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ABSTRACT

This chapter presents an overview of goals and directions in machine
learning research, and is intended to serve as a conceptual road map to other
chapters. It investigates intrinsic aspects of the learning process, classifies current
lines of research, and presents the author’s view of the relationship among
learning paradigms, strategies and orientations.

1.1 Do We Need Learning Machines?

Artificial intelligence (AI) is now experiencing extraordinary growth and
seeing its ideas and methods applied to many fields. Development of expert
systems, practical implementations of natural language understanding systems,
signifiéant-advanccs in computer vision and speech understanding, new insights

into building powerful inference and qualitative reasoning systems are among its
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most visible and important successes. The rapid expansion of activities in AI leads
us to believe that new successes are forthcoming.

In this context, it is important to‘ask what the limitations of the current
methods are, and what new directions research in this field should take. One of
the obvious limitations, and hence a direction for further research relates to
machine learning - a field concerned with developing computational theories of
learning and with constructing learning systems.

Except for experimental programs developed in the course of machine
learning research, our current Al systems have rather limited learning abilities,
or none at all. All of their knowledge must be programmed into them. When they
contain an error, they cannot correct it on their own; they will repeat it endlessly,
no matter how many times the procedure is executed. Neither can they improve
gradually with experience, nor learn domain knowledge by experimentation. They
cannot automatically generate their algorithms, formulate new abstractions, or
develop new solutions by drawing analogies to old ones, or through discovery.
Gcncfally speaking, these systems lack the ability to draw inductive inferences
from information given to them. One might say that almost all existing systems
are deductive, as they are able to draw conclusions from knowledge incorporated in
them, but cannot acquire or generate new knowledge on their own.

By contrast, when we look at human intelligence we see that among its most
striking aspects is the ability to acquire new knowledge, to learn new skills, and
to improve with practice. In time, use of these learning abilities can turn a young,
inexperienced person into a journeyman engineer, educator, artist or physician.
Our common perception is that a person who would repeat the same error again
and again, could hardly be called intelligent. The ability to learn from error is

considered fundamental to the individual, and to the society at large (Popper,



1959, 1963, 1981; Kuhn, 1970; Lakatos, 1970; Berkson and Wettersten, 1984; Hayes-
Roth, 1983 - Machine Learning I, ch. 8).

Because learning ability seems to be so intimately entwined with intelligent
behavior, the present situation has led some researchers to postulate that among
new central goals for research in artificial intelligence should be to unde_rstand
the nature of learning and to implement learning capabilities .in machines
(McCarthy, 1983; Schank, 1983). Overcoming the above-mentioned limitations sets
an agenda for future research.

Questions then arise as to whether such a goal is achievable, and if so,
whether it is desirable. Let us start with the question whether this goal is
achievable. Answering it involves us immediately in questions of definition. Can
we identify some general criteria such that, if satisfied by a machine, we would
agree to call this machine a learning system?

As the machine learniné research has shown, learning ability does not
manifest itself as an all-or-nothing quality, but as a spectrum of information
processing activities, ranging from the direct memorization of facts and a simple
reorganization of information, to very intricate inferential processes leading to
creation of new concepts and discovery of new knowledge. It always involves a
change in a system, whether human or machine, that makes it better in some sense.

For now, let us put the question of definition aside (it is discussed in more
detail in the next section), and observe that machine learning is experiencing a
renaissance after its past steady but slow growth, and efforts to develop programs
exhibiting some forms of learning have multiplied in recent years. This young
field has already achieved a number of successes. A summary of some of these
efforts is found in Machine Learning: An Artificial Intelligence Approach (Michalski,

Carbonell and Mitchell, eds., 1983) - henceforth referred to as Machine Learning I.



The current book is a sequel, and reports some key subsequent efforts
characteristic of the state-of-the-art in machine learning.

Based on the results achieved so far, it is clear that some rudimentary
machine learning abilities are possible. Already there exist programs able to
formulate new concepts and discover previously unknown regularities in data,
develop decision rules that can outperform human rules, draw interesting
analogies, automatically learn problem-solving heuristics or develop generalized
plans for achieving a goal. Many of these programs are discussed in Machine
Learning I. What is less clear is the level of progress that can be achieved in
machine learning using conventional computer hardware and present programming
methods. As always in science, such questions can only be answered by conducting
further research and continuing to develop experimental learning systems.

New dimensions of research in machine learning will open with the
development of connection machines, fifth generation computer systems, and other
novel computer architectures, currently underway (Hillis, 1981; Kawanobe, 1984).
For example, Hinton, Sejnowski and Ackley (1984) describe how learning may
occur in Boltzmann machines. The knowledge acquired by such  systems is
represented by strengths of the connections between simple neuron-like elements.
The research in this direction should address the problem of overcoming the
limitations of early systems of this type, such as the Percep}ron (Minsky and
Papert, 1969). A new potential for research in machine learning also emerges in
connection with the development of new programming systems, in-particular logic
prograrﬁming, and its first embodiment in Prolog (Robinson, 1983).. = & ..o yuvay

Why is it desirable to develop learning machines? It appears, that the
development of such systems is necessary to assure further progress in artificial
intelligence, or closely related disciplines. This seems to be particularly true in

areas such as expert systems or any large-scale knowledge-based systems, cofrlputer



vision and si)eech understanding, natural language understanding, intelligent
tutoring systems and (truly) friendly man-machine interfaces. As more and more
complex tasks are set for Al systems, the morc and more knowledge must be
represented in them. Such knowledge must encompass domain-specific facts and
rules, common sense heuristics and constraints, as well as general concepts and
theories about the world. The scope of knowledge in any system must be widened
to avoid a common problem with the current systems, sometimes referred to as
falling of the knowledge cliff (Feingenbaum, 1984) or brittleness (Holland, chapter
20; see also Larkin et ;al, 1985). The system performs well within the scope of
knowledge provided to it, but any slight move outside of its narrow competence
causes the performaﬁcc to deteriorate completely.

