAdjust

(srcfile, trgtFile, idxSlurm):

JIWS with sample

#--

def getJaccardIndexBetweenTwoWithSampleAndRatioAdjust

(srcfile, trgtFile, idxSlurm):

start = datetime.now() # for calc

startTimeForDisplay = time.strftime("%c") # for display

Load spreadsheet

colNames = [’hash’, ’offset’]

src = pd.read_csv(srcfile, names=colNames, header=None, sep=’,’)

trgt = pd.read_csv(trgtFile, names=colNames, header=None, sep=’,’)

df = pd.concat([src, trgt], names=[’h1’, ’h2’], axis=1)

print(src)

print (src[’hash’])

df2 = pd.concat([src[’hash’], trgt[’hash’]], axis=1)

df2.columns = [’h1’, ’h2’]

137

print(df2.columns)

print(df2)

print(df2[’h1’].count())

h1grp = df2.groupby([’h1’]).groups

sumGrp1 = df2[’h1’].count()

#print(" Group 1 done.")

h2grp = df2.groupby([’h2’]).groups

sumGrp2 = df2[’h2’].count()

#print(" Group 2 done.")

ratioDict1 = {}

ratioDict2 = {}

get size adjust factor

factor1, factor2 = getSizeAdjustFactor(sumGrp1, sumGrp2)

total_1_factored = sumGrp1 * factor1

total_2_factored = sumGrp2 * factor2

cntD1_factored = {}

cntD2_factored = {}

ratioDict1[key] is a list []

after this

ratioDict1[key][0] will contain

(src count of unique hash) * factor1 / total_1_factored

after next for loop,

ratioDict2[key][0] will contain

(trgt count of unique hash) * factor2 / total_2_factored

138

eventually

ratioDict1[key][1] will contain

(trgt count of unique hash) * factor2 / total_2_factored

ratioDict1[key][0] and ratioDict1[key][1]

will be used to calc MinMax.

for key in h1grp.keys():

cntD1_factored[key] = factor1 * len(h1grp[key])

#print("h1 key ={}: **len {}".format(key, len(h1grp[key])))

ratioDict1[key] = [cntD1_factored[key] / total_1_factored]

Entrophy

print("== Ratio Dict 1")

print(ratioDict1)

commonUniqCnt = 0

commonTotalCntFactored1 = 0

commonTotalCntFactored2 = 0

for key in h2grp:

cntD2_factored[key] = factor2 * len(h2grp[key])

print("h2 key ={}: *** len {}".format(key, len(h2grp[key])))

print("{}: {}".format(key, len(h2grp[key])))

dict2[key] = [len(h2grp[key])]

give the adjusted count of each hash

ratioDict2[key] = [cntD2_factored[key] / total_2_factored]

if key in ratioDict1.keys(): # common key

commonUniqCnt = commonUniqCnt + 1

commonTotalCntFactored1 = commonTotalCntFactored1 +

cntD1_factored[key]

commonTotalCntFactored2 = commonTotalCntFactored2 +

139

cntD2_factored[key]

print("{} :: {}".format(key, len(dict1[key])))

ratioDict1[key].append(ratioDict2[key][0]) #

else: # src does not have key, so set it as 0

ratioDict1[key] = [0, ratioDict2[key][0]]

By now, rD1[h0] has only one element.

src(h0 = 1, h1 =1) trgt(h1 = 2, h2 =2)

rD1[h0] = [1]

rD1[h1] = [1,2] rD2[h1]=[2]

rD1[h2] = [0,2] rD2[h2]=[2]

make rD1[h0] = [1, 0] in the following loop by appending 0

#

minSum = 0

maxSum = 0

minSumEnt = 0

maxSumEnt = 0

for key in ratioDict1.keys():

if len(ratioDict1[key]) == 1:

print(" h3 key {}: {}".format(key, ratioDict1[key]))

ratioDict1[key].append(0)

ratioDict2[key] = 0.0

min, max = MinMaxFind(ratioDict1[key][0], ratioDict1[key][1])

if key in h1grp.keys() and key in h2grp.keys() :

minEnt, maxEnt =

MinMaxFind(ratioDict1[key][0]/len(h1grp[key]),

140

ratioDict1[key][1]/len(h2grp[key]))

elif key in h1grp.keys() and key not in h2grp.keys() :

minEnt, maxEnt =

MinMaxFind(ratioDict1[key][0] / len(h1grp[key]), 0)

elif key not in h1grp.keys() and key in h2grp.keys() :

minEnt, maxEnt =

MinMaxFind(0, ratioDict1[key][1]/len(h2grp[key]))

print("key={}(min, Max)=({}, {}),(minEnt, MaxEnt)=({}, {})".

