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Abstract

SURPRISE DISCOVERY IN SCIENTIFIC DATABASES: A FRAMEWORK FOR DATA
INTENSIVE SCIENCE UTILIZING THE POWER OF CITIZEN SCIENCE

Arun Vedachalam, PhD

George Mason University, 2016

Dissertation Director: Dr. Kirk Borne

The ability to collect and analyze massive amounts of data is rapidly transforming

science, industry and everyday life. Too often in the real world, information from multiple

sources such as humans, experts, agents need to be integrated to provide support for a

making any scientific discovery. This holds true for modern sky surveys in Astronomy where

the common theme is that they produce hundreds of terabytes (TB) up to 100 (or more)

petabytes (PB) both in the image data archive and in the object catalogs. For example,

the LSST will produce a 2040 PB catalog database. Such large sky surveys have enormous

potential to enable countless astronomical discoveries. The discoveries will span the full

spectrum of statistics: from rare object types, to complete statistical and astrophysical

specifications of many classes of objects. The challenges faced by this data driven approach

often revolves around two major issues: 1) The lack of the expert labels present in the

database and 2) The lack of su�cient knowledge in the database for identifying the known

expert labels.

In this dissertation, first we will discuss novel approach to finding interesting (nov-

elty/surprise/anomaly detection) objects that enable scientists to discover the most inter-

esting scientific knowledge hidden within large and high-dimensional datasets.



Then will move on towards utilizing the power of citizen science in identifying features

where the goal is to determine indicators, based solely on discovering those automated

pipeline-generated attributes in the astronomical database that correlate most strongly with

the patterns identified through visual inspection of galaxies by the Galaxy Zoo volunteers.

Further expanding this the capability to Latent variable models where the hidden/latent

variables extracted from the citizen science data help bridge the gap between the human

generated classifications and the features not captured by the astronomy data pipeline.

Proper utilization of these latent variables helped unearth new classes or in some cases

most representative/interesting sample that are previously unknown to the astronomers.

These interesting objects act as a training set for the machine learning algorithms and can

be used to build automated models to classify the galaxies from the future sky surveys such

as LSST.



Chapter 1: Introduction

In many real world problems, due to the advancement of technology and Internet, the

way science being conducted, businesses operate, governments function and people live has

changed visibly. But a new, less visible technological trend is just as transformative: Big

Data or Data Science. Big data starts with the fact that there is a lot more information

floating around these days than ever before, and it is being put to extraordinary new uses.

Big data is distinct from the Internet, although the Web makes it much easier to collect

and share data. Big data is about more than just communication: the idea is that we can

learn from a large body of information things that we could not comprehend when we used

only smaller amounts.

In Scientific discover, big data has lead to a new paradigm of science called the Fourth

Paradigm, which is especially powerful in some of the observational science such as astron-

omy. In this chapter we will see what the fourth paradigm of science is and how it influence

some scientific disciplines and briefly list some the discoveries made with the data. Later in

this chapter we will see some of the challenges faced by this big data avalanche in astronomy

and moving forward how Citizen Scientist play a major role in making new and interesting

scientific discovery.

1.1 BigData Rising Challenges

Big Data, after all, is the biggest buzzword of the new millennium. Its everywhere, from

genomics, biomics and a bunch of others. Social networks, financial networks, ecological

networks all contain vast amounts of data that no longer overwhelm computer hard drive

storage capabilities. Scientists are now swimming in a superocean of endless information,

fulfilling their wildest dreams. Scientists usually celebrate the availability of a lot of data

1



and they have been extolling all the research opportunities that massive databases o↵er. Sci-

entific advances are becoming more and more data-driven and the massive amounts of data

bring both opportunities and new challenges to data analysis. For one thing, huge datasets

are seductive. They invite aggressive analyses with the hope of extracting prizewinning

scientific findings. Wringing intelligent insights from Big Data poses formidable challenges

for computer science, statistical inference methods and even the scientific method itself.

Computer scientists, of course, have made the accumulation of all this big data possible

by developing exceptional computing power and information storage technologies. But

collecting data and storing information is not the same as understanding it. Figuring out

what Big Data means isnt the same as interpreting little data, just as understanding flocking

behavior in birds doesnt explain the squawks of a lone seagull. Standard statistical tests

and computing procedures for drawing scientific inferences were designed to analyze small

samples taken from large populations. But Big Data provides extremely large samples that

sometimes include all or most of a population. The magnitude of the task can pose problems

for implementing computing processes to do the tests. Many statistical procedures either

have unknown runtimes or runtimes that render the procedure unusable on large-scale data.

Also High dimensionality in the data may lead to wrong statistical inference.

Many computer scientists and statisticians are aware of these issues, and a lot of work

is under way to address them. But there is more to it than just mashing up some more

sophisticated statistical methodologies. Scientists also need to confront some biases, rooted

in the days of sparse data, about what science is and how it should work. Old style

science coped with natures complexities by seeking the underlying simplicities in the sparse

data acquired by experiments. Big Data forces scientists to confront the entire repertoire

of natures nuances and all their complexities. Consequently, science cannot rely on the

strictly empirical approach to answer questions about complex systems. There are too

many possible factors influencing the system and too many possible responses that the

system might make in any given set of circumstances. To use Big Data e↵ectively, science

might just have to learn to subordinate experiment to theory.

2



1.2 Data Intensive Science and Fourth Paradigm

In scientific discovery, the first three paradigms were experimental, theoretical and more

recently computational science. A book published by Microsoft [1] argues that a fourth

paradigm of scientific discovery is at hand: the analysis of massive data sets. The basic idea

being discussed in this is that the capacity for collecting scientific data has far outstripped

our capacity to analyze it, and the focus should be on developing technologies that will make

sense of this deluge of data. The late Microsoft Research Dr. Jim Gray called “to have a

world in which all of the science literature is online, all of the science data is online, and

they inter-operate with each other”. This dream of him is close to reality in some scientific

domains like astronomy, where advanced telescopes generate petabytes of data available

for public analysis. With further advancements in the distributed and high-performance

computing framework like Hadoop, and with advanced open-source analysis tools like R

rapidly adapting to the scales of these data sets, the fourth paradigm is certain to become

a mainstream reality in other scientific domains as well.

1.3 Scientific Data Mining in Astronomy

Data mining has always been fundamental to astronomical research, since data mining is

the basis of evidence based discovery. Astronomers have been doing it for centuries in terms

of characterizing the objects in the sky, assign the new objects to a set of previously known

classes and discover the unknowns. These skills are becoming more critical than ever due

to the advancement in sensor technologies that can collect vast amount of data and the

availability of computing resources to analyze them. A brief survery of some the popular

machine learning algorithms to research problems in astronomy is provided in [2].

1.4 Rise of Crowdsourcing

Crowdsourcing is a term coined in 2005 and made popular a decade ago [3], is the process of

obtaining needed services, ideas and content by contributions from a large group of people,

3



especially from an online community. This distributed problem solving and production

model is put to use by for-profit organizations such as InnoCentive [4] and iStockphoto [5].

iStockphoto is the web's original resource started in 2000 for crowd sourced royalty-free stock

images, media and design elements. The site's tag-line says “by creatives, for creatives ”,

is a pioneer micro-payment photography site, freeing creative people around the world to

create beautiful communications on a budget. InnoCentive crowdsource innovative solutions

from the world's smartest people, who compete to provide ideas and solutions to important

business, social, policy, Scientific, and technical challenges. [3, 5], address the implications

for future research into crowdsourcing, regarding notions of professionalism and investment

in online communities.

1.4.1 Citizen Science

Citizen science (also called Crowd science, crowd-sourced science, civic science) is a scientific

research conducted in whole or part by amateur or non professional scientists. Formally,

citizen science has been defined as “the systematic collection and analysis of data; develop-

ment of technology; testing of natural phenomena; and the dissemination of these actives by

researchers on primary avocational basis” [6]. Oxford English Dictionary [7] defined citizen

scientists as “a member of general public who engages in scientific work, often in collabora-

tion with or under the direction of professional scientists and scientific institutions”. Certain

scientific disciples such as archaeology, astronomy and natural history require observation

skills that are more important than the expensive equipments. Some early citizen science

projects such as Christmas Bird Count [8], The Evolution MegaLab [9], Open Air Labora-

tories(OPAL) [10] has been started. Numerous other successful examples in other areas of

science include eBird [11], an online database of bird observations, EyeWire [12], a game

to map the 3D structure of neurons in the brain. The latest of them is TurtleSAT, that

is mapping freshwater turtle deaths throughout Australia utilize smartphone and tablet

technology to create better engagement of the citizen science community.
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1.4.2 Galaxy Zoo

The Sloan Digital Sky Survey (SDSS) has compiled a list of more than 1 million galaxies. To

glean information about galaxy evolution, astronomers need to know what type of galaxy

each one is: spiral, barred spiral, elliptical, or something else. The only reliable way to

classify galaxies is to look at each one, but all the world’s astronomers working together

couldn’t muster enough eyeballs for the task. A volunteer online e↵ort called Galaxy Zoo,

launched in 2007, has classified the entire catalog years ahead of schedule, bringing real

statistical rigor to a field used to samples too small to support firm conclusions. The Galaxy

Zoo team went on to ask more-complicated classification questions that led to studies they

hadn’t thought possible. And in a discussion forum on the Galaxy Zoo Web site, volunteers

have pointed to anomalies that on closer inspection have turned out to be genuinely new

astronomical objects [13].

In order to understand the formation and subsequent evolution of galaxies on must dis-

tinguish between the two main morphological classes: Spirals and early-type systems. The

galaxy zoo project[14] that went live in 2007, provides visual morphological classifications of

nearly one million galaxies, extracted from the Sloan Digital Sky Survey (SDSS). This was

made possible by general public who voluntarily inspect and classify these galaxies. The

project has obtained more than 800 million classifications made by a million participants.

It is noted that these classifications obtained from the volunteers are consistent with the

classifications obtained by the professional Astronomers. In addition, this provides a cata-

log that can be used to directly compare SDSS morphologies with older data sets. In the

forthcoming sections of this chapter we will see some examples of some interesting scientific

discoveries made utilizing these classifications. Also this leads to interesting set of citizen

science projects under the Zooniverse framework [15], that extend the concept of crowd

sourced science to other disciplines including biology, lunar science, solar science and the

humanities. The goal of Zooniverse is to create a sustainable future of large scale, internet

based citizen science, utilizing the human cognition of a community of citizen scientist in

an innovative manner that impacts the knowledge discovery process.
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1.5 Scientific Discoveries with Galaxy Zoo

Several researchers tried to analyze the data from galaxyzoo to reproduce the classification

obtained by the human eye. In [16], Artificial Neural Network was trained on a subset

of objects classified by the human eye and tested whether the machine learning algorithm

can reproduce the human classifications. In this paper they also stressed on the parameter

selection problem the classification task as the accuracy of the model heavily depends on the

parameters used. They also conclude that it is promising to use machine learning algorithms

to perform morphological classification for the next generation of wide-field imaging surveys

and that the Galaxy Zoo catalogue provides an invaluable training set for such purposes.

The Galaxy zoo project also led to the identification of merging galaxies [17]. This

presents the largest, most homogeneous catalog of merging galaxies in the nearby universe

obtained through the Galaxy zoo project. The suggested method in this paper convert a set

of visually inspected classifications for each galaxy into a single parameter which describes

the confidence that the object is an ongoing merger.

It has been recently demonstrated that using the broad bandpass photometry of the

Sloan Digital Sky Survey in combination with with precise knowledge of galaxy morphology

should help in estimating more accurate photometric redshifts for galaxies [18]. Using the

Galaxy Zoo separation for spirals and ellipticals in combination with Sloan Digital Sky

Survey photometry the attempt is to calculate photometric redshifts. In the best case

the root mean square error for Luminous Red Galaxies classified as ellipticals is as low

as 0.0118. Given these promising results a better photometric redshift estimates for all

galaxies in the Sloan Digital Sky Survey (350 million) can be calculated utilizing the power

of Machine Learning. This provides promising results for scientist interested in estimating

Weak-Lensing, Baryonic Acoustic Oscillation, and other fields dependent upon accurate

photometric redshifts.

Galaxy zoo has also lead to some scientific discover of unusual objects in the sky. One

such discovery is Hanny’s Voorwerp [19] which is an unusual object near the spiral galaxy

IC 2497, discovered by the visual inspection of the SDSS as part of Galaxy zoo project. The
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object, is bright in SDSS g band due to unusually strong OIII 4959-5007 emission lines. The

result of the first targeted observations of the object in the optical, UV and X-ray, which

show that the object contains highly ionized gas. Subsequent study leads to a discovery

that this object may represent the first direct probe of quasar history.