Introducing all the required knowledge into any new system is a very
complex, time consuming and error-prone process, requiring special expertise. For
example, building an expert system involves a collaborative effort of highly
trained experts - at least one domain expert and a knowledge engineer (Davis and
Lenat, 1982>; Hayes-Roth, Waterman and Lenat, 1983; Buchanan and Shortliffe,
1984). VThis task can bg simplified by using machine learning techniques. Such
,‘tbech‘niques would enable a system to develop decision rules from examples of
cx;;erts’ decisions and through the automated analysis of facts in a database.

Wifh the fapid increase in the amount of data and knowledge that the
society generates, thc?e is a growing need for not only storing, organizing and
delivering this information, but also for using it in new creative ways. As
knowledge can be Qiewed as. compressed information (Rendell, 1983), we need
machines that can compress databases and information systems into knowledge
bases ;ufématiCally via conceptual analysis of their contents. As envisioned by
Michie (1982), "the most technically gripping challenge, even if not immediately the

- most economically important, will be how to spread the computer wave from the front



end of the scientific process, the telescopes, microscopes,..., spark chambers and the like,
back to the recognition and reasoning processes by which the chaos of data is finally
consolidated into orderly discovery."

This chapter’s author may add, that in addition to the the computer’s role
as scientist’s and technologist’s intelligent assistants, we will also need intelligent
personal assistants. Individuals in the expanding information society will need
such assistants to cope with the overwhelming amounts of available information
and the complexities of everyday decision making. To play the destined role, the
function and knowledge of such assistants should be dynamic; these assistants
should be able to adapt to the changing demands and be self-modifiable. That is,
they should be able to learn.

A similar need for learning abilities exists in the areas of computer vision
and speech undestanding. To build a computer vision system, one has to
incorporate into it a variety of vision-specific transformations, concepts of
geometry, physical and functional descriptions of visual objects the system is to
recognize, and related information (Winston et al, 1983; Winston, 1984). To
*handcraft" all this information into a system is difficult. It would be much easier
to teach the system by showing it examples of given concepts, and have it learn the
appropriate generalizations and descriptions, just as we teach visual concepts to
humans.

A system capable of understanding and interacting with humans in
natural language has to be equipped with knowledge of syntactic properties of
-language: (Marcus, 1980), as' well . as with many. concepts and concept structures
(such as, frames, scripts and schemata) capturing semantic and pragmatic aspects
of the language (Winograd, 1981; Schank, 1982; see also chapters 19 and 21). One
may estimate that in an advanced natural language understander, the number of

such concepts and concept structures may easily reach tens of thousands, or more.



Programming all this knowledge into a computer is a monumental task. It is very
desirable to simplify this task by employing a learning system. In addition, even if
at some point all this knowledge were incorporated in a machine, a language
understander would not work well for long without learning abilities. The
meaning of human concepts is dynamic; it changes with time and adapts to new
contexts and requirements. Novel concepts are continuously being created and
developed, and some are being outgrown. Therefore, as in the cases above, we need
a learning system capable of acquiring new concepts and concept structures by
generalization from examples, or by analogy to prior knowledge. Such a system
should be able to modify, specialize or generalize old concepts in a flexible
fashion.

Intelligent tutoring systems must be able to present material at a level of
difficulty and detail suited to the state of knowledge of the student. In order to do
so, the system must know and follow the student’s changing knowledge. A desirable
way of acquiring this information is not by repeated direct testing but by
learning from clues, behavior and implicit model of the student during tutorial
sessions. Thus, learning abilities are required not only from the student but from
the tutor as well (Sleeman and Brown, 1982; Sleeman, 1983 - Machine Learning I, ch.
16).

Through learning capabilities future computers should be able to acquire
knowledge directly from documents and books, by conversing with humans, and
by generalizing observations -of their environment, which they make with their
artificial senses. They should be .capable .of improving through .practice and
experience. It is possible that future machine learning systems will suffer little, if
at all, from some human limitations, such as poor memory, distracted attention,
low efficiency, and the difficulty of transferring acquired knowledge from one

learner to another. Once one learning system is developed, a theoretically limitless



number of copies of it can be built, and then employed to learn new knowledge in
diverse domains. In addition, any new knowledge acquired by a learning system
can be copied to other systems rapidly and inexpensively (unlike human knowledge

that must be painfully re-acquired by each new student).

Of course, we are still far away from such idealized vision, but it has now
become conceivable that such learning systems might be developed in the future.
It is then desirable to consider not only expected advantages, but also possible
undesirable consequences. The last issue could be dismissed by saying that any
new technology brings new opportunities for misuse, and this has never stopped us
from developing it. Moreover, such aspects are usually considered an issue outside
of the scientific or technical researcﬁ. Yet we need to examine this particular issue
carefully, for creation of machines able to self-acquire knowledge brings about
new dimensions of complexity, and reflects on the way the field of machine

learning should be developed.