format(key, min, max, minEnt, maxEnt))

minSum = minSum + min

maxSum = maxSum + max

minSumEnt = minSumEnt + minEnt

maxSumEnt = maxSumEnt + maxEnt

print("min =" + str(min) + ", max =" + str(max))

jinf = minSum / maxSum

jinfEnt = minSumEnt / maxSumEnt

but ratioDict1 has all the keys from both(source and target)

srcUniqKeysSum = len(h1grp.keys())

trgtUniqKeysSum = len(h2grp.keys())

if (factor1 > factor2):

commonRatio = commonUniqCnt / srcUniqKeysSum

commonTotalRatioFactored=commonTotalCntFactored1/total_1_factored

print("Common ratio from src")

else:

commonRatio = commonUniqCnt / trgtUniqKeysSum

141

commonTotalRatioFactored=commonTotalCntFactored2/total_2_factored

print("Common ratio from trgt")

jaccardkey = (path_leaf(srcfile), path_leaf(trgtFile))

print(’commonCnt =’ + str(commonUniqCnt) + ’, srcUniqKeysSum =’ +

str(srcUniqKeysSum) + ’, trgtUniqKeysSum =’ + str(trgtUniqKeysSum))

end = datetime.now()

duration = end - start

duration_in_s = duration.total_seconds()

hours = divmod(duration_in_s, 3600)[0]

minutes = divmod(duration_in_s, 60)[0]

seconds = divmod(duration_in_s, 60)[1]

strftime("%Y-%m-%d %H:%M:%S", gmtime())

jiws = commonRatio * (commonRatio * (1 - jinf) + jinf)

jiws_ENT = commonRatio * (commonRatio * (1 - jinfEnt) + jinfEnt)

sJiws = str(’{:05.5f}’.format(jiws))

sJiws_ENT = str(’{:05.5f}’.format(jiws_ENT))

sCommonRatio = str(’{:05.5f}’.format(commonRatio))

sJinf = str(’{:05.5f}’.format(jinf))

sJinfEnt = str(’{:05.5f}’.format(jinfEnt))

jiInfoString =

’jiws= {},jiws_ENT= {},comRatio= {},jinf= {},jinfEnt = {}’.format(

sJiws, sJiws_ENT, sCommonRatio, sJinf, sJinfEnt)

minuteString = ’{:3.0f}’.format(minutes)

142

secondString = ’{:3.0f}’.format(seconds)

keyCountString = ’srcUniqueCount=’ + str(srcUniqKeysSum) +

’, trgtUniqueCount=’ + str(trgtUniqKeysSum) +

’, comUniqueCount=’ + str(commonUniqCnt)

sCommonTotalRatioFactored = ’{:05.5f}’.format(commonTotalRatioFactored)

keyTotalCountString = ’srcTotalFactored=’+str(int(total_1_factored))+

’, trgtTotalFactored=’ + str(int(total_2_factored)) +

’, comTotalFactored_1=’ + str(int(commonTotalCntFactored1)) +

’, comTotalFactored_2=’ + str(int(commonTotalCntFactored2)) +

’, commonTotalRatio =’ + sCommonTotalRatioFactored

jaccard[jaccardkey] = [jiInfoString]

jaccard[jaccardkey].append(keyCountString)

jaccard[jaccardkey].append(keyTotalCountString)

jaccard[jaccardkey].append(’startTime =’ + startTimeForDisplay)

jaccard[jaccardkey].append("{} min {} sec".

format(minuteString, secondString))

#saveJaccardIndexToFile

if (idxSlurm == -1): #Split JI case

saveJaccardSplitIndexToFile(jaccardkey)

else:

saveJaccardIndexToFile(idxSlurm, jaccardkey)

#print(jaccard[jaccardkey])

return (str(jaccard[jaccardkey]))

143

#==

def saveFinalJaccardSplitIndexToFile(finalResult)

final result of JISPLIT(src, target)

is saved

#--

def saveFinalJaccardSplitIndexToFile(finalResult):

jiInfoFile =’/scratch/mlim4/mySplit/OUTFILES/’ +

’JI_SplitInfo.txt’

with open(jiInfoFile, ’a+’) as infofile:

info = "{}".format(finalResult)

infofile.write(info +’\n’)

#==

def saveJaccardSplitIndexToFile(jaccardkey)

individual result of JIWS(src, target_split_i)

is saved

#--

def saveJaccardSplitIndexToFile(jaccardkey):

jiInfoFile =’/scratch/mlim4/mySplit/OUTFILES/’ +

’JI_SplitInfo.txt’

with open(jiInfoFile, ’a+’) as infofile:

info = "{} :: {}".format(jaccardkey, jaccard[jaccardkey])

infofile.write(info +’\n’)

#==

def getJaccardIndexBetweenTwo(srcfile, trgtFile)

#--

def saveJaccardIndexToFile(idxSlurm, jaccardkey):

144

jiInfoFile =’/scratch/mlim4/myJaccard/OUTFILES/’ +

’JI_Info_’ + str(idxSlurm) + ’.txt’

with open(jiInfoFile, ’a+’) as infofile:

info = "{} :: {}".format(jaccardkey, jaccard[jaccardkey])

infofile.write(info +’\n’)

#==

def getJaccardIndexBetweenTwo(srcfile, trgtFile)

#--

def getJaccardIndexBetweenTwo(srcfile, trgtFile):

start = datetime.now() # for calc

startTimeForDisplay = time.strftime("%c") # for display

Load spreadsheet

colNames = [’hash’, ’offset’]

src = pd.read_csv(srcfile, names=colNames, header=None, sep=’,’)

trgt = pd.read_csv(trgtFile, names=colNames, header=None, sep=’,’)

df = pd.concat([src, trgt], names=[’h1’, ’h2’], axis=1)

print(src)

print (src[’hash’])

df2 = pd.concat([src[’hash’], trgt[’hash’]], axis=1)

df2.columns = [’h1’, ’h2’]

print(df2.columns)

print(df2)

print(df2[’h1’].count())

h1grp = df2.groupby([’h1’]).groups

145

sumGrp1 = df2[’h1’].count()

print(" Group 1 done.")

