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ABSTRACT 

POWER AND PERFORMANCE CHARACTERIZATION OF SPLASH2 

BENCHMARKS ON HETEROGENEOUS ARCHITECTURE 

Matthew Drummond, M.S. 

George Mason University, 2015 

Thesis Director: Dr. Houman Homayoun 

 

The computing industry has constantly struggled between speed and power.  To achieve 

the desired performance cores are becoming larger and more complicated.  This of course 

comes at the cost of higher area and power consumption, which is unsustainable.  An 

optimum configuration for any application must exist for peak performance and energy 

efficiency.  This paper shows how such an optimization can be found using Splash2 

benchmarks as demonstration.  Sensitivity analysis was performed on each benchmark 

for multiple configuration parameters, particularly frequency, core type, and thread count.  

The resulting data was analyzed to determine what influence the parameters had on EDP 

for each benchmark.  Finally, the benchmarks were instrumented in such a way as to 

highlight individual parallel regions to determine if alternative configurations are more 

appropriate for these sub-regions of the applications, demonstrating the utility of a 

heterogeneous architecture. 
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1. INTRODUCTION 

In its attempts to find a solution to constantly growing power and area concerns 

the computing industry is beginning to experiment with heterogeneous cores.  While 

static embedded cores can be highly tuned to an individual application, in more dynamic 

applications this can result in large sections of the processor cores being underutilized in 

what is known as the Dark Silicon Problem [38].  In future designs involving many-cores 

homogeneous architectures simply compound this problem.  The solution lies in 

heterogeneous architectures, ones that can be configured during an application to 

optimally suit the particular processing needs at any point.  This paper is an exploration 

into the feasibility of such an effort, and will demonstrate how it might improve 

performance and energy consumption.  To do so, three areas of investigation will be 

examined, each one building on the results and findings of the previous.   

The first area of investigation involved determining an application’s sensitivity to 

certain parameters.  The parameters being adjusted include voltage and frequency 

scaling, core size (big vs little), and number of threads to individually evaluate sensitivity 

to each.  For each sensitivity analysis the execution time, total power, Energy Delay 

Product (EDP), and Energy Delay
2
 Product (ED2P) were recorded.     

While the first area explores sensitivity to individual parameters, the investigation 

will proceed with a more extensive analysis, testing all permutations of the 
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aforementioned parameters.  All possible configurations of voltage/frequency, core type, 

and thread count will be examined.  Using the results from this experiment an optimum 

configuration can be found for any benchmark, both with and without power constraint 

considerations. 

This investigation was taken further to explore the impact of a heterogeneous 

architecture.  Previously, results for each benchmark were from the overall simulated 

region of interest.  This region typically includes any number of parallel sub-regions 

amidst serial regions.  It is often the case that not all of these regions have the same 

execution profile.  As such, these sections will often benefit from a core configuration 

that is different from the others.  This final effort involved simulations of these internal 

parallel sub-regions with the same permutations of parameters as were used previously.  

Using these results an optimal heterogeneous architecture scheme can be determined.  



3 

 

2. MOTIVATION 

Homogenous architectures are becoming inadequate for processing needs.  They 

are constantly over-provisioned in order to suit the most demanding application, despite 

needing that many resources for fractions of the time.  Heterogeneous architectures 

leverage the fact that a simpler core can very often yield significantly better results [28].  

Doing so can reduce or eliminate over-provisioning without necessarily sacrificing 

performance.  This allows for significant gains in performance per area and per watt [31].   

There are many contributing factors to the goal of high performance while 

focusing on energy efficiency.  The diagram in Figure 1 shows many of these parameters.  