1.6 Thesis Overview

The rest of the thesis is arranged as follows: a standalone surprise discovery algorithm to find

interesting objects in a data set has been provided in chapter 2. A brief description about the

algorithm and its application in several domains has been provided in this chapter. Chapter

3 describes a methodology to identify interesting features are sub sample of features that

are important for the classification of merging or colliding galaxies that utilizes the power

of citizen science data has been provided. Chapter 4 moves on to the more complex task of

classifying galaxies and address the complexity of the data and demands the need for more

sophisticated analysis. Later, chapter 5 discusses the idea of latent variable analysis and

discusses the application of non-parametric Bayesian framework that identifies the most

representative sample of galaxies that simplifies the classification task. Chapter 6 o↵ers

conclusion and discussion of results.
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Chapter 2: Surprise Detection in Science Data Streams

Using K-Nearest Neighbor Data Distributions

The growth in data volumes from all aspects of space and earth science (satellites, sen-

sors, observatory monitoring systems, and simulations) requires more e↵ective knowledge

discovery and extraction algorithms. Among these are algorithms for outlier (novelty /

surprise / anomaly) detection and discovery. E↵ective outlier detection in data streams

is essential for rapid discovery of potentially interesting and/or hazardous events. Emerg-

ing unexpected conditions in hardware, software, or network resources need to be detected,

characterized, and analyzed as soon as possible for obvious system health and safety reasons,

just as emerging behaviors and variations in scientific targets should be similarly detected

and characterized promptly in order to enable rapid decision support in response to such

events. We describe a new algorithm for outlier detection (KNN-DD: K-Nearest Neighbor

Data Distributions) and we presents results from preliminary experiments that compare

KNN-DD with a previously published algorithm, to determine the e↵ectiveness of the al-

gorithms. We evaluate each of the algorithms in terms of their precision and recall, and in

terms of their ability to distinguish between characteristically di↵erent data distributions

among di↵erent classes of objects.

2.1 Introduction

Novelty and surprise are two of the more exciting aspects of science finding something

totally new and unexpected. This can lead to a quick research paper, or it can make your

career, or it can earn the discoverer a Nobel Prize. As scientists, we all yearn to make a

significant discovery. Petascale databases potentially o↵er a multitude of such opportuni-

ties. But how do we find that surprising novel thing? These come under various names:
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interestingness, outliers, novelty, surprise, anomalies, or defects (depending on the appli-

cation). We are investigating various measures of interestingness in large databases and

in high-rate data streams (e.g., the Sloan Digital Sky Survey [SDSS]1, 2-Micron All-Sky

Survey [2MASS]2, and GALEX3 sky survey), in anticipation of the petascale databases of

the future (e.g., the Large Synoptic Survey Telescope [LSST]4), in order to validate algo-

rithms for rapid detection and characterization of events (i.e., changes, outliers, anomalies,

novelties).

In order to frame our scientific investigation of these algorithms, we have been focusing

on a specific extragalactic research problem. We are exploring the environmental depen-

dences of hierarchical mass assembly and of fundamental galaxy parameters using a com-

bination of large multi-survey (multi-wavelength) object catalogs, including SDSS (optical)

and 2MASS (NIR: near-infrared). We have generated and are now studying a sample of over

100,000 galaxies that have been identified and catalogued in both SDSS and 2MASS. The

combination of multi-wavelength data in this cross-matched set of 100,000 galaxies from

these optical and NIR surveys will enable more sophisticated characterization and more in-

depth exploration of relationships among galaxy morphological and dynamical parameters.

The early results are quite tantalizing. We have sliced and diced the data set into various

physically partitioned large subsamples (typically 30 bins of more than 3000 galaxies each).

We initially studied the fundamental plane of elliptical galaxies, which is a tight correlation

among three observational parameters: radius, surface brightness, and velocity dispersion

[20, 21]. This well known relation now reveals systematic and statistically significant vari-

ations as a function of local galaxy density [22]. We are now extending this work into the

realm of outlier/surprise/novelty detection and discovery.

1
www.sdss.org

2
www.ipac.caltech.edu/2mass/

3
galex.stsci.edu

4
www.lsst.org
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2.2 Motivation

The growth in massive scientific databases has o↵ered the potential for major new discover-

ies. Of course, simply having the potential for scientific discovery is insu�cient, unsatisfac-

tory, and frustrating. Scientists actually do want to make real discoveries. Consequently,

e↵ective and e�cient algorithms that explore these massive datasets are essential. These

algorithms will then enable scientists to mine and analyze ever-growing data streams from

satellites, sensors, and simulations to discover the most interesting scientific knowledge hid-

den within large and high-dimensional datasets, including new and interesting correlations,

patterns, linkages, relationships, associations, principal components, redundant and surro-

gate attributes, condensed representations, object classes/subclasses and their classification

rules, transient events, outliers, anomalies, novelties, and surprises. Searching for the un-

known unknowns thus requires unsupervised and semisupervised learning algorithms. This

is consistent with the observation that unsupervised exploratory analysis plays an important

role in the study of large, high-dimensional datasets [23].Among the sciences, astronomy

provides a prototypical example of the growth of datasets. Astronomers now systematically

study the sky with large sky surveys. These surveys make use of uniform calibrations and

well engineered pipelines for the production of a comprehensive set of quality-assured data

products. Surveys are used to collect and measure data from all objects that are visible

within large regions of the sky, in a systematic, controlled, and repeatable fashion. These

statistically robust procedures thereby generate very large unbiased samples of many classes

of astronomical objects. A common feature of modern astronomical sky surveys is that they

are producing massive catalogs. Surveys produce hundreds of terabytes (TB) up to 100 (or

more) petabytes (PB) both in the image data archive and in the object catalogs. These

include the existing SDSS and 2MASS, plus the future LSST in the next decade (with a

20-40 Petabyte database). Large sky surveys have enormous potential to enable countless

astronomical discoveries. Such discoveries will span the full spectrum of statistics: from
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rare one-in-a-billion (or one-in-a-trillion) type objects, to the complete statistical and as-

trophysical specification of a class of objects (based upon millions of instances of the class).

With the advent of large rich sky survey data sets, astronomers have been slicing and dic-

ing the galaxy parameter catalogs to find additional, sometimes subtle, inter-relationships

among a large variety of external and internal galaxy parameters. Occasionally, objects are

found that do not fit anybodys model or relationship. The discovery of Hannys Voorwerp

by the Galaxy Zoo citizen science volunteers is one example [24,25]. Some rare objects that

are expected to exist are found only after deep exploration of multi-wavelength data sets

(e.g., Type II QSOs [26, 27]; and Brown Dwarfs [28, 29]). These two methods of discovery

(i.e., large-sample correlations and detection of rare outliers) demonstrate the two modes

of scientific discovery potential from large data sets: (1) the best-ever statistical evaluation

and parametric characterization of major patterns in the data, thereby explicating scaling

relations in terms of fundamental astrophysical processes; and (2) the detection of rare one-

in-a-million novel, unexpected, anomalous outliers, which are outside the expectations and

predictions of our models, thereby revealing new astrophysical phenomena and processes

(the unknown unknowns). Soon, with much larger sky surveys, we may discover even rarer

one-in-a-billion objects and object classes.

LSST (www.lsst.org) is the most impressive astronomical sky survey being planned for

the next decade. Compared to other sky surveys, the LSST survey will deliver time domain

coverage for orders of magnitude more objects. The project is expected to produce 15-30

TB of data per night of observation for 10 years. The final image archive will be 70 PB,

and the final LSST astronomical object catalog (object-attribute database) is expected to

be 20-40 PB, comprising over 200 attributes for 50 billion objects and 10 trillion source ob-

servations. Many astronomy data mining use cases are anticipated with the LSST database

[30], including:

1. Provide rapid probabilistic classifications for all 10,000-100,000 LSST events each

night;
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2. Find new correlations and associations of all kinds from the 200+ science attributes;

3. Discover voids in multi-dimensional parameter spaces (e.g., period gaps);

4. Discover new and exotic classes of objects, or new properties of known classes;

5. Discover new and improved rules for classifying known classes of objects;

6. Identify novel, unexpected behavior in the time domain from time series data;

7. Hypothesis testing verify existing (or generate new) astronomical hypotheses with

strong statistical confidence, using millions of training samples;

8. Serendipity discover the rare one-in-a-billion type of objects through outlier detection.

We are testing and validating exploratory data analysis algorithms that specifically

support many of these science user scenarios for large database exploration.

2.3 Related Work

Various information theoretic measures of interestingness and surprise in databases have

been studied in the past.Among these are Shannon entropy, information gain [31], Weaver’s

Surprise Index [32], and the J-Measure [33]. In general, such metrics estimate the relative

information content between two sets of discrete-valued attributes. These measures can be

used to identify interesting events in massive databases and data streams (through e�cient

interestingness metrics).

We have used PCA to identify outliers [22,34]. In particular, we have been studying cases

where the first two PC vectors capture and explain most (> 90%) of the sample variance in

the fundamental plane of elliptical galaxies. Consequently, in such a case, the component

of a data records attribute feature vector that projects onto the third PC eigenvector will

provide a measure of the distance z3 of that data record from the fundamental plane that

defines the structure of the overwhelming majority of the data points. Simply sorting the

records by z3, and then identifying those with the largest values, will result in an ordered
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set of outliers [15] from most interesting to least interesting. We have tested this technique

on a small cross-matched test sample of ellipticals from SDSS and 2MASS [34]. We will

research the scalability of this algorithm to larger dataset sizes, to higher dimensions (i.e.,

number of science parameters), and to a greater number of principal components.

In many cases, the first test for outliers can be a simple multivariate statistical test of

the normalcy of the data: is the location and scatter of the data consistent with a normal

distribution in multiple dimensions? There are many tests for univariate data, but for

multivariate data, we will investigate the Shapiro-Wilk test for normalcy and the Stahel-

Donoho multivariate estimator for outlyingness [25, 35]. The Stahel-Donoho outlyingness

parameter is straightforward to calculate and assign for each object: it is simply the absolute

deviation of a data point from the centroid of the data set, normalized to the scale of the

data. These tests should not be construed as proofs of non-normalcy or outlyingness, but

as evidence. For petascale data, even simple tests are non-trivial in terms of computational

cost, but it is essential to apply a range of algorithms in order to make progress in mining the

data. Several other algorithms and methods have been developed, and we will investigate

these for their applicability and scalability to the large-data environment anticipated for

LSST: Measures of Surprise in Bayesian Analysis [36], Quantifying Surprise in Data and

Model Verification [37], and Anomaly Detection Model Based on Bio-Inspired Algorithm

and Independent Component Analysis [33]. Such estimators can also be used in visual

data mining to highlight the most interesting regions of the dataset this provides yet

another tool for visual exploration and navigation of large databases for outliers and other

interesting features.

2.4 New Algorithm for Outlier Detection: KNN-DD

We have implemented a new algorithm for outlier detection that has proven to be e↵ective

at detecting a variety of novel, interesting, and anomalous data behaviors.The K-Nearest

Neighbor Data Distributions (KNN-DD) outlier detection algorithm evaluates the local
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data distribution around a test data point and compares that distribution with the data

distribution within the sample defined by its K nearest neighbors. An outlier is defined as

a data point whose distribution of distances between itself and its K-nearest neighbors is

measurably di↵erent from the distribution of distances among the K-nearest neighbors alone

(i.e., the two sets of distances are not drawn from the same population). In other words,

an outlier is defined to be a point whose behavior (i.e., the points location in parameter

space) deviates in an unexpected way from the rest of the data distribution. Our algorithm

has these advantages: it makes no assumption about the shape of the data distribution or

about normal behavior, it is univariate (as a function only of the distance between data

points), it is computed only on a small-N local subsample of the full dataset, and as such

it is easily parallelized when testing multiple data points for outlyingness.

Algorithm 1 Outlier Detection using K-Nearest Neighbor Data Distributions (KNN-DD)

1: Find the set S(K) of K nearest neighbors to the test data point O.
2: Calculate the K distances between O and the members of S(K). These distances define

fK(d,O).
3: Calculate the K(K-1)/2 distances among the points within S(K). These distances define

fK(d,K).
4: Compute the cumulative distribution functions CK(d,O) and CK(d,K), respectively, for

fK(d,O) and fK(d,K).
5: Perform the K-S Test on CK(d,O) and CK(d,K). Estimate the p-value of the test.
6: Calculate the Outlier Index = 1-p.
7: If Outlier Index > 0.98, then mark O as an Outlier. The Null Hypothesis is rejected.
8: If 0.90 < Outlier Index < 0.98, then mark O as a Potential Outlier.
9: If p > 0.10, then the Null Hypothesis is accepted: the two distance distributions are

drawn from the same population. Data point O is not marked as an outlier.

Here, f(d,x) is the distribution of distances d between point x and a sample of data points,

fK(d,O) is the distribution of distances between a potential outlier O and its K-nearest

neighbors, and fK(d,K) is the distribution of distances among the K-nearest neighbors.

The algorithm compares the two distance distribution functions fK(d,O) and fK(d,K) by

testing if the two sets of distances are drawn from the same population.

The KNN-DD algorithm is di↵erent from the Distribution of Distances algorithm for

outlier detection [38], in which the comparison is between the local data distribution around
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a test data point and a uniform data distribution. Our algorithm is also di↵erent from the

k-Nearest Neighbor Graph algorithm for outlier detection [39], in which data points define a

directed graph and outliers are those connected graph components that have just one vertex.

Furthermore, our algorithm appears similar but is actually di↵erent in important ways from

the incremental LOF (Local Outlier Factor) algorithms [40,41], in which the outlier estimate

is density-based (determined as a function of the data points local reachability density),

whereas our outlier estimate is based on the full local data distribution. Finally, we report

that the KORM (K-median OutlieR Miner) approach to outlier detection in dynamic data

streams [42] is most similar to our algorithm, except that their approach is cluster-based

(based on K-medians) whereas our approach is statistics-based.

To test the KNN-DD algorithm and to evaluate its e↵ectiveness, we compared experi-

ment results from outlier detection tests using two algorithms: KNN-DD and PC-Out [43].

We briefly summarize below the essential characteristics of the PC-Out algorithm. For more

details, the reader is urged to consult the original paper [43].

As part of our algorithm validation process, we examined the separation of the true

outliers from the training data and the separation of the false outliers from the training

data using a standard unsupervised cluster evaluation metric: the Davies-Bouldin Index

[44]. These results are described in section 2.7.1.

