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Abstract

Ali Mirzaeian, PhD

George Mason University, Fall 2020

In this report, we first propose the design of Temporal-Carry-deferring MAC (TCD-

MAC) and illustrate how our proposed solution can gain significant energy and perfor-

mance benefit when utilized to process a stream of input data. We then propose using the

TCD-MAC to build a reconfigurable, high speed, and low power Neural Processing Engine

(TCD-NPE). We, further, propose a novel scheduler that lists the sequence of needed pro-

cessing events to process an MLP model in the least number of computational rounds in

our proposed TCD-NPE.

Furthermore, we present NESTA, a specialized Neural engine that reformats Convolu-

tions into 3 × 3 batches and uses a hierarchy of Hamming Weight Compressors to process

each batch. Besides, when processing the convolution across multiple channels, NESTA,

rather than computing the precise result of a convolution per channel, quickly computes an

approximation of its partial sum, and a residual value such that if added to the approxi-

mate partial sum, generates the accurate output. Then, instead of immediately adding the

residual, it uses (consumes) the residual when processing the next batch in the hamming

weight compressors with available capacity. This mechanism shortens the critical path by

avoiding the need to propagate carry signals during each round of computation and speeds

up the convolution of each channel.



Chapter 1: TCD-NPE: A Re-configurable and Efficient

Neural Processing Engine, Powered by Novel

Temporal-Carry-deferring MACs

1.1 Introduction and Background

Deep neural networks (DNNs) has attracted a lot of attention over the past few years, and

researchers have made tremendous progress in developing deeper and more accurate models

for a wide range of learning-related applications [3, 4]. The desire to bring these complex

models to resource-constrained hardware platforms such as Embedded, Mobile and IoT

devices has motivated many researchers to investigate various means of improving the DNN

models’ complexity and computing platform’s efficiency [5]. In terms of model efficiency,

researchers have explored different techniques including quantization of weights and features

[6, 7], formulating compressed and compact model architectures [7–13], increasing model

sparsity and pruning [7, 14], binarization [6, 15], and other model-centered alternatives.

On the platform (hardware) side, the GPU solutions have rapidly evolved over the past

decade and are considered as a prominent mean of training and executing DNN models.

Although GPU has been a real energizer for this research domain, its is not an ideal solu-

tion for efficient learning, and it is shown that development and deployment of hardware

solutions dedicated to processing the learning models can significantly outperform GPU

solution. This has lead to the development of Tensor Processing Units (TPU) [16], Field

Programmable Gate Array (FPGA) accelerator solutions [17], and many variants of dedi-

cated ASIC solutions [18–21].

Today, there exist many different flavors of ASIC neural processing engines. The com-

mon theme between these architectures is the usage of a large number of simple Processing
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Elements (PEs) to exploit the inherent parallelism in DNN models. Compare to a regular

CPU with a capable Arithmetical Logic Unit (ALU), the PE of these dedicated ASIC solu-

tions is stripped down to a simple Multiplication and Accumulation (MAC) unit. However,

many PEs are used to either form a specialized data flow [19], or tiled into a configurable

NoC for parallel processing DNNs [21]. The observable trend in the evolution of these so-

lutions starting from DianNao [18], to DaDianNao [19], to ShiDianNao [20], to Eyris [21]

(to name a few) is the optimization of data flow to increase the re-use of information read

from memory, and to reduce the data movement (in NOC and to/from memory).

Common between previously named ASIC solutions, is designing for data reuse in NOC

level but ignoring the possible optimization of the PE’s MAC unit. A conventional MAC

operates on two input values at a time, computes the multiplicaiton result, adds it to its

previously accumulated sum and output a new and correct accumulated sum. When working

with streams of input data, this process takes place for every input pair taken from stream.

But in many applications, we are not interested in the correct value of intermediate partial

sums, and we are only interested in the correct final result. The first design question that

we answer is if we can design a faster and more efficient MAC, if we remove the requirement

of generating a correct intermediate sum, when working on a stream of input data.

In this chapter, we propose the design of Temporally-deferring-Carry MAC (TCD-

MAC), and use the TCD-MAC to build a reconfigurable, high speed, and low power

MLP Neural Processing Engine (NPE). We illustrated that TCD-MAC can produce an

approximate-yet-correctable result for intermediate operations, and could correct the out-

put in the last state of stream operation to generate the correct output. We then build a

Re-configurable and specialized MLP Processing Engine using a farm of TCD-MACs (used

as PEs) supported by a reconfigurable global buffer (memory) and illustrate its superior

performance and lower energy consumption when compared with the state of the art ASIC

NPU solutions. To remove the data flow dependency from the picture, we used our pro-

posed NPE to process various Fully Connected Multi-Layer Perceptrons (MLP) to simplify

and reduce the number of data flow possibilities and to focus our attention on the impact
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of PE in the efficiency of the resulting accelerator.

1.2 RELATED WORK

The work in [21], categorizes the possible data flows into four major categories: 1) No

Local Reuse (NLR) where neither the PE (MAC) output nor filter weight is stored in the

PE. Examples of accelerator solutions using NLR data flow include [18, 19, 22]. 2) Output

Stationary (OS) where the filter and weight values are input in each cycle, but the MAC

output is locally stored. Examples of accelerator solutions using OS data flow include

[20, 23–25]. 3) Weight Stationery (WS) where the filter values are locally stored, but the

MAC result is passed on. Examples of accelerators using WS data flow include [26–28], and

4) Row Stationary (RS and its variant RS+) where some of the reusable MAC outputs and

filter weights remain within a local group of PE to reduce data movement for computing

the next round of computation. An example of accelerator using RS is [21].

The OS and NLR are generic data flow and could be applied to any DNN, while the

WS and RS only apply to Convolutional Neural Networks (CNN) to promote the reuse of

filter weights. Hence, the type of applicable data reuse (output and/or weight) depends

on the model being processed. The Multi-Layer Perceptrons (MLP) is a sub-class of NNs

that has extensively used for modeling complex and hard to develop functions [29]. An

MLP has a feed-forward structure, and is comprised of three types of layers: (1) An input

layer for feeding the information to the model, 2) one or more hidden layer(s) for extracting

features, and (3) an output layer that produces the desired output which could be regression,

classification, function estimation, etc. Unfortunately, when it comes to MLPs, or when

processing Fully Connected (FC) layers, unlike CNNS, no filter weight could be reused.

In these models the viable data flows are the OS and NLR. The only possible solution

for using the WS solution in processing MLPs is the case of multi-batch processing that

may benefit from weight reuse. Another related work is the NPE proposed in [2]. This

solution, denoted as RNA, is a special case of NLR, where data flow is controlled through
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NoC connectivity between different PEs; RNA breaks the MLP model into multi-layer loops

that are successively mapped to the accelerator PEs, and uses the PEs as either a multiplier

or an adder, dynamically forming a systolic array.

In the result section of this paper, We demonstrate that the OS solutions are in general

more efficient than NLR solutions. We further illustrate that our proposed TCD-MAC,

when used in the context of our proposed NPE, outperform state of the art accelerators

that rely on (fastest and most efficient) conventional MAC solutions.

1.3 Our Proposed MLP Processing Engine

Before describing our proposed NPE solution, we first describe the concept of temporal

carry and illustrate how this concept can be utilized to build a Temporal Carry deferring

Multiplication and Accumulation (TCD-MAC) unit. Then, we describe, how an array of

TCD-MAC are used to design a re-configurable and high-speed MLP processing engine, and

how the sequence of operations in such NPE is scheduled to compute multiple batches of

MLP models.

1.3.1 Temporal Carry deferring MAC (TCD-MAC)

Suppose two vectors A and B each have N M-bit values, and the goal is to compute their

dot product,
∑N−1

i=0 (Ai ∗Bi) (similar to what is done during the activation process of each

neuron in a NN). This could be achieved using a single Multiply-Accumulate (MAC) unit,

by working on 2 inputs at a time for N rounds. Fig. 1.1(A-top) shows the general view of a

typical MAC architecture that is comprised of a multiplier and an adder (with 4-bit input

width), while Fig. 1.1(A-bottom) provides a more detailed view of this architecture. The

partial products (M partial product for M-bits) are first generated in Data Reshape Unit

(DRU). Then the hamming weight compressors (HWC) in the Compression and Expansion

Layer (CEL) transform the addition of M partial products into a single addition of two

larger binaries, the addition of which in an adder generates the multiplication result.
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Figure 1.1: Comparing the architecture of A) a typical MAC, versus B) a simplified 2-input version of TCD-

MAC. In all variables in form of Di
m, the subscript (m) captures the bit position values, and postscript (i)

capture the cycle (iteration). For example, Ai, Bi are the input data in the ith iteration (corresponding to

the ith cycle) of the multiply accumulate operation. The bim, ai
m, and pim are accordingly the mth significant

bits of inputs A, B, and partial sum at the ith cycle (iteration). The division of CPA into GEN and PCPA
is also shown in this figure. Note that the PCPA is only executed at the last cycle.