This paper is focusing primarily on four of these: core micro-architecture, 

voltage/frequency, thread count, and application phase monitoring.   
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Figure 1 – Configuration factors of Energy Efficiency [32] 

 

Heterogeneous architectures can provide more opportunity for efficient workload 

mappings so an application can find a better match among the various configuration 

parameters.  In order to actually see the effects such a mapping can offer this paper 

compares results from simulations of all these parameters, both over full simulations as 

well as sub-regions within the simulation.  These sub-regions show the different aspects 

of an application and will show that the same configuration is not necessarily optimal for 

all regions.   
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3. BACKGROUND ON HETEROGENEOUS ARCHITECTURES 

The driving theory behind heterogeneous architectures is that not all cores of a 

processor are configured in the same manner.  This allows for designs that are optimized 

for specific parts of an application, whereas homogeneous architectures process all 

portions in the same manner.  Each thread can run on a core that more closely matches 

the needs of that thread than a single generic core.  This allows for the architecture to 

provide more efficient workload mappings.  Applications can find cores that more 

appropriately match their workload which improves power efficiency.  These mappings 

are critical in exploiting heterogeneity; finding an architecture with just enough resources 

to match the workload needs to best improve energy efficiency.  [32] 

There are two different base varieties of heterogeneous architectures, static and 

dynamic.  When an architecture is statically heterogeneous the processor cores can be 

different but each core is configured at the time of design.  Throughout execution the 

configuration does not change.  An architecture is dynamically heterogeneous when the 

actual core configurations changes to meet an application’s exact needs at any particular 

point in execution during runtime.  While a statically heterogeneous architecture that is 

perfectly configured to an application’s needs would provide the best performance and 

efficiency at the lowest cost, it is not feasible without extreme application profiling.  

Since many applications today are enormously dynamic in nature this becomes even 
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more difficult.  A dynamic heterogeneous architecture, though more costly to configure, 

provides a better chance of successful application mappings [32]. 

Investigations into statically heterogeneous architectures are well under way.  

Intel’s Quick IA [5] combines a big Xeon architecture with a little Atom for high 

performance.  TI OMAP 5 and NVIDIA Tegra combine small ARM-8 and 9 with big 

ARM-15 processors for embedded designs.  There have also been efforts to provide 

dynamically heterogeneous architectures as seen in Core Fusion [2], TFlex [7], and WiD-

GET [8]. 

One of the biggest issues involved in heterogeneous architectures is the fact that 

the number of configuration options is overwhelming.  There are so many different pieces 

to a processor, all of which have a large impact on performance and energy efficiency.  

To test all options for all parameters would be a monumental task.  Though this means 

that there is incredible potential for improvement, the investment required to capitalize on 

it would be very large. 
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4. RELATED WORK 

Attempting to map application profiles to core configurations has been examined 

in a variety of instances.  The Thread Reinforcer work examined the mapping between 

number of threads and number of cores to find the best number of threads to execute 

PARSEC applications, particularly in many core architectures [9].  Similarly, the 

ElasticCore effort took a closer look at voltage and frequency scaling [3].  ElasticCore 

went a step further to actually scale voltage and frequency at runtime, demonstrating a 

partially dynamic heterogeneous design.  In the many-core realm an effort was 

undertaken to map biomedical applications to domain-specific accelerators, dealing with 

a 128-core accelerator and trying to appropriately map a task’s voltage and frequency 

assignments to cores on the accelerator [35].  

Another work examined the potential for power reduction in single-ISA 

heterogeneous multi-core architectures [23].  This work used the SPEC benchmarks and 

the SMTSim simulator to investigate the impact of choosing the most appropriate core to 

meet specific performance and power requirements during an application’s execution.  

Additional work dealing with tiled multiprocessors created a programming model and 

applied this model to application specifications [25], resulting in a similar form of 

application mapping as would be required for heterogeneous architectures.  Though that 

particular work is in the context of tiled embedded systems, the theory of application 
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mapping holds for all heterogeneous architectures. 

 Many other works have touched on the need for task/application mapping 

particularly for Multiprocessor Systems on a Chip (MPSoC) [36-37].  Having multiple 

processors available on a single chip lends itself perfectly to heterogeneity, and finding a 

good mapping of applications to the different processors is critical.   

Many of these works focused primarily on an individual characteristic, such as 

thread count or voltage/frequency.  This paper shows that these parameters individually, 

while important, do not make a truly optimum configuration.  Only when combining the 

parameter variations can the absolute best configuration be found for an application. 
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5. METHODOLOGY 

The Sniper Multi-Core Simulator [10] was used to collect performance metrics 

from simulating benchmarks.  McPAT [11] integrates with Sniper and was used to obtain 

power results for the simulations.  Sniper provides versions of various benchmarks 

already tailored and instrumented to work with Sniper.  This work utilized selections 

from the included Splash2 [12] suite of benchmarks.  Sniper uses Region of Interest 

(ROI) markers to start and stop recording processing metrics, avoiding the less critical 

initialization and cleanup phases [34].  Custom simulation markers were added to the 

benchmarks for the purpose of gathering statistics on sub-regions of the overall 

benchmark.   