2.5 THE PC-OUT ALGORITHM

Statistical methods for outlier detection often tend to identify as outliers those observations

that are relatively far from the center of the data distribution. Several distance measures

are used for such tasks. For the multivariate case, the Mahalanobis distance provides

a well known criterion for outlier detection. Astronomy databases (object catalogs) are

generally high-dimensional (i.e.,hundreds of attributes per object). Often it is desirable in

such cases to reduce the number of dimensions for easier analysis. Principal Component

Analysis (PCA) is one such common method used for dimension reduction. PCA identifies
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a smaller number of new variables that are linear combinations of the original variables and

that preserve the covariance structure of the data. The PC-Out algorithm is one of these

PCA-based methods, specifically used for outlier detection. The algorithm detects both

location and scatter outliers. As these authors explain, Scatter outliers possess a di↵erent

scatter matrix than the rest of the data, while location outliers are described by a di↵erent

location parameter. The PC-Out algorithm starts by performing PCA on the data scaled

by the median absolute deviations (MAD) in each of the dimensions. It then retains those

components that preserve 99% of the total variance in the data. For the first phase of

the algorithm, each one of the principal components is weighted with a robust kurtosis

measure that captures the significance of each component in identifying location outliers.

The Euclidean distance from the center on this principal component space is equivalent

to the Mahalanobis distance since the data have been scaled by the MAD. A translated

biweight function is used to down-weight points with large distances. This function also

allows the portion of points closer to the center to receive full weights and those points

that are farther away from the center get zero weight. These weights are then used as a

measure to detect location outliers. The same steps are then repeated in the second phase

of the algorithm to detect scatter outliers, except that the kurtosis weighting scheme has

been ignored. Weights for each observation are obtained as before, which are then used to

identify scatter outliers. Finally, both sets of weights are then combined to get the final

weights. By definition, outliers are those points that have final weights less than a default

threshold weight value, which is set to be 0.25 initially, though we have experimented with

this value and we find that a weight of 0.80 gives the best results for our galaxy-star outlier

dataset ( 2.7.2).

2.6 EXPERIMENTAL DATA SET

For the preliminary experiments reported here, we used a very small set of elliptical galaxies

and stars from the combined SDSS+2MASS science data catalogs. We used 1000 galaxies

as the training set (i.e., as the set that represents normal behavior). We then used 114 other
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galaxies and 90 stars as test points (i.e., to measure and test for outlyingness). The galaxies

represent normal behavior, and the stars are intended to represent outlier behavior. We

chose 7 color attributes as our feature vector for each object. The 7 colors are essentially

the 7 unique (distance-independent, hence intrinsic) flux ratios (i.e., colors) that can be

generated from the 8 (distance-dependent, hence extrinsic) flux measures from SDSS and

2MASS: the ugriz+JHK flux bands (which astronomers call magnitudes). Hence, we are

exploring outlier detection in a 7-dimensional parameter space. In reality, there is some

overlap in the colors of galaxies and stars, since galaxies are made up of stars, which thereby

causes the stars to have much less outlyingness measure than we would like. On the other

hand, this type of star-galaxy lassification/segregation is a standard and very important

astronomy use case for any sky survey, and therefore it is a useful outlier test case for

astronomy. The data distribution overlap among the stars and galaxies in our 7-dimensional

parameter is somewhat ameliorated by the following fact. The flux of a galaxy GAL(flux)

in one waveband is approximately the linear combination of its 10 billion constituent stars

fluxes SUM*(flux) in that same waveband (modulo other e↵ects, such as dust absorption

and reddening, which are minimal in elliptical galaxies). Hence the colors of a galaxy are

formed from the ratios of these linearly combined SUM*(flux) values. Consequently, the

7-dimensional feature vector of a galaxy need not align with any particular combination of

stars feature vectors. To illustrate this point, we consider a toy galaxy comprised of just 2

stars, with red band fluxes R*1 and R*2 and ultraviolet band fluxes U*1 and U*2. The U-R

color (i.e., flux ratio) of the galaxy (modulo a logarithm and scale factor that astronomers

like to use) is essentially (U*1+U*2)/(R*1+R*2), which cannot be represented by any

simple linear combination of the stars U-R colors: U*1/R*1 and U*2/R*2. Therefore,

the actual distributions of stars and galaxies in our parameter space are su�ciently non-

overlapping to allow us to perform reasonable outlier tests using stars as the outlier test

points with regard to the normal galaxy points. For our distance metric, we used a simple

Euclidean (L2-norm) distance calculated from the 7 feature vector attributes. Since they

are all flux ratios, the 7 attributes are already physically similar in terms of their mean,
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variance, and scale factor. No further data normalization or transformation is required.

Though the total numbers of galaxies and stars in our experiments are quite small,

especially compared to the massive databases from which they were extracted, they actually

do represent a somewhat typical data stream use case, in which a small number of incoming

observations are tested against a small comparison set of local measurements, to search for

and to detect outlier behaviors among the incoming measurements. In the future, we will

expand our experiments to much greater numbers of test and training points.

2.7 Results

2.7.1 KNN-DD algorithm results

We found the following results for the KNN-DD algorithm. We measured the Recall-

Precision metrics and produced a ROC curve figure 2.1 for continuously varying p-values

(1-p is the Outlier Index, as defined in the Algorithm 1). In these experiments, Recall is

calculated from the ratio of (number of stars correctly classified as outliers)/(total number

of stars), and Precision is calculated from the ratio of (number of stars correctly classified as

outliers)/[(number of galaxies misclassified as outliers)+(number of stars correctly classified

as outliers)]. The variation in Precision as a function of p-value is illustrated in figure 2.2.

The maximum precision (99%) for our test dataset is reached when the p-value reaches

the limiting value 0.02. We establish this p-value (0.02) as the critical value used in the

KNN-DD algorithm. Note that the knee (i.e., the discrimination point) in the ROC curve

( 2.1) occurs at p-value 0.05, which was the value originally used in our first experiments

with the KNN-DD algorithm.

We see in 2.1 that the Recall is nearly 100% over most of the range of the ROC curve.

This is illustrated more emphatically in figure 2.3, which presents the variation in Recall as

a function of p-value. This clearly corroborates the point that we made in the first part of

5, that the data distribution of stars in our 7-dimensional feature space is mostly distinct

from the data distribution of galaxies in that same parameter space. We will say more
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Figure 2.1: ROC curve for Precision and Recall measured from the KNN-DD algorithm for
outlier detection.

about this below, when we discuss the application of the DBI (Davies-Bouldin Index, [44])

evaluation metric for measuring the distinctness (i.e., separation) of the star and galaxy

data distributions.

For p-value=0.02, we find the following results: (1) for the 114 test galaxies, 89 are

correctly classified (78%), and 25 are incorrectly classified as outliers (22%); and (2) of the

90 stars, 89 are correctly classified as outliers (99%), and one is misclassified as normal.

Hence, in this case, Recall=99% and Precision=78% (=89/(89+25)).

2.7.2 PC-Out algorithm results

We found the following results for the PC-Out algorithm [43]. In this case, there is no

concept of a training set. (We note that this is actually also true for the KNN-DD algo-

rithm, which can test any data point in a data stream relative to the other data points

in the data set. For this paper, we used a training set to evaluate the ROC curve and

the Recall/Precision metrics shown in figure 2.1 in order to evaluate the e↵ectiveness of
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Figure 2.2: Variation in the Precision of the outlier experiments using the KNN-DD algo-
rithm, as a function of the p-value.

Figure 2.3: Variation in the Recall of the outlier experiments using the KNN-DD algorithm,
as a function of the p-value.
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Figure 2.4: ROC curve for Precision and Recall measured from the PC-Out algorithm for
outlier detection.

the KNN-DD algorithm.) For PC-Out testing, therefore, all 1114 galaxies constituted our

normal behavior objects and the 90 stars represented our outlier test cases. However, for

our calculation of Precision and Recall, we used the same 114 galaxies and 90 stars that

we used above for the Precision and Recall calculations for the KNN-DD algorithm. The

PC-Out algorithm allows the user to adjust a threshold parameter. We experimented with

a few values of this threshold in order to produce the ROC curve shown in figure 2.4. In

particular, though the original paper [43] recommended a threshold weight of 0.25, we found

that a threshold weight of 0.80 provides the optimum results. The ROC curve has a non-

monotonic behavior because the Precision curve is non-monotonic (figure 2.5), though the

Recall curve behaves monotonically (figure 2.6)

For a threshold weight of 0.25, we found Recall=18% and Precision=89%. This unsat-

isfactory value for Recall persuaded us to search for a better choice of the threshold weight

used by the PC-OUT algorithm. We settled on a threshold weight value=0.80 that led to

the following results: (1) for the 114 galaxies, 96 are correctly classified (84%), and 18 are
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Figure 2.5: Variation in the Precision of the outlier experiments using the PC-Out algo-
rithm, as a function of the threshold weight .

incorrectly classified as outliers (16%); and (2) of the 90 stars, 78 are correctly classified as

outliers (87%), and 12 are incorrectly labeled as non-outliers (13%). Hence, in this case,

Recall=87% and Precision=81% (=78/(78+18)). The Recall performance is still lower than

the KNN-DD algorithm, while the Precision is a little higher than KNN-DD. In addition, we

note that the PC-Out algorithm requires a full PCA eigen-analysis of the complete (big-N)

data set, which involves a massive matrix inversion, whereas the KNN-DD algorithm only

involves distance calculations of local (small-N) subsets of the data set. For cases where

e�ciency is critical (e.g., in space-borne sensors, low-power sensor nets, and remote detector

platforms), KNN-DD would be both an e�cient and an e↵ective algorithm for finding (with

high Recall and good Precision) true outliers, anomalies, and surprises in the data.

2.7.3 Evaluation of results

We evaluated our outlier test results using the DBI clustering evaluation metric [44]. DBI

basically measures the ratio (D1+D2)/D12, where D1 and D2 represent the diameters of

two data distributions (clusters) and D12 represents the distance between the two clusters.

Note that these distances and diameters could be calculated from a variety of di↵erent

algorithms (e.g., for cluster distance, one could use the single link, complete link, average
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Figure 2.6: Variation in the Recall of the outlier experiments using the PC-Out algorithm,
as a function of the threshold weight.

link, or centroid distance; for cluster diameter, one could use the RMS separation among

all members of the cluster, or use the mean, median, or maximum distance of the points

from the centroid of their distribution; and for the distance metric, one could use Euclidean

distance, Cosine similarity, or any other such metric for these calculations).

Clustering is considered e↵ective if the DBI metric is a small number (i.e., the sizes

of assigned clusters are small compared to the distances between the clusters, so that the

clusters are compact). We find that this is a useful concept for our outlier experiments also,

in the following sense. We measured DBI for 5 pairs of data groupings: [Case 0] set A1

consisting of the original 90 stars versus set A2 consisting of the original 114 galaxies (as

classified in the original published data catalogs); [Case 1] set B consisting of all objects

classified as stars (outliers, according to the selected algorithm) versus set C consisting of

all objects classified as galaxies (non-outliers, according to the selected algorithm); [Case 2]

set A1 versus set C consisting of all galaxies that were misclassified as outliers; [Case 3] set

A1 versus set D consisting of all galaxies that were correctly classified as non-outliers; and

[Case 4] set C versus set D. Note that set A2 = set C + set D. In these comparisons we were

hoping to confirm several expectations about the galaxy and star data distributions. In Case
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0, we expect that stars are reasonably well di↵erentiated from galaxies in our 7-dimensional

feature space (DBI < 1). In Case1, we expect some overlap between sets B and C (DBI

> 1), since set B includes some real galaxies mixed in with the stars and set C includes

some real stars mixed in with the galaxies. In Case 2, we expect that the distribution of

real stars and misclassified galaxies would occupy similar (overlapping) regions of feature

space (DBI > 1). In Case 3, we expect that stars are well separated from galaxies that

are correctly classified as non-outliers (DBI < 1). Finally, in Case 4, we expect that the

two sets of galaxies (those classified incorrectly as outliers versus those classified correctly

as non-outliers) will have essentially the same centroid position (i.e., small D12) in feature

space, since they are all elliptical galaxies (i.e., intentionally a very homogeneous sample

with uniform average galaxy properties), while the outlier distribution will have a greater

extent than the non-outliers (D2 > D1), as measured by their distance from the centroid

(hence, DBI >> 1).

For the KNN-DD algorithm, we find the following values for the DBI metric:

Case 0: DBI = 0.86

Case 1: DBI = 1.27

Case 2: DBI = 0.81

Case 3: DBI = 0.92

Case 4: DBI = 8.74

For the PC-Out algorithm, we find the following values for the DBI metric:

Case 0: DBI = 0.86 (same as above)

Case 1: DBI = 1.42

Case 2: DBI = 0.87

Case 3: DBI = 0.84

Case 4: DBI = 3.31

We observe from these results some interesting and some peculiar patterns. The good
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Figure 2.7: Possible distribution of stars, galaxies, and outlier galaxies that can explain
why the Case 2 DB index is so low and answer this question: why are the galaxies that
are misclassified as outliers and the stars (which are true outliers) so distinctly separated in
feature space? In this schematic diagram, the feature space distribution of normal galaxies
is represented by the large circle (filled with dots), the distribution of stars is represented by
the large oval (filled with solid squares), and the distribution of outlier galaxies is represented
by the large annulus (with grid lines). In this example, the outlier galaxies are outlying in
all directions in feature space compared with the stars, which are outlying in some preferred
direction. This interpretation is also consistent with the high DBI values in Case 4, and it
is further consistent with the very similar DBI values between Case 0, Case 2, and Case 3.

news is that the DBI metrics for Cases 0, 1, 3, and 4 all behave as we would expect. The

(possibly) bad news is that Case 2 yields problematic values for the DBI metric. The

Case 2 DBI scores (0.81 and 0.87) are among the lowest of all of the DBI values that we

measured, indicating that these two data distributions are among the most cleanly separated

in feature space: the stars (true outliers) and the galaxies that were misclassified as outliers.