The building block of the CEL unit are the HWC. A HWC, denoted by CHW (m:n), is

a combinational logic that implements the Hamming Weight (HW) function for m input-

bits (of the same bit-significance value) and generates an n-bit binary output. The output

n of HWC is related to its input m by: n = dlogm2 e. For example ”011010”, ”111000”,

and ”000111” could be the input to a CHW (6:3), and all three inputs generate the same

Hamming weight value represented by ”011”. A Completed HWC function CCHW (m:n) is

defined as a CHW function, in which m is 2n − 1 (e.g., CC(3:2) or CC(7:3)). Each HWC

takes a column of m input bits (of the same significance value) and generates its n-bit

hamming weight. In the CEL unit, the output n-bits of each HWC is fed (according to

its bit significance values) as an input to the proper CHW (s) in the next-layer CEL. This

process is repeated until each column contains no more than 2-bits, which is a proper input
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size for a simple adder. In Fig. 1.1 it is assumed that a Carry Propagation Adder Unit

(CPAU) is used. The result is then added to the previously accumulated value in the output

register in the second adder to generate a new accumulated sum. Note that in conventional

MAC, the carry (propagation) bits in the CPAUs are spatially propagated through the carry

chain which constitutes the critical timing path for both adder and multiplier.

Fig.1.1.B shows our proposed TCD-MAC. In this solution, only a single CPAU is used.

Furthermore, the CPAU is broken into two distinct segments 1) The GENeration (GEN)

and Partial CPA (PCPA). The Gen is the first layer of CPA logic that produces the Generate

(Gci ) and Propagate (P ci ) signals for each bit position i at cycle c. The TCD-MAC relies on

the assumption that we only need to correctly compute the final result of multiplication and

accumulation over an array of inputs (e.g.
∑N−1

i=0 (Ai ∗Bi)), while relaxing the requirement

for generating correct intermediate sums. This relaxed specification is applicable when a

MAC is used to compute a Neuron value in a DNN. Benefiting from this relaxed requirement,

the TCD-MAC skips the computation of PCPA, and injects (defers) theGci and P ci generated

in cycle c, to the CEL unit in cycle c+ 1. Using this approach, the propagation of carry-bit

in the long carry chain (in PCPA) is skipped, and without loss of accuracy, the impact of

the carry bit is injected to the correct bit position in the next cycle of computation. We

refer to this process as temporal (in time) carry propagation. The Temporally carried Gci is

stored in a new set of registers denoted as Carry Buffer Unit (CBU), while the P ci in each

cycle is stored in the output register Unit (ORU). Note that CBU bits can be injected to

any of the CHW (m : n) in any of the CEL layers in the same bit position. However, it is

desired to inject the CB bits to a CHW (m : n) that is incomplete to avoid an increase in

the size and critical path delay of the CEL.

Assuming that a TCD-MAC works on an array of N input pairs, the temporal carry

injection is done N-1 times. In the last round, however, the PCPA should be executed. As

illustrated in Fig. 1.2, in this approach, the cycle time of the TCD-MAC could be reduced

to that excluding the PCPA, allowing the computation over PCPA to take place in an extra

cycle. The one extra cycle allows the unconsumed carry bits to be propagated in PCPA
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Figure 1.2: TCD-MAC cycle time is computed by excluding the PCPA. In the last cycle of computation,
the TCD-MAC activates the PCPA to propagate the unconsumed carry bits.

carry chain, forcing the TCD-MAC to generate the correct output. Using this technique we

shortened the cycle time of TCD-MAC for a large number of cycles. The saving obtained

from shorter cycles over a large number of cycles significantly outweighs the penalty of one

extra cycle.

To support signed inputs, in TCD-MAC we pre-process the input data. For a partial

product p = a × b, if one value (a or b) is negative, it is used as the multiplier. With this

arrangement, we treat the generated partial sums as positive values and later correct this

assumption by adding the two’s complement of the multiplicand during the last step of

generating the partial sum. Following example clarify this concept: let’s suppose that a is

a positive and b is a negative b-bit binary. The multiplication b× a can be reformulated as:

b× a = (−27 +
6∑
i=0

xi2
i)× a = −27a+ (

6∑
i=0

xi2
i)× a (1.1)

The term −27a is the two’s complement of multiplicand which is lef-shifted by 7 bits,

and the term (
∑6

i=0 xi2
i)× a is only accumulating shifted version of the multiplicand.

1.3.2 TCD-NPE: Our Proposed MLP Neural Processing Engine

TCD-NPE is a configurable neural processing engine which is composed of a 2-D array of

TCD-MACs. The TCD-MAC array is connected to a global buffer using a configurable

Network on Chip (NOC) that supports various forms of data flow as described in section

2.1. However, for simplicity, we limit our discussion to supporting OS and NLR data flows

7



for executing MLPs. This choice is made to help us focus on the performance and energy

impact of utilizing TCD-MACs in designing an efficient NPE without complicating the

discussion with the support of many different data flows.

Figure 1.3 captures the overall TCD-NPE architecture. It is composed of 1) Processing

Element (PE) array which is a tiled array of TCD-MACs, 2) Local Distribution Networks

(LDN) that manages the PE-array connectivity to memories, 3) Two global buffers, one for

storing the filter weights and one for storing the feature maps, and 4) The Mapper-and-

controller unit which translates the MLP model into a supported data and control flow.

The functionality and design of each of these units are described next:

Figure 1.3: TCD-NPE overall architecture. The Mapper algorithm is executed externally, and the sequence
of events is loaded into the controller for governing the OS data and control flow.

PE Array

The PE-array is the computational engine of our proposed TCD-NPE. Each PE in this tiled

array is a TCD-MAC. Each TCD-MAC could be operated in two modes: 1) Carry Deferring

Mode (CDM), or 2) Carry Propagation Mode (CPM). According to the discussion in section

1.3.1, when working with an input stream of size N, the TCD-MAC is operated in the CDM

8



Figure 1.4: The logic implementation of Quantization (Left) and Relu Activation (right) for signed fixed-
point 16bit values

model for N cycles (computing approximate sum), and in the CPM mode in the last cycle

to generate the correct output. This is in line with OS data flow as described in section

1.2. Note that the TCD-MAC in this PE-array could be operated in CPM mode in every

cycle allowing the same PE-array architecture to also support the NLR. After computing

the raw neuron value (prior to activation), the TCD-MAC writes the computed sum into

the NOC bus. The Neuron value is then passed to the quantization and activation unit

before being written back to the global buffer. Fig. 2.5 captures the logic implementation

for quantization (to 16 bits) and Relu[4] activation in this unit.

Consider two layers of an MLP where the input layer contains M feature-values (neurons)

and the second layer contains N Neurons. To compute the value of N Neurons, we need

to utilize N TCD-MACs (each for M+1 cycles). If the number of available TCD-MACS is

smaller than N, the computation of the neurons in the second layer should be unrolled to

multiple rolls (rounds). If the number of available TCD-MACs is larger than neurons in

the second layer (for small models), we can simultaneously process multiple batches (of the

model) to increase the NPE utilization. Note that the size of the input layer (M) will not

affect the number of needed TCD-MACs, but dictates how many cycles (M+1) are needed

for the computation of each neuron.

When mapping a batch of MLP to the PE-array, we should decide how the computation

is unrolled and how many batches (K), and how many output neurons (N) should be mapped

to the PE-array in each roll. The optimal choice would result in the least number of rolls
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and the maximum utilization of the NPE. To illustrate the trade-offs in choosing the value

of (K, N) let us consider a PE-array of size 18, which is arranged in 6 rows and 3 columns

of TCD-MACs (similar to that in Fig. 1.3). We refer to each row of TCD-MACs as a TCD-

MAC Group (TG). In our implementation, to reduce NOC complexity, the TG groups work

on computing neurons in the same batch, while different TG groups could be assigned to

work on the same or different batches. The architecture in Fig. 1.3 has 6 TG groups. Let

us use NPE(K, N) to denote the choice of using the PE-array to compute N neuron values

in K batches where N ×K = 18. In our example PE-array the following selections of K and

N are supported: (K,N) ∈ (1, 18), (2, 9), (3, 6), (6, 3). The (9, 2) and (18, 1) configuration

are not supported as the value of N in this configurations is smaller than TG size = 3.