The first dimension is predictive opacity of self-changing systems. To
predict the behavior of machines that can learn inductively is considerably more
difficult than to predict the behavior of machines without such an ability. The
key idea behind learning machines is that they should be ab_lc to create knowledge
that can surprize their human creators. This may cause unexpected difficulties, or
even dangers, if someone should apply such a systexﬁ to solve important problems,
without understanding its limitations. In addition, the increased unpredictability

of learning machines implies increased possibilities for - their misuse. ... . - ...

Some experts argue that predicting behavior of complex computer systems
is very difficult already. They look at the addition of learning capabilities to our
computers as further amplification of these difficulties, but not as a quantum leap

to a new state. Whether we see a leap, or merely an amplification of



unpredictability, a strong expectation is that potential benefits from this
technology will amply compensate for such undesirable consequences. And with
regard to the potential for its misuse, why not use these smart learning machines

to "police" other machines, in order to prevent or combat attempted misuse?

In addition to the difficulty of predicting behavior of learning machines,
there is another dimension for consideration, which stems from the very nature
of any knowledge other than factual observation. As has been observed by Hume
(see, e.g., 1888), and later by Popper (1979) and others, such knowledge is inherently
conjectural. That is, any knowledge created by generalizing from specific
observations, or by analogy to known facts, cannot in principle be proven correct,

though it may be disproven.

This is because inductive inference is not truth-preserving, but only falsity-
preserving (Michalski, 1983). To illustrate this point, consid;:r a statement: ";111
scientists at the MIT’s AI Laboratory are bright." A deductive conclusion from this
statement can be that Roger Light, who works at the AI Laboratory, must be
bright. If the original premise is true, then this deductive conclusion must be true
also. An inductive inference from the initial premise might be: "all scientists at
MIT are bright." In this case, even if the original premise were true, such inductive
conclusion might not be. However, if the original premise is false, then this
inductive conclusion must be false also. Thus, in contrast with a deductive system,
correct inputs to an inductive system do not guarantee the correctness of the
‘outputs. Moreover, for any given inputs, there is theoretically an infinite number
of possible inductive conclusions. The ones we actually make reflect our
preferences, assumptions and constraints that we use in formulating our

generalizations (Medin, Wattenmaker and Michalski, 1985; Utgoff, chapter 5).



For the above reasons, in order to generate knowledge useful to us, it is
important that learning machines be ecquipped with knowledge of all the relevant
human constraints and assumptions. As it is unlikely that all subtle human and
societal constraints and preferences will ever be made known to machines, there is
the possibility that machine-generated knowledge will violate some of these
constraints. A quote from Hofstadter (1980) is pertinent here: "unless (the program)
had an amazingly faithful replica of human body..it would probably have enormously
different perspectives on what is important, what was interesting, etc." As the
perception of what is important and what is interesting is a necessary component
in guiding creation of new knowledge (Lenat, 1983), such differences are
significant. Thus, when such knowledge created by a machine is used it may lead

to solutions technically flawless but socially undesirable.

A related concern is that people may give too much credibility to the
knowlcdge created by machines. This phenomenon has already been observed in
related contexts, for example, in people unduly influenced by results of computer
statistical analyéis without clearly understanding its assumptions, or in people
personifying a computer consultation system, such as Eliza (Weizenbaum, 1976).
Also, while it may be known to scientists that inductively generated knowledge is

inherently error-prone, this fact may be less obvious to non-experts.

An important implication of the above discussion is that any new
knowledge generated by machines should be subjected to close human scrutiny
before it .is used.: This suggests an important goal for research in machine
learning: if people have to understand and validate machine generated knowledge,
then machine learning systems should be equipped with adequate explanation
facilities. Also, knowledge created by machines should be expressed in forms

closely corresponding to human descriptions and mental models of this knowledge,
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i.e., should satisfy what this author calls the comprehensibility principle (Michalski,
1983). When designing explanation capabilities for learning systems one should
strive to facilitate not only human understanding of the surface results, but also of

the underlyihg principles, assumptions and theories that lead to these results.

One may hypothesize that the existence of advanced learning machines,
while eliminating the current knowledge acquisition bottleneck, could ultimately
create the knowledge ratification bottleneck: so much new knowledge is generated
by machines that it becomes difficult for human experts to test and approve it.
Should this happen, future researchers will have an interesting problem to while
away their idle hours. One may envision these researchers inventing sophisticated
learning machines for designing experiments to test knowledgé created by other

sophisticated learning machines.

With these notes of concern mixed with arguments stressing the importance
of machine learning, let us now look more closely at the intrinsic properties of the

learning process.

1.2 What is Learning ?

As mentioned earlier, a common view holds that learning involves making
changes in the system that will improve it in some way. In this description, the
term "improve" needs more precision. Clearly, wine improves with time, but nobody
would call such an improvement learning®*. Simon (1983 - Machine Learning I, ch.2)

gives a more precise characterization:

"Learning denotes changes in the system that are adaptive in the sense that they enable

the system to do the same task or tasks drawn from the same population more

effectively the next time.”