Simulations were performed on the ARGO Computing Cluster at GMU [33].  The 

cluster was essential for performing the many simulations in a timely fashion, but proved 

to be troublesome in other aspects.  Due to being a shared, university controlled resource 

access to certain system settings and libraries were restricted.  Sniper and the associated 

benchmarks required modifications to these settings.  Some of these obstacles were 

overcome, but others persisted requiring the scope of this work to be limited to only 

Splash2 benchmarks.  Though this was unexpected, the suite proved to be sufficiently 

representative for our purposes.  
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The Splash2 benchmarks are a widely used suite of parallel applications with 

various different profiles [12].  The actual details of the benchmarks were less of a 

concern than whether or not they displayed decent variation between them, to give a 

better look at varying profiles for different configurations.  Table 1 below shows a 

breakdown of the Splash2 benchmark technical details. 

 

 

 

Table 1 – Breakdown of Splash2 Benchmarks [12] 

 
 

 

 

The baseline configurations used for simulation were the Atom Silvermont [15] 

and Xeon 5500 Series (known as Gainestown) [17] cores.  The Silvermont architecture is 

a 22nm Tri-Gate System on a Chip (SoC).  The purpose of this architecture is to provide 

a much greater increases in performance, but more importantly in energy efficiency.  

Silvermont was designed specifically for low power applications.  The intended targets 

for Silvermont range from small hand-help appliances, like personal tablets, to large data 
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center computing [16].  This shows that the architecture was intended as a more generic 

solution rather than a very specifically designed one, which aligns very well with the idea 

of heterogeneous architectures. 

Of particular importance is Silvermont’s Uncore event set.  This is a set of 

architectural performance monitoring events.  They allow for insight into the actual 

behavior of the platform.  This can be used for platform characterization, performance 

debugging and optimization, and most importantly application characterization and 

tuning.   

The Xeon Gainestown was created as an answer to many of the IT infrastructure 

challenges, particularly issues with power.  Similar to Silvermont, Gainestown is 

designed to deliver greater performance more efficiently [18].  Again, similar to the 

Uncore event set of Silvermont, Gainestown architectures also provide what is referred to 

as Intelligent Performance [19].  The intelligent performance characteristic of 

Gainestown is designed to adapt performance and power usage to more closely suites the 

needs of the applications and workloads.   

Both the Uncore event set of Silvermont and the Intelligent Performance of 

Gainestown show essential aspect of heterogeneous architectures and again supports the 

driving theory of this paper.  These show that trends are already in place to adapt to 

applications, changing cores to improve performance and efficiency.   

Table 2 below shows the key differences in these architectures as seen in the 

baseline simulation configurations. 
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Table 2: Differences in Baseline Simulation Configurations 

Characteristic Atom Silvermont Xeon Gainestown 

Dispatch Width 2 4 

Window Size 32 128 

Levels of Cache 2 3 

L2 - Cache Assoc 16 8 

L2 - Cache Size 1024 256 

L2 - Data Access Time 12 8 

L2 – Shared Cores 2 1 

L3 – Cache Present No Yes 

D-TLB Size/Assoc 48/48 64/4 

I -TLB Size/Assoc  48/48 128/4 

S-TLB Size/Assoc 128/4 512/4 
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6. SENSITIVITY ANALYSIS 

The purpose of benchmark applications is to test a wide variety of processing 

scenarios.  As such, not all benchmarks will respond the same way to changes in 

parameters.  To demonstrate this, and to determine what benchmarks are more sensitive 

to certain parameters, sensitivity analysis was performed for each benchmark being 

studied.  The specific parameters include sensitivity to frequency, core type, and number 

of threads.   

