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Abstract

Recent events underscore the need for effective
tools for managing the risks posed by terrorists.
Assessing the threat of terrorist attack requires
combining information from multiple disparate
sources, most of which involve intrinsic and
irreducible uncertainties.  This paper describes
Site Profiler Installation Security Planner, a
tool initially built to assist antiterrorism
planners at military installations to draw
inferences about the risk of terrorist attack. Site
Profiler applies knowledge-based Bayesian
network construction to allow users to manage a
portfolio of hundreds of threat/asset pairs. The
constructed networks combine evidence from
analytic models, simulations, historical data, and
user judgments. Site Profiler was constructed
using our generic application development
environment that combines a dynamically
generated object model, a Bayesian inference
engine, a graphical editor for defining the object
model, and persistent storage for a knowledge
base of Bayesian network fragment objects. Site
Profiler’s human-computer interaction system is
tailored to mathematically unsophisticated users.
Future extensions to Site Profiler will use data
warehousing to allow analysis and validation of
the network’s ability to predict the most effective
antiterrorism risk management solutions.

1 BACKGROUND

The U.S. military defines antiterrorism as the defensive
posture taken against terrorist threats.  Antiterrorism
includes fostering awareness of potential threats, deterring
aggressors, developing security measures, planning for
future events, interdicting an event in process, and
ultimately mitigating and managing the consequences of
an event.  These activities are undertaken at the
installation or unit level throughout the Department of
Defense. One key element of an effective antiterrorist
strategy is evaluating individual military bases for
terrorist risk. Site Profiler® allows military planners to
develop a customized, base-specific risk assessment that
combines information from many different sources.   Site
Profiler Installation Security Planner (ISP) was licensed
by the US Department of Defense in 1999 to develop an
enterprise-wide anti-terrorism risk management system.

The ISP program was initiated in response to the bombing
of US Air Force servicemen in Khobar Towers, Saudi
Arabia and the bombings of the US Embassies in Africa.
These events and their ensuing investigations revealed
that the US had inadequate methods for assessing terrorist
risks and planning for future terrorist events.  Recent
events continue to highlight the difficulties of
antiterrorism planning.  Site Profiler ISP was completed
in August 2001.  It provides a means to assess terrorist
risks, manage these risks, and develop standardized
antiterrorism plans.

The next section describes the uncertainties involved in
assessing and managing antiterrorism risks, and the
weaknesses in current methodologies.  Section 3 describes
our modeling and knowledge engineering approach.
Section 4 describes the software architecture for Site



Profiler and our generic Bayesian application
development environment.

2 THE ANTITERRORISM RISK
MANAGEMENT CHALLENGE

Terrorist activity is increasing globally and the targeting
of US individuals, at home or abroad, has risen sharply
since the early 90’s.  In particular, US military forces
abroad are increasingly targets of terrorist attacks.
Terrorists present an asymmetric threat that military
training and planning doctrine are not well suited for.
Military forces are organized and trained to fight clearly
defined enemies in definitive engagements.   The terrorist
exploits this posture by attacking when least expected,
using unconventional means, against a force that is often
ill-prepared.

The risk of terrorist attack is always present for US forces
abroad and at home.  Vulnerabilities will always exist that
could be exploited by an enemy.  The challenge is to
prioritize these risks by identifying exploitable
vulnerabilities and the likelihood that these vulnerabilities
will be targeted.  However these risks involve highly
uncertain and subjective assessments to be made of
terrorist intent, capabilities, targeting preferences, and
other features indicative of the likelihood and severity of
a terrorist incident.

Risk management requires that we understand the
likelihood of an event and the consequences if that event
were to occur so that mitigation efforts can be optimally
employed.  This assessment requires integrating disparate
data sources that are almost impossible for one person to
grasp.  Information about terrorist intent and targeting
preferences, usually the province of intelligence staff, is
largely subjective and highly uncertain.  Understanding of
vulnerabilities and mitigation options, typically areas for
physical security specialists, are often based on
experience or “best judgment.”  Estimating the
consequences of an attack requires sophisticated models
that are only usable by engineers and scientists.  The
antiterrorism planner at each military installation is
responsible for assimilating all of this information for all
of his installation assets and managing a dynamic risk
portfolio of potentially hundreds of threat-asset pairs.
Although a limited number of experts may be able to
understand and manage a given risk, no human can
manage all of the components of hundreds of risks
simultaneously.