* This example was suggested by Steve Tanimoto from the University of Washington in Seattle.



The requirement that a system improve performance for learning to take
place is widely accepted. There are, however, activities that can be categorized as
learning, in which the improvement criterion ‘is difficult to apply (a discussion of
this problem follows). Minsky (1985) in his insightful theory of thinking, the
Society of Mind, rteplaces this criterion with a more general one requiring that

changes are merely useful:

"Learning is making use ful changes in our minds” .

Hebsubsequently observes that such a definition is too broad to be of any
use. Let us then approach the problem of capturing the fundamental aspects of
learning in another way. It may be observed that learning is often equated simply
with acquiring new knowledge, as in the statement: "As the satellite burned in the
atmosphere, the Spacelab astronaut learned that the satellite had an auxiliary
antenna”. In this case, the astronaut simply acquired a piece of information, but

this will never improve his performance with this satellite.

The knowledge acquisition aspect of learning seems to be the essence of most
of the learning acts. Those acts where it appears to play only a small role are
cases of what is usually termed skill acquisition. The latter refers to gradual
improvement of motor or cognitive skills through repeated effort, sometimes
involving little or no conscious thought (Carbonell, Michalski and Mitchell, 1983 -
Machine Learning I, ch.1). In this discussion we will concentrate, h&i&cvcr, on the
knowledgé acduisﬁtion aspect of learning, a theme which recurs throughout the

book.
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In order to acquire knowledge of anything, one, obviously, has to represent
this knowledge in some form, whether as declarative statements, as procedures, as a
mixture of the two, or as something else (McCarthy, 1968). This fact and the

considerations above lead us to the following characterization of learning:
Learning is constructing or modifying representations of what is being experienced.

The concept of experience includes here any sensory stimuli, as well as
internal Gedanken processes. These stimuli and internal processes are the vehicle
through which the learning system perceives the reality that it is trying to
represent. The internal thought processes can themselves be a subject of learning.

Thus, from the above view, the central aspect of learning is the process of
constructing a representation of some reality, rather than improvement of
performance. The performance improvement is considered to be a consequence and
often the purpose of ‘building the representation, but it can be asserted only in the
context of the learner’s goals. Because most learning acts indeed involve
improvement of performance, and because it is easier to measure performance than
to read minds, naturally we link the two. Yet, perfomance improvement does not
seem to be an invariable condition for every act of learning. There are situations
in which it does not appear to be of primary relevance, as in learning to
appreciate beauty. There are also situations in which it may even be misleading.
The latter situations occur when it is difficult to accurately assess the learner’s
goal. For example, a worker in a labor camp may want to learn how to do less and
appear to do more, yet keeps this goal secret. From the viewpoint of an external
observer, this worker will appear not to be learning, as his performance will be
decreasing with practice. Thus it seems clear that to determine learning by
measuring performance may not be possible without knowing the goals of the

learner.
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Three dimensions seem to be particularly important for evaluating the
constructed representations: validity, effectiveness and abstraction level. Validity (or
truthfulness) refers to the degree of accuracy with which the representation fits
the reality. It characterizes the precision of the mapping between the reality and
the representation. The second criterion, effectiveness, attemps to capture the
performance aspect of learning. It characterizes the usefulness of the
representation for achieving a given purpose or goal. The more effective the
representation, the better the performance of the system. Thus this criterion is
central for tasks in which performance is of primary concern. The third criterion,
abstraction level, reflects the scope, detail, and precision of concepts used in the
description. It defines the explanatory power of the representation. These three
dimensions together determine what may be called the gquality of learning.

The representations can be in the form of symbolic descriptions,
algorithms, simulation models, control procedures, plans, images, or general formal
theories. If one stretches the concept of representation to include physical of
physiological imprints occurring in the nervous system when one is acquiring a
skill, the above view of learning seems to also cover skill acquisition.

From this viewpoint, a fundamental problem in any research on machine
learning concerns the form and method used to represent and modify the
knowledge or the skill being acquired. With regard to the question of modifying
knowledge, it is important to identify the components and the properties of the
rcbrcscntation which are modifiable by the system and which are not.

In the taxoribmy of fnachiné learning research gi'v-er‘i in (Cafbbneii,
Michalski and Mitchell, 1983 - Machine Learning I, ch.l), three criteria were
indicated as especially useful for classifying and comparing machine learning
investigations: learning strategy, knowledge representation used, and the application

domain. The learning strategy refers to the type of inference employed by the
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system during learning. Some additional ideas reflecting feccnt progress on this
topic are presented in section 1.4. The criteria of knowledge representation and the
application Vdomain were well covered in the above mcntionéd reference, and will
be omitted here. Instead, we will discuss in some detail two other classification
criteria, research paradigms (next section), and learning orientations (section 1.5).
The research paradigm criterion refers here to the approach taken to construct a

system, and the learning orientation refers to the scope and the subject of study.
1.3 Research Paradigms

Since the inception of machine learning in the fifties, research efforts have

placed the emphasis at different times on different approaches and goals. One canv

distinguish thfee major research paradigms or approaches in this area: neural
modelihg and  decision - theoretic - techniques, symbolio concept acquisition, -and
knowled ge-intensive dorﬁain-specific learning. These research approaches differ
chiefly in the amounts of a priori knowledge the learning system has built-in and
in the way knowledge is represented and modified in the system.