Fig. 1.5.left shows an abstract view of TCD-NPE and describe how the weights and

input features (from one or more batches) are fed to the TCD-NPE for different choices of K

and N. As an example 1.5.(left).A shows that input features from one batch are broadcasted

between all TGs, while the weights are unicasted to each TCD-MAC. Let us represent the

input scenario of processing B batches of U neurons in a hidden or output layer of an

MLP model with I input features using Γ(B, I, U). Fig. 1.5.(right) shows the NPE status

when a Γ(3, I, 9) model (3 batches of a hidden layer with 9 neurons in a hidden layer each

fed from I input neurons) is executed using each of 4 different NPE(K, N) choices. For

example Fig. 1.5.(right).top shows that using configuration NPE(1,18), we process one

batch with 18 neurons at a time. In this example, when using this configuration, the NPE

is underutilized (50%) as there exist only 9 neurons in each batch. Following a similar

argument, the NPE(6,3) arrangement also have 50% utilization. However the arrangement

NPE(2,9), and NPE(3,6) reach 75% utilization (100% for the roll, and 50% for the second

roll), hence either NPE(2,9) or NPE(3,6) arrangement is optimal for the Γ(3, I, 9) problem

as they produce the least number of rolls. Note that the value of I in Γ(3, I, 9) denotes the

number of input features which dictate the number of cycles that the NPE(K,N) should be

executed.
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Figure 1.5: Assuming a 6 × 3 PE-array of TCD-MACs, the NPE(K, N) could be configured such that (K,

N) ∈ {(1,18), (2,9), (3,6), (6,3)}. This figure illustrate the number of rolls, and utilization when each of

NPE(K,N) configurations is used to run a Γ(3,I,9). model. Each roll is executed I times.

Mapping Unit

An MLP has one or more hidden layers and could be presented using Model(I −H1−H2−

...−HN −O), in which I is the number of input features, Hi is the number of Neurons in

the hidden layer i, and O is the number of output layer neurons. The role of the mapping

unit is to find the best unrolling scenario for mapping the sequence of problems Γ(B, I,H1),

Γ(B,H1, H2), ..., Γ(B,HN−1, HN ), and Γ(B,HN , O) into minimum number of NPE(K,N)

computational rounds.

Algorithm 1 describes the mapper function for unrolling a multi-batch multi-layer MLP

problem. In this Algorithm, B is the batch size that could fit in the NPE’s feature-memory

(if larger, we can unroll the B into N × B* computation round, where B* is the number

of batches that fit in the memory). M [L] is the MLP layer size information, where M [i] is

the number of nodes in layer i (with i = 0 being Input, and i = N + 1 being Output, and

all others are hidden layers). The algorithm schedules a sequence of NPE(K, N) events to
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compute each MLP layer across all batches.

Algorithm 1 Schedule NPE(K,N) rolls (events) to execute B batches of M(L) =
MLP (I,H1, ...,HN , O).

procedure PracticalCfgFinder(Model M [L], BatchSize B)

for (l = 1; size(M); l + +) do

Treehead = CreateTree(B,M [l])

ExecTree ← Shallowest binary tree (least rolls) from Treehead
Schedule ← Schedule computational events by using BFS

on ExecTree to report NPE(K,N) and r at each node.

return Schedule

procedure CreateTree(B,Θ)

C[i]← find each (Ki, Ni)|Ki, Ni ∈ N, & Ki < B

& size(NPE) = Ki ×Ni

for (i = 0; i < size(C); i+ +) do

MB = min(B,C[i][1]). . C[i][1] = Ki

MΘ = min(Θ, C[i][2]). . C[i][2] = Ni

ψ = (MB ,MΘ) . ψ: NPE’s (K,N) configuration

r = bB/MBc × bΘ/MΘc . r: # of rolls with NPE(MB ,MΘ)

if (B%MB) ! = 0 then

NodeB ← CreateTree(B%MB ,Θ)

if (K%MΘ) ! = 0 then

NodeΘ ← CreateTree(B −B%MB , K%MΘ)

Node ← createNode(r, ψ,NodeB , NodeΘ)

return Node

Figure 1.6: An example execution of algorithm 1 when processing Γ(5, I, 7) model using a TCD-MAC with

a 6× 3 PE-array. (A): the complete computational Tree from CreateTree procedure, (B): binary execution

tree obtained from BFS scheduling, (C): the sequence of scheduled events to compute the model based on
binary execution tree.

To schedule the sequence of events, the Alg. 1 first generates the expanded computa-

tional tree of the NPE using CreateTree procedure. This procedure first finds all possible

ways that NPE could be segmented for processing N neurons of K batches, where K ≤ B

and stores them into configuration database C. Then for each of configurations of NPE(K,

N), it derives how many rounds (r) of NPE(K, N) computations could be executed. Then it

computes a) the number of remaining batches (with no computation) and b) the number of

missing neurons in partially computed batches. It, then, creates a tree-node, with 4 major
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fields 1) the load-configuration Ψ(K∗i , N
∗
i ) that is used to partially compute the model using

the selected NPE(Ki, Ni) such that (K∗i ≤ Ki)&(N∗i ≤ Ni), 2) the number of rounds (rolls)

r taken with computational configuration Ψ to reach that node, 3) a pointer to a new prob-

lem NodeB that specifies the number of remaining batches (with no computation), and 4)

a pointer to a new problem NodeΘ for partially computed batches. Then the CreateTree

procedure is recursively called on each of the NodeB and NodeΘ until the batches left, and

partial computation left in a (leaf) node is zero. At this point, the procedure returns. After

computing the computational tree, the mapper extracts the best execution tree by finding a

binary tree with the least number of rolls (where all leaf nodes have zero computation left).

The number of rolls is computed by summing up the r field of all computational nodes.

Finally, the mapper uses a Breath First Search (BFS) on the Execution Tree (ExecTree

and report the sequence of r×NPE(K, N) for processing the entire binary execution tree.

The reported sequence is the optimal execution schedule. Fig. 1.6 provides an example for

executing 5 batches of a hidden MLP layer with 7 neurons. As illustrated the computation-

tree (Fig. 1.6.A) is first generated, and then the optimal binary execution tree (Fig. 1.6.B)

resulting in the minimum number of rolls is extracted. Fig. 1.6.C captures the result of

scheduling step where BFS search schedule the sequence of r×NPE(K, N) events.

Controller

The controller is an FSM that receives the ”Schedule” from Mapper and generated the

appropriate control signals to control the proper OS data flow for executing the scheduled

sequence of events.

memory architecture

The NPE global memory is divided into feature-map memory (FM-Mem), and Filter Weight

memory (W-Mem). The FM-Mem consist of two memories with ping-pong style of access,

where the input features are read from one memory, and output neurons for the next NN

layer, are written to the other memory. When working with multiple batches (B), the
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Figure 1.7: The arrangement of data in W-mem and FM-mem when our proposed TCD-NPE is used in
NPE(K,N)=(2,64) configuration mode to process B = 2 batches of a hidden layer of an MLP model as

defined by Γ(B, I,H) = (2, 200, 100).

input features from the largest number of fitting batches (B*) is read into feature memory.

For simplicity, we have assumed that the feature map is large enough to hold the features

(neurons) in the largest layer of at least one MLP (usually the input) layer. Note that the

NPE still can be used if this assumption is violated, however, now some of the computed

neuron values have to be transferred back and forth between main memory (DRAM) and

the FM-Mem for lack of space. The filter memory is a single memory that is filled with the

filter weights for the layer of interest. The transfer of data from main memory (DRAM)

to the W-Mem and FM-Mem is regulated using Run Length Coding (RLC) compression to

reduce data transfer size and energy.

The data arrangement of features and weights inside the FM-Mem and W-Mem is shown

in Fig. 1.7. The data storage philosophy is to sequentially store the data (weight and input

features) needed by NPE (according to its configuration) in consecutive cycles in a single

row. This data reshaping solution allows us to reduce the number of memory accesses by

reading one row at a time into a buffer, and then consuming the data in the buffer in the

next few cycles. We explain this data arrangement concept using the example shown in

Fig. 1.7.

Fig. 1.7 shows the arrangement of data when we use our proposed TCD-NPE in

NPE(K,N)=(2,64) configuration to process B = 2 batches of a hidden layer of an MLP

model as defined by Γ(B, I,H) = (2, 200, 100). Note that the PE array size, in this case is

16× 8 which is divided into two 8× 8 arrays for processing each of 2 batches. The W-Mem,
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shown in left, is filled by storing the first N=64 weights of each outgoing edge from input

Neurons (features) to each of the neurons in the hidden layer. Considering that the width

of W-Mem is 256 bytes, and each weight is 2 bytes, the width of W-Mem (WW−mem) is

128 words. Hence, we can store 64 weights of the outgoing edge from each 2 input neurons

in one row. The memory-write process is repeated for d(I/(WW−mem/N))e = 100 rows,

and then the next N = 64 weights of outgoing edges from each input neuron are written

(in this case we only have 36 weights left, as there exist a total of 100 outgoing edges from

each input neuron, 64 of which is previously stored) in the next d(I/(WW−mem/N))e = 100

rows. At processing time, by using the NPE(2,64) configuration, the TCD-NPE consumes

N = 64 weights in each cycle. Hence, with one read from W-Mem, it receives the weights

needed for WW−mem/N = 128/64 = 2 cycles, reducing the number of memory accesses by

half.