2.1 Existing Approaches to Antiterrorism Risk
Management

Historically, antiterrorism planners have employed
manual procedures derived from conventional military

doctrine or Special Forces targeting criteria.  These
standard operating procedures are documented in military
manuals and supported by paper and pencil tools. Existing
methods are typically not specific to a given threat or
situation, analytically dubious, extremely simplistic, and
procedural rather than knowledge based.  A brief
description of some of the existing methods follows.

2.1.1 DSHARPP

DSHARPP is an acronym that represents a so-called
“stubby pencil” process for risk assessment.  First, the
installation planner develops a list of potential terrorist
targets on his installation.  Then, for each of the terms in
the DSHARPP acronym; Demography, Susceptibility,
History, Accessibility, Recognizability, Proximity,
Population; he awards from 1 to 5 points for the term.
Summing up these scores yields a maximum of 35 points,
the worst case, or a minimum of 7 points (Air Force
Instruction 31-210).  These scores are used to sort the list
of potential targets.  The installation commander then
determines which of these targets he will address with
additional security measures, and applies any measures he
feels are appropriate.  None of these terms or scores is
adjusted based on threat, type of target, or any other
special considerations.  Several other similar approaches
can be found in the military literature.

2.1.2 The FPCON System

The FPCON System is a risk management approach that
is based on compliance with a set of prescribed standards
(Joint Pub 3-07.2, 1998).  These standards, referred to as
Force Protection Condition Measures, must be
implemented at every military installation.  Five FPCON
levels (Normal, Alpha, Bravo, Charlie, and Delta)
represent an increasing level of terrorist threat, as
determined by military intelligence.  As the FPCON level
increases from Normal to Alpha and so on, the installation
employs the prescriptive FPCON Measures.  Each level
involves ten measures like Measure 5, “Limit access
points for vehicles and personnel commensurate with a
reasonable flow of traffic”.  These measures were
developed by military experts as prudent measures to
undertake under rising threat conditions.  FPCON
Measures represent practical expert judgment, but are not
specific to a given threat, situation, or local environment.
Though these measures make it easy to develop consistent
plans, they have been shown to be inadequate (USS Cole
Commission Report, 2001).

2.1.3 Expert Assessment Teams

In addition to the two methods cited above, both of which
are required of all military installations, a third process is
used—expert assessment.  The DoD employs dozens of



teams composed of eight to ten expert assessors.  These
teams are composed of individual experts in terrorist
options, structural engineering, chemical weapons, law
enforcement, and disaster response.  These experts spend
no more than one week at the installation.  During that
time they interview and observe, pick three to five likely
targets, three to five potential threats, and discuss the risks
and mitigation options in a final report and briefing to the
installation commander.  The installation commander is
then responsible for addressing these findings.

Since the findings of the expert teams are based solely on
their judgment and experience, the analytical integrity of
their assessments is subjective and their results are not
repeatable.  First, each expert and team of experts tends to
view the situation differently.  Second, the time that they
have to conduct their assessment limits them to a small
number and depth of considerations.  Third, the situations
on military installations are constantly changing, but
assessment visits occur infrequently.  Finally, because
their findings are essentially opinions, they can easily be
countered by someone else’s opinion.  Expert assessment
is a powerful tool, but only if it can be structured to
produce repeatable, high confidence results.

2.2   The Site Profiler Approach to Antiterrorism
Risk Management

Site Profiler allows antiterrorism planners to analyze and
manage a large portfolio of risks simultaneously.
Knowledge about installations, assets, and terrorist risks
is encoded in a knowledge base of Bayesian network
fragments (Laskey and Mahoney, 1997) that can be
dynamically combined at run-time into a Bayesian
network for assessing risks specific to a given installation
and situation.  This is accomplished via an object-oriented
database and an architecture that can supply the network
nodes with data from disparate sources. These disparate
sources include the planner’s own subjective and
objective assessments, historical database information,
analytic model results, and simulation results that are
integrated into various nodes on the Bayesian network.
This network is dynamically constructed by the software
and automatically solved and presented to the user for
each combination of asset and threat that the user has
described.

Because our users are not analysts, the system was
designed to be understandable to users not accustomed to
thinking about probability.  Analyzing the consequence
component of risk required the inclusion of results from
physics-based weapon models that planners would be
unfamiliar with.  Our architecture was thus developed to
provide intuitive input and feedback interfaces to the
users and to have direct interfaces to multiple simulations
and models that could provide data directly to the network
without user intervention.