'T_hc» neural» modeling approach strives for building general purpose learning
vsy‘stems that s‘t"a'rt with little initial knov:/lcdgc. Such systems are usually referred to
as neural ne.ts or sel f-organizing systems. A system of this type consists of a network
of interconnected elements, typically neuron-like, which perform some simple
logical function, for example, a threshold logic function. Such a system learns by
incrementally modifying the conmection strengths between the elements, usually by
changing weights associated with these connections. The system’s initial knowledge
is provided by the choice of th‘c input elements that represent selected attributes of
objects under study, and by the structure and initial strength of the connections

in the network. This cban be a random structhré, 6ne prearranged by the designer,
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or a mixture of the two. Such learning systems include the Perceptron (Rosenblatt,
1958), Pandemonium (Selfridge, 1959), and any learning machine using discriminant
functions (Nilsson, 1965). More recent examples stemming from this paradigm are
various adaptive control systems (Tsypkin, 1972). Research in this area has led to
the decision-theoretic approach in pattern recognition. A related to this approach is
research on evolutionary learning (Fogel, Owens and Walsh, 1966; Conrad, 1983),
and genetic algorithms (Holland, 1975; sec also chapter 20). As mentioned ecarlier,
there is a resurgence of interest in this learning paradigm with the recent efforts
to develop connection machines (Hinton, Sejnowski and Ackley, 1984).

Low levels of a priori built-in knowledge and use of continuously
changeable parameters to achieve learning are characteristic features of systems
built under this paradigm. A related feature is the numerical character of
learning = methods and algorithms. This stands in contrast with the next two
paradigms, where the main ‘stress is on creating and manipulating -complex
symbolic structures during the process of learning.

In symbolic concept acquisition (SCA), the system learns by constructing a
symbolic representation of a given set of concepts through the analysis of examples
and counter-examples of these concepts. The representation may be in the form of
a logical expression, a decision tree, production rules, or a semantic network. Some
of the systems developed under this paradigm have multi-purpose applicability and
have demonstrated practical uéefulness. Examples of such systems are Winston’s
Arch program (Winston, 1975), the AQVAL program (Michalski, 1975) and ID3
(Quinlan, 1979). In this paradigm, the attributes or predicates relevant to the
concept are provided to the system by the teacher.

In knowledge-intensive domain-specific learning (KDL), the system contains
numerous predefined concepts, knowledge structures, domain constraints, heuristic

rules and built-in transformations relevant to the specific domain for which the
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system is built. Not all the relevant attributes or concepts are provided initially;
the system is expected to derive new ones in the process of learning (this author
refers to such a process as comstructive induction). Thus, the main differences
between the KDL and SCA paradigms are in the amount and the kind of
background knowledge supplied to the system. Learning systems based on this
approach are typically developed for a specific domain, and cannot be directly
used in another domain. The research in this paradigm have explored not only the
strategy of learning from examples, but also strategies such as learning by analogy,
and learning by observation and discovery (see next section). Examples of systems
based on this approach are Meta-DENDRAL (Buchanan, 1978) and AM (Lenat,
1983).

Many systems developed in the past represent a certain mixture of the
above-mentioned approaches. An interesting combination of the SCA and KDL
approaches représents a system based on the idea of an exchangeable knowledge
module. Such a system combines the general-purpose learning mechanisms'with the
built-in facilities for defining and using domain-specific knowledge. When such a
system is applied to a given problem, the domain-specific knowledge is supplied to
it by the teacher via system’s knowledge representation facilities. By separating
general inference capabilifies from the dorﬁain-specific knowledge, such a learning
system can be applied to a spectrum of different domains, and still take advantage
of domain-specific knowledge in the process of learning. Such a philosophy
underlies the INDUCE system, which learns structural descriptions of objects
from examples (Michalski, 1980). Winston’s program for learning by analogy is
another example (Winston, 1982). Also, the LEX system, for acquiring and refining
problem-solving heuristics (Mitchell, Utgoff and Banerji, 1983), and the Eurisko

program for discovering new heuristics (Lenat, 1983) can be characterized in such
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terms. Chapter 14 (Carbonell) describes such an approach in the context of
derivational analogy.

For an historical review of these three research paradigms the reader is
referred to Chapter 1 in Machine Learning I. A sample of contemporary research
on self-organizing systems is found in Caianiello and Musso (1984). A recent
review of approaches to machine learning has been made by Langley and
Carbonell (1984). The primary concern of this book is symbolic concept acquisition

and knowledge-intensive domain-specific learning.

1.4 Learning Strategies

In every learning situation, the learner transforms information provided
by a teacher (or environment) into some new form in which it is stored for future
use. The nature of this transformation determines the type of learning strategy
used. Several basic strategies have been distinguished: rote learning;‘learning by
instruction, learning by deduction, learning by analogy and learning by induction.
The latter subdivides into learning from examples and learning by observation and
discovery. These strategies are ordered by the increasing complexity of the
transformation (inference) from the information initially provided to the
knowledge ultimately acquired. Their order thus reflects the increasing effort on
the part of the student, and correspondingly decreasing effort on the part of the
teacher. Distinguishing these strategies is useful for tutorial purposes, and for the
design of learning systems as well. In any act of human learning, a mixture of
these strategies is usually involved. Though most of current systems focus on a
single learning strategy, one may expect that machine learning research will give
an increasing attention to multi-strategy systems. Chapter one of Machine Learning

I describes these learning strategies in detail. Because of their importance to this
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book, and because of some changes in their classification brought about by recent
research, we will briefly review them here.