h2grp = df2.groupby([’h2’]).groups

sumGrp2 = df2[’h2’].count()

print(" Group 2 done.")

dict1 = {}

dict2 = {}

print("Total 1: " + str(sumGrp1) + ", Total 2: " + str(sumGrp2))

for key in h1grp:

#print("h1 key ={}: **,,,,,len {}".format(key, len(h1grp[key])))

dict1[key] = [len(h1grp[key]) / sumGrp1]

print("== Dict 1")

print(dict1)

for key in h2grp:

print("h2 key ={}: **,,,,* len {}".format(key, len(h2grp[key])))

print("{}: {}".format(key, len(h2grp[key])))

dict2[key] = [len(h2grp[key])] # give the count of each hash

if key in dict1:

print("{} :: {}".format(key, len(dict1[key])))

dict1[key].append(len(h2grp[key]) / sumGrp2)

else:

dict1[key] = [len(h2grp[key]) / sumGrp2]

At this, some will have only one element in the list of dict1.

146

These are hash value which were not common.

but dict1 will have all the keys from both : source and target.

minSum = 0

maxSum = 0

for key in dict1:

if len(dict1[key]) == 1:

#print(" h3 key {}: {}".format(key, dict1[key]))

dict1[key].append(0)

min, max = MinMaxFind(dict1[key][0], dict1[key][1])

minSum = minSum + min

maxSum = maxSum + max

print("min =" + str(min) + ", max =" + str(max))

jaccardIndex = minSum / maxSum

jaccardkey = (path_leaf(srcfile), path_leaf(trgtFile))

print("Jaccard Idx " + str(jaccardkey)+" : "+str(jaccardIndex))

end = datetime.now()

duration = end - start

duration_in_s = duration.total_seconds()

hours = divmod(duration_in_s, 3600)[0]

minutes = divmod(duration_in_s, 60)[0]

seconds = divmod(duration_in_s, 60)[1]

strftime("%Y-%m-%d %H:%M:%S", gmtime())

147

jaccard[jaccardkey] = [jaccardIndex]

jaccard[jaccardkey].append(startTimeForDisplay)

jaccard[jaccardkey].

append((" process time:(mm, ss) ", minutes, seconds))

return jaccardIndex

#==

def dumpJaccardIndex()

#--

def dumpJaccardIndex():

for key in jaccard:

print("{} :: {}".format(key, jaccard[key]))

#==

def saveJaccardIndexFullToFile(idxSlurm)

#--

It compares only the whole image and save the JI

#--

def saveJaccardIndexFullToFile(idxSlurm):

jiInfoFile =’/scratch/mlim4/myJaccard/OUTFILES/’ +

’JI_FullInfo_’ + str(idxSlurm) + ’.txt’

with open(jiInfoFile, ’a+’) as infofile:

for key in jaccard:

info = "{} :: {}".format(key, jaccard[key])

infofile.write(info +’\n’)

148

for the quick test check up

srcfile = ’c:/Temp/JaccardData/source.csv’

trgtList = {’c:/Temp/JaccardData/target1.csv’,

’c:/Temp/JaccardData/target2.csv’,

’c:/temp/JaccardData/target3.csv’,

’c:/temp/JaccardData/target4.csv’,

’c:/temp/JaccardData/target5.csv’,

’c:/temp/JaccardData/target6.csv’,

’c:/temp/JaccardData/target7.csv’}

def Main():

for trgtFile in sorted(trgtList):

getJaccardIndexBetweenTwoWithRatioAdjust(srcfile, trgtFile)

dumpJaccardIndex()

if __name__ == ’__main__’:

Main()

149

Appendix F: Python code for splitJaccardMain.py

##

This file contains the main routine for JISPLIT.

From mySplit.py, this function is called for JISPLIT.

#

getJaccardIndexBetweenSrcAndTrgtSplitFile()

#

Author: Myeong L. Lim

mlim4@masonlive.gmu.edu

Nov, 2020

##

import numpy as np

import pandas as pd

import ntpath

import time

from datetime import datetime

from time import gmtime, strftime

import util as utl

import os

#==

def MinMaxFind(n1, n2)

#--

def MinMaxFind(n1, n2):

if (n1 < n2):

return n1, n2

150

else:

return n2, n1

#==

def path_leaf(path)

#--

def path_leaf(path):

head, tail = ntpath.split(path)

return tail or ntpath.basename(head)

jaccard = {}

#==

def getSizeAdjustFactor(sum1, sum2)

#--

def getSizeAdjustFactor(sum1, sum2) :

if (sum1 > sum2):

factor1 = 1.0

factor2 = sum1 / sum2

else:

factor1 = sum2 / sum1

factor2 = 1.0

return factor1, factor2

#==

def dumpH1grp(h1grp):

#--

151

def dumpH1grp(h1grp):

print("== h1grp ===")

print(h1grp)

for k in h1grp.keys():

print(k + ’:’ + str(len(h1grp[k])))