The FM memory, on the other hand, is divided into B = 2 segments. Assuming that the

width of FM memory is WFM−mem = 64 words, each segment can store WFM−mem/B =

64/2 = 32 input features. The memory, as shown in Fig. 1.7, is filled by writing the input

features of each batch into subsequent rows of each virtually segmented memory. Note that

both FM-Mem and W-Mem should be word writable to support writing to a section of a

row without changing the value of other memory bits in the same row. The input features

from each batch is written to the d(I/(WFM−mem/B))e = d(200/(64/2)) = 7e rows. At

processing time, using the NPE(2,64) configuration, the TCD-NPE in one access (Reading

one row) will receive WF /B input features from B different batches and store them in

a buffer. In each subsequent cycle, it consumes one input from each batch, hence, the

arrangement of data and sequential read of data into a buffer will reduce the number of

memory accesses by a factor of WFM−mem/B = 64/2 = 32.
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Local Distribution Network (LDN)

The Local Distribution Networks (LDN) interface the read/write buffers and the Network

on Chip (NOC). They manage the desired multi- or uni-casting scenarios required for dis-

tributing the filter values and feature values across TGs. Figure 1.8 illustrate an example

of LDNs in an NPE constructed using 6 × 3 array of TCD-MACs. As illustrated in this

example, the LDNs are used for 1) reading/writing from/to buffers of FM-mem while sup-

porting the desired multi-/uni-casting configuration (generated by controller) to support

the selected NPE(K, N) configuration (Fig.1.8.A) and 2) reading from W-mem buffer and

multi-/uni-casting the result into TGs (Fig.1.8.B). Note that the LDN in Fig, 1.8 is specific

to NPE of size 6× 3. For other array sizes, a similar LDN should be constructed.

Figure 1.8: An example of LDN for managing the connection between a (6×3)-PE-array’s NoC and memory.

(A).left: LDN for writing from NoC data bus to FM-mem. (A).right: LDN for reading from FM-mem to

NoC bus. (B): LDN for reading from W-mem into NoC filter bus. The FM-mem in this case, is divided into
6 partitions, supporting the simultaneous process of 6 batches at a time.

1.4 Results

In this section, we first evaluate the Power, Performance, and Area (PPA) gain of using

TCD-MAC, and then evaluate the impact of using the TCD-MAC in our proposed TCD-

NPE. The TCD-MAC and all MACs evaluated in this section operate on signed 16-bit
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Table 1.1: PPA comparison between various MACs and TCD-MAC.

MAC Type Area(µm2 ) Power(µw) Delay(ns) PDP(pJ)
(BRx2, KS) 8357 467 2.85 13.31
(BRx2, BK) 8122 394 3.3 13
(BRx8, BK) 7281 383 3.14 12.03
(BRx4, BK) 6437 347 3.35 11.62
(WAL, KS) 7171 346 3.04 10.52
(WAL, BK) 6520 334 3.13 10.45
(BRx4, KS) 6551 393 2.47 9.71
(BRx8, KS) 7342 354 2.63 9.31
TCD-MAC 5004 320 1.57 5.02

fixed-point inputs.

1.4.1 Evaluation and Comparison Framework

The PPA metrics are extracted from the post-layout simulation of each design. Each MAC

is designed in VHDL, synthesized using Synopsis Design Compiler [30] using 32nm standard

cell libraries, and is subjected to physical design (targeting max frequency) by using the

Synopsys reference flow in IC Compiler [31]. The area and delay metrics are reported using

Synopsys Primetime [32]. The reported power is the averaged power across 20K cycles

of simulation with random input data that is fed to Prime timePX [32] in FSDB format.

The general structure of MACs used for comparison is captured in Fig. 1.1. We have

compared our solution to a wide array of MACs. In these MACs, for multiplication, we

used Booth-Radix-N (BRx2, BRx4, BRx8) and Wallace implementations. For addition we

have used Brent-Kung (BK) and Kogge-Stone (KS) adders. Each MAC is identified by the

tuple (Multiplier choice, Adder choice).

1.4.2 TCD-MAC PPA assessment

Table 1.1 captures the PPA comparison of the TCD-MAC against a popular set of conven-

tional MAC configurations. As reported, the TCD-MAC has a smaller overall area, power

and delay compare to all reported MACs. Using TCD-MAC provide 23% to 40% reduction

in area, 4% to 31% improvement in power, and an impressive 46% to 62% improvement in

PDP when compared to other reported conventional MACs.

Note that this improvement comes with the limitation that the TCD-MAC takes one

extra cycle to generate the correct output when working on a stream of data. However,
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Table 1.2: Percentage improvement in throughput and energy when using a TCD-MAC (as opposed to a

conventional MAC) to process an stream of 1, 10, 100 and 1000 multiplication and addition operations.

Mac Type
Throughput improvement(%) Energy Improvement(%)
1 10 100 1000 1 10 100 1000

(BRX2, KS) 25 59 62 63 -10 40 45 45
(BRX2, BK) 23 58 62 62 5 48 52 53
(BRX8, BK) 17 55 58 59 0 45 50 50
(BRX4, BK) 14 53 57 57 7 49 53 54
(WAL, KS) 5 48 52 53 -3 44 48 49
(WAL, BK) 4 48 52 52 0 45 50 50
(BRX4, KS) -3 44 48 49 -27 31 36 37
(BRX8, KS) -7 41 46 47 -19 35 40 41

the power and delay saving of TCD-MAC significantly outweigh the delay and power for

one extra computational cycle. To illustrate this, the throughput and energy improvement

of using a TCD-MAC for processing different sizes of input streams (1, 10, 100, 1000) is

compared against selected conventional MACs and is reported in Table 2.4. As illustrated,

when using the TCD-MAC for processing an array of inputs, the power and delay savings

quickly outweigh the delay and power of the added cycle as input stream size increases.

1.4.3 TCD-NPE Evaluation

In this section, we describe the result of our TCD-NPE implementation as described in

section 1.3.2. Table 1.3-top summarizes the characteristics of TCD-NPE implemented, the

result of which is reported and discussed in this section. For physical implementation, we

have divided the TCD-NPE into two voltage domains, one for memories, and one for the

PE array. This allows us to scale down the voltage of memories as they had considerably

shorter cycle time compared to that of PE elements. This choice also reduced the energy

consumption of memories and highlighted the saving resulted from the choice of MAC in

the PE-array. Note that the scaling of the memory voltage could be even more aggressive

than what implemented in our solution; In several prior work [33–37], it was shown that it

is possible to significantly reduce the read/write/retention power consumption of a memory

unit by aggressively scaling it supplied voltage while deploying architectural fault tolerance

techniques and solutions to mitigate the increase in the memory write/read/retention failure

rate. On top of that, learning solutions are also approximate in nature, and inherently less

sensitive to small disturbance to their input features. This inherent resiliency could be used

to deploy fault tolerant techniques to only protect against bit errors in most significant bits
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Table 1.3: TCD-NPE implementation details and PPA results. In this table, we have only reported the
leakage power. The dynamic power is activity dependent. The breakdown of energy consumption for
processing different benchmarks is reported in Fig. 1.10

Feature Detail Feature Detail
PE-array 16× 8 Processing Element TCD-MAC
Input Data Format Signed 16-bit fixed-point Data Flow OS
W-mem size 512 KByte Activation Units Relu
FM-mem Size 2× 64 KByte PE-array voltage 0.95V
Mapper Off-chip using Alg. 1 Mem voltage 0.70V
Area 3.54 mm2 Max Frequency 636 MHz
PE-array Area 0.724 mm2 Memory Area 2.5 mm2

Overall Leak. Power 75.5 mW Memory Leak. Power 51.7 mW
PE-array Leak. Power 6.4 mW Others Leak. Power 17 mW

of input feature map, resulting in reduced complexity of deployed fault tolerance scheme.

Table 1.3-bottom captures the overall PPA of the implemented TCD-NPE extracted

from our post layout simulation results which are reported for a Typical Process, at 85C◦

temperature, when the PE-array and memory elements voltages are set according to Table

1.3.

To compare the effectiveness of TCD-NPE, we compared its performance with a similar

NPE which is composed of conventional MACS. According to the discussion in section 1.2,

we limit our evaluation to the processing of MLP models. Hence, the only viable data flows

are OS and NLR. The TCD-MAC only supports OS, however, by replacing a TCD-MAC

with a conventional MAC, we can also compare our solution against OS and NLR. We

compare 4 possible data flows that are illustrated in Fig. 1.9. In this Fig. The case (A)

is NLR data flow (supported only by conventional MAC) for computing the Neuron values

by forming a systolic array withing the PE-array. The case (B) An NLR data flow variant

according to [2] when the computation tree is unrolled and mapped to the PEs, forcing the

PE to either act as an adder or multiplier. The case (C) is the OS data flow realized by

using conventional MAC. And, finally, the case (D) is the OS data flow implemented using

TCD-NPE.

For OS dataflows, we have used the algorithm 1 to schedule the sequence of computa-

tional rounds. We have compared the efficiency of each of four data flows (described in

Fig. 1.9) on a selection of popular MLP benchmarks characteristic of which is described in

Table. 1.4.

As illustrated in Fig. 1.10.left, the execution time of the TCD-NPE is almost half of
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Figure 1.9: Four possible data flow for processing an MLP model. (A): NLR data flow using conventional

MACs to form a systolic array. (B): RNA data flow resulted from unrolling the MLP model and mapping

the computation tree to conventional MACs (each used as either multiplier or adder) as described in [2].