The system was designed to support the thought process
of military planners, while maintaining computational
efficiency and analytical integrity.  The fragments in the
risk influence Bayesian network were designed to match
the user’s domain concepts, ensuring a scalable, modular,
and maintainable model.  For example, we created a
fragment that consisted of all the network nodes that
pertained exclusively to the concept of an asset.  We then
provided interfaces for the user to characterize each of the
assets on his installation, as seen in Figure 1.  Given a
characterization of the assets on an installation and a set
of threats to be considered, the software automatically
creates and evaluates a Risk Influence Network (RIN) for
each asset/threat pair.

Figure 1:  The interview-style interface allows the user to
describe his assets

The model also included relational information regarding
threat/asset pairs.  Because the number of risks scales
roughly as the number of assets times the number of
threats, manual entry of relational information for each
threat/asset combination was clearly infeasible.  We were
able to model the relational aspects so that all relational
information could be calculated from a complete
characterization of threats and assets.  Many of these
calculations were computed from simulations external to
the Bayesian network.  For example, we used a simulation
to determine the accessibility of an asset to a threat, and a
physics-based model to determine the consequences of a
given explosive against a structure or a chemical weapon
against a group of people.  These, and other calculations,
are automatically requested by the architecture and used
to populate Bayesian nodes when the RIN is solved.

Because our users are not analysts, they needed a tool
they could learn simply, use effectively, and trust.  In
particular, we wanted to avoid a “black box” into which
the user feeds information and out of which an answer
magically appears. Users invoke the model via a natural



and understandable interface to describe their assets,
specify characteristics of their installation, and select
threats to consider.  The system constructs RINs for each
threat/asset combination, runs offline simulations and
database queries as needed, applies evidence, and
computes risks which are presented back to the user in
tables formatted for understandability.  At this high level
view, a utility function is used to reduce the probability
distributions to single indicators like High, Medium, or
Low, as shown in Figure 2.  Users are then able to “drill-
down” into the components of the risk by clicking on
rows in the risk table and walking down the Bayesian
network.  This ultimately takes them to leaf nodes at
which the information may have come directly from a
question they answered or from the results of a model
calculation.  We present the user with graphical views of
his risk and with the probability distributions of each
node.  They can then adjust inputs as necessary, but can
feel confident that they understand the underlying
components of a given risk score.

Figure 2:  The Risk Table allows the user to view and sort
by key network nodes

The structure of the network and domain fragments
facilitates the risk management process.  Users can easily
see the threat that is most plausible, or the asset that has
high consequences, or a common element among many
risk scenarios.  Countermeasures, procedures, and other
adjustments can be applied to the installation baseline to
address issues identified in the risk influence network.

3 THE DEVELOPMENT PROCESS

Our initial research into the domain of antiterrorism risk
management identified a broad consensus among both
experts and policy makers that a new approach to
antiterrorism risk management was needed. The new
approach needed to be more sophisticated, analytically
defensible, customizable, and easily modifiable than the
approaches in current use. Our goal was therefore not to
improve a current method, but to develop a truly
revolutionary approach.

3.1 Knowledge Representation

Because of the diverse types of information that we
needed to collect and the complex interrelations between
the many factors that affect risk, we immediately realized

that a straightforward algorithmic approach would be
inadequate.  An approach was needed that allowed
disparate types of data to be combined in a coherent,
analytically defensible, and understandable manner.

Our research identified uncertainty as fundamental.  There
is uncertainty in the identities of the terrorists, uncertainty
in their capabilities, uncertainty in what makes an asset
attractive, uncertainty in the most likely methods of
attack, uncertainty in the consequences of an attack, and
uncertainty in how these factors combine to affect risk.
After analyzing several approaches to reasoning under
uncertainty, we determined that Bayesian networks would
provide the capabilities necessary for Site Profiler.  A
Bayesian network could be used to model the components
that affect risk and how they interact.  Because of the
need to represent and combine repeatable sub-structures,
it became clear that an object-oriented representation
(Koller and Pfeffer, 1997; Laskey and Mahoney, 1997)
combined with knowledge-Based model construction
(Wellman, et al, 1992; Mahoney and Laskey, 1998) was
necessary.  We found that experts had little difficulty
understanding and suggesting improvements to Bayesian
network fragments we presented to them.  We could even
present the constructed networks to users to give them a
clearer picture of the factors influencing risk.  The
Bayesian network representation allowed us to combine
evidence from disparate sources, such as from users,
historical databases, simulation, and analytic models.