#==

def dumpH2grp(h2grp):

#--

def dumpH2grp(h2grp):

print("== h2grp ===")

print(h2grp)

for k in h2grp.keys():

print(k + ’:’ + str(len(h2grp[k])))

#==

def dumpCntD1(cntD1)

#--

def dumpCntD1(cntD1):

print(’==== dumpCntD1 === length:’ + str(len(cntD1.keys())))

for k in cntD1.keys():

print (k +’:’)

print (cntD1[k])

#==

def dumpCntD2(cntD2)

#--

def dumpCntD2(cntD2):

152

print(’==== dumpCntD2 === length:’ + str(len(cntD2.keys())))

for k in cntD2.keys():

print (k +’:’)

print (cntD2[k])

#==

def getJaccardIndexBetweenSrcAndTrgtSplitFile

(srcfile, trgtFile, totalSizeOfTrgt):

#--

JISPLIT core code

#--

totalSizeOfTrgt: total count of trgt file before split

#--

def getJaccardIndexBetweenSrcAndTrgtSplitFile

(srcfile, trgtFile, totalSizeOfTrgt):

start = datetime.now() # for calc

startTimeForDisplay = time.strftime("%c") # for display

Load spreadsheet

colNames = [’hash’, ’offset’]

src = pd.read_csv(srcfile, names=colNames, header=None, sep=’,’)

trgt = pd.read_csv(trgtFile, names=colNames, header=None, sep=’,’)

df = pd.concat([src, trgt], names=[’h1’, ’h2’], axis=1)

print(src)

print (src[’hash’])

df2 = pd.concat([src[’hash’], trgt[’hash’]], axis=1)

df2.columns = [’h1’, ’h2’]

153

h1grp = df2.groupby([’h1’]).groups

sumGrp1 = df2[’h1’].count()

#print(" Group 1 done.")

h2grp = df2.groupby([’h2’]).groups

sumGrp2 will not be used in SPLIT

sumGrp2 = df2[’h2’].count()

#print(" Group 2 done.")

#dumpH1grp(h1grp)

#dumpH2grp(h2grp)

cntD1 = {}

cntD2 = {}

commonUniqCnt = 0

for key in h1grp:

cntD1[key] = [len(h1grp[key]) / sumGrp1]

#dumpCntD1(cntD1)

for key in h2grp:

normalizedVal = len(h2grp[key]) / totalSizeOfTrgt

cntD2[key] = [normalizedVal]

if key in cntD1:

commonUniqCnt = commonUniqCnt + 1

print("{} :: {}".format(key, len(cntD1[key])))

154

cntD1[key].append(normalizedVal)

else:

cntD1[key] = [normalizedVal]

#dumpCntD1(cntD1)

#dumpCntD2(cntD2)

At this, some will have only one element in the list of cntD1

will have all the keys from both : source and target.

minMaxDict = {}

minSum = 0

maxSum = 0

for key in cntD1:

if len(cntD1[key]) == 1:

cntD1[key].append(0)

min, max = MinMaxFind(cntD1[key][0], cntD1[key][1])

minMaxDict[key]=[min, max]

minSum = minSum + min

maxSum = maxSum + max

#print("min =" + str(min) + ", max =" + str(max))

#print("Final cntD1 contents...")

#dumpCntD1(cntD1)

jinf = minSum / maxSum

jaccardkey = (path_leaf(srcfile), path_leaf(trgtFile))

print("JINF " + str(jaccardkey) + " : " + str(jinf))

155

end = datetime.now()

hours, minutes, seconds = calcDuration(end, start)

srcUniqKeysSum = len(h1grp.keys())

trgtUniqKeysSum = len(h2grp.keys())

commonRatio = commonUniqCnt / trgtUniqKeysSum

jiws = commonRatio * (commonRatio * (1 - jinf) + jinf)

#print("before formatting")

keyCountString = ’, srcUniqueCount=’ + str(srcUniqKeysSum) +

’, trgtUniqueCount=’+str(trgtUniqKeysSum) + ’, comUniqueCount=’+

str(commonUniqCnt)

#print("after key count string")

jiInfoString=’jiws= ’ + str(jiws) + ’, comRatio= ’+str(commonRatio)+

’, jinf= ’ + str(jinf)

timeString = ’, time took: ’+str(hours)+’hrs ’+str(minutes) +’min ’+

str(seconds) + ’sec’

#print(’after Jiinfo string ’)

result = jiInfoString + keyCountString + timeString

#print(’after Jaccrd time append format ’)

saveJaccardSplitIndexToFile(result)

156

srcBaseName = path_leaf(srcfile)

srcBaseName = srcBaseName.replace(’.csv’,’’)

minMaxFName = srcBaseName + ’_’ + path_leaf(trgtFile)

print("====== minMaxFName ====")

print(minMaxFName)

print(’getJaccard bef getMinMax srcfile’+srcfile +’: ’+trgtFile)

minMaxDir = getMinMaxDirNames(srcfile, trgtFile)

print(’get JI minMaxDir=’+minMaxDir+’, minMaxFName=’+minMaxFName)

utl.createDirIfNotExist(minMaxDir)

saveMinMaxDict(minMaxDir, minMaxFName, minMaxDict)

return List

#print(" === result===")