The entire set of results is quite  m extensive, so results have been combined into 

a single set of graphs, seen in Figures 2-11.  In these figures there are four graphs for 

each benchmark that show normalized data for the overall execution time, total power, 

EDP, and ED2P.  They are normalized to a base configuration of a Xeon core running at 

3.2GH, 1V at each different possible thread count.  Each benchmark and 

frequency/voltage combination is listed in the legend for the graph.  For each simulation 

values for execution time and performance were taken from the Sniper output and 

McPAT was run to collect power results.  From these results, calculations were made to 

determine the total power, EDP, and ED2P.  

6.1 Frequency Sensitivity 
The first of the three main parameters subject to sensitivity analysis was voltage 

and frequency.  All benchmarks were simulated using a baseline Xeon-like core type 
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running with only one thread.  The frequency was changed between 2, 2.4, 2.8, and 3.2 

GH with the voltage ranging changing between 0.7, 0.8, 0.9, and 1V, respectively.  Note 

that this section is focused on the Xeon points in the first column, one thread, in the 

figures below. 

With the results in hand, each benchmark’s sensitivity to frequency can be seen.  

It is not surprising that the trend is constant across benchmarks.  As the frequency 

increases, the performance increases.  Similarly, higher frequencies use more power.  

EDP results show that the higher frequency gives higher EDP.  However, the ED2P 

results are lower for higher frequency processors.  Since ED2P puts more emphasis on 

delay (performance) the higher frequencies yield better results.  

6.2 Core Type Sensitivity 
Core type was the next parameter to be analyzed to determine benchmark 

sensitivity.  In this case the baseline configuration was a core running a single thread at a 

frequency of 3.2 GH and voltage of 1V.  The changing parameter was the core type, 

which change between an Atom-like core and one resembling the Xeon architecture.  On 

the graphs below this section is only concerned with the xeon_3.2GH and atom_3.2GH 

entries again in the first column (one thread). 

Core type did show some variation with regards to EDP.  Typically there was a 

definite gap between the Xeon and Atom cores, with Xeon giving better results.  There 

were a few cases, such as barnes and raytrace, where the smaller Atom core had the lower 

EDP.  In these cases the energy savings of the small core outweigh the performance 
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benefit of the larger core.  For ED2P, as before, since more emphasis is placed on delay 

the larger, more powerful core excels.  

6.3 Sensitivity to Number of Threads 
Finally, each benchmark is run with varying numbers of threads.  A single Atom 

core was used, and each simulation was done at the same frequency of 3.2 GH and 

voltage of 1V.  The number of threads was changed to all values between one (1) and 

eight (8), though some benchmarks would only run with a number of threads that was a 

power of two.   

Since the results presented below are normalized, the trends are harder to discern.  

However, the results from increasing the thread count are very much as expected.  More 

threads yield better performance at the cost of higher power.  EDP and ED2P also 

increase as thread counts rise.  The trend in EDP and ED2P stands to reason, since adding 

X threads does not increase performance by a factor of X, though that is very nearly the 

case for power. 

The problem with looking at each parameter individually is that it does not come 

close to telling the entire story.  It is only when looking at the full spectrum of results that 

we can really see where certain architectures excel when compared to the others.  It is for 

this reason that the result set is presented as a full set of data normalized to a baseline 

configuration. 

There are a variety of patterns throughout the benchmarks.  The above trends 

continue, with bigger, faster cores running more threads yield better performance and 

higher power.  What we are really concerned with are the variations in the trends.  In the 
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radiosity benchmark we see that the lower frequency Xeon cores are more efficient in 

terms of EDP from even as low as one thread.  As the number of threads increase the 

baseline core is actually the least efficient.  The ED2P graph shows the same trend, 

though the less powerful cores are not more efficient at the lower thread counts.  The 

raytrace benchmark shows this same trend to a higher degree. 

In the fmm, radix, and water.nsq benchmark there is a clear delineation between 

the different core types.  The Xeon core proves to be more efficient across the board, at 

all thread counts.  For fmm in particular we can also see that lower frequencies provide 

better EDP and nearly equivalent ED2P as the higher frequencies. 

The important take away from this range of results is that the metrics show clear 

variations across configurations.  Though many of the overarching trends are similar, 

different benchmarks exhibit very different responses to certain configuration changes.  

This is very important motivation for the subsequent sections of this paper.  If the 

benchmarks react differently at even top level simulations then lower level 

instrumentation should prove promising.  
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Figure 2 - Results for barnes simulations. 