(C) The OS data flow using conventional MAC. (D): The OS dataflow using TCD-MAC.

Table 1.4: MLP benchmarks used in this work [1].

Applications Dataset Topology
Digit Recognition MNIST 784:700:10
Census Data Analysis Adult 14:48:2
FFT Mibench data 8:140:2
Data Analysis Wine 13:10:3
object Classification Iris 4:10:5:3
Classification poker Hands 10:85:50:10
Classification Fashion MNIST 728:256:128:100:10

an NPE that uses a conventional MAC in either OS or NLR data flow, and significantly

smaller than the RNA data flow (an NLR variant) that was proposed in [2]. Fig. 1.4.right

captures the energy consumption of the TCD-NPE and compares that with a similar NPE

constructed using conventional MACs. For each benchmark, the energy consumption is

broken into 1) computation energy of PE-array, 2) the leakage of the PE-array, 3) the leakage

of the memory, and 4) the dynamic energy of memory (and buffer combined). Note that

the voltage of the memory is scaled to a lower voltage, as described in table 1.3. This choice

was made as the cycle time of the PE’s was significantly shorter than the memory cycle

times. The scaling of the memory voltage increased its associated cycle time to one cycle,

however, significantly reduced its dynamic and leakage power, making the PE-array energy

consumption the largest energy consumer. In addition, note that by sequentially shaping the

data in the memories, and usage of buffers, we significantly reduced the number of required

memory accesses, resulting in a significant reduction in the dynamic power consumption of

the memories. As illustrated, the TCD-NPE not only produces the fastest solution but also
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produces the least energy-consuming solutions across all NPE configurations, all data flows

and all simulated benchmarks.
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Figure 1.10: Comparison of TCD-NPE with an NPE constructed using conventional MACs that uses the OS,
NLR, or RNA data flow. top): Execution time for various MLP benchmarks. Bottom): Energy consumption
for various MLP benchmarks.

1.5 Conclusion

In this chapter, we introduced the concept of temporal carry bits and used the concept to

design a novel MAC for efficient stream processing (TCD-MAC). We further proposed the

design of a Neural Processing Engine (TCD-NPE) that is architected using an array of TCD-

MACs as its processing element. We, further, proposed a novel scheduler that schedules the

sequence of events to process an MLP model in the least number of computational rounds in

the proposed TCD-NPE. We reported that the TCD-NPE significantly outperform similar

neural processing solutions that are constructed using conventional MACs in terms of both

energy consumption and execution time (performance).
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Chapter 2: NESTA: Hamming Weight Compression-Based

Neural Processing Engine

2.1 Introduction and Background

Deep learning models that deploy Convolutional Neural Networks (CNN) for feature extrac-

tion have become increasingly popular in recent years [38]. The popularity of these learning

solutions stems from their ability to achieve unprecedented accuracy, surpassing that of

human’s ability, for various tasks such as object and scene recognition [3,4,9,10,13,39,40],

object detection, and object localization[41, 42]. This, as illustrated in Table 2.1, is made

possible by using deep and complex neural networks expressed using specialized frameworks

such as Caffe [43], PyTorch [44] and Tensorflow [16], and trained and executed in acceptable

time by Graphical Processing Units (GPU).

Although innovation in parallel computing has enabled us to train and execute such

complex models, the applicability of such models remains limited due to their computational

and storage requirements. These state of the art CNNs require up to hundreds of megabytes

for a model and partial result storage and 30k-600k operations per input pixel [21]. The high

computational complexity of these models, in turn, poses energy (power) and throughput

(delay) challenges to the underlying hardware. Typically, in such learning solutions the

majority (over 90%) of computational complexity is for processing the convolution (CONV)

layers [45].

The generality of a processing engine significantly affects the throughput and energy

efficiency of neural processing hardware[26][20]. The more general the hardware, the less

efficient (in terms of delay and power) the computation becomes. The least attractive solu-

tions are generated by running CNNs on general-purpose CPUs. Utilizing more specialized
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Table 2.1: Depth and complexity of some of the existing and modern CNN solutions for object detection.

AlexNet[4] VGG[3] GoogLeNet[39] Resnet[40]

Top5 Accuracy 80.2% 89.6% 89.9% 96.3%
layers 8 19 22 152

FLOPS 729M 19.6G 1.5G 11.3G
FLOPS in 3× 3 CONV 118M 19.5G 1.18G 6.7G

hardware such as GPUs and FPGAs provide a significant improvement in the efficiency of

computation, while most efficient computing, with an order(s) of magnitude improvement

in performance and power consumption, is reported when specialized ASIC accelerators

such as Eyeriss[21], Diannao[18], Dadiannao[19], or Shidiannao[24] are deployed. The ma-

jor difference in the performance of ASIC accelerator solutions, previously proposed in

[18–21, 24, 26, 46–49], is on the type of data flow implemented for maximizing data reuse

(weight, partial sum, and activation value) and minimizing memory access. This is when the

neural Processing Elements (PE), that implement the multiply-accumulate (MAC) function,

remain non-optimized in these accelerator solutions.

In this paper, we claim that the architecture of PEs in an ASIC DNN accelerator could

significantly improve when the computational model, data locality, and data reuse concepts

are used to architect a DNN/CNN specific PE. We propose NESTA as a PE that is designed

based on these principles. To reduce data movement, and minimize the generation of partial

sums, NESTA consumes 9 values of the convolution at a time (equal to the size of a 3 × 3

convolution) until all filter-image pairs of a convolution across all channels are consumed.

To significantly speed up the computation and reduce energy consumption, NESTA does

not use adders or multipliers. Instead, it converts the convolution into a sequence of N

compression and one final addition. The add operation transforms the compressed and

accumulated result into a correct partial sum.

2.2 NESTA: Proposed Processing Engine

Before describing our proposed solution, we first explain the concept of temporal carry in

a miniaturized solution in section 2.2.1, then we explain the concept of compression and

expansion in section 2.2.2. Finally, in section 2.2.3, we use these concepts to construct and
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Figure 2.1: Computing one CONV layer using input Ifmap/image and filters to produce the output

(Ofmaps)

Figure 2.2: comparing the architecture of A) a typical MAC, versus B) a simplified 2-input version of NESTA.

In all variables in the form of Di
m, the subscript (m) captures the bit position values, and postscript (i)

capture the cycle (iteration). For example, Ai, Bi are the input data in the ith iteration (corresponding to

the ith cycle) of the multiply accumulate operation. The bim, ai
m, and pim are accordingly the mth significant

bits of inputs A, B, and partial sum at the ith cycle (iteration). The division of CPA into GEN and PCPA
is also shown in this figure. Note that the PCPA is only executed at the last cycle.

describe our proposed solution.

2.2.1 Motivation 1: Temporal Carry

Suppose two vectors A and B each have N 8-bit values, and the goal is to compute their dot

product,
∑N−1

i=0 (Ai∗Bi) (similar to what is done during the activation process of each neuron

in a NN). This could be accomplished using a single Multiply-Accumulate (MAC) unit and

working on 2 inputs at a time for N rounds. Fig. 2.2(A-right) shows the General view of

a typical MAC architecture that comprised of two parts multiplication and addition. We

have assumed that a Carry Propagation Adder (CPA) is used as adder unit for reducing the

MAC delay. More detailed view of this architecture, 2.2(A-left), reveals that for generating
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the final result, the CPA will be executed 2N times, N times for producing the results of N

multiplications and N times for accumulating the result of multiplications. These CPAs are

located at the critical path of this architecture so eliminating them lead to a performance

gain. Fig. 2.2(A-right) captures how CPA has been broken into GEN (which is highlighted

in red), and PCPA (Partial CPA).

Fig.2.2(B-right) shows a simplified version of our proposed solution, NESTA-V1. As

illustrated NESTA-V1, 1) intertwines the multiplication and addition, and 2) reduces the

delay of CPA by only using the GEN section of the CPA. The GEN section only produces

the first level generate Gi, and propagate P i signals, after which NESTA-V1 feedback each

P i and Gi to its compressor network for inclusion in the cycle computation. We can consider

this as the process of generating a temporal carry signal, as opposed to a spatial carry signal

which is used in typical MACs. This is made possible, considering that we do not need the

output of individual multiplications, and our target is to compute the correct
∑N−1

i=0 (Ai∗Bi).

Hence, in NESTA-V1 for N-1 times, only the GEN section of CPA is executed, while for the

last iteration the complete CPA is executed (including PCPA) to avoid generating further

temporal carry bits.