#print(result)

resultList =[]

resultList.append(result)

#print(" === resultList===")

#print(resultList)

return resultList

#==

def calcDuration(end, start)

#--

157

def calcDuration(end, start):

duration = end - start

duration_in_s = duration.total_seconds()

hours = divmod(duration_in_s, 3600)[0]

minutes = divmod(duration_in_s, 60)[0]

seconds = divmod(duration_in_s, 60)[1]

return hours, minutes, seconds

#==

def getMinMaxDirNames(srcfile, trgtFile)

#--

def getMinMaxDirNames(srcfile, trgtFile):

srcBaseName = path_leaf(srcfile)

srcBaseName = srcBaseName.replace(’.csv’,’’)

trgtBaseName = path_leaf(trgtFile)

trgtBaseName = trgtBaseName.replace(’.csv’,’’)

minMaxFName = srcBaseName + ’_’ + trgtBaseName

idx = minMaxFName.find(’_split’)

if idx >= 0 :

minMaxDirBasename = minMaxFName[:idx]

else:

minMaxDirBasename = minMaxFName

minMaxDir =’/scratch/mlim4/mySplit/OUTFILES/’ +

minMaxDirBasename

158

return minMaxDir

#==

def dumpFinalDict(dict)

#--

def dumpFinalDict(dict):

print(" ==== dumpFinalDict ===")

for k in dict.keys():

print (k+’:’)

print (dict[k])

#==

def readMinMaxFileAndGetJisplit(srcfile, trgtfile)

#--

def readMinMaxFileAndGetJisplit(srcfile, trgtfile):

print(’readMinMax src=’+srcfile+’: trgt=’+trgtfile)

minMaxDir = getMinMaxDirNames(srcfile, trgtfile)

use only minMaxDir

print("rdMinMax: minMaxDir=" + minMaxDir)

colNames = [’hash’, ’min’, ’max’]

list = listOfDictCSVFiles(minMaxDir)

print

("listOfDictCSVFiles(minMaxDir) len="+str(len(list)))

print(list)

cnt =0

for f in list:

print(’f=’ + f)

159

if cnt == 0:

finalDict = makeDictFromFile(f)

#dumpFinalDict(finalDict)

else:

midDict = makeDictFromFile(f)

adjustFinalDict(finalDict, midDict)

cnt = cnt + 1

maxSum = 0

for key in finalDict:

if key != ’minSum’ :

maxSum = maxSum + finalDict[key][1]

print(’minSum = ’ + str(finalDict[’minSum’]) +

’, maxSum=’ + str(maxSum))

print(’jinf =’ + str(finalDict[’minSum’] / maxSum))

#==

def adjustFinalDict(finalDict, dict)

#--

def adjustFinalDict(finalDict, dict):

for key in dict.keys():

if key not in finalDict.keys():

finalDict[key] = dict[key]

for key in finalDict.keys():

if key != ’minSum’ and key in dict.keys():

160

if finalDict[key][1] < dict[key][1]:

finalDict[key][1] = dict[key][1]

finalDict[’minSum’] =

finalDict[’minSum’]+dict[’minSum’]

#==

def makeDictFromFile(f)

#--

def makeDictFromFile(f):

d = {}

with open(f, ’r’)as fp:

minSum = 0.0

for row in fp:

hash, min, max = row.split(’,’)

d[hash]=[float(min), float(max)]

minSum = minSum + float(min)

d[’minSum’] = minSum

return d

#==

def listOfDictCSVFiles(path)

#--

def listOfDictCSVFiles(path):

r=root, d=directories, f = files

files = []

161

for r, d, f in os.walk(path):

for file in f:

if ’wkusb’ in file:

continue

if ’start’ in file:

continue

if ’.csv’ in file:

files.append(os.path.join(r, file))

return files

#==

def saveMinMaxDict(dir, fname, minMaxDict)

#--

def saveMinMaxDict(dir, fname, minMaxDict):

print("saveMinMax: dir=" + dir +", fname="+fname)

jiInfoFile = dir + ’/’ + fname

with open(jiInfoFile, ’w’) as minMaxF:

for k in minMaxDict.keys():

minMaxF.write(k +’,’+str(minMaxDict[k][0])+

’,’+ str(minMaxDict[k][1]) +’\n’)

#==

def saveFinalJaccardSplitIndexToFile(finalResult)

final result of JISPLIT(src, target)

is saved

#--

162

def saveFinalJaccardSplitIndexToFile(finalResult):

jiInfoFile =’/scratch/mlim4/mySplit/OUTFILES/’ +

’JI_SplitInfo.txt’

with open(jiInfoFile, ’a+’) as infofile:

info = "{}".format(finalResult)

infofile.write(info +’\n’)

#==

def saveJaccardSplitIndexToFile(resultString)

individual result of JIWS(src, target_split_i)

is saved

#--

def saveJaccardSplitIndexToFile(resultString):

jiInfoFile =’/scratch/mlim4/mySplit/OUTFILES/’ +

’JI_SplitInfo.txt’

with open(jiInfoFile, ’a+’) as infofile:

infofile.write(resultString +’\n’)

#==

def dumpJaccardIndex():

#--

def dumpJaccardIndex():

for key in jaccard:

print("{} :: {}".format(key, jaccard[key]))

if __name__ == ’__main__’:

Main()

163

Appendix G: Python code for util.py

##

This file contains utility routines for

JINF and JISPLIT calculations.