3.2 Engineering the Network

The heart of the Site Profiler risk methodology is the Risk
Influence Network (RIN).  The RIN is a 146-node
Bayesian network that solves for the relative risk of an
attack against a particular asset by a particular threat.  The
nodes of the RIN contain information about the
installation as a whole, the asset, the threat (tactic,
weapon system, and terrorist organization), the asset-
threat target pairing, and the attack event.

Following a network engineering process (Mahoney and
Laskey, 1996), we iteratively moved from initial concepts
and definitions to a set of reusable network fragments that
could be combined into an asset-threat specific RIN. The
effort proceeded in six stages: initial concept, formal
definition and analysis, subsection review with experts,
scenario elicitation and revision, implementation, and
operational revisions.

3.2.1 Initial Concept

We began by collecting all of the various pieces of data
needed to support the system.  This data fell cleanly into
two distinct categories: physical data and domain data.
Physical data includes information necessary to describe
the state of a physical object, such as position, size, shape,



and weight.  Domain data represents the more abstract
concepts that do not necessarily relate to any physical
structure, such as attractiveness, risk, and plausibility.
When combined, these two types of data form a complete
model of the terrorist realm.

Once we had gathered all of the necessary data for the
system, we grouped it together in the form of data objects.
Each object represents a particular collection of data that
defines a concept, such as a car, building, asset, or threat.
In Site Profiler, there are seven objects that are used to
construct the RIN: installation, asset, threat, weapon
system, terrorist organization, target, and attack.  Our core
knowledge representation consists of a set of Bayesian
network fragments expressing information about
attributes of and relationships among these objects.

Working with a combination of existing documents and
experts, we drew the initial graph for the RIN. Nodes in
the network included both evidence nodes and measures
of aspects of the risk. We drew the arcs in an inferential
direction from evidence to inferred measure, and then
developed initial definitions for the nodes. Because the
RIN was a new concept to our experts, the precise
definitions for many of the nodes (e.g. Accessibility,
Recoverability) remained unclear.

3.2.2 Formal definition and analysis

When we formally defined the nodes and their states, we
required examples for each state. These examples helped
us decide how many states were appropriate for a
measurement node and made it much easier to
communicate the concepts to the experts who later
reviewed the network. Concurrently, we identified
inferentially interesting network fragments of five to a
dozen nodes, revised their structure and populated their
conditional probability tables with “rough guess” values
based on information we had obtained from domain
experts and literature.

3.2.3 Subsection review with experts

We reviewed subsections of the RIN with three different
groups: threat experts, damage experts, and accessibility
experts. Each review took two days. Most of the effort
was spent communicating and revising the terminology.
We used Netica™ to display the fragments, one fragment
at a time. Rather than explicitly asking for probability
distributions we elicited relative strengths of influence,
entered appropriate distributions and displayed the
inferential results to the experts for their feedback.  We
found that this process of developing an initial model
based on our understanding of the domain and obtaining
review and feedback from experts was an efficient and
effective approach for rapid knowledge engineering.
There is a common view in the literature that elicitation of

structure is relatively straightforward relative to the
difficult problem of eliciting probabilities (Druzdzel and
van der Gaag, 2000).  In our experience, the most difficult
and time consuming part of the process was establishing a
common understanding of terminology and definitions.
We circumvented the difficult issue of directly assessing
probabilities in favor of an approach of developing an
initial model based on a review of the literature,
reviewing the model with experts, and asking experts for
relative strengths of inference rather than for probabilities.
Based on results of our evaluations, this approach was
successful.

3.2.4 Scenario elicitation and revision

In additional sessions we elicited scenarios from a cross-
section of experts and entered the data into the RIN.
While these scenarios showed that the RIN ‘worked’, they
tended to be exceptional (e.g. attacks against the
Pentagon).

3.2.5 Implementation

At this point, we implemented the RIN in software.  This
involved importing the structure of the network into the
software architecture and running scenarios to ensure that
the integration between the network and the rest of the
system was successful.  From this point on, all testing
regarding the RIN occurred in conjunction with the entire
Site Profiler system.

3.2.6 Operational revisions

The initial validation of the RIN by experts showed us
that the network basically works in the sense that it
appears to order asset-threat pairs sensibly for the small
set of scenarios we evaluated during initial validation of
the model. However, there is as yet insufficient data to
provide a definitive evaluation of the quality of the
solutions the system provides. As the system is fielded,
data will be generated from military sites around the
globe.  We plan to use this data to validate and calibrate
the RIN.