We think that one explanation for this is that the outlier galaxies really are correctly labeled

as outliers, but they are outlying in all directions (roughly isotropically) in feature space, in

contrast with the stars, which are outlying in some preferred direction in feature space: for

example, see the schematic diagram in figure 2.7. If this is the correct explanation, which

we will investigate in our future work, then KNN-DD actually discovered some new and

interesting galaxies (true outliers relative to the normal galaxy population), and thus the

KNN-DD algorithm is vindicated it actually fulfilled its objective to discover surprises in

scientific datasets.
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2.8 CONCLUDING REMARKS AND FUTURE WORK

We find that our new KNN-DD algorithm is an e↵ective and e�cient algorithm for outlier

detection. It has similar Precision and Recall accuracies relative to the PCA-based PC-

Out algorithm [18], while KNN-DD operates e�ciently on small-N local data points and

PC-Out operates intensively on the full (large-N) set of global data. We therefore see the

value of further experimentation with the KNN-DD algorithm on larger, more complex

data streams. We also found some interesting behavior in high-dimension feature spaces

regarding the region occupied by the outlier stars, compared with the region occupied by

the outlier galaxies, compared with the region occupied by normal (non-outlier) galaxies.

Further investigation of these surprising results is also warranted, which may already be

yielding some scientific discoveries from these simple experimental test cases. We will also

extend our KNN-DD comparison tests to include additional published outlier detection

algorithms (in addition to the PC-Out algorithm).

The main advantages of our KNN-DD algorithm are:

1. It is based on the non-parametric K-S test

2. It makes no assumption about the shape of the data distribution or about normal

behavior (of non-outliers).

3. It compares the cumulative distributions of the test data (i.e., the set of inter-point

distances), without regard to the nature of those distributions.

4. It operates on multivariate data, thus solving the curse of dimensionality.

5. It is algorithmically univariate, by estimating a function that is based entirely on

the scalar distance between data points (which themselves occupy highdimensional

parameter space).

6. It is simply extensible to higher dimensions.
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7. The KNN-DD distance distributions are computed only on small-K local subsamples

of the full dataset of N data points (K¡¡N).

8. The algorithm is easily (embarrassingly) parallelizable when testing multiple data

points for outlyingness.

The major deficiencies of the KNN-DD algorithm that need attention, as the algorithm

is currently defined, and areas for future work include:

1. The choice of K (see Sect. 26.4) is not determined or justified. We need to validate

our choice of K, or else find a justifiable selection criterion for particular values.

2. The choice of p (Sect. 26.4) is only weakly determined.

3. We need to measure the learning times of the KNN-DD algorithm.

4. We need to determine (and validate) the complexity of the KNN-DD algorithm.

5. We need to compare the KNN-DD algorithm against a larger set of other outlier

detection algorithms.

6. We need to evaluate KNN-DD algorithms e↵ectiveness and e�ciency on much larger

datasets.

7. We aim to demonstrate the usability of the KNN-DD algorithm on streaming data,

not just with static data (as used in this papers experiments).

As part of further research in outlier (novelty / surprise / anomaly) detection and

discovery, we are planning to evaluate a new approach to discovering surprising correlations

and features in large data streams. In particular, we anticipate the use of croudsouced

labelled data set from galaxyzoo for exploration of large catalogs. In particular, they can

be used to detect interesting features in high-dimensional sky survey catalogs. This will be

especially important in time-domain studies (e.g., LSST), as we search for interesting (new,

unexpected) temporal events or for changes in the temporal behavior of known variable

objects.
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Chapter 3: Data Mining the Galaxy Zoo Mergers

3.1 Summary

Collisions between pairs of galaxies usually end in the coalescence (merger) of the two

galaxies. Collisions and mergers are rare phenomena, yet they may signal the ultimate fate

of most galaxies, including our own Milky Way. With the onset of massive collection of

astronomical data, a computerized and automated method will be necessary for identifying

those colliding galaxies worthy of more detailed study. This chapter researches methods to

accomplish that goal. Astronomical data from the Sloan Digital Sky Survey (SDSS) and

human-provided classifications on merger status from the Galaxy Zoo project are combined

and processed with machine learning algorithms. The goal is to determine indicators of

merger status based solely on discovering those automated pipeline-generated attributes in

the astronomical database that correlate most strongly with the patterns identified through

visual inspection by the Galaxy Zoo volunteers. In the end, we aim to provide a new and

improved automated procedure for classification of collisions and mergers in future petascale

astronomical sky surveys. Both information gain analysis (via the C4.5 decision tree algo-

rithm) and cluster analysis (via the Davies-Bouldin Index) are explored as techniques for

finding the strongest correlations between human-identified patterns and existing database

attributes. Galaxy attributes measured in the SDSS green waveband images are found

to represent the most influential of the attributes for correct classification of collisions and

mergers. Only a nominal information gain is noted in this research, however, there is a clear

indication of which attributes contribute so that a direction for further study is apparent.
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3.2 Introduction

3.2.1 Scientific Rationale

Current computational detection of a galaxy merger in astronomical data is less than ideal.

However, human pattern recognition easily identifies mergers with varied, but strong, levels

of accuracy. If this superior human input can be incorporated into the automated data

pipeline detection scheme, informed by machine learning models, then a more accurate as-

sessment of merger presence can be gained automatically in future large sky surveys. These

improvements could potentially lead to more powerful detection of various astronomical

objects and interactions.

Our goal was to generate merger classification models using two prominent machine

learning approaches, as a preliminary exercise toward the incorporation of human input

into future automated pipeline classification models.

3.2.2 Citizen Science

Citizen Science refers to the involvement of layperson volunteers in the science process, with

the volunteers specifically asked to perform routine but authentic science research tasks that

are beyond the capability of machines. Complex pattern recognition (and classification)

and anomaly detection in complex data are among the types of tasks that would qualify

as Citizen Science activities. The Galaxy Zoo project (galaxyzoo.org) presents imagery

from the Sloan Digital Sky Survey (SDSS) to laypersons for classification (e.g., whether

a galaxy is of the elliptical or spiral type) via a web interface. The project went live in

2007, and already over 200 million classifications have been provided by more than 260,000

individuals. During the classification process, volunteers can flag a particular image as

depicting a merger of two or more galaxies. Approximately 3000 prominent mergers in the

SDSS (Sloan Digital Sky Survey) have been identified[45].

29



3.2.3 Related Work

Image recognition has long been a major deficiency in computation. Classification tasks

such as facial recognition, trivially exercised with great accuracy and precision by living

organisms, have been predominantly inaccurate and slow when attempted using comput-

ers. While current algorithms are fairly capable of recognizing substructures and details in

imaging data, recognition of gestalt in the data has proved more elusive. This shortcoming,

combined with the contemporary unyielding influx of data in the natural sciences and the

vastness of a data domain such as astronomy, has led to the necessity of attempting to tap

into the e↵ortless capability of human cognition.

The Galaxy Zoo web application has as its goal the collection and application of human

classifications applied to images of galaxies from the SDSS. E↵orts have been made to

use human input to reinforce existing machine learning models such as artificial neural

networks and genetic algorithms[46]. Additionally, work has been done using supervised

learning algorithms to classify galaxy type (non-merging), with considerable success using

spectroscopic data for training[47] and data derived from human cognition[48]. It has been

found that the introduction of parameters chosen using human input shows great promise

for improving current detection and classification of astronomical objects.

3.3 Defining the Data

To help us identify the SDSS photometric attributes that show promise in merger classifi-

cation, data from the SDSS survey were collected in two distinct groups, one group chosen

as a representative sample of galaxy objects in SDSS, and the other to represent known

mergers.

3.3.1 Data Sources

We utilized data strictly from the Galaxy Zoo project and SDSS. Galaxy Zoo was used

to obtain SDSS ID’s for merger objects, along with an attribute representing the users’
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confidence in the classification as a merger. All photometric data, merger or non-merger,

was obtained from the SDSS.

Mergers

The data chosen to represent known merging galaxies were represented by 2,810 of the

3,003 SDSS mergers presented in [45] (i.e., those that had the full set of attributes that we

examined).

These objects are known to be involved in mergers and to represent objects with rela-

tively high surface brightness (making human classification possible).

Non-Mergers

To build classification models, galaxies assumed to be predominantly non-mergers were also

needed as training examples.

As the vast majority of the 100 million SDSS galaxies are not mergers, a representative

random sample of SDSS galaxies was chosen for this role.

The sample (initially comprised of 3500 instances) was chosen at random from objects

of galaxy type within the SpecPhotoAll view in the SDSS database. This view represents

objects that have spectral data associated with them. The spectral data was necessary to

obtain object redshift, which was needed to remove distance dependence from the gathered

attributes.

Utilizing objects with spectral data also had the ancillary impact of restricting the

non-mergers to those with similar surface brightness to the mergers.

3.3.2 Data Cleaning and Pre-Processing

Upon completion of these steps, the sample consisted of 6,310 objects with 76 attributes,

including the nominal attribute “merger/non-merger.” Considerable pre-processing was

necessary to ready the data for use as the training set for classifiers. Some pre-processing

steps were necessary for both of the two algorithms utilized. All attributes that did not
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represent morphological characteristics were removed. For example, the SDSS object ID’s,

measurement error magnitudes, and attributes representing location or identity, rather than

morphology, were among those removed. In Astronomical Catalog missing values occurs for

variety of reason from. It is not possible to estimate these values, as these values may be

physically meaningful. Therefore instances with placeholder values (in SDSS, ”-9999”) in

any attribute were removed. Since data were gathered from bright objects, most objects did

not require this removal. Distance-dependent attributes were transformed, using redshift,

to be distance-independent. A concentration index was also generated, using the ratio of

the radii containing 50% and 90% of the Petrosian flux within each galaxy.

3.4 Machine Learning

3.4.1 Decision Trees

Decision trees are a straightforward machine learning algorithm that produces a classifier

with numerical or categorical input, and a single categorical output (the ’class’). Decision

trees have several advantages:

• The resulting tree is equivalent to a series of logical ’if-then’ statements, and is there-

fore easy to understand and analyze.

• Missing attribute values can be incorporated into a decision tree, if necessary.

• Easy to implement as a classifier.

• Computationally cheap to ‘train’ and use in classification.

The most popular decision tree algorithm, C4.5, was published by Ross Quinlan in

1993 [8]. To generate a decision tree, the Weka data mining software suite was utilized.

Weka is a robust and mature open source Java implementation of many prominent machine

learning algorithms. It also automates many pre-processing tasks, including transformations

of parameters and outlier detection/removal. Weka refers to its C4.5 implementation as J48.

This is the routine we used to build a decision tree for classification.
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Table 3.1: Important attributes from SDSS Catalog and their description
Attribute Description
petroMag ug Petrosian magnitude colors. A color was calculated for four

independent pairs of bands in SDSS (u-g, g-r, r-i, and i-z).
petroRad u ⇤ z Petrosian radius, transformed with redshift to be distance-

independent.
invConIndx u Inverse concentration index. The ratio of the 50% flux Pet-

rosian radius to the 90% flux Petrosian radius.
isoRowcGrad u ⇤ z Gradient of the isophotal row centroid, transformed with

redshift to be distance-independent.
isoColcGrad u ⇤ z Gradient of the isophotal column centroid, transformed with

redshift to be distance-independent.
isoA u ⇤ z Isophotal major axis, transformed with redshift to be

distance-independent.
isoB u ⇤ z Isophotal minor axis, transformed with redshift to be

distance-independent.
isoAGrad u ⇤ z Gradient of the isophotal major axis, transformed with red-

shift to be distance-independent.
isoBGrad u ⇤ z Gradient of the isophotal minor axis, transformed with red-

shift to be distance-independent.
isoPhiGrad u ⇤ z Gradient of the isophotal orientation, transformed with red-

shift to be distance-independent.
texture u Measurement of surface texture.
lnLExp u Log-likelihood of exponential profile fit (typical for a spiral

galaxy).
lnLDeV u Log-likelihood of De Vaucouleurs profile fit (typical for an

elliptical galaxy).
fracDev u Fraction of the brightness profile explained by the De Vau-

couleurs profile.
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Decision Trees in Weka

The Weka J48 algorithm has several arguments. The relevant arguments for our exploration

are:

• binarySplits: If set to true, the generated tree will be binary. A binary tree is

simpler to interpret.

• confidenceFactor: The lower this is set, the more pruning that will take place on

the tree. More pruning can result in a simpler tree, at the expense of predictive power.

However, too little pruning can contribute to overfitting.

• minNumObj: The minimum number of instances required in each tree leaf. The

higher this is set, the simpler the resulting tree.

As the goal of this work is primarily to explore the strength of SDSS attributes in merger

classification, emphasis in tree generation was on generating simple trees, and examining the

strongest predicting attributes. In particular, we are searching for those database attributes

that contain the most predictive power: those that show the highest correlation with Galaxy

Zoo volunteer-provided classification as a merger. These would be the attributes that match

most strongly with the outputs of human pattern recognition.