#

Author: Myeong L. Lim

mlim4@masonlive.gmu.edu

Nov, 2020

##

import os

import time

from datetime import datetime

from pathlib import Path

#==

def createDirIfNotExist(dirName)

#--

def createDirIfNotExist(dirName):

if not os.path.exists(dirName):

os.mkdir(dirName)

print("Directory " , dirName , " Created ")

else:

print("Directory " , dirName , " already exists")

#==

164

def listOfCSVFullPathFiles(path)

#--

def listOfCSVFullPathFiles(path):

r=root, d=directories, f = files

files = []

for r, d, f in os.walk(path):

for file in f:

if ’wkusb’ in file:

continue

if ’start’ in file:

continue

if ’.csv’ in file:

files.append(os.path.join(r, file))

return sorted(files)

#==

def listOfCSVBaseFiles(path)

#--

def listOfCSVBaseFiles(path):

r=root, d=directories, f = files

files = []

for r, d, f in os.walk(path):

for file in f:

if ’wkusb’ in file:

continue

if ’start’ in file:

continue

if ’.csv’ in file:

165

#files.append(os.path.join(r, file))

files.append(file)

return sorted(files)

#==

def listOfTextFiles(path)

#--

def listOfTextFiles(path):

r=root, d=directories, f = files

files = []

for r, d, f in os.walk(path):

for file in f:

if ’.txt’ in file:

files.append(os.path.join(r, file))

return files

#==

def JIAlreadyCalculated (f1, f2)

#--

def JIAlreadyCalculated (f1, f2):

OUTFILES_DIR = ’/scratch/mlim4/myJaccard/OUTFILES/’

jiInfoFileList = listOfTextFiles(OUTFILES_DIR)

pattern1 = "(’" + f1 + "’, ’" + f2 + "’)"

pattern2 = "(’" + f2 + "’, ’" + f1 + "’)"

for f in jiInfoFileList :

with open(f, ’r’) as infofile:

data= infofile.read()

166

if data.find(pattern1) >= 0 or data.find(pattern2) >= 0 :

return True

print(pattern1 + ’ is not calculated’)

print(pattern2 + ’ is not calculated’)

return False

#==

def getSize(fileobject):

#--

def getSize(fileobject):

fileobject.seek(0,2) # move the cursor to the end of the file

size = fileobject.tell()

return size

#==

def printTimeWithInfoString(infoString) :

#--

def printTimeWithInfoString(infoString) :

timeForDisplay = time.strftime("%c")

print(timeForDisplay + ’: ’ + infoString)

#==

def creatDirIfNotExist(dirName):

#--

def creatDirIfNotExist(dirName):

if not os.path.exists(dirName):

os.mkdir(dirName)

167

print("Directory " , dirName , " Created ")

else:

print("Directory " , dirName , " already exists")

#==

def getJI_FromJi_Info_Files (f1, f2 , option)

#--

def getJI_FromJi_Info_Files (f1, f2 , option):

OUTFILES_DIR = ’/scratch/mlim4/myJaccard/OUTFILES/’

jiInfoFileList = listOfTextFiles(OUTFILES_DIR)

pattern1 = "(’" + f1 + "’, ’" + f2 + "’)"

pattern2 = "(’" + f2 + "’, ’" + f1 + "’)"

if option == ’jinf’ :

jiString = "jinf="

addIndex = 6

elif option == ’jiws’ :

jiString = ’jiws=’

addIndex = 6

elif option == ’cr’ :

jiString = ’comRatio’

addIndex = 9

elif option == ’time’ :

jiString = ’startTime’

addIndex = 10

found = False

for f in jiInfoFileList :

168

with open(f, ’r’) as infofile:

data= infofile.read()

p1_index = data.find(pattern1)

p2_index = data.find(pattern2)

if p1_index >= 0 :

infofile.seek(p1_index)

jiLine = infofile.read(420)

jiLineString = jiLine

index = jiLine.find(jiString) + addIndex

jiVal= jiLine[index:index+6]

jiOptString = jiLine[index:index+26]

found = True

print(jiLineString)

break

if p2_index >= 0 :

infofile.seek(p2_index)

jiLine = infofile.read(420)

jiLineString = jiLine

index = jiLine.find(jiString) + addIndex

jiVal= jiLine[index:index+6]

jiOptString = jiLine[index:index+26]

found = True

print(jiLineString)

break

if found :

if option == ’cr’ or option == ’time’ :

169

return jiOptString

else :

return jiVal

else :

return "Not found"

170

Bibliography

171

Bibliography

[1] (2017) Regional computer forensics laboratory annual report for fiscal year 2017.
[Online]. Available: https://www.rcfl.gov/file-repository/09-rcfl-annual-2017-190130-
print-1.pdf/view

[2] S. Bunting and W. Wei, EnCase Computer Forensics: The O�cial EnCE: EnCase
Certified Examiner Study Guide (1st ed.). Indianapolis, IN:. Indianapolis, IN: Wiley
Publishing, 2006.