Questions that need to be answered are: Does the RIN
provide enough separation among a commander’s asset-
threat pairs, that the commander can make a decision
about spending his force protection budget? For a given
security expert at a given site are the RIN results
repeatable? Would two security experts using Site Profiler
produce the same ordering of asset-threat pairs? Are their
measures essentially the same? Can relative risk measures
for one site be compared with those for another?   



4 SOFTWARE IMPLEMENTATION

To meet the many needs of Site Profiler, we developed an
object-oriented database architecture with native support
for Bayesian networks.  In our architecture, an object
contains a set of attribute types, with one of these types
being a Bayesian network value.  This value represents
the current probability distribution of a node in the
network.  These types of attributes reside on domain
objects that are considered during the evaluation of the
network.  For instance, the accessibility of an Asset is
considered as an influencer in the RIN, so the Asset
domain object contains Bayesian attributes.

4.1 Bayesian Attributes and Objects

Bayesian attributes are attributes on domain objects that
store the belief values for nodes in the network.  These
values represent either evidence entered into the network,
or propagated belief generated by queries against the
network.  For each Bayesian attribute, there is associated
with it a Bayesian object.  A Bayesian object contains the
data necessary to represent a network node, such as the
states of the node, the probability distribution, and the
parents of the node.

Bayesian attributes and objects work together to empower
the Site Profiler RIN.  Bayesian objects are the building
blocks of the RIN, in that they define the structure and
behavior of the network. Although designed to be generic,
our Bayesian objects are optimized for use with IET’s
Universal Bayesian Network Solutions Engine (UBNSE),
which is the Bayesian inference engine used by Site
Profiler.  Bayesian attributes provide a snapshot in time of
the network, and they allow for the exposure of the state
of the network to the users.

When a domain object containing Bayesian attributes
comes into existence, the Bayesian objects associated
with the attributes are also created.  These collections of
Bayesian nodes, or network fragments, remain with the
object during its lifecycle, and are applied to the RIN as a
group.  When one domain becomes associated with
another, such as when an Asset and Threat form a Target,
the fragments also associate with one another, based on
the parent/child relationships identified by the network
structure, to construct an instance of the RIN as show in
Figure 3.
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Figure 3 - Fragments associated with domain objects
combine to form the RIN

4.2 RIN Structure

Site Profiler domain objects combine in fundamental
relationships to describe risk.  Assets and Threats
combine to form Targets, and Targets can be addressed
with Countermeasures that can act on the Asset, the
Threat, or both.  When Targets are created from Threat-
Asset pairs, an instance of the RIN is created.  The RIN is
composed of network fragments from the Asset, the
Threat, and other domain objects.

For Assets, these fragments contain influencers, or nodes,
that seek to describe how critical the Asset is to your
mission, how desirable it is to an enemy, and how soft or
accessible  the Asset is.  For Threats, the fragment
describes how plausible the tactic and weapon are, the
likely intent of an actor to target you and the asset types
he’s most likely to target.  These risk elements combine to
contribute to the key risk nodes associated with a Target –
Likelihood of Event, Susceptibility of an Asset to the
event, the Consequences of the event, and ultimately, the
Risk of the event.  The influence nodes and the fragments
themselves represent the critical elements of risk for each
threat-asset pair, and are attributes of the domain objects.
Countermeasures, in their most raw form, essentially
counter any of the positive influencers of risk.

4.3 Dynamic Object Model and User Interface

Site Profiler needed the ability for software administrators
and maintainers to modify the interface contents and
object model without changing source code.  This was
intended to provide customers with the flexibility to tailor
the system to meet their needs after software delivery.
The ramifications of this were that the data used by the
system could not be defined in application code itself, but
instead had to be accessible outside of the system.

To address this challenge, we designed a database that
allows us to store the structure of our object model,
complete with all of its necessary data and associations.



We also structured our user interface components as
objects and stored them in the database.  We then
designed our software to interpret the database in order to
construct the object model and user interface dynamically.

Using a graphical editor, the user interface and object
model, including the Bayesian network nodes, can be
modified by software administrators and maintainers.
Interface screens can be added or modified, and then
linked up to attributes of the object model.  These screens
can then be used to apply data to the model, or to present
data to the users.  This rapid application creation
capability provides immense flexibility and scalability.

4.4 Evidence from Other Modules

Along with the database, RIN, and user interface modules
of Site Profiler, we developed a 3D modeling
environment for building a site in 3D, an “intelligent
terrorist” module that attempts to infiltrate the site in
order to identify physical vulnerabilities, and analytic
models for simulating weapons effects.  These three
modules provide evidence that can improve the user’s
understanding of their risk.  Integrating these results into
the RIN was another requirement of Site Profiler.