In rote learning there is basically no transformation; the information from
the teacher is more or less directly accepted and memorized by the learner. A
major concern here is how to index the stored knowledge for future retrieval. In
learning by instruction (or learning by being told), the basic transformations
performed by a learner are selection and re formulation (mainly at a syntactic level)
of information provided by the teacher. In deductive learning, the learner draws
deductive, truth-preserving inferences from the knowledge given, and stores useful
conclusions (this strategy was identified as a separate category only recently
(Michalski, 1983, 1985)). Deductive learning includes knowledge reformulation,
knowledge compilation, creating macrooperators, caching, chunking, some forms of
operationalization, and other truth-preserving operations (see glossary).

If the transformation process involves generalization of information and
evaluation of the result, that is, inductive inference, then we have inductive
learning. Learning by analogy is deductive and inductive learning combined. Here
descriptions from different domains are matched to determine a common
substructure. This common substructure serves as the basis for analogical mapping.
Finding the common substructure involves inductive inference, while performing
analogical mapping is a form of deduction. Learning by reminding described by
Schank (1982) can be viewed as a form of learning by analogy. Learning by
analogy is discussed in chapters 13 (Burstein), 14 (Carbonell) and 15 (Dershowitz).

Inductive learning can be subdivided into learning from examples, and
learning by observation and discovery. In learning from examples (also called
concept acquisition), the task is to determine a generalization explaining all positive
examples aﬁd excluding all negative examples of the target concept. The examples

are provided by a source of information, which can be a teacher who knows the
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concept, or the environment on which the student performs experiments and from
which it receives feedback. In the latter case we have learning by experimentation
(this includes learning by doing and learning by problem solving). The stimulus-
response learning can also be classified as a form of learning from examples.

Recent research has revealed two interesting subdivisions within this form
of learning: instance-to-class and part-to-whole generalization. In instance-to-class
generalization, the system is given independent instances (examples) of some class
of objects, and the goal is to induce a general description of the class. Most
research done on learning from examples has been concerned with such instance-
to-class generalization. The objects could be structured blocks, geometrical shapes,
descriptions of diseases, stories, problem solutions, control operators, etc. Various
aspects of this problem are discussed in: Chapter 3 (Winston), Chapter 5 (Utgoff),
Chapter 6 (Quinlan), Chapter 7 (Sammut and Banerji), Chapter 8 (Lebowitz) and
Chapter 9 (Kodratoff and Ganascia). For a review of earlier methods for such
generalization see (Dietterich and Michalski, 1983; Cohen and Feigenbaum (Eds.),
1981).

In part-to-whole generalization, given selected parts of an object (of a scene,
a situation, a process), the task is to hypothesize a description of the whole object.
For example, given a collection of smapshots of selected parts of a room,
reconstruct the total view of that room. Another example of this form of
generalization requires the system to determine a rule (a theory) characterizing a
sequence of objects or a process, from seeing only a part of this sequence or
process. This type of problem is considered in Chapter 4 (Dietterich and
Michalski). A closely related research concerns the qualitative process prediction
(Michalski, Ko and Chen, 1985).

In learning by observation and discovery (also called descriptive

generalization), one searches, without the help of a teacher, for regularities and

20



general rules explaining all or at least most observations. This form of learning
includes conceptual clustering (forming object classes describable by simple
concepts), constructing classifications, fitting equations to data, discovering laws
explaining a set of observations, and formulating theories accounting for the
behavior of various systems. Genetic algorithms (Holland, chapter 20), and
empirical prediction algorithms (Zagoruiko, 1975) can be viewed as variants of this
learning strategy. Various aspects of this strategy are discussed in Chapter 16

(Langley et al.), 17 (Stepp and Michalski), 18 (Amarel) and 19 (DeJong).

The primary focus of this book is on learning by induction and analogy.
Therefore, before moving to the next topic, it may be useful to make a few
additional comments about inductive inference which is at the heart of these
strategies. Inductive inference starts with a set of facts (observations), and
optionally with an a priori hypothesis about these facts, and produces a preferred
generalization explaining these facts. As mentioned before, it is a falsity-
preserving inference accomplished by the application of generalization inference
rules (Michalski, .1983). As noted by Popper (1972) and others, "pure” inducti.on,
that is, direct inference from facts to theories without any interpretive
(explanatory) concepts, is impossible. These concepts are needed to describe the
observations, and are part of the learner’s background knowledge. This background
knowledge is a necessary component of any inductive process. It includes also goals
of learning, domain-specific constraints, causal relationships, heuristics and biases
that guide the generalization process, and the criteria for evaluating competing
hypotheses.

One can distinguish two techniques for guiding and constraining
generalization: the similarity-based and the constraint-based techniques. The

similarity-based technique explores inter-example telationships, that is, it examines
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the examples and counter-examples of a concept in order to create a concept
description. It searches for features shared among facts or examples in the same
class, looks for common causes and explanations why different examples belong
to the same class. It generalizes over the differences between examples either by
ignoring ‘the differing features, or by formulating concepts that encompass the
differences. Some early learning methods using this technique are reviewed by
Dietterich and Michalski in chapter 3 of Machine Learning I.