 
 
 

 
Figure 3 - Results for cholesky simulations. 



18 

 

 
Figure 4 - Results for fft simulations. 

 
 
 

Figure 5 - Results for fmm simulations. 
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Figure 6 - Results from lu.cont simulations. 

 
 
 

 
Figure 7 - Results from ocean.cont simulations. 
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Figure 8 - Results from radiosity simulations. 

 
 
 

 
Figure 9 - Results from radix simulations. 
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Figure 10 - Results from raytrace simulations. 

 
 
 

 
Figure 11 - Results from water.nsq simulations. 
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7. COMBINED ANALYSIS – INFLUENCE OF FREQUENCY, CORE TYPE, 

AND THREAD COUNT ON EDP AND ED2P 

Section four analyzed the effect of individual parameters on the performance, 

EDP, and ED2P of the Splash2 benchmarks.  The resulting information provided a good 

starting point and theoretical background for the next step, but did not address the 

problem on a more comprehensive level.  Changing a parameter individually can help 

tweak performance and power, but the goal of this section was to find an optimum 

configuration taking into account all of the parameters: core type, frequency, and number 

of threads.   

7.1 Algorithm 
In order to find a true optimum configuration all permutations of the parameters 

were simulated.  A simple brute force algorithm seen in Figure 12 was used to check 

every configuration option and find the minimum EDP and ED2P.   
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Figure 12 – Algorithm for finding optimal core configuration. 

 

 

 

7.2 General Results 
Though the algorithm above includes a check against a power constraint, the first 

set of results presented did not perform this check.  These results are simply the optimum 

configurations for maximizing EDP (Table 3) or ED2P (Table 4) with no constraints 

applied.  Each table shows each benchmark, followed by the optimum core configuration 

parameters (core type, frequency, thread count), and the value of the optimization goal 

and total power for the corresponding simulation. 

It should be noted that all results in sections 7.2 and 7.3 are looking at numbers of 

threads from 1 to 128.  The results are nearly identical, save for the few instances where 

the number of threads is greater than 8.  In each of these cases the result set with only 1 to 

8 threads had on optimum configuration that was the same as below, except that the 

number of threads was 8.  
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Table 3 – Optimum configurations with optimization target EDP. 

 

 

 

 

 

Table 4 – Optimum configurations with optimization target ED2P.

 
 

 

 

The figures above show a result that is not entirely surprising.  For an 

optimization target of EDP we see that the vast majority of configurations have a low 

frequency and a low thread count.  EDP gives equal weight to energy efficiency, which is 

found at lower frequencies and fewer threads.  This is similar to current technology 

Benchmark Core Type Frequency Thread Count EDP CoV Power CoV

barnes xeon 2 32 79.40% 38.13%

cholesky xeon 2 8 178.06% 64.00%

fft xeon 3.2 2 208.82% 28.41%

fmm xeon 2 32 51.62% 28.47%

lu.cont xeon 2 1 312.82% 31.90%

ocean.cont xeon 2 1 226.44% 30.47%

radiosity xeon 2.4 6 138.05% 45.60%

radix atom 2 8 169.70% 32.82%

raytrace xeon 2 4 143.66% 30.25%

water.nsq xeon 2 3 282.68% 26.41%

Benchmark Core Type Frequency Thread Count ED2P CoV Power CoV

barnes xeon 2 32 190.61% 38.13%

cholesky xeon 3.2 8 193.80% 64.00%

fft xeon 3.2 2 256.34% 28.41%

fmm xeon 2.4 32 131.19% 28.47%

lu.cont xeon 3.2 1 341.03% 31.90%

ocean.cont xeon 2.8 1 246.28% 30.47%

radiosity xeon 2.4 6 133.92% 45.60%

radix xeon 3.2 8 177.30% 32.82%

raytrace xeon 2.4 4 145.57% 30.25%

water.nsq xeon 2.8 3 321.86% 26.41%
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trends, such as the NVIDIA TEGRA 4 and Intel Xeon Phi, both of which have max 

processor speeds of less than 2GH [39][40].   

Looking at an optimization target of ED2P shows slightly different results.  Since 

ED2P puts a higher emphasis on performance over power it is again not surprising that 

the optimal configuration show higher frequencies and higher thread counts, each of 

which improves performance.  