[3] F. Breitinger, B. Guttman, M. McCarrin, V. Roussev, and D. White,
“Approximate matching: Definition and terminology,” (Special Publication 800-
168). National Institute of Standards and Technologies, 2014. [Online]. Available:
http://dx.doi.org/10.6028/NIST.SP.800-168

[4] S. Garfinkel, V. Roussev, A. Nelson, and D. White, “Using purpose-built functions and
block hashes to enable small block and sub-file forensics,” Digital Investigation, vol. 7,
pp. S13–S23, Aug. 2010.

[5] V. Roussev, “Data fingerprinting with similarity digests,” in In IFIP Int. Conf. on
Digital Forensics. Berlin, Heidelberg: Springer, 2010, pp. 207–226.

[6] J. Young, K. Foster, S. Garfinkel, and K. Fairbanks, “Distinct sector hashes for target
file detection,” Computer, vol. 45, pp. 28–35, Dec. 2012.

[7] O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesystem,” ACM Trans-
actions on Storage(TOS), p. 9(3):9, 2013.

[8] M. Cohen, S. Garfinkel, and B. Schatz, “Extending the advanced forensic format to ac-
commodate multiple data sources, logical evidence, arbitrary information and forensic
workflow,” Digital Investigation, vol. 6, p. S57–S68, 2009.

[9] M. Cohen and B. Schatz, “Hash based disk imaging using a↵4,” Digital Investigation,
vol. 7, pp. S121–S128, 2010.

[10] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and rever-
sals.” In Soviet physics doklady, vol. 10(4), pp. 707–710, February 1966.

[11] R. Real and J. Vargas, “The probability basis of jaccard index of similarity,” Systematic
Biology, vol. 45, pp. 380–385, Sep. 1996.

[12] M. Ružička, “Anwendung mathematisch-statistischer methoden in der geobotanik,”
(Synthetische Bearbeitung von Aufnahmen) Biológia, Bratislava,, vol. 13, p. 647–661,
1958.

172

[13] C. E. Shannon, “A mathematical theory of communication.” The Bell System Technical
Journal., vol. 27, no. 3, p. 379–423, July 1948.

[14] G. Hall and W. Davis, “Sliding window measurement for file type identification.” IEEE
information assurance workshop., 2006.

[15] L. Fan, P. Cao, J. Almeida, and A. Broder, “A scalable wide-area web cache sharing
protocol,” In Proceeding of SIGCOMM, 1998.

[16] L. L. Gremilion, “Designing a bloom filter for di↵erential file access,” Communications
of the ACM, vol. 25, pp. 600–604, 1982.

[17] J. K. Mullin, “A second look at bloom filters,” Commun. ACM, vol. 26, no. 8, pp.
570–571, 1983.

[18] M. V. Ramakrishna, “Practical performance of bloom filters and parallel free-text
searching,” Communications of the ACM, vol. 32, no. 10, pp. 1237–1239, October
1989.

[19] W. Stallings and L. Brown, Computer Security: Principles and Practice. Pearson,
2011.

[20] Y. S. Dandass, N. J. Necaise, and S. R. Thomas, “An empirical analysis of disk sector
hashes for data carving.” Journal of Digital Forensic Practice, vol. 2, no. 2, 2008.

[21] R. L. Rivest, “The md5 message digest algorithm.” Internet RFC 131, 1992., 1992.
[Online]. Available: http://people.csail.mit.edu/rivest/Rivest-MD5.txt

[22] NIST-ITL, “Secure hash standard (shs).” 2002. [Online]. Available:
https://csrc.nist.gov/publications/fipsfips180-4.

[23] S. Garfinkel, “Forensic feature extraction and cross-drive analysis,” The Proceedings of
the 6th Annual Digital Forensic Research Workshop (DFRWS), vol. 3, Sep. 2006.

[24] H. Parsonage. (2009) Computer forensics case
assessment and triage. [Online]. Available:
http://computerforensics.parsonage.co.uk/triage/ComputerForensicsCaseAssessmentAndTriageDiscussionPaper.pdf

[25] R. Walls, E. Learned-Miller, and B. Levine, “Forensic triage for mobile phones with
dec0de,” Proceedings of the 20th USENIX security symposium, 2011.

[26] S. Garfinkel, “Digital media triage with bulk data analysis and bulk extractor,” Com-
puters and Security, vol. 32, pp. 56–72, 2013.

[27] R. Beverly, S. Garfinkel, and G. Cardwell, “Forensic carving of network packets and
associated data structures,” Digital Investigation, vol. 8, pp. S78–S89, 2011.

[28] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt, “Bringing science to digital forensics
with standardized forensic corpora,” digital investigation, vol. 6, pp. S2–S11, 2009.

[29] (2014) National institute of standards and technology. national software reference
library reference data set. [Online]. Available: http://www.nsrl.nist.gov

173

[30] B. Bloom, “Space/time tradeo↵s in hash coding with allowable errors,” Communica-
tions of the ACM, vol. 13, pp. 422–426, 1970.

[31] V. H. G. Moia, F. Breitinger, and M. A. A. Henriques, “The impact of excluding
common blocks for approximate matching.” Computers & Security, vol. 89, February
2020.

[32] P. Penrose, W. Buchanan, and R. Macfarlane, “Fast contraband detection in large
capacity disk drives,” Digital Investigation, vol. 12(1), p. S22–S29, 2015.