The constraint-based technique exploits the intra-example relationships,
which constrain the interpretive or explanatory concepts applied to one or more
facts or examples. Any generalization of these facts or examples must satisfy these
constraints. For example, when generalizing the fact that "a box is on the table,"
one should satisfy the constraint that whatever is on the table cannot be so heavy
that it would break the table, or so large that it could not be placed on the table.

A variant of this technique is described by Andreae (1984), who uses the
concept of a justification for a hypothesis. Another variant is called by some
authors an explanation-based generalization, in order to stress the role of
explanatory knowledge used by the method (this is probably not the most
informative term, because any type of inductive learning, by definition, involves
searching for an explanation of the facts provided). DelJong, in Chapter 19,
discusses a method implementing such a technique in the context of story
understanding. The similarity-based and constraint-based techniques are

complementary, and can be used simultaneously in learning systems.

1.5 Learning Orientations
Sections 1.3 and 1.4 discussed two important classifying criteria for
machine learning research respectively: learning paradigms and learning strategies.

To recapitulate, the first criterion concerns the type of knowledge represented and
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manipulated in the system, while the second criterion deals with the type of
inference performed on the knowledge. This section will briefly discuss one more
classifying criterion, the research orientation, which concerns the scope and subject
of study. To draw an analogy, a paradigm corresponds to one’s point of departure
and the terrain through which one travels, a strategy specifies the means of
locomotion, and an orientation indicates the destination.

As described in Chapter 1 of Machine Learning I, research in machine

learning encompasses three interconnected orientations:

A. Theoretical analysis and development of general learning algorithms;
B. The development of computational models of human learning processes;
C. Task-oriented studies concerned with building learning systems for specific

applications (called also an engineering orientation).

The first orientation investigates theoretical learning tasks, or simplified
practical ones, and tries to develop algorithms that accomplish these tasks
independent of application. There is no restriction on the type of algorithm
developed. The algorithm need not be similar to that which a humanrmight use to
perfom the given task. As a variation, some authors postulate that at least the
knowledge structures generated as an end result of learning should be similar to
those a human being might create; the process of their creation can be different
(Michalski, 1983). This research orientation strives to chart the theoretical space of
possible learning algorithms. Chapters 3 (Winston), 5 (Utgoff), 7 (Sammut and
Banerji) and 9 (Kodratoff and Ganascia) represent a sample of work representative
of this orientation.

The sercond orientation, also called cognitive modeling, takes human

learning as its focus, and tries to develop computational theories and experimental
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models of human learning. This research will likely have important influence on
human education, as well as on the techniques of implementing machine learning
systems. Chapters 10 (Rosenbloom and Newell), 11 (Anderson) and 14 (Carbonell)

are characteristic of this orientation.

Finally, the third orientation undertakes specific practical learning tasks
and tries to develop engineering systems capable of performing these tasks. An
example here would be a program that learns to recognize dangerous conditions for
aircraft in flight. Such efforts usually have to address a host of other problems not
directly related to learning, such as the appropriate interpretation of the input
signals or the development of problem-specific transformations of the data. This
orientation readily adopts any useful ideas from the other two orientations. Often,
after a solution to a specific problem is found, it is generalized to a method for
solving a class of similar problems. An example of such research is described by
Dietterich and Michalski in Chapter 4. _

The above three research orientations make up a trichotomy of mutually
dependent and supportive efforts that fuel the machinery of learning research.

Such a trichotomy has come to pervade the whole of artificial intelligence.

1.6 Reader’s Guide to this Book

As indicated in the sections above, this book is concerned with the SCA
(symbolic concept acquisition) and the KDL (knowlcdge-intensivqdomain-specific
learning) paradigms, and concentrates on inductive and analogiéal learning
strategies. Both major types of inductive learning, that is, learning from examples
and learning by observation and discovery, are represented. The chapters are
grouped into six parts reflecting the major learning strategy employed or the

research orientation of the work.
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Part One provides an introduction and discussion of general issues in the
field of machine learning. After this overview, Chapter 2 presents views from
several researchers on important problems in this field for the decade of the 80s.
These topics emerged from a panel discussion held at the Second International
Machine Learning Workshop, University of Illinois, 1983 (the proceedings are in
Michalski (Ed.), 1983).

Part Two describes a selection of results on learning from examples. In
Chapter 3, Winston integrates ideas about several interrelated topics: learning from
precedents and exercises, the use of near misses in learning, generalizing if-then
rules and employing unless conditions to prevent an incorrect rule application. The
role of an unless condition is to block a given if-then rule whenever facts at hand
satisfy this condition. Such a condition facilitatgs an incremental improvement of
rules.

In Chapter 4, Dietterich and Michalski present a theoretical framework
and methodology for part-to-whole generalization. They describe a general method
utilizing several rule models for discovering a rule that characterizes a sequence
of objects and predicts a plausible sequence continuation. Each object in the
sequence is described by discrete attributes, which are either given a priori, or
derived by applying various inference rules and sequence transformations.

Utgoff in Chapter 5 investigates the role of bias or preference criterion in
determining 4 plausible hypothesis in inductive learning. He presents a
methodology and a program STABB for shifting bias in the course of learning
from examples.