Information Gain

In the C4.5 and J48 algorithms, the tree design is predicated upon maximizing information

gain (a measurement of entropy in the data). Using Weka, the information gain was cal-

culated for each of the attributes, using the 6310 instances referenced in section 3.3.2 with

tenfold cross-validation. The top five attributes are listed below. Notably, 4 of these top

5 attributes are related to the SDSS observations in the green waveband. These are the

attributes that have the highest predictive power in merger classification accuracy.

Decision Tree Results

We decided to generate three di↵erent trees, with the following characteristics:
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Table 3.2: Important attributes from SDSS Catalog with high Information Gain
Attribute Information Gain
lnLExp

g

0.099
texture

g

0.074
lnLDeV

g

0.068
petroMag

gr

0.065
isoAGrad

u

⇤ z 0.057

1. A tree that is trained on all instances. This tree should use all mergers, regardless of

the vote of merger confidence given by Galaxy Zoo users.

2. A tree that is trained on merger instances with stronger Galaxy Zoo user confidence.

This tree was to be generated with only mergers that a majority of Galaxy Users

flagged as such. These instances are assumed to be the mergers that are, in some

sense, ‘obvious.’

3. A tree that is trained on merger instances with less than a majority of Galaxy Zoo

users indicating then as such. These instances are assumed to be less than obvious to

the layperson.

If one simply classifies all galaxies as non-mergers, a predictive accuracy of 55% is

obtained. In the simplest tree with one split (seen in figure 3.1), a 66% correct classification

occurs, so there is a modest but definite information gain. The attribute lnLExp

g

is at the

root node with values at or below -426.586609 indicating a merger and all others classified

as non-mergers.

Figure 3.1: Visualization of decision tree with a single node.
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Table 3.3: Output from the build Random Forest model
Precision Recall F-Measure

Merger 0.659 0.682 0.670
Non-Merger 0.734 0.714 0.724

Weighted Avg. 0.700 0.699 0.700

When the minimum number of leaf instances is set to 500, and the confidence factor

to 0.001, a relatively simple tree is obtained that still has a reasonable predictive power of

70%. A 66%/34% training/test set split was used. A portion of the model output is shown

below.

The root node of this tree (as seen in figure 3.2) is lnLExp

g

, which is not a wholly

unexpected result, as will be discussed later in this paper.

Figure 3.2: Visualization of decision tree built using all mergers.

After removing merger instances with a user confidence of less than 0.50 (with the

number of leaf instances set to 200 to produce a simple tree and a 66%/34% split),we

measured the precision, recall and F-measure for each of the two classes to determine the
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Table 3.4: Output from a average sized Random Forest model
Precision Recall F-Measure

Merger 0.657 0.456 0.538
Non-Merger 0.766 0.882 0.820

Weighted Avg. 0.730 0.741 0.726

Table 3.5: Output from a Smaller Random Forest model
Precision Recall F-Measure

Merger 0.416 0.167 0.238
Non-Merger 0.796 0.933 0.859

Weighted Avg. 0.712 0.762 0.721

accuracy of the model. For mergers, recall is calculated as the proportion of the number

of mergers correctly classified as such out of the total number of mergers. Precision is

calculated as the proportion of the number of mergers correctly classified as such out of all

instances classified as mergers (correctly or not). The F-measure is a commonly reported

measure intended to incorporate both precision and recall into a single measure. It is defined

as 2·precision·recall
precision+recall

.

Contrary to intuition, while the overall classification accuracy increases, the recall of

the model for mergers decreased significantly. With this approach, petroMag

gr

is now the

strongest predictor at the root of the tree. This can be seen in figure 3.3. lnLExp g is still

a key attribute, but it is no longer at the root. This model has very strong predictive power

for non-mergers, but quite weak recall for mergers.

After removing merger instances with a user confidence of more than 0.50 (with the

number of leaf instances set to 200 to produce a simple tree and a 66%/34% split), we

achieve the output shown below.

The users’ confusion seems to be expressed in the resulting model, which has high overall

accuracy, but a very weak recall. This poor performance is due to its excessive tendency

to classify as Non-Merger, as the data set now is only comprised of objects that are not
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Figure 3.3: Visualization of decision tree built using the strongest mergers.

obviously mergers. Using these weaker voted mergers, the model is rooted on petroMag

ui

,

as seen in figure 3.4.

Tree Strengths and Weaknesses

The trees generated are of varying usefulness.

The tree generated using all of the mergers exhibited an overall accuracy of about 70%,

with precision of 66% and recall of 68%. This is above average predictive power, but not

incredibly useful.

The trees generated using the stronger and weaker mergers separately seem to indicate

two things:

1. The user confusion over some mergers appears to be manifested in the resulting model,

as the parameters that are influential in the model are not strongly morphological,

indicating that the objects may be missing strong visual cues of merging.

2. The confidence of users in some merger classifications results in a tree that incorporates
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Figure 3.4: Visualization of decision tree built using the weakest mergers.

more strongly morphological attributes, but has diminished recall power. We feel that

this merits further investigation.

There are two especially interesting things about the decision trees generated from this

data:

• The strongest predicting attributes seem to be associated with the SDSS green filter

waveband.

• Poor exponential fit and small isophotal minor axis are among the strongest indicators

of merger presence.

Significance of the Green Band

The strongest predicting attributes seem to be associated with the green band. In the tree

generated using all merger instances, The two strongest attributes for merger prediction are

associated with the green band, and fully half of the top ten information gaining attributes

are associated with this band. The green band seems to carry a disproportionate amount

39



of information relative to the other four bands measured in SDSS photometry.

Upon investigation, we discovered that strong green spectral lines are associated with

stellar formation via doubly ionized oxygen, and stellar formation is itself unusually abun-

dant in galactic mergers[?]. So it is not surprising that the green band seems to be important

in the classification models we have generated.

Significance of lnLExp and isoB Attributes

The attributes lnLExp and isoB both featured prominently in the decision tree approach

as influential values for merger detection.

The isoB attribute represents the length of the minor axis of the isophote of the galaxy’s

surface brightness in a given band. It is a reasonable expectation that tidal distortion from

merger involvement may influence an axis of such an isophote.

The lnLExp attribute represents the extent to which the galaxy object has a brightness

profile that is fit well by an exponential fit, the details of which can be found in [9]. It

is not surprising that this measure of morphology would be an influential factor in merger

classification, as tidal distortion would almost certainly a↵ect the brightness profile of a

galaxy involved in a merger and thereby reduce the likelihood that the galaxy brightness

profile would be fit by a standard non-distorted spiral galaxy exponential function. It should

also be noted that another measure of brightness profile fit was featured among attributes

with the highest information gain: lnLDeV . lnLDeV is a measure of goodness of fit with

the De Vaucouleur profile (which is the functional form of the brightness profile in elliptical

galaxies), and this would also be expected to exhibit irregularities in the presence of tidal

distortion in true colliding/merging galaxies.

Future Direction for Decision Trees

Given the modestly strong evidence that we have generated for the quality of green-band

morphological attributes as merger predictors, a promising avenue for further development
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of classifiers may be other attributes in this band. These may be novel image characteriza-

tion parameters or simply transformations of existing database parameters.

The inclusion of isophotal axis length among the influential parameters seems to indicate

that more examination of isophotal properties may be fruitful in this area.

3.5 Cluster Analysis

Identifying groups of similar observations in a dataset is a fundamental step in any data

analysis task. Classification and clustering are the two main approaches used to identify

similar groups of data instances. Whereas classification attempts to assign instances to one

of several known classes, clustering attempts to derive the classes themselves. In the case

of one or two dimensions, visual inspections of the data such as scatter plots can help to

quickly and accurately identify the classes. Datasets in astronomy are generally comprised

of many more dimensions. With advancements in astronomical data collection technology,

astronomers are able to collect several hundred variables for millions of observations. Not

all these collected variables are useful for a given classification task. There typically are

many insignificant attributes that might prevent us from identifying the structure of the

data.

With the knowledge of class labels from the Galaxy Zoo catalog of merging and inter-

acting galaxies, we would like to be able to identify which morphological and photometric

attributes in the SDSS data correlate most strongly with the user-selected morphological

class. These variables can be identified by measuring the separation of the instances in

the attribute feature space in which the data reside: which attributes provide the best dis-

criminator between di↵erent human-provided patterns and classes? Measures like Dunn’s

Validity Index[49] and Davies-Bouldin Validity Index[50] are two metrics by which to achieve

this.
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3.5.1 The Davies-Bouldin Index

Davies-Bouldin Validity Index (DBI) is a function of the ratio of intra-cluster instance

separation to inter -cluster instance separation. This is given by:

DB =
1
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max
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j

) is the distance between clusters centers. Good

clusters (i.e., compact clusters with respect to their separation) are found with low values

of DBI, and poor clusters (i.e., strongly overlapping groupings) have high values of DBI.

For the inter-cluster distance function S one could use single linkage, complete linkage,

average linkage, centroid linkage, average of centroids linkage, or Hausdor↵ metrics and for

the intra-cluster distance function S one could use complete diameter, average diameter, or

centroid diameter[49]. For purposes of experimentation, we picked used the centroid linkage

and the centroid diameter as our measures to calculate the DB index.

3.5.2 Approach

To determine the database attributes that influence the separation of the human-provided

galaxy classes (merger versus non-merger) most strongly, we first calculated the DB index

for the two clusters (i.e., the cluster of mergers versus the cluster of non-mergers) using each

one of variables individually. We then ranked the variables based on these calculated DBI

values. The variable that tops this list is the most important variable for instance separation,

at least according to this metric. This single variable of course cannot necessarily provide

us with the best separation. So we looked for any higher dimensional subset of the feature

space that has improved separation for these two classes of objects. To this end, we selected

the top ten individual variables and calculated the DB index of all possible combinations

of these ten variables and ranked the combinations to identify the subset of the original
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Table 3.6: List of DBI values in di↵erent parameter space
10 Best Separating Individual Attributes 10 Best Separating of all 1014

Subsets of Best 10 Attributes
isoAGrad

u

⇤ z isoAGrad

u

⇤ z
petroRad

u

⇤ z petroRad

u

⇤ z
texture

u

texture

u

isoA

z

⇤ z isoA

z

⇤ z
lnLExp

u

lnLExp

u

lnLExp

g

lnLExp

g

isoA

u

⇤ z petroRad

u

⇤ z, isoB

z

⇤ z,
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attribute set that provides the best separation.

3.5.3 Results

The following is the list of the top 10 features and subsets with the lowest DB index:

Features such as isoPhiGrad

i

⇤ z, isoColcGrad

g

⇤ z, isoColcGrad

u

⇤ z, petroMag

ug

,

isoColcGrad

i

⇤ z, and fracDev

z

have a significantly large DBI and are therefore do not

appear to be useful for clustering. These features seem to be of little significance for decision

tree classification as well, since they were not present in any of the trees we generated. Also,

visual inspection of the attributes using histograms revealed that with the four individual

attributes with lowest DB Index values (seen in figure 3.5), little to no separation can be

seen.

In the scatter plot (seen in figure 3.6) of mergers and non-mergers in isoAGrad

u

⇤ z,

lnLExp

g

feature space shows slight separation between these two classes.
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Figure 3.5: Histograms of the four lowest attributes according to DBI.

Figure 3.6: Merger and non-merger classes in isoAGrad

u

⇤ z, lnLExp

g

space.

3.5.4 Future Direction for Cluster Analysis

From the plots it is evident that there is not a clear separation between mergers and non-

mergers in the subsets of the feature space that we have explored. This is also evident from

the fact that the minimum value of all DBI’s that we calculated is 2.19, which is substantially

greater than the ideal value of 1. This is an indication of relatively weak clustering. The

value 2.19 is the local minimum of the parameter-space. With further analysis of all the

possible (75-factorial!) combinations of the 75 numerical attributes, we might be able to find

the global minimum value where the clusters have the strongest separation. However, finding

44



the global minimum in this way would be extremely (in fact, prohibitively) computationally

intensive. It is, however, important to note that two of the top ten features according to

individual DBI are isoAGrad

u

⇤z and lnLExp

g

, which are also among the top five features in

information gain. Therefore, our approach to feature extraction is to some degree consistent

with the information gain-based decision tree approach. With limited computation time

and resources, only certain combinations of the best ten attributes could be examined. Use

of optimal search algorithms (such as genetic algorithms) and use of a massively parallel

computational environment (such as Cloud computing) could empower us to discover the

best separating subset of the attributes and provide some interesting results.

3.6 Summary of Outcomes

We were able to generate a decision tree with accuracy of approximately 70%, including

recall for merger detection of approximately 66%. Two classes of morphological attributes

were identified as potentially having promise in future work on decision tree analysis:

• Attributes related to the SDSS green waveband, specifically brightness profile fits in

this band. This result is validated by the known characteristics of star formation

emissions in merging galaxies.

• Attributes related to the galaxy isophotes. This has validity due to the tidal distortions

of isophotes that are typically present in galactic mergers.

Results from the cluster analysis also indicate the significance of these two feature-types,

providing more evidence of their importance in merger classification. Further analysis might

lead to combinations of features that greatly improve the classification accuracy of mergers

and non-mergers. Mathematically derived or entirely novel features (especially of a more

morphological nature) could also be a promising avenue for improving merger classification,

as success with the chosen features was modest. Utilizing a combination of cluster-based

feature extraction and decision tree analysis will likely aid in further improvements to

classification accuracy, and more generally, to the identification of the salient features that
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will enable automated pipelines to emulate human cognitive powers and pattern recognition

abilities, and thereby automatically indicate the presence of such events in massive petascale

sky surveys of the future.
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Chapter 4: Initial Experiments with classification of Galaxies

In this chapter we will move on to more harder task of classifying galaxies. Each galaxy

is being labeled into one of the three di↵erent classes namely elliptical, spiral and merger.