7.3 Application of Power Constraint 
The subsequent results, seen in Tables 5 and 6, did include the check against a 

power constraint.  The constraint varied between 50%, 25%, and 12.5% of the maximum 

power for a given benchmark.  The maximum power used was derived from the 

simulation result that had the highest total power.  In addition to the same values as in 

section 7.2, each section will show the actual constraint value included in the results. 
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Table 5 - Optimum configurations with power constraints applied, part 1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Core Type Frequency Thread Count Core Type Frequency Thread Count

barnes 100.00% 102.72 xeon 2 32 xeon 2 32

50.00% 51.36 xeon 2 8 xeon 3.2 8

25.00% 25.68

12.50% 12.84

cholesky 100.00% 240.81 xeon 2 8 xeon 3.2 8

50.00% 120.41 xeon 2 8 xeon 3.2 8

25.00% 60.20 xeon 2 8 xeon 2.4 8

12.50% 30.10

fft 100.00% 69.67 xeon 3.2 2 xeon 3.2 2

50.00% 34.84 atom 2 8 atom 2 8

25.00% 17.42

12.50% 8.71

fmm 100.00% 86.93 xeon 2 32 xeon 2.4 32

50.00% 43.47 xeon 2 8 xeon 2 8

25.00% 21.73

12.50% 10.87

lu.cont 100.00% 83.67 xeon 2 1 xeon 3.2 1

50.00% 41.84 xeon 2 1 xeon 3.2 1

25.00% 20.92

12.50% 10.46

Constraint not met.

Constraint not met. Constraint not met.

Constraint not met.Constraint not met.

Constraint not met. Constraint not met.

Constraint not met.

Constraint not met.Constraint not met.

Constraint not met. Constraint not met.

Constraint not met.

Constraint not met.Constraint not met.

Constraint not met.

ED2PEDP
ConstraintFactorBenchmark

Constraint not met. Constraint not met.
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Table 6 - Optimum configurations with power constraints applied, part 2. 

 
 

 

 

When including a power constraint there are a number of instances where the 

configurations changed in order to meet the applied constraint.  In each case we see a 

more powerful configuration reducing to a lower power core.  For instance changing 

from the larger Xeon core to the smaller Atom option (fft, radix), lowering the frequency 

(cholesky, fft, fmm, ocean.cont, radix, water.nsq), or lowering thread counts (barnes, 

fmm).   

Some of these configurations showed tradeoffs between parameters.  There are 

cases where the frequency was lowered, but then the thread count increased (fft, 

Core Type Frequency Thread Count Core Type Frequency Thread Count

ocean.cont 100.00% 75.03 xeon 2 1 xeon 2.8 1

50.00% 37.52 xeon 2 1 xeon 2.4 1

25.00% 18.76

12.50% 9.38

radiosity 100.00% 141.13 xeon 2.4 6 xeon 2.4 6

50.00% 70.57 xeon 2.4 6 xeon 2.4 6

25.00% 35.28

12.50% 17.64

radix 100.00% 79.59 atom 2 8 xeon 3.2 8

50.00% 39.80 atom 2 8 atom 2.8 8

25.00% 19.90

12.50% 9.95

raytrace 100.00% 86.07 xeon 2 4 xeon 2.4 4

50.00% 43.04 xeon 2 4 xeon 2.4 4

25.00% 21.52

12.50% 10.76

water.nsq 100.00% 76.83 xeon 2 3 xeon 2.8 3

50.00% 38.42 xeon 2 3 xeon 2 5

25.00% 19.21

12.50% 9.60 Constraint not met. Constraint not met.

Benchmark Factor Constraint
EDP ED2P

Constraint not met. Constraint not met.

Constraint not met. Constraint not met.

Constraint not met. Constraint not met.

Constraint not met. Constraint not met.

Constraint not met. Constraint not met.

Constraint not met. Constraint not met.

Constraint not met. Constraint not met.

Constraint not met. Constraint not met.

Constraint not met. Constraint not met.
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water.nsq).  There is even an instance of a large decrease in thread count resulting in an 

increase in frequency (barnes).   