2.2.2 Motivation 2: Compression and Expansion

Lets consider an application that requires hardware acceleration for computing the following

expression: p =
∑9

i=1 ai, in which ai(s) are 16-bit unsigned numbers. One natural solution,

as illustrated in Fig. 2.3.(left), is using an adder-tree, while each add operator could be im-

plemented using a fast adder such as carry-look-ahead [50] (CLA), Brent-Kung [51] (BK) or

Kogge-Stone [52] (KS) adder. Regardless of the choice of the adder, the resulting adder tree

is not the most efficient. The adder power delay product (PDP) could significantly improve

if a multi-input adder is reconstructed using Hamming Weight (HW) compressors. For this

purpose, we reformulate the computation of p as shown in Equation 2.1, by rearranging the

values into 16 arrays, where each array is composed of 9 bits with equal significance value.
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Figure 2.3: An Adder tree for 9 16-bit-width entries (left), Hamming Weight Adder (HW-Adder) of 9 16-bit-

wide entries (right). In the HWC-Adder compressor hierarchy (CEL) the complete compressors are colored
blue, while compressors with available capacity are white. For building the improved version of HWC-Adder
(HWC-Adder*), 2 bits from each compressor in CEL-1 are differed to a compressor in the same bit position
in CEL-2, increasing the number of complete compressors and reducing the critical path delay in CEL-1 as
reported in table 2.2

With this formulation, we can use a hierarchy of Hamming Weight compressor to perform

the addition.

p =

15∑
i=0

9∑
j=1

(2i & aj) (2.1)

Fig. 2.3-(right) captures the structure of the proposed HW compression Adder (HWC-

Adder), which is composed of 4 stages. In each of the first 3 stages, the HW compressors

C(m:n) take a stack of m bit values of the same significance (shown vertically) and computes

its HW value (of size n) which is expanded vertically. Aligning the bit values of the same

significance generates a smaller stack of bit values at each bit position as input to the next

level of compressors. We refer to each of these stages (stages 1 to 3) as Compression and

Expansion Layer (CEL). In the last stage, every bit-column contains no more than 2 bits.

In this stage, a 2-input addition generates the final results.

Table 2.2 compares the PPA and PDP of an adder tree constructed using Brent-Kung

and Kogge-Stone adders, and that of HWC-Adder. As illustrated the energy consumption

of the HWC-Adder is 50.2% and 39.8% lower than that of the BK and KS adder-trees

respectively. At the same time, the delay of HWC-Adder is 8.3% and 9.8% lower than

that of the KS and BK adder-trees respectively. The delay of HWC-Adder architecture
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Table 2.2: Comparing the efficiency of HWC-Adder(s) vs Adder tree constructed using Brent-Kung (BK)

and Kogge-Stone (KS).

Adder Type Area(um2) Delay(ns) Power(uW ) PDP(fj)

Adder tree (BK) 4723 2.66 0.555 1.48
Adder tree (KS) 5135 2.60 0.686 1.78
HWC-Adder 4738 2.40 0.369 0.88
HWC-Adder∗ 4428 2.35 0.368 0.86

could be further improved, if instead of incomplete C(9:4) HW compressors in the first

CEL, we use complete CC(7:3) compressors, passing the unconsumed bits (2 bits) to the

next hierarchy layer, in which the C(4:3) incomplete compressors are converted to C(6:3).

This transformation shortens the critical path (reduces the number of logic levels) in stage

CEL-1 and reduces the area, without increasing the number of logic levels in CEL-2, hence,

producing a faster implementation. The PDP of the resulting HWC-Adder∗ is captured

in the table 2.2. The resulting improvements in the HWC-Adder(s) are the result of 1)

using larger HW compressors (as opposed to C(2:2) and C(3:2) in Brent-Kung), and 2)

maximizing the number of complete compressors, thus reducing the hardware deficiency.

2.2.3 NESTA: Our Proposed Solution

Our proposed solution, NESTA, is a specialized neural processing engine designed for exe-

cuting learning models in which filter-weights, input-data, and applied biases are expressed

in fixed-point format. NESTA combines 9 multiplications and 9 additions into one batch-

operation for gaining energy and performance benefits. Let’s assume NESTAACC is the

current accumulated value, while I and W represent the input values and filter weights

respectively. In its nth round of execution, NESTA performs the following operation:

NESTAACC(n) = NESTAACC(n− 1) +
∑9n+9

i=9n Ii ×Wi(2.2)

To improve efficiency, NESTA does not use adders and multipliers. Instead, it uses a

sequence of hamming weight compressions followed by a single add operation. Furthermore,

in each cycle c, after consuming 9 input-pairs (weight and input), instead of computing the
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correct accumulated sum, NESTA quickly computes an approximate partial sum S
′
[c] and

a carry C[c] such that S[c] = S
′
[c] +C[c]. The S

′
[c] is the collection of generated bits (Gi)

and C[c] is the collection of propagated (Pi) bits produced by GEN unit of CPA. Note that

the division of CPA into GEN and PCPA was described in section 2.2.1. The S
′
[c] is saved

in the output registers, while the C[c] are stored in Carry Buffer Unit (CBU) registers. In

the next cycle, both S
′
[c] and C[c] are used as additional inputs (along with 9 new inputs

and weights) to the CEL unit. Saving the carry (propagate) values (P s) in CBU and using

them in the next iteration reflects the temporal carry concept that was described in section

2.2.1, while the reuse of S
′

in the next round implements the accumulation function of

NESTA.

In the last cycle, when working on the last batch of inputs, NESTA computes the correct

S[c] by using the PCPA to consume the remaining carry bits and by performing the complete

addition S[c] = S
′
[c] + C[c]. Note that the add operation generates a correct partial sum

whenever executed. But, to avoid the delay of the add operation, NESTA postpones it until

the last cycle. For example, when processing a 11 × 11 convolution across 10 channels, to

compute each value in Ofmap, 1210 (11×11×10) MAC operations are needed. To compute

this convolution, NESTA is used 135 times d1210/9e, followed by one single add operation

at the end to generate the correct output.

Fig. 2.4 captures the NESTA architecture. It is comprised of 6 units: 1) Data Reshaping

Unit (DRU), 2) Sign Expansion Unit (SEU), 3) Compression and Expansion Layers (CEL),

4) Adder Unit (AU), 5) Carry Buffer Unit(CBU), and 6) Output Register Unit(ORU). Each

of these units is described next:

Data Reshape Unit (DRU)

The DRU, as illustrated in Fig. 2.4-(DRU), receives 9 pair of multiplicands and multipliers

(W and I), converts each multiplication to a sequence of additions by ANDing each bit value

of multiplier with the multiplicand and shifting the resulting binary by the appropriate

28



Figure 2.4: In NESTA carry bits that are generated in GEN section of the CPA do not propagate into the
carry chain. Instead, they are captured by CB registers. In the next cycle, the carry bits (of the previous

cycle that are stored in CB registers) are fed to the hamming weight compressors at that bit position,
temporally deferring their impact to the next cycle. The compression unit, in each cycle consumes the bit
values from 9 new input (W, I) pairs, the Carry bits of the previous cycle (stored in CB registers) and the
partial sum stored in S registers. The consumption of bit values in S registers implement the accumulation
function. In the last round of computation, instead of capturing the carry bits in CB registers, they are
fed to the PCPA (Partial CPA) to propagate through the carry chain and generate the correct convolution
results.

amount, and returns bit-aligned version of the resulted partial products.

Sign Extension Unit:(SEU)

The SEU is responsible for producing the sign bits SE0 to SE4. The inputs to SEU is

sign bit (X14). The result of a multiplying and adding 9, 8-bit values is at most 20-bits.

Hence, we need to sign-extend each one of the 15-bit partial sums (for supporting larger

the architecture is accordingly modified). To support singed inputs, we also need to slightly

change the input data representation. For a partial product p = a × b, if one values a

or b is negative, we need to make sure that the negative number is used as the multiplier

and the positive one as the multiplicand. With this arrangement, we treat the generated

partial sums as positive values and make a correction for this assumption by adding the

two’s complement of the multiplicand during the last step of generating the partial sum.

This feature is built into the architecture using a simple 1-bit sign detection unit, and by
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adding multiplexers to the output of input registers to capture the sign bits. Note that

multiplexers are only needed for the last 5-bits as shown in figure 2.4-(SEU). Following

example clarify this concept: let’s suppose that a is a positive and b is a negative b-bit

binary. The multiplication b× a can be reformulated as:

b× a = (−27 +
6∑
i=0

xi2
i)× a = −27a+ (

6∑
i=0

xi2
i)× a (2.3)

The term −27a is the two’s complement of multiplicand which is shifted to the left by 7

bits, and the term (
∑6

i=0 xi2
i)× a is only accumulating shifted version of the multiplicand.

Note that some of the output bits generated by SEU compressor extend beyond 20 required

bits. These sign bits are safely ignored. Finally, the multiplexers switch at the output of

SEU is used to allow NESTA to switch between signed and unsigned modes of operation.

Compression and Expansion layers (CEL)

The input to ith bit of CEL unit in cycle n is the 1) bit-aligned partial sums (at the output

of DRU) in position i 2) the temporary sum generated by GEN unit of NESTA at time c−1

at bit position i, and 3) the Propagate (carry) value generated by GEN unit of NESTA at

time c− 1 at bit position i− 1. Following the concept of HWC-Adder, described in section

2.2.2, the CEL is constructed using a network of Hamming Weight Compressors (HWC).