There is an option for the fourth class under the galaxyzoo framework called “don’t know”

to account any stars, artifacts or outliers. The main goal here is to use most post popular

machine learning algorithms like random forest and support vector machines to see how

these algorithms perform with the same classification task using the photometric attributes

from the Sloan Digital Sky Survey. The class labels used for these algorithm are based on

the classifications provided by the galaxy zoo volunteers.

For these experiments, We limited ourselves to only big, bright galaxies where the Galaxy

Zoo volunteers still had problems providing the identifications. We sampled galaxies that

are bright by placing a limit of 17 mag, with spectroscopic redshifts, and a Petrosian radius

greater than 70 in R band. Also we sampled galaxies on the number of classifications

provided by the galaxyzoo volunteers under the zooniverse framework. We picked the

galaxies that receive more than 30 classifications to account for any erroneous classification

from the citizen science volunteers. The results from these algorithms are summarized using

classification error and confusion matrix has been used to analyze the performance of these

algorithms.

4.1 Initial Experiments with the data

Data set, used for our experiments consists of samples of galaxies in two categories: Ellipti-

cal(E) and Spiral(S) from the Galaxy Zoo with three di↵erent levels of confidence, namely

90% (� 85%), 70% (65 to 75%), and 50% (45 to 55%) in which the Galaxy Zoo volunteers

have agreed. There are generally a few thousand of galaxies in each category. We utilized
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data from the Galaxy zoo [51] and extracted the photometric features for each galaxy from

Sloan Digital Sky Survey catalog (SDSS).

4.2 Data Pre-processing

We have the attributes that define the Galaxy Zoo Volunteers confidence in classification

and the photometric attributes from SDSS that represent morphological characteristics

of galaxies. Few distance dependent attributes were transformed, using redshift, to be

distance-independent. Table 1 describes the list of important attributes and transformation

applied to it. After preprocessing, the data set has 47 attributes. There are 16 attributes

that are from Galaxy Zoo and the remaining 30 are from the SDSS catalog. Table 1 contains

the list of the few important attributes and their description. Note that each of the SDSS

attributes typically exists for the five SSDS filter wavebands.

4.3 Classifying Galaxies Using Some Popular Algorithms

4.3.1 One-class Support Vector Machines

One-class classifiers [52][53] aim at distinguishing a single class from the rest of the classes.

These classifiers are used when there are unknown numbers of classes in the data but the

user is interested in the rules for one particular class. This is di↵erent from the usual

classifier, which tries to distinguish between two or more classes. In general, they are used

for outlier/anomaly detection. These classifiers are perfect for the task that we are dealing

since we are not aware of the type of the galaxies that are present in the samples with

70% and 50% confidence levels. One-class Support Vector Machine [54] is one of the most

post popular one-class classifier and it will be used in our experiments. The algorithm, like

the traditional SVM for classification maps the data using an appropriate kernel function

into a feature space H, and then trying to separate the mapped data from the origin with

maximum margin. In our experiments below we used the Gaussian Radial Basis kernel

function. Misclassification error rate (MSE) is used as the measure to evaluate the models.
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Table 4.1: Important attributes from SDSS Catalog and their description
Attribute Description
petroMag ug Petrosian magnitude colors. A color was calculated for four

independent pairs of bands in SDSS (u-g, g-r, r-i, and i-z).
petroRad u*z Petrosian radius, transformed with redshift to be distance-

independent.
invConIndx u Inverse concentration index. The ratio of the 50% flux Pet-

rosian radius to the 90% flux Petrosian radius.
isoRowcGrad u*z Gradient of the isophotal row centroid, transformed with

redshift to be distance-independent.
isoColcGrad u*z Gradient of the isophotal column centroid, transformed with

redshift to be distance-independent.
isoA u*z Isophotal major axis, transformed with redshift to be

distance-independent.
isoB u*z Isophotal minor axis, transformed with redshift to be

distance-independent.
isoAGrad u*z Gradient of the isophotal major axis, transformed with red-

shift to be distance-independent.
isoBGrad u*z Gradient of the isophotal minor axis, transformed with red-

shift to be distance-independent.
isoPhiGrad u*z Gradient of the isophotal orientation, transformed with red-

shift to be distance-independent.
texture u Measurement of surface texture.
lnLExp u Log-likelihood of exponential profile fit (typical for a spiral

galaxy).
lnLDeV u Log-likelihood of De Vaucouleurs profile fit (typical for an

elliptical galaxy).
fracDev u Fraction of the brightness profile explained by the De Vau-

couleurs profile.
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One-class SVM Results

We sampled our data set into two di↵erent categories, E90s and S90s based on the type

of galaxy and the confidence level associated with the classification from the Galaxy Zoo

volunteers. Our goal is to develop a classifier to identify the pure elliptical and spiral

galaxies, E90s and the S90s respectively.

One-class SVM for Elliptical Galaxies

We developed a one-class SVM (SVME90) model to classify the E90s in the data set. Out

of the 9115 galaxies in the E90 sample 8579 galaxies has been identified as pure elliptical

galaxies by the galaxy zoo team. We used this as our class labels in building the one-

class SVM classifier. We used 70% of the sample for training the SVME90 model and

the remaining 30% of our sample for testing. The generated model is evaluated using

misclassification rate. Also, Confusion matrix of the predicted class has been documented

in Table 2(a). The SVME90 model generated has a predictive accuracy of 20% and 24% on

the training and test set respectively. Using the SVME90 model, we predicted the classes

of galaxies in the E70 and E50 sample and the details of the predictions are shown in Table

2(b), 2(c). In order to evaluate the di↵erence between the two types of galaxies we applied

the SVME90 model to our S90 sample and the result are shown in Table 2(d).

Table 4.2: Confusion matrix with di↵erent data sets using SVME90

Applying SVME90 to test data
Predicted class
E90 NotE90

Actual class
E90 2040 122

Not E90 543 30

Applying SVME90 to E70 sample
Predicted class
E90 NotE90

Actual class Not E90 506 589

Applying SVME90 to E50 sample
Predicted class
E90 Not E90

Actual class Not E90 286 768

Applying SVME90 to S90 sample
Predicted class
E90 Not E90

Actual class Not E90 279 14598
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One-class SVM for Spiral Galaxies

We repeated the same experiment with the spiral galaxies. We developed a SVMS90 model

and tested with the S90, S70, S50 and the E90 sample. Results from these experiments are

summarized in table 3. We can see the results follow similar trend.

Table 4.3: Confusion matrix with di↵erent data sets using SVMS90

Applying SVMS90 to test data
Predicted class
S90 NotS90

Actual class
S90 4061 1098

Not S90 165 54

Applying SVMS90 to S70 sample
Predicted class
S90 NotS90

Actual class Not S90 1333 354

Applying S90 to S50 sample
Predicted class
S90 Not S90

Actual class NotS90 801 342

Applying SVMS90 to E90 sample
Predicted class
S90 NotS90

Actual class Not S90 1779 7336

Discussion of one-class SVM results

The confusion matrices in tables 2 and 3 clearly addresses the main problem with our

galaxy zoo data set. The one class SVM classifiers trained using the 90% sample for the

elliptical and spiral galaxies can di↵erentiate the E90s and the S90s with high accuracy.

But these classifiers when applied to to samples with less confidence like the E70s and E50s

performs badly. This is clearly evident from the confusion matrices. This suggests that

these galaxies (with low confidence) are quite di↵erent from the 90% sample and the galaxy

zoo volunteers help us in identifying these galaxies. Also, the current SDSS parameters

space is not su�cient enough for the machines to train better classifiers involving these

galaxies.

4.3.2 Random Forest

Random forest [55] is an ensemble classifier that consists of several decision trees that try

to classify the same task and combines the output like other ensemble classifiers to come

up with rules that help in the classification task. It is one of the most accurate and popular

algorithms that work well with most data sets where the class population is unbalanced. We
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assumed that galaxies with di↵erent levels of voter confidence belong to di↵erent classes,

and so we built a random forest model that classifies these galaxies.

Random Forest Results

Our data set now consists 6 di↵erent classes and we built a simple random forest model to

classify them. The generated random forest model has a training and test error of 18%.

This clearly shows that it has good overall performance on our data set. Table 4 shows the

confusion matrix respect to the random forest model. The last column in table 4 has the

error associated with each class. This clearly shows that even though the random forest

model has a good overall accuracy of 88%, it su↵ers in identifying the E70, E50, S70 and

S50 type galaxies. This clearly confirms the trend that we saw with the one-class SVM

classifiers. The machine learned classifiers trained using SDSS parameters has trouble in

classifying these galaxies similar to the Galaxy Zoo volunteers. This indicates that these

galaxies are di↵erent from the type of galaxies (elliptical/spiral galaxies) that are previously

known to the astronomers.

These results clearly suggest that the sample with low confidence among the volunteers

(E70, E50, S70, S50) are di↵erent from the galaxy samples with high confidence in the

feature space. The results from one-class SVM and random forest confirms that the galaxies

with low confidence occurs in our dataset not because of erroneous classification by the

volunteers. They are truly di↵erent from the galaxies with high confidence in the feature

space as well. One main goal of the future work with this dataset will be to develop new

methods to analyze these galaxies with low confidence for the presence of true elliptical or

spiral galaxies and try to separate them. Also they need to be analyzed for the presence of

any new classes which can help us understand the confusion among the galaxy zoo volunteers

in trying to classify them.
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Table 4.4: Confusion matrix on the test set using random forest
Predicted class

E90 E70 E50 S90 S70 S50 Class error(%)
E90 2702 14 4 37 5 1 2
E70 215 29 14 46 9 8 90
E50 78 20 12 62 17 126 96

Actual Class S90 40 5 3 4389 29 10 2
S70 30 11 7 478 44 27 92
S50 33 7 112 130 34 27 95

4.4 Summary

These results clearly suggest that the popular classification algorithms such as one-class

SVM and Random Forest do not work well with our complex data set. This could be

the trend with other such rule based or space partitioning algorithms. The classification

task that we are dealing with is quite di↵erent from other traditional data mining tasks.

The SDSS catalog has photometric features extracted from the high resolution images from

the telescopes. These include scientific parameters such as Petrosian radius containing

90% and 50% of Petrosian flux, Petrosian magnitude, DeVaucouleurs fit, DeVaucouleurs

fit a/b, Exponential fit a/b, Exponential fit scale radius, measurement of surface texture

etc. Machine learning algorithms used for galaxy classification utilizes these photometric

attributes from the SDSS catalog and generates rules for classification. Whereas the Galaxy

Zoo volunteers utilize their visual perception to extract information from the images and use

their cognitive skills to come with with a decision. The result of applying human cognition

to these galaxy images results in the class labels for each of the galaxies. Apart from the

class labels, we have photometric features extracted from the SDSS catalog. When we

build a classifier we utilize only these photometric parameters recorded by the SDSS.This

is analogous to the classification task by the galaxy zoo volunteers but it is not the same.

Instead they use human vision. Here human cognitive skills processes the image as whole

and comes up with a decision. This demands for the need of latent variable models. Latent

variable models have been widely used in machine learning, but their applications have been
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widely limited. Latent variables models used wisely can help us extract the parameters

used by the galaxy zoo volunteers and using these latent variables when used along with

the photometric attributes from the SDSS catalog will help us model the human decision

making skills. Modeling these hidden features and extracting the hidden rules calls out the

need for new-sophisticated methods. Therefore, in the following chapters we will see the

use the hidden variable models to build a classifier that mimics human decision making

capabilities.

54



Chapter 5: Bayesian Nonparametric Analysis of

Crowdsourced Citizen Science Data, with application to

Interestingness Discovery

In this chapter we will address most of the problems that we encountered in the previ-

ous chapter in developing automated classification models from the SDSS parameters that

match with the galaxyzoo volunteer provided classifications. The problem with the mod-

els generated in the previous chapter is mostly with respect to the grouping of galaxies

into specific category by manual threshold. In this chapter we developed a non-parametric

Bayesian framework and let the framework group them into di↵erent categories from the

data and see how the groupings a↵ect our automated classification task using photometric

features from SDSS catalog. Also, we will closely look into the misclassified instances from

such classifier and discuss how we arrived at a meaningful conclusion about these instances.

Towards the end will discuss about how this could be applied to similar problem faced in

other domains with some illustrations.

5.1 Introduction

Cluster analysis is the identification of groups of observations that are cohesive and sepa-

rated from other groups. Interest in clustering has increased recently due to the emergence

of several new areas of application. These include data mining, which started from the

exploratory search for groupings of customers and products in massive retail datasets; doc-

ument clustering and the analysis of web use data; gene expression data from micro-arrays;

and image analysis, where clustering is used for image segmentation and quantization. Most

clustering done in practice is largely based on heuristics. One widely used class of methods

involves hierarchical agglomerative clustering, in which two groups chosen to optimize some
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criterion are merged at each stage of the algorithm. Another common class of methods is

based on iterative partitioning, in which data points are moved from one group to another

until there is no further improvement in some criterion. K-means clustering in one such

popular algorithm that falls under this class [56].

Cluster analysis can also be based on probability models. [57,58] provide a brief survey

about such techniques. This has provided insight to when a particular clustering method

can be expected to work well and has led to the development of new clustering methods.