Such variability in optimal configuration is further evidence in favor of a 

heterogeneous design.  Even if core configurations cannot be changed at runtime, it is 

clear that a single configuration cannot provide the required performance or efficiency for 

all benchmarks.  Even more so, depending on the optimization goal the configuration can 

change even more.   
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8. DIVING DEEPER: OPTIMIZING APPLICATION REGION BY REGION 

Up to this point this paper has focused on architectures that do not change 

throughout application processing.  While the results are very useful for static 

homogenous architectures they are only supplementary to the idea of a heterogeneous 

architecture.  It has been previously mentioned that many of the benchmarks being 

studied include a number of parallel sub-regions.  Typically, all of these regions are 

included in the overall benchmark simulation and they are often separated by serial 

regions of processing.  A static architecture has no option but to process all of these 

regions in the same manner, though not all regions may have the same profile.  Some of 

these regions may benefit from different architectures than the others. 

The ability to change the architecture dynamically to suit specific profiles within 

an application is the core motivation for this work.  Such an architecture would be able to 

change to best suit the specific profile of each application sub-region.  Doing so will 

result in the optimal set of configurations for the entirety of a benchmark yielding the 

best performance and efficiency possible.  This section presents results of simulations 

based on the heterogeneous approach.   

To illustrate the improvements offered by heterogeneous architectures a set of the 

Splash2 benchmarks were modified.  Simulation markers were placed at various sections 

of the benchmarks that would be simulated as individual parallel regions.  All simulations 
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were then run again using all permutations of the configuration parameters, 

voltage/frequency, core type, and thread count.  The results from these simulations have 

been compiled an analyzed and are presented below in Table 7.  Each table shows, for the 

given benchmark, the optimal configuration in terms of first EDP, and second ED2P, for 

each of the sub-regions listed under the “Marker” heading.   

 

 

Table 7 - Optimum configurations for individual sub-regions. 

 
 

 

 

 

Region Core Freq Threads EDP CoV Core Freq Threads ED2P CoV Power CoV

1 atom 3.2 1 42.43% atom 2 1 63.81% 118.98%

2 atom 2.4 8 121.93% atom 2.4 8 24.79% 171.14%

3 xeon 2.8 8 178.36% xeon 2.8 8 25.50% 226.51%

cholesky

Region Core Freq Threads EDP CoV Core Freq Threads ED2P CoV Power CoV

1 atom 3.2 8 264.55% atom 3.2 8 25.75% 335.22%

2 xeon 2.8 8 45.44% atom 2 1 46.28% 75.66%

3 atom 3.2 1 46.80% atom 2 1 39.22% 85.31%

4 atom 2.8 8 180.77% atom 2.8 8 34.87% 220.30%

5 atom 2.4 8 189.67% atom 2.4 8 23.66% 233.79%

fft

Region Core Freq Threads EDP CoV Core Freq Threads ED2P CoV Power CoV

1 xeon 3.2 6 99.26% xeon 3.2 6 32.33% 157.48%

2 atom 3.2 1 57.47% atom 2 1 57.01% 148.37%

3 atom 2.4 8 141.64% atom 2.4 8 29.05% 194.62%

fmm

Region Core Freq Threads EDP CoV Core Freq Threads ED2P CoV Power CoV

1 atom 2.4 8 134.77% atom 2.4 8 27.34% 166.62%

2 xeon 3.2 8 116.56% atom 2 8 23.16% 150.29%

3 xeon 2.4 8 177.58% xeon 2.4 8 26.30% 244.32%

lu.cont
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The table above shows much what we expected.  It can be easily seen that every 

marker does not benefit from the same configuration.  Here we will look at an example, 

the radix benchmark, more in-depth.  The radix benchmark was instrumented with four 

separate sub-regions.  Over the four sub-regions all four have a different set of 