[33] V. Roussev, G. G. Richard III, and L. Marziale, “Multiresolution similarity hashing.”
Digital Investigation, vol. 4, Supplement, pp. 105–113, September 2007.

[34] O. Yigit. [Online]. Available: http://www.cse.yorku.ca/⇠oz/hash.html

[35] L. Marziale, G. G. Richard III, and V. Roussev, “Massive threading: Using gpus
to increase the performance of digital forensics tools.” Digital Investigation, vol. 4,
Supplement, pp. 73–81, September 2007.

[36] C. Shields, O. Frieder, and M. Maloof, “A system for the proactive, continuous, and ef-
ficient collection of digital forensic evidence.” Digital Investigation, vol. 8, Supplement,
pp. S3–S13, August 2011.

[37] S. Garfinkel and M. McCarrin, “Hash-based carving: searching media for complete files
and file fragments with sector hashing and hashdb,” Digital Investigation, vol. 14, pp.
S95–S105, 2015.

[38] S. Collange, M. Daumas, Y. S. Dandass, and D. Defour, “Using graphics processors for
parallelizing hash-based data carving,” Proceedings of the 42nd Hawaii International
Conference on System Sciences, 2009.

[39] B. Allen. (2014) hashdb. [Online]. Available: https://github.com/simsong/hashdb.git

[40] X. Wang and H. Yu, “How to break md5 and other hash functions.” In: Cramer,
R. (eds) Advances in Cryptology – EUROCRYPT 2005. EUROCRYPT 2005. Lecture
Notes in Computer Science Springer, Berlin, Heidelberg, vol. 3494, 2005.

[41] K. Woods, C. A. Lee, S. Garfinkel, D. Dittrich, A. Russell, and K. Kearton, “Creating
realistic corpora for security and forensic education,” Proceedings of the Conference
on Digital Forensics, Security and Law, Association of Digital Forensics, Security and
Law, p. 123, 2011.

[42] J. Taguchi, “Optimal sector sampling for drive triage,” Master’s thesis, Naval Post-
graduate School, 2013.

[43] P. Bjelland, K. Franke, and A. Årnes, “Practical use of approximate hash based match-
ing in digital investigations,” Digital Investigation, vol. 11(1), p. s18–s26, 2014.

[44] V. H. G. Moia and M. A. A. Henriques, “A comparative analysis about similarity
search strategies for digital forensics investigations,” In XXXV Simpósio Brasileiro
de Telecomunicações e Processamento de Sinais (SBrT 2017), São Pedro, Brazil, sep,
2017.

174

[45] A. Tridgell. (2002) Spamsum readme. [Online]. Available:
http://samba.org/ftp/unpacked/junkcode/spamsum/README

[46] J. Kornblum, “Identifying almost identical files using context triggered piecewise hash-
ing,” Digital Investigation, vol. 3, pp. 91–97, 2006.

[47] L. Allison, “Dynamic programming algorithm (dpa) for editdistance.” 1999. [Online].
Available: http://www.csse.monash.edu.au/⇠lloyd/tildeAlgDS/Dynamic/Edit/

[48] F. Breitinger and H. Baier, “Performance issues about context-triggered piecewise hash-
ing,” International Conference on Digital Forensics and Cyber Crime, pp. 141–155,
2012.

[49] V. Roussev, Y. Chen, T. Bourg, and G. G. Richard, “md5bloom: Forensic filesystem
hashing revisited,” Digital Investigation, vol. 3, pp. 82–90, 2006.

[50] V. Roussev, “Building a better similarity trap with statistically improbable features,”
In Proceedings of the 42nd Hawaii International Conference on System Sciences, IEEE,
2009.

[51] F. Breitinger and H. Baier, “Similarity preserving hashing: eligible properties and a
new algorithm mrsh-v2,” 4th ICST conference on digital forensics and cyber crime
(ICDF2C), 2012.

[52] J. Oliver, C. Cheng, and Y. Chen, “Tlsh - a locality sensitive hash,” 4th Cybercrime
and Trustworthy Computing Workshop, Sydney, Nov. 2013. [Online]. Available:
https://www.academia.edu/7833902/TLSH -A Locality Sensitive Hash

[53] J. Oliver, S. Forman, and C. Cheng, “Using randomization to attack similarity digests,”
In International Conference on Applications and Techniques in Information Security,
Springer, pp. 199–210, 2014.

[54] (2017) m57-patents scenario. [Online]. Available:
http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario

[55] H. Chu. (2011) Lightning memory-mapped database manager. [Online]. Available:
http://www.lmdb.tech/doc/

[56] (2017) hashdb 3.1.0 users manual. [Online]. Available:
http://downloads.digitalcorpora.org/downloads/hashdb/hashdb um.pdf

[57] M. Lim and J. Jones, “A digital media similarity measure for triage of digital forensic
evidence.” IFIP International Conference on Digital Forensics, pp. 111–135, January
2020.

175

Curriculum Vitae

Myeong L. Lim received his Bachelor in Economics from Korea University, located in Seoul,
South Korea, in 1984. He received his Master of Science in Computer Science from Penn-
sylvania State University in 1992. He was employed as a senior developer for 15 years at
Fannie Mae. He started Techan Inc., a US government contractor, in 2020.

176