A HWC function CHW (m:n) is defined as the Hamming Weight (HW) of m input-bits (of

the same bit-significance value) which is represented by an n-bit binary number, where

n is related to m by: n = blogm2 c + 1. For example ”011010”, ”111000”, and ”000111”

could be the input to a CHW (6:3), and all three inputs generate the same Hamming weight

value represented by ”011”. A Completed HWC function CCHW (m:n) is defined as a CHW

function, in which m is 2n − 1 (e.g., CC(3:2) or CC(15:4)). As illustrated in Fig.2.4, each

HWC takes a column of m input bits (of the same significance value) and generate its n-bit

hamming weight. The resulting n bits is then horizontally distributed as input to CHW (s)

30



in the next-layer CEL. This process is repeated until each column contains no more than

2-bits.

Carry Propagation Adder Unit(CPAU)

Similar to HWC-Adder, described in section 2.2.2, the CPA is divided into GEN and PCPA.

If NESTA is executed n times, the PCPA is skipped n − 1 times and is only executed in

the last iteration. GEN is the first logic level of CPA executing the generate and propagate

functions to produce temporary sum/generate G and carry/propagate P which are used as

input in the next cycle.

Carry Buffer Unit (CBU)

The CBU is a set of registers that store the propagate/carry bits generated by GEN at

each cycle, and provide this value to CEL unit in the next cycle. Note that CB bits can be

injected to any of the CHW (m : n) in any of the CEL layers in that bit position. Hence, it

is desired to inject the CB bits to an incomplete CHW (m : n) to avoid an increase in the

critical path delay of CEL.

Output Register Unit (ORU)

The ORU capture the output of GEN in the first n-1 cycles or PCPA in the last cycle of

operation. Hence, in the first n− 1 cycle, NESTA stores the Generate (G) output of GEN

unit and feeds this value back to the CEL unit in the next cycle. In the last cycle, it stores

the sum generated by PCPA.

2.2.4 NESTA: Putting it all together

NESTA receives 9 pair of Ws and Is. The DRU generate the partial products and bit-align

them as input to the CEL unit. The CEL unit at each round of computation consumes

1) bit values generated by DRU, 2) generate (temporary sum) values stored at S registers,

and 3) propagate (carry) bits in CB registers. This is when the SEU assures that the sign
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bits are properly generated. For the first n cycles, only the GEN unit of CPA is executed.

This allows NESTA to skip the delay of the carry chain of the PCPA. To be efficient, the

clock period of NESTA is reduced to exclude the time needed for the execution of PCPA.

The timing paths in PCPA are defined as multi-cycle paths (2 cycle paths). Hence, the

execution of the last cycle of NESTA takes 2 cycles, see Fig. 2.5. In the last round of

execution, the PCPA unit is activated, allowing the addition of stored values in S registers

and CB registers to take place for producing the correct and final SUM. Considering that

the number of channels in each layer of modern CNNs is fairly large (128 to 512) the savings

in the result of shortening NESTA cycle time (by excluding PCPA) accumulated over large

number of cycles (of NESTA execution) is far larger than one additional cycle needed at

the end to execute the PCPA for producing the correct final sum.

Figure 2.5: NESTA cycle time is computed by excluding the execution time of PCPA. In the last cycle of
computation of convolution, the NESTA activates the PCPA and captured the correct sum after 2 cycles of
execution.

2.2.5 Supported Data flows

A considerable portion of the power consumed in a neural processing engine is related to

storage, read and write from its memory subsystem. The extent of power consumed in

the memory subsystem is a function of 1) the read/write/retention power of each memory

element, and 2) the frequency of access to each memory. In several prior work [33–37], it

was shown that it is possible to significantly reduce the read/write/retention power con-

sumption of a memory unit by aggressively scaling it supplied voltage while deploying ar-

chitectural fault tolerance techniques and solutions to mitigate the increase in the memory
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Figure 2.6: NESTA Row Stationary (RS) data flow for executing 3× 3 convolution across multiple channels

(right) and 5 × 5 convolution across multiple channels (left). A similar concept can be used to support all
other convolutions sizes.

write/read/retention failure rate. The frequency of access to the memories, on the other

hand, can not be controlled from an architectural perspective as it is a dataflow optimization

problem.

Memory access pattern of a model which is being executed on a neural engine signif-

icantly impacts its energy efficiency and performance. Accessing data in off-chip DRAM

consumes around 200X more energy and takes around 20X longer compared to accessing

data in on-chip SRAM memories [21][53][54]. Hence, for a modern Deep Neural Network

with a large number of operations and parameters, designing a dataflow that minimizes the

access to off-chip DRAM and maximizes the data reuse (while data is on-chip) can go a

long way in improving its energy efficiency and performance. Related to neural process-

ing engines, several dataflows has been studied in the literature. The work in [21] divides

the DNN dataflows into 5 major categories: 1) No Local Reuse(NLR), 2) Weight Station-

ary(WS), 3) Input Stationary(IS), 4) Output Stationary(OS), and 5) Row Stationary(RS,

RS+). These data flows differ on the way they reuse input frame maps (Ifmaps), partial

sums (Psums), and filter weights. The NLR does not have any reuse at the PE level and

requires the largest number of transaction with a global buffer. Diannao is an example of

NLR based accelerator described in [18]. The WS dataflow stores the filter weights within

the PEs. The goal is to minimize the re-fetching of filter weights by limit their movement.

Examples of WS implementation include [55][56]. IS and OS dataflows try to minimize the
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movement of Ifmaps and Psums respectively, examples of which include [20][23][24]. The

RS dataflow combines the WS and the OS dataflows to achieve greater efficiency. Eyeriss

is an example of RS implementation described in [21][57].

Another way to understand the differences between these dataflows is through the study

of the algorithm governing the computation of the convolution in each data flow. Let us

consider the convolution in Fig. 2.1 with M filters (each with size C×R×R), repeated in a

batch of B images with each image being of size C×H×H. To process this CONV, as shown

in Alg. 2, seven nested loops are required. Because each one of the loops is independent

of the others, changing the order of each these loops can produce a new dataflow. Each

dataflow promotes a different form of data reuse. It should be noted that it is possible

that one permutation of these nested loops to be applicable to more that one dataflow.

For example in the Alg. 2, execution line order 1-2-3-4-5-6-7-8, NLR, WS, and RS have

the same representation, however, depending on the underlying NOC different data access

patterns can be designed. Os and IS dataflows also can be obtained if the execution’s line

of the seven loops changes to 1-2-4-5-3-6-7.

Algorithm 2 seven nested loops for calculating an Ofmap. B, M, C, H, R are Batch-size,
Number of Filters, Channel size, Height/weight of an ifmap, and filter size respectively.

1: for (b = 0; b < B; b + +) do

2: for (u = 0;u < M ;u + +) do

3: for (c = 0; c < C; c + +) do

4: for (h = 0;h < H;h+ = S) do

5: for (w = 0;w < H;w+ = S) do

6: for (i = 0; i < R; i + +) do

7: for (j = 0; j < R; j + +) do

8: ofmap[b][u][h][w] += ifmap[b][c][h+i][w+j]*

9: filter[u][c][i][j]

NESTA could be used to implement any of these dataflows. However, in this work (for

lack of space), we only describe how NESTA dataflow could be designed to model the RS

dataflow and will address the implementation of other dataflows for our future work. Fig.

2.6 capture the RS dataflow used to compute 3 × 3 (right) and 5 × 5 (left) convolution

across many channels. To capture the data reuse and communications between NESTA

cores (assuming that many NESTA cores are packed into a SOC to build a many-core
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accelerator), we have used three NESTAs to construct each of scenarios illustrated in Fig.

2.6. Since NESTA accept 9 inputs at a time, it can perform a 3×3 convolution in one cycle,

or a 5 × 5 convolution in 3 cycles. The data is reshaped in the accelerator’s global buffer

and is streamed to the NESTA cores. Depending on the number of available NESTA cores

we can compute the value of different neurons in parallel to promote higher data reuse. In

this case we can either 1) compute the neurons in different OFmaps by loading different

weights to each group of NESTA and share the ifmap weights (not shown in this figure),

or 2) compute the neuron values in the same Ofmap by sharing the weights across different

NESTA cores and stream different (partially overlapping) ifmap values to each group as

shown in Fig. 2.6.

As described in section 2.2.4, in its last round computations( when working on con-

volution across multiple channels), NESTA switches to its two-cycle operation mode and

activates the PCPA that would take 2 cycles to generate the correct final sum. Note that in

deep channels, or for large convolutions, the cost of one extra cycle is negligible compared

to the gain of removing the PCPA from the critical path in all computational cycles.

2.3 Results

In this section, we evaluate the NESTA in terms of Power, Performance, and Area (PPA).

NESTA and all MACs cited in this section support 16-bit signed fixed-point inputs.