It has also been shown that some of the most popular heuristic clustering methods are

approximate estimation methods for certain probability models. For example, standard

k-means clustering is equivalent to known procedures for approximately maximizing the

multivariate normal classification likelihood when the covariance matrix is the same for

each component and proportional to the identity matrix.

Many popular clustering algorithms require the number of clusters to be known a priori

to choose an approximate number. By contrast, Dirichlet process mixture models (DP-

MMs) provide a non-parametric Bayesian framework to describe distributions over mixture

models with an infinite number of mixture components. In this chapter we will define a DP-

MM based clustering approach on the galaxy classifications acquired from the galaxyzoo

dataset to identify the actual number of classes in the dataset. Later we will build a

classification model based on these clusters and explore the potential of such classifier in

automated discovery of unlabeled galaxies. To aid thinking about our algorithm, the number

of clusters present in the dataset can be viewed as latent class that are implicitly defined

in the classifications provided by the galaxyzoo volunteers.

5.2 Background and Related Work

5.2.1 Mixture Model Based Clustering

In statistics, mixture model is a probability model for representing the presence of subpop-

ulation within an overall population, without requiring that an observed data set should
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identify the subpopulation to which an individual observation belongs. Formally this rep-

resents the mixture distribution that represents the probability distribution of observations

in the overall population.

Given the data y with independent multivariate observations y1, ...yn, the likelihood for

a mixture model with G components is

L
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Data generated by the mixture of multivariate normal densities are characterized by

groups or clusters centered at the means µ

k

, with increased density for points nearer the

mean. The corresponding surfaces of constant density are ellipsoidal. Geometric features

(shape, volume, orientation) of the clusters are determined by the covariances ⌃
k

, which

may also be parameterized to impose cross-cluster constraints. Common instance include

⌃
k

= �I constant across clusters, where all clusters are spherical and of same size; ⌃
k

= ⌃

contains cross clusters, where all clusters have same geometry but need not be spherical.

A general framework [59] for geometric cross-cluster constraints in multivariate normal

mixtures by parameterizing covariance matrices is of the form
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where D
K

is the orthogonal matrix of eigenvectors, A
K

is a diagonal matrix whole elements

are proportional to eigenvalues and �
K

is an associated constraint of proportionality. These

represent a set of independent parameters that define the geometric properties of the clus-

ters. More extensive enumeration of possible models resulting from this formation can be

found in [60]

5.2.2 Nonparametric Mixture Model based clustering using Dirichlet Pro-

cess

Latent variables in statistics are variables that are not being observed but are inferred from

the variables that are observed. Latent variables are widely used in psychology, economics,

life sciences and machine learning. In machine learning, many problems involve collection

of high-dimensional multivariate observations and then hypothesizing a model that explains

them. An appealing representation for such a model is a latent variable model. The role of

latent variable is to represent the properties of objects that have not been directly observed.

Bayesian statistics is often used for inferring latent variables. Examples of popular latent

variable models include graphical models and dynamical system models. Discovering latent

variables in graphical models relies heavily on local search heuristics such as expectation

maximization (EM). Bayesian non-parametric latent feature models [12] is one of the recent

approach to latent variable modeling in which the number of latent variables in unbounded

i.e. there is no upper limit on the number of latent variables. Each data point can be

associated with a set of possible latent variables.

Assume we have N objects, represented by an N ⇥ D matrix X, where the i

th row of

this matrix, x
i

, consists of measurements of D observable properties of the i

th object. In

a latent feature model, each object is represented by a vector of latent feature values f

i

,

and the properties x
i

are generated from a distribution determined by those latent feature

values. Latent feature values can be continuous, as in principal component analysis, or

discrete. For our discussion the latent features are assumed to be continuous. Let F be the

matrix that indicates the latent feature values for all N objects, the model is specified by
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a prior over features, p(F), and a distribution over observed property matrices conditioned

on those features, p(X|F). Here p(F) specifies the number of features, their probability,

and the distribution over values associated with each feature, while p(X|F) determines how

these features relate to the properties of objects. In non-parametric Bayesian latent variable

models, p(F), is defined without placing an upper limit on the number of features. Feature

matrix F is considered to have two components: a binary matrix Z indicating which features

are possessed by each object, with z

ik

= 1 if object i has feature k and 0 otherwise, and

a second matrix V indicating the value of each feature for each object. In sparse latent

feature models only a subset of features take on non-zero values for each object, and Z picks

out these subsets.

A prior on F can be defined by specifying priors for Z and V separately, with p(F) =

P(Z)p(V). Nonparametric Bayesian latent feature models focus on defining a prior on Z. This

is done by defining a prior over infinite binary matrices. The literature on nonparametric

Bayesian models suggest starting with a model that assumes a finite number of features,

and consider the limit as the number of features approaches infinity. This is done by simple

generative process called the Indian bu↵et process for the distribution which is analogous

to the Chinese restaurant process. The posterior can derived using Markov chain Monte

Carlo algorithms.

5.3 Dirichlet Process Mixture Model (DPMM)

A Dirichlet process (DP) [61] [62] [63], parameterized by a base distribution G0 and a

concentration parameter aplha, is used as a prior over the distribution G of mixture com-

ponents. For data points X, mixture component parameters theta, and a parameterized

distribution F , the DPMM can be written as [64]
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One type of DPMM can be implemented as an infinite Gaussian mixture model in which

all parameters are inferred from the data [63]. The generic function fits a Dirichlet process

mixture of normal model for density estimation [65]
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where, the baseline distribution is the conjugate normal-inverted-Wishart,

G0 = N (µ|m1, (1/k0)⌃)IW (⌃|⌫1, 1) (5.6)

To complete the model specification, independent hyper-priors are assumed (optional),

↵|a0, b0 ⇠ Gamma(a0, b0)

m1|m2, s2 ⇠ N (m2, s2)

k0|⌧1, ⌧2 ⇠ Gamma(⌧1/2, ⌧2/2)

 1|⌫2, 2 ⇠ IW (⌫2, 2)

(5.7)
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where a0, b0 giving hyper-parameters for prior distribution of the precision parameter

of the Dirichlet process prior, ↵ giving the value of the precision parameter, ⌫2 and  

�1
2

giving the hyper-parameters of the inverted Wishart prior distribution for the scale matrix,

 1, of the inverted Wishart part of the baseline distribution, ⌧1 and ⌧2 giving the hyper-

parameters for the gamma prior distribution, m2 and s2 giving the mean and the covariance

of the normal prior for the mean, m1, of the normal component of the baseline distribution,

respectively, ⌫1 and  1�1 giving the hyper-parameter of the inverted Wishart part of the

baseline distribution and, m1 giving the mean of the normal part of the baseline distribution

(it must be specified if m2 is missing) and, k0 giving the scale parameter of the normal part

of the baseline distribution (it must be specified if ⌧1 is missing). Note that the inverted-

Wishart prior is parameterized such that if A ⇠ IW

q

(⌫, ) then E(A) =  

�1
/(⌫ � q � 1).

5.3.1 Prior Specification

We hold little prior information about the distribution for parameters that are nested two

or more layers in our modeling hierarchy, so we select lower magnitude hyper-parameter

values under proper prior distributions that may be readily updated by the data. For the

specific model that we implemented for our experiments in this chapter we set the values

for the following hyper-parameters described in (refer equation here)

1. m2 = (180, 3) and s2 = ( 10000 0
0 1 ) giving the mean and covariance of the normal prior

for the mean m1.

2.  �1
2 = ( 10000 0

0 1 )
�1 giving the hyper-parameters of the inverted Wishart prior distribu-

tion for the scale matrix,  1, of the inverted Wishart part of the baseline distribution.

3. ↵ = 0.5 giving the value of the precision parameter.

4. ⌧1 = 1 and ⌧2 = 100 giving the hyper-parameters for the gamma prior distribution.

5. ⌫1 = 4 giving the hyper-parameter of the inverted Wishart part of the baseline distri-

bution.
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6. ⌫2 = 4 giving the hyper-parameter of the inverted Wishart prior distribution for the

scale matrix.

5.3.2 Inference under model parameterization

We have described above a class of Bayesian Non-parametric mixture models. This model

posit a generative probabilistic process of a collection of observed data that includes hidden

structure. We analyze data with these models by examining the posterior distribution of

the hidden structure given the observations. This gives us a distribution over which latent

structure likely generated our data. Thus the basic computation problem in Bayesian

nonparametric modeling is computing the posterior which is not available in closed form.

The most widely used posterior inference methods are Markov Chain Monte Carlo (MCMC)

methods. The idea in MCMC methods is to define a Markov Chain on the hidden variables

that has the posterior as its equilibrium distribution. By drawing samples from this Markov

chain, one eventually obtains samples from the posterior. A simple form of MCMC sampling

is Gibbs sampling, where the Markov chain is constricted by considering the conditional

distribution of each hidden variable given the others and the observations.

5.3.3 Latent Class Discovery

To aid thinking about the algorithm, the types of galaxies in our galaxyzoo dataset can be

viewed as samples from the latent class that are implicitly defined by the distribution of

votes (number of volunteers agreeing upon particular task). Specifically, we define the latent

class as sample of galaxies that received diverse set of classifications from the volunteers.

We cannot reason directly about the class of galaxies since we do not know what they are

a priori. This leads to the idea of studying them with the scientific parameters from the

SDSS catalog. We assume that clusters identified by the DPMM form a contiguous region

on some manifold in the 2-D vote space. Under this assumption, clustering of the galaxies

in the vote space can be used to approximate the latent number of classes present in the

dataset. We later analyzed the clusters parameterized by the Gaussians into galaxy classes
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using traditional classification algorithm. Next section briefly describes this process with

some sample dataset and then the results from our galaxyzoo dataset.

5.4 Experiments

This section explains the performance of Dirichlet Process Mixture Model clustering de-

veloped in previous section. Before we apply the model to the Galaxyzoo dataset, several

experiments were performed to understand the performance of the model and understand

the intuition behind the misclassified instance. First, we will test this on the island of

games dataset and then move on to a simulated data where we will introduce the notion of

most representative sample or the support vectors and then carry that notion to the most

important classification task with Galaxyzoo dataset.

5.4.1 Island of Games Dataset

In this section, we will study the performance of Dirichlet Process Mixture Model clustering

to Island of games datasets. Prior to applying DPMM, we restricted ourself from any visual

inspection of this dataset in-order to analyze the true performance of the model. Later we

will see how some systematic visualizations can reveal the actual structure in the dataset.

The dataset was downloaded from [66]. As mentioned in [67]this dataset is special in its

own way as it eludes several o↵-the-shelf data mining tools. These tools fail to capture the

underlining structure of this data. The dataset consists of thousand of inhabitants that

enjoy competing at chess, checkers and Rubik’s Cube puzzle. The islanders are rated based

on their skills at each of the three games and the ratings fall between 0 and 1. For better

understanding of the data, we have provided some visualizations even though this wasn’t

the case with our actual exercise. Figure 5.1 shows the sample histogram for chess ratings.

It is evident that each category seems to follow uniform distribution. Initial analysis of this

dataset reveal that there isn’t any correlation among the attributes. Figure 5.2, 5.3, 5.4

confirms this lack of correlation and requires further analysis. Table 5.1 shows the summary

of the correlations. The structure is not apparent if only 2 dimensions are contained at a
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Table 5.1: Correlations between Skills
Chess Checkers Rubik’s Cube

Chess 1.0000
Checkers 0.0530 1.0000

Rubik’s Cube 0.0452 -0.0049 1.0000

time. The real structure in this dataset can be revealed by coloring Figure 5.2 using the

Rubik’s cube ratings. In Figure 5.5 green and red colors indicate Rubik’s cube ratings

above 0.5 and blue and yellow colors for Rubik’s cube ratings below 0.5. Figure 5.6 shows

the 3-D view of the ratings with the same color-coding. The x-y-z coordinates are the

three game ratings for each islander. The points are framed by large cube, divided into

eight small cubes. We can see that these data points are well contained within four small

cubes. This data set is a simple and perfect example where standard statistical analysis nor

visualizations are guaranteed to reveal the true structure in the data. We will now see the

performance of DPMM with this data.

Dirichlet Process Mixture Model (Equation 5.7) when applied to this data set without

any assumption about the number of clusters, reveals the presence of six clusters in the

data even-though it could well be represented by 4 clusters (Figure 5.6). Figure 5.7 shows

the results from DPMM. Though the number of clusters is not the exact reflection of true

clusters, the results from DPMM are quite satisfactory. The three clusters represented by

blue, red and pink reflects the actual cluster in the data. But DPMM sub divides the fourth

cluster into 3 di↵erent clusters. This is the result of DPMM accounting for some additional

mixture component to explain the actual data distribution within that particular cluster.

5.4.2 Another Toy Example - Simulated Dataset

We now test the DPMM model with another simulated dataset. Similar to the Island of

games dataset we restricted ourself from any visual inspection of the data before applying

DPMM. The dataset was generated from multivariate normal with di↵erent means and

variance. It consists of two di↵erent classes representing the two normal distributions from
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Figure 5.1: Chess Ratings Histogram.

Figure 5.2: Scatter plot of Chess and Checkers ratings.

Figure 5.3: Scatter plot of Chess and Rubik’s Cube ratings.
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Figure 5.4: Scatter plot of Checkers and Rubik’s Cube ratings.