configuration options for optimizing EDP, and three different configurations for 

Region Core Freq Threads EDP CoV Core Freq Threads ED2P CoV Power CoV

1 xeon 2.8 8 197.50% xeon 2.8 8 24.07% 279.13%

2 xeon 3.2 8 225.18% xeon 3.2 8 26.14% 302.01%

3 atom 3.2 8 163.04% atom 3.2 8 26.39% 175.25%

4 xeon 2.8 8 41.93% xeon 2.8 8 34.39% 54.64%

ocean.cont

Region Core Freq Threads EDP CoV Core Freq Threads ED2P CoV Power CoV

1 atom 3.2 1 60.76% atom 2 1 42.09% 152.23%

2 xeon 3.2 2 57.93% xeon 3.2 2 43.49% 109.11%

radiosity

Region Core Freq Threads EDP CoV Core Freq Threads ED2P CoV Power CoV

1 atom 3.2 8 44.56% atom 2 1 48.87% 86.44%

2 xeon 2.4 8 157.48% xeon 2.4 8 31.42% 197.52%

3 atom 2.8 8 111.43% atom 2.8 8 57.32% 139.00%

4 xeon 3.2 8 51.50% atom 2 1 38.10% 86.87%

radix

Region Core Freq Threads EDP CoV Core Freq Threads ED2P CoV Power CoV

1 atom 3.2 1 43.65% atom 2 1 43.49% 116.09%

2 atom 3.2 7 195.24% xeon 2.4 8 30.66% 253.46%

3 xeon 3.2 8 59.12% xeon 3.2 8 35.41% 83.42%

4 atom 3.2 1 44.97% atom 2 1 45.90% 117.58%

5 xeon 3.2 8 194.64% xeon 3.2 8 25.26% 257.58%

water.nsq
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optimizing ED2P.  The core types vary between large and small, and the frequencies span 

a wide range.   

Note the included metrics for CoV, which are the Coefficients of Variation of the 

EDP, ED2P, and Power.  These show the amount of variability over all of the simulation 

data for their respective metrics and can be seen as an indication of just how much 

performance or efficiency may be gained.  Though in some cases there is indeed a low 

CoV, meaning there was not a large difference in the results, for the most part the CoV is 

quite high.  This specifies that not only is a particular configuration optimal, but it is far 

better than other configurations and the possible benefits are greater.   
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9. CONCLUSIONS 

9.1 Novel Contributions 
This paper has first demonstrated a few of the many different parameters that 

factor in to optimal processor configurations.  Using the Splash2 benchmarks we have 

shown how different applications are sensitive to the core type, voltage/frequency, and 

thread count parameters.  Configuring even just these few parameters yields a wide 

variance in performance and power efficiency.   

Next, analysis of simulations run with all permutations of the previously 

mentioned parameters was performed.  This effort used a simple brute force exhaustive 

search algorithm to determine what configuration yields the best EDP or ED2P.  The 

results were very much as expected and coincided with metrics from devices in product 

and on the market today [39-40].  

Finally, the true purpose of this paper was to show the benefits of a heterogeneous 

architecture.  By instrumenting Splash2 benchmarks to record statistics on multiple sub-

regions of the overall application the full impact of the heterogeneous architecture could 

be realized.  Each of the different sub-regions were simulated with all permutations of 

configuration parameters which allowed for determination of the optimum parameters for 

each region individually.  The results clearly showed that each region does benefit from a 

different configuration, in some cases a radically different configuration.  Given the 
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ability to optimize each region at runtime would provide great benefit to the overall 

application for whatever optimization goal that is trying to be achieved  

9.2 Future Work 
This work has shown the utility of heterogeneous architectures through profiling a 

set of Splash2 benchmarks.  Even on this sampling the results are extremely promising.  

To provide a more comprehensive look at the benefit of heterogeneous architectures and 

to further shows the benefit a wider range of applications could be profiled.  Other 

benchmark suites, such as the PARSEC [12] suite, could be similarly instrumented and 

simulated.   

In this exploration we modified the benchmarks, simulated them fully with a 

single configuration, and then combined the results from different configurations to show 

the best combination.  The next step in the exploration of heterogeneous architecture is to 

modify the simulator itself.  Custom markers can be added to the benchmarks signifying 

that the next regions benefits from a specified core configuration.  The simulator can be 

modified to find these markers and, when encountering one, dynamically change the core 

configuration to the one specified.   

This work, and the possible future work mentioned, would provide a very good 

foundation from which to explore an actual implementation of heterogeneous 

architecture.  Currently we have only been concerned with simulations, finding 

theoretical results to prove that there would be substantial benefits.  With sufficient proof 

provided, actual implementation can begin.   
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