2.3.1 Evaluation and Comparison Framework

The PPA metrics are extracted from the post-layout simulation of each design. Each MAC

or MAC9 is designed in VHDL, synthesized using Synopsis Design Compiler [30] using

32nm standard cell libraries, and is subjected to physical design (targeting max frequency)

by using the reference flow provided by Synopsys and by using IC Compiler [31]. The

area and delay metrics are reported using Synopsys Primetime [32]. The reported power is

then averaged across 20K cycles of simulation with random input data fed to PrimetimePX
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[32] in FSDB format. To build a fair comparison, in addition to simple 2-input MACs,

we constructed multiple flavors of 9-input MACs (MAC9s) using various high-speed adders

and multipliers to compute the convolution in one shot. The general structure of MACs

and MAC9s used for comparison is captured in Fig. 2.7. Each MAC9 is constructed

using 9 multipliers, the output of which is fed to a 10-input adder tree (9 inputs from

multiplier and 1 from output register) to compute a 3 × 3 convolution in one shot. For

multiplication, we used Booth-Radix-N (BRx2, BRx4, BRx8), and Wallace multipliers.

For addition, we used Brent-Kung (BK) and Kogge-Stone (KS) adders. In addition, we

considered a hybrid approach, where the multipliers are fed to an HWC-Adder which was

discussed in section 2.2.2. Each 2-input MAC is identified by (Multiplier choice, Adder

choice) and each 9-input MAC9 is identified by (Multiplier Choice, ( Adder Arrangement,

Adder Choice)). For example ( BRx2, (tree, Brent-Kung)) is a MAC9 constructed by

using 9 BRx2 multipliers followed by an adder tree constructed from Brent-Kung Adders.

Similarly, a (BRx2, (HWC-Adder, Brent-Kung)) uses the same multiplier, but replace the

adder tree with an HWC-Adder that uses a single Brent-Kung adder.

Figure 2.7: A 9-input MAC, which is identified as (Multiplier Choice, Adder Choice). MACs constructed
with similar structure are used for PPA and PDP comparison with our proposed NESTA PE solution.

2.3.2 PPA efficiency: NESTA v.s. MAC9s

Power: The power consumption of NESTA is considerably less than other MAC9 flavors.

When comparing NESTA with various flavors of MAC9, the power consumption is reduced

by 17.4% to 58.9% when compared to (BRX4, (HWA, BK)) and (BRX2, (Tree, KS)) rep-

resenting the MAC9s with lowest and highest power consumption, respectively.
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Performance: In terms of delay, the delay of NESTA is better than all other MAC9

flavors. For example, the delay of NESTA is 23.7% and 11.3% better than (BRX2, (Tree,

BK)) and (BRX4, (HWA, KS)) as the slowest and fastest MAC9s in Fig. 2.11. However, the

reduction in the delay comes with a catch; When NESTA process the last batch of inputs of

the last channel, it has to take one extra cycle to perform the final addition. Hence, energy

efficiency becomes a function of the number of processed input batches. This tradeoff is

illustrated in Fig.2.8. The larger the number of input channels, the smaller the overhead

of one extra cycle for the final addition. As illustrated in Fig. 2.8, NESTA becomes more

efficient if the number of processed input batches is greater than 64, 8, 2, 1 for kernel size

1x1, 3x3, 5x5, 11x11 respectively.

Figure 2.8: Comparing the processing time of a NESTA and a MAC9 for convolutions with (A) 1x1, (B)

3x3, (C) 5x5, and (D) 11x11 kernel size when the convolution expands over multiple channels. As illustrated
NESTA for larger convolutions or deeper channels becomes very more efficient.

Area: Figure 2.11 captures the PPA comparison of NESTA with various flavors of

MAC9s. As illustrated, NESTA is implemented in a smaller area. The area saving is be-

tween 6% to 9% when NESTA is compared with (BRX4, (HWA, BK)) and (BRX2, (Tree,

KS)), which are the smallest and largest MAC9s, respectively.
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Figure 2.9: Breakdown of delay and energy consumption of each layer of VGG [3] when processed by a single
MAC, a single MAC9 or a single NESTA core. A linear increase in the number of cores linearly reduces the
processing time.

Figure 2.10: Breakdown of delay and energy consumption of each layer of AlexNet [4] when processed by a
Neural engine composed of MACs, MAC9s or NESTA cores.

PDP: Considering that NESTA has lower delay and power consumption compared to

other MAC9s, the PDP savings for NESTA is even more significant. According to Fig.

2.11, NESTA reduces the PDP by 30% to 67% when compared to (BRX4, (HWA, BK))

and (BRX2, (Tree, KS)) that have the lowest and highest PDP respectively.
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Figure 2.11: Area, Delay, Power, and PDP comparison between NESTA and MAC9s constructed using fast
adders and multipliers. The star identifies the best MAC9 in each category.

2.3.3 PPA efficiency: NESTA v.s. MACs

Table 2.3 captures the PPA metrics of various 2-input MACs and 9-input NESTA. Each

single MAC has a smaller area, power, and delay compared to NESTA, however, in terms

of functionally, one NESTA is equivalent to 9 MACs. Hence, For a fair comparison between

NESTA and selected MACs, we compare their energy efficiency and throughput when fixing

the area. For this comparison, we assume a NN accelerator assigns a fixed silicon area for

instantiating 9-input NESTAs or 2-input MACs and report the improvement in throughput

and energy with this constraint. Table 2.4 captures our comparison results. As illustrated,

NESTA in terms of throughput (delay of processing normalized to the unit area) and energy

efficiency (processing a large number of convolutions) is substantially more efficient than

all MAC solutions studied. By using NESTA as the PE solution in an accelerator, the

throughput improves between 1% to 37%, correspond to (Brx4, BK) and (BRx2, KS)

respectively, and energy efficiency improves 33% to 78% when compared with NESTA-V1

and (BRx2, BK) which represent the best and worst MACs in terms of energy efficiency.

Table 2.3: PPA comparison between various MAC flavors and NESTA-V1 and NESTA .

MAC Type Area(µm2 ) Power(µw) Delay(ns) PDP(fJ)

(BRx2, KS) 9394 0.612 3.57 2.24
(BRx2, BK) 9227 0.577 3.59 2.13
(BRx8, KS) 8123 0.523 3.5 1.88
(BRx8, BK) 7929 0.509 3.55 1.86
(WAL, KS) 7024 0.533 3.46 1.84
(WAL, BK) 7876 0.566 3.21 1.81
(BRx4, KS) 6899 0.480 3.10 1.48
(BRx4, BK) 6775 0.452 3.172 1.43
NESTA-V1 6825 0.442 2.914 1.287

NESTA 49200 1.817 3.875 7.04
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Table 2.4: Percentage improvement in Throughput(left) & energy consumption(right) when using NESTA
to process 1K of different convolution size.

MAC Type 3X3 5X5 7X7 11X11 3X3 5X5 7X7 11X11
(BRx2, KS) 37 37 37 37 65 62 62 64
(BRx2, BK) 36 36 36 36 78 76 76 77
(BRx8, KS) 26 26 26 26 58 55 54 57
(BRx8, BK) 25 25 25 25 58 55 54 56
(WAL, KS) 13 13 13 13 57 54 53 56
(WAL, BK) 16 16 16 16 57 53 52 55
(BRx4, KS) 1 1 1 1 47 43 42 45
(BRx4, BK) 1 1 1 1 45 41 40 43
NETSA-V1 30 30 30 30 39 34 33 37

2.3.4 NESTA for Efficient CNN Processing

In this section, we study the performance and energy consumption of a Neural Processing

solution that uses 9-input NESTA, MAC9s, or 2-input MACs to process Alexnet[4] and

VGG[3]. In this paper, we only investigate the energy consumed for the processing the

information and would address the saving (due to data reuse in NESTA) dataflow related

power saving in the future work. Fig. 2.9 and Fig. 2.10 capture the delay and energy

consumed for processing each layer (including CONVs and FCs layers) of Alexnet [4] and

VGG [3] respectively. This is when the choice of processing engine is varied between MACs,

MAC9s and NESTA cores. In each figure, NESTA is compared with the best choice of

MAC or MAC9 for energy or delay according to the results of section 2.3.3 and 2.3.2. As

illustrated, MAC9 solutions are faster than MAC’s but consume more power. However,

NESTA outperforms both MAC9 and MAC solutions in terms of both power and delay

(and PDP) when processing each layer of AlexNet or VGG.
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2.5 Conclusion

In this paper, we introduced NESTA, a novel processing engine for efficient processing of

Convolutional Neural Networks. NESTA benefits from 1) its ability to generate temporal

carry bits that could be passed to be included in the next round of computation without

affecting the overall results, and 2) the utilization of a hierarchy of compressors to efficiently

compute 9 multiplication and additions at the same time. When computing the convolu-

tion across multiple channels and/or larger convolution window sizes, NESTA generates

an approximate sum (S′) and a temporal carry (P ) in each cycle. In the last cycle, when

processing the last convolution, NESTA takes an additional cycle and add the remaining

carriers to the approximate sum to generate the correct output. Our post-layout simula-

tion results report 30% to 67% reduction in power delay product (PDP) when NESTA is

compared with various flavors of 9-input MAC units, and 33% to 78% reduction in PDP

when compared with Neural processing engines constructed from various MAC flavors.
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