In Chapter 6, Quinlan examines the effect of noise in training examples on
the discovery of classification rules and their accuracy. He makes several
interesting conjectures about how to formulate the learning task when training

examples are expected to contain noise.
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Next, in Chapter 7, Sammut and Banerji investigate the role of previously
learned concepts in learning new ones, and the problem of inductive learning with
an active learner. Such a learner is not just passively accepting examples from a
teacher, but is also generating examples on its own and asking the teacher
whether they represent the concept being learned.

In Chapter 8, Lebowitz discusses a somewhat related problem. He explores
the use of concepts stored in the memory for generalizing complex structural
descriptions. His generalization-based memory method determines what concepts to
learn, and formulates definitions of the concepts learned. The ideas are
exemplified by two programs, one for concept evaluation, and the second for
generalization of complex structural descriptions.

Next, in Chapter 9, Kodratoff and Ganascia discuss various theoretical
aspects of the generalization process. They show how generalization is
accomplished by creating links among training examples. These links are

represented as variable bindings.- -

Part Three takes up cognitive aspects of learning. In Chapter 10,
Rosenbloom and Newell present ideas about modeling processes that underlay
improvement of performance by practice. Their model of practice is based on the
concept of chunking, that is grouping subgoals into higher goals. They show that
this model explains the known power law of human praétice.

Next, in Chapter 11, - Anderson discusses learning mechanisms involved in
knowledge compilation, that is in the process by which subjects go from declarative
representation of a skill to a procedural representation. He shows how mechanisms
of composition (collapsing multiple productions into a single production), and

proceduralization (building into productions information that resides in declarative
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form in the long-term memory) can simulate the initial stages of skill acquisition
in the domain of learning how to program.

In Chapter 12, Forbus and Gentner present their work on a computational
model of human learning of physical domains. They use _qualitative process theory
to model human physical knowledge and structure-mapping theory, which
characterizes analogy and other comparisons, to describe processes of changing
knowledge representations.

Part Four focuses on the topic of learning by analogy. Burstein, in Chapter
13, presents a model of learning by analogical reasoning. He describes it in the
context of acquiring semantics of assignment statements in the BASIC
programming language. According to his model, the use of analogies to learn
concepts in a new domain depends strongly on causal abstractions previously
formed in a familiar domain. These analogies are extended incrementally to handle
related situations.

In Chapter 14, Carbonell presents his theory of derivational analogy, and its
implications for case-based reasoning and expertise acquisition. In essence, the
derivation of solutions to related problems is replayed and modified to solve newer
and increasingly more complex problems. The method is proposed- as a means of
automating knowledge and skill acquisition for expert systems.

Dershowitz, in Chapter 15, focuses on analogy as a tool for automatic
programming. He shows how analogies between program specifications (as well as
between their derivations) can be used to debug a program, Or to modify an
existing program to perform a new task. These analogies can also be used to derive
an abstract schema of a set of programs, and to instantiate a schema in order to
yield a particular program.

Part Five covers learning by observation and discovery. In Chapter 16,

Langley, Zytkow, Simon and Bradshaw describe four systems addressing different
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-aspects of scientific discovery. BACON.6 formulates empirical laws characterizing
any numerical observational data. GLAUBER takes on discovery of qualitative
laws of chemical reactions. STAHL undertakes the problem of determining
components of substances involved in such reactions. Finally, DALTON focuses on
the formulation of structural models for these reactions.

In Chapter 17, Stepp and Michalski report on their recent work on
conceptual clustering, that is creating a classification of observations by identifying
subclasses that correspond to simple concepts. Unlike previous work on gencrating
goal-free classifications of unstructured objects, the new research takes on
constructing goal-oriented classifications of structured objects. They describe and
illustrate by examples how a learner’s concepts and inference rules are used in
constructing such purposive classifications.

In Chapter 18, Amarel discusses problems of theory formation in the
context of program synthesis. He illustrates his method and ideas by a problem of
inferring a program from input-output data associations in the domain of partially
ordered structures. His method emphasizes the role of algebraic and geometric
models, and the importance of shifting problem representations in the program
synthesis task.

Taking a different tack, Delong in Chapter 19 discusses a method of
learning from observation, which exploits the inner constraints among explanatory
concepts in the system’s background knowledge, to guide the process of
generalization from a single example. His examples are stories about people’s
problem-solving behavior. This knowledge-based generalization process is used to
propose new schemata.

Part Six explores some general aspects of learning. In Chapter 20, Holland
discusses general-purpose learning algorithms based on a parallel rule-based system

architecture. He advances the theme that inductive processes in such rule-based
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systems are a way of overcoming the brittleness of current Al systems, which is
due to the narrow scope of their domain-specific knowledge.

In Chapter 21, Berwick explores the issues of general constraints underlying
processes of natural language acquisition. He discusses the relative importance of
general, domain independent learning principles versus domain specific learning.

Finally, in Chapter 22, Silver describes how a method, called precondition
analysis, can learn strategies for problem-solving. He illustrates his method by
examples in the domain of algebraic equations.

The book concludes with a bibliography of research in machiné learning
done since 1980, with a few major landmarks representing earlier research. (A
comprehensive bibliography of previous research in this field can be found in
Machine Learning 1) The bibliography is indexed by underlying learning strategy,
domain of application and research methodology. An updated glossary of terms in

machine learning is provided, as well as a bibliographical note about each author.
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