Evidence in the Site Profiler architecture is supplied
through the Plug-in Interface, which is an application
programmer interface (API) for accessing various data
sources.  As shown in Figure 4, this allows the RIN to
fuse information from the graphical user interface, models
and simulations, an historical database, a corporate
information system, or a real-time information source.
This interface allows the RIN to consider new and
existing evidence sources for evaluating risk contributors.
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Figure 4 - The RIN uses evidence from a wide range of
sources to evaluate risks

4.5 Confidence Measures

In order to differentiate between the various types of RIN
evidence, we developed a confidence model that

recognizes the difference between subjective user
evidence and objective analytical/historical evidence.
Using credibility nodes, we apply softer evidence to the
RIN when the data is subjective in nature.  When
applying analytic data, however, we only soften the
evidence if the analytic model itself is less credible than
other models.  This not only allows for greater confidence
in analytic versus user evidence, but also for recognition
of the levels of fidelity in analytic models.  This approach
also works for our historical data, in that we vary the
credibility of the data depending upon the reliability of its
source.

4.6 Support Tools

In addition to the graphical editor mentioned above, we
developed several other tools for use in creating,
maintaining, and analyzing the RIN.  During the data
elicitation and knowledge engineering phases of the
project, we used the Netica modeling tool for constructing
and refining the RIN.  Once the RIN had been completed
using Netica, we developed a tool for importing the
Netica file format directly into our object model.  This
capability proves to be invaluable because it allows us to
model and make changes to the network in an
environment specifically suited for that task, and to then
import the results into our model.  Additionally, changes
based on expert feedback can be easily integrated into the
RIN.

To facilitate the inclusion of historical data into the RIN,
we devised a method of importing default evidence values
from an Excel spreadsheet into our object model.  This
allows us to compile and manage the data externally from
the system, and to then quickly integrate it into our model
without having to modify the objects individually using
the editor.  Given that the information that we based our
historical data on tend to fluctuate with new findings and
reports, this tool proves very handy.

We then developed two other tools for use in analyzing
the RIN values and structure.  The first tool provides an
export capability from the RIN to a color-coded Excel
worksheet.  For each instance of the RIN inside of our
object model, we export the node names, state names, and
probability distribution to a worksheet page.  This
provides a snapshot in time of all nodes of the RIN for
analysis.



Figure 5 - The RIN Viewer allows users to mine through
the network in detail

The second tool, shown in Figure 5, is referred to as the
RIN Viewer.  The RIN Viewer is an embeddable user
interface element that graphically represents the structure
and state of the nodes of the RIN.  Each node is color
coded to distinguish the fragment type that it belongs to,
and contains an icon to distinguish the type of the node
(user input, database lookup, propagated, or analytically
set) and the current state of the node.  The level at which
the RIN Viewer mines down through the network is
adjustable, and can be set to display either a small
fragment of information or the entire network.

5 DISCUSSION

Site Profiler provides a key element of an overall strategy
for antiterrorist risk management. A knowledge based
Bayesian network construction module forms a key
component of a decision support system for assessing
terrorist threats against military installations. Site Profiler
provides a complete picture of risk to military planners in
a way that is coherent, repeatable, and efficient.  It allows
planners to take knowledge that they already have and
augment it with information that was previously
unavailable or inaccessible to them.  By embedding the
RIN inside of Site Profiler’s intuitive interface, we allow
planners to perform complex data analysis without
requiring them to be experts in antiterrorism risk
management.

The preliminary validation of the Site Profiler RIN is
encouraging.  Current plans for data capture and
warehousing will facilitate the long-term validation
efforts needed to ensure that the system is successful.
Site Profiler’s generic environment for developing
Bayesian applications has already proven to be extremely
useful.  We recently used it to develop a separate
application for assessing the risks to seaports from drug
trafficking, and other applications are on the horizon.  Our
generic environment provides the ability to rapidly
develop and deploy decision support systems employing

knowledge based Bayesian network constructions across a
wide range of application domains.

Dedication

This paper is dedicated to the memory of journalist Danny
Pearl, brutally murdered in Pakistan in February 2002,
and to the pioneering research of his father Judea Pearl,
inventor of the Bayesian network representation language
and computational architecture. Danny Pearl’s spirit will
live on in the work of those who apply his father’s
research to protecting the open society for which he gave
his life.
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