Figure 5.5: Scatter plot of Chess and Checkers ratings color coded.
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Figure 5.6: Three dimensional look at Island of Games dataset

Figure 5.7: Scatter plot with clustering results.
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Table 5.2: Confusion Matrix showing predicted class from DPMM
Predicted Class
Class 1 Class 2

True Class
Class 1 6060 7
Class 2 2 5851

which the data was generated. We ran the DPMM to this data without any prior knowledge

on the actual number of classes. As expected the DPMMmodel identified the two clusters in

the data. Figure 5.8 shows the cluster outputs from the two di↵erent classes. As expected,

you can notice the presence of two well separated clusters. We evaluated the performance

of DPMM by comparing the results from DPMM to the ground truth which is the actual

distribution from the data being generated. Figure 5.9 compares the results from DPMM

to the ground truth. Similar to any machine learning algorithms, DPMM is subject to

errors. Here the misclassified instances are the ones to which DPMM assigns di↵erent class

labels. Table 5.2 presents the confusion matrix of the results from DPMM. Among the

2000 instances DPMM misclassified only 8 of them which is negligible. In Figure 5.9 you

can see the misclassified instances from DPMM being colored in blue and green. We were

surprised by the location of these misclassified instances in the 2-D space feature space as

we can clearly see that theses misclassified instances lie at the boundary of their respective

clusters. This leads to a di↵erent angle of viewing the misclassified instances from DPMM

as this can be the most representative points or the support vectors that define these cluster

boundaries. It is this notion about the misclassified instances that we carry on to the next

section when we apply the DPMM to the real world dataset from GalaxyZoo. This helps

us understand about the galaxies that causes confusion among the GalaxyZoo volunteers.

Also, this can address the poor accuracy with the popular machine learning models when

applied to the GalaxyZoo dataset that we identified in our previous chapter.
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Figure 5.8: Scatter of Simulated Dataset with Two Classes.

Figure 5.9: Scatter of Simulated Dataset with DPMM Clustering.
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5.4.3 Galaxy Zoo Dataset

In this section we will apply the DPMM to the galaxyzoo dataset and see how it performs.

The dataset being used for this has the sample of galaxies used in the previous chapter. The

only di↵erence here is that instead of photometric features of galaxies we used the infor-

mation gathered from galaxyzoo framework. The notion behind the selection of galaxyzoo

parameters is to bridge the gap between the photometric features and the classifications

provided by the citizen science volunteers as the photometric features alone fail at explaining

the complex nature of the galaxy classifications. Table 5.4 contains the list of parameters

used for clustering with DPMM and their description. As each galaxy in galaxyzoo frame-

work is labeled by multiple volunteers, these attributes represent the percentage of people

who agreed upon a particular class. In the previous chapter we grouped these galaxies

into Elliptical and Spiral galaxies with multiple levels of confidence namely E90, E70, E50,

S90, S70 and S50 respectively by simple thresholding on these two parameters. Here in

this experiment we let the DPMM work with the diverse opinions from the volunteers and

choose the number of classes by clustering on these opinion. DPMM identifies the number

of clusters in the 2-D vote space and returns the cluster results.

The results from DPMM are plotted in Figure 5.10. From the figure it is clear that

DPMM identified four clusters. These four clusters are colored in black, green, blue and

red. Figure 5.17 plotted these clusters separately in the 2-D vote space. By looking at the

location of the clusters in the 2-D space in these plots it is clear that black and the green

clusters are the one in which majority of the people agree on a class. So the black and the

green cluster are considered to be true spiral and true elliptical galaxies. Also red and the

blue clusters are the ones in which most people seem to have problem in agreeing to a single

class. These are the one that get very diverse opinions from the citizen science volunteers

and towards the rest of this chapter we focus our attention towards these set of galaxies.

In order to better understand the sample of galaxies in these red and blue cluster, we

reverted back to similar analysis that we performed in our previous chapter to see if there is

anything peculiar about these red and blue clusters. We are moving on from unsupervised
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learning on 2-D vote space to more traditional supervised learning on the photometric fea-

tures. We make this transition smooth by assuming the four clusters identified by DPMM to

be our ground truth for the classifier. We trained a random forest model on the photometric

features from the SDSS catalog to classify these four classes.

The trained random forest model has the overall accuracy of about 72% on the test

dataset. Confusion matrix of the results from the test data are shown in Table 5.3. From

the table it is clear that the random forest model is able to classify the black and the

green clusters which correspond to the true elliptical and true spiral galaxies with minimal

error (15% and 7% respectively) even though the overall accuracy is only 72%. The overall

accuracy is a↵ected by the poor performance in classifying the red and the blue clusters.

Further we moved our attention to the galaxies that are misclassified by the random

forest model. Figure 5.12 5.13 plots the random forest provided classifications of the galaxies

in the black and green cluster respectively on the 2-D vote space to compare it with the

galaxyzoo volunteer provided classifications. The location of these misclassified instances

are being consistent with the citizen scientist’s classifications. These mis-classifications are

purely due to the error in the random forest model. We moved our attention to the two other

clusters colored in red and blue. It is these galaxies that receive diverse set of classifications

and our goal is understand the nature of these galaxies. Also from the Table 5.3 it is clear

that the the random forest su↵ers greatly in classifying these galaxies. Further analysis of

these classifications in Figure 5.14, 5.15 leads us to a new set of conclusion with respect to

these mis-classifications. The galaxies that are identified to be in the red and blue clusters

are truly di↵erent from the true elliptical and true spiral galaxies. This could be the results

of artifact or the object in the images could be a star or something else. We are able to

identify this from our analysis.

Further we are interested in the misclassified instances from the random forest model.

The location of these instances in the vote space tell us that these galaxies are quite quite

closer to the black and the blue clusters in the 2-D vote space. This leads us to a new

conclusion that these galaxies and similar to the true elliptical and true spiral galaxies that
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Table 5.3: Confusion Matrix showing predicted Galaxy class from DPMM
Predicted Class

Class 1
(Black)

Class 2
(Red)

Class 3
(Green)

Class 4
(Blue) Class Error(%)

True Class

Class 1
(Black) 3460 39 12 583 0.15
Class 2
(Red) 260 478 356 381 0.67
Class 3
(Green) 8 49 2736 141 0.067
Class 4
(Blue) 1034 114 286 1400 0.50

Table 5.4: Description of Galaxyzoo Attributes used with DPMM
Attribute Description

p el Percent Elliptical
p cs Percent Spiral

are most representative to their class (elliptical and spiral) and we were able to identify

these set of galaxies. We correspond this to notion of support vectors in support vector

machines that truly help is identifying the classes. Also, these set of galaxies could used

for active learning purposes where the goal is to identify the most informative data for

training. This leads us to major breakthrough where we were able to identify the most

representative samples using when the number of labeled samples available for machine

learning is very limited. It is this results that is quite di↵erent and a major improvement

from what is shown in the previous chapter where the machine learning algorithms su↵ered

to be consistent with that of the volunteers.

Further we extended this analysis to other clusters we see that the results are consistent

with what we encountered before with the black clusters. Figures, shows this trend.

5.4.4 Dependency to Baseline Distribution

In the previous section we saw the results of the DPMM pertaining to a set of hyperpa-

rameters. The visual evidence in the cluster results indicate the chances for further more
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Figure 5.10: Clusters in 2-D Vote Space discovered by DPMM.

Figure 5.11: Clusters in 2-D Vote Space (from DPMM) Plotted Separately .
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Figure 5.12: Black Cluster: assigned labels from Random Forest model.

Figure 5.13: Green Cluster: assigned labels from Random Forest model.
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Figure 5.14: Red Cluster: assigned labels from Random Forest model.

Figure 5.15: Blue Cluster: assigned labels from Random Forest model.
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clusters. So several models of DPMM are tried by varying the prior for the baseline distri-

bution and the choice of baseline distribution impacts the results of DPMM. This is being

widely discussed in [68] . Specifically, for our model the Normal-inverse-Wishart prior have

some unappealing properties with prior dependencies between the mean and covariance

parameters and is discussed in [69] . The baseline distribution of the Dirichlet process per-

tains to the uncertainty about the between group population distribution in these models.

It is this uncertainty that leads to di↵erent clusters. In Nonparametric Bayesian literature,

Deviance Information Criterion (DIC) is being widely used to determine the accuracy of

the model.

The same procedure explained in the previous section has been repeated with the fol-

lowing set of hyperparameters.

1. m2 = (180, 3) and s2 = ( 10000 0
0 1 ) giving the mean and covariance of the normal prior

for the mean m1.

2.  �1
1 = ( 0.5 0

0 2 ) giving the hyper-parameters of the inverted Wishart prior distribution

for the scale matrix,  1, of the inverted Wishart part of the baseline distribution.

3. ↵ = 0.5 giving the value of the precision parameter.

4. ⌧1 = 1 and ⌧2 = 100 giving the hyper-parameters for the gamma prior distribution.

5. ⌫1 = 4 giving the hyper-parameter of the inverted Wishart part of the baseline distri-

bution.

6. ⌫2 = 4 giving the hyper-parameter of the inverted Wishart prior distribution for the

scale matrix.

This is same as the prior hyperparameters in the previous section expect for the parame-

ters of the inverted Wishart distribution which acts as the scale parameters of the Dirichlet

distribution. The impact of this can been seen in Figure 5.16. This is slightly di↵erent

than the one in Figure 5.10 where there seems to be two clusters in the region identified

by color red. This gets sorted out if increase the amount of uncertainty between the group
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Table 5.5: Confusion Matrix showing predicted Galaxy class from 5 cluster DPMM Model
Predicted Class

Class 1
(Black)

Class 2
(Red)

Class 3
(Green)

Class 4
(Blue)

Class 5
(Cyan) Class Error(%)

True Class

Class 1
(Black) 1438 106 308 933 19 0.48
Class 2
(Red) 323 257 14 399 33 0.74
Class 3
(Green) 170 0 2470 5 43 0.08
Class 4
(Blue) 517 57 11 3350 5 0.14
Class 5
(Cyan) 94 8 458 23 296 0.66

population distribution. Based on visual evidence and also the DIC we conclude that this

being the correct model for this clustering talk.

The same random forest model is applied to the galaxy dataset with the labels changed

to this new cluster allocation (5 clusters). The results from the random forest can be in

Table 5.5. Similar plots of the predictions from random forest for each cluster/class in

shown in Figures 5.18, 5.20, 5.19, 5.21, 5.22 respectively.

5.4.5 Discussion of Results

The combination of supervised algorithm such as random forest and unsupervised clustering

technique like DPMM helped unearth the two major drawbacks that we faced right through

the thesis. The success of DPMM revolves around the two factors listed below :

1. The presence of the expert labels present in the database which the human vision

helped to identify using the crowd-sourcing techniques. But feeding this information

for future machine learning algorithm requires identifying these unknown expert labels

from the list of available feature in the database.

2. The lack of su�cient knowledge in the database is another reason a↵ecting the accu-

racy of the classifiers. DPMM helped us bridge this lack of information utilizing the

cognitive power of citizen scientists.
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Figure 5.16: Five Clusters in 2-D Vote Space discovered by DPMM.

Figure 5.17: Five Clusters in 2-D Vote Space (from DPMM) Plotted Separately .
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Figure 5.18: Black Cluster: assigned labels from Random Forest model.

Figure 5.19: Green Cluster: assigned labels from Random Forest model.
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Figure 5.20: Red Cluster: assigned labels from Random Forest model.

Figure 5.21: Blue Cluster: assigned labels from Random Forest model.
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Figure 5.22: Cyan Cluster: assigned labels from Random Forest model.

5.5 Veterans Hospital Application: Suicide Prevention

A similar work [70] deployed on line for the elicitation of the opinions among the experts

who derive from a diversity of knowledge areas with the goal of prioritizing a set of ob-

jects that are relevant for policy making in government, science and industry sectors. The

main goal is to develop consensus between a group of experts by employing multiple scor-

ing rounds. Multiple stakeholders (patients, doctors, clinicians, counselors, policymakers,

family members, DoD, VA administrators) are asked to vote on a list of 12 research goals

in the area of Suicide Prevention, producing a scored ranking of the goals. Each list and

the final scored list here represent a projection of the real research goals that need to be

implemented: these are the observed vectors. The real ranks of the goals represent the

latent variable vector or the truth is derived from the from the various observed vectors. A

Bayesian framework employing Dirichlet Process Mixture Models (DPMM) similar to the

one in equation 5.7 was developed to find the real ranking among the 12 set of goals.
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5.6 Summary

We have adapted a version of Dirichlet process mixture model clustering to identify the

number of clusters in the galaxy classifications provided by the citizen science volunteers

that helps in identifying the number of classes in the dataset outside of the two types of

galaxies. We trained a random forest model from the photometric features extracted from

the SDSS catalog that helps in identifying these clusters from the photometric features.

This model could help to remove the ”human in the loop” for any future sky surveys such

as LSST. Also, comparing the results from the random forest model we were able to identify

the most representative instances or what is called support vectors in the support vectors

machines classifiers. These misclassified galaxies from the random forest model are the

galaxies that lie closest to the decision surface and are most di�cult to classify. This leads

us to finding the training sample of galaxies that can be used in finding any decision function

for the big data from LSST.
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Chapter 6: Conclusion and Future Work

This thesis has described a overall framework for finding interestingness in the data that

comes in di↵erent form. First in terms of interesting observations that can lead to scien-

tific discovery. A general algorithm based on K-Nearest Neighbors was presented for the

identifying such interesting objects.

This chapter reviews these results in the light of the original research questions and

goals of the thesis. It re-examines the open issues and challenges of such data oriented

discovery and shows how the presented work meets the stated goals of the thesis. The

chapter concludes with other possible applications and future directions of the research.

6.1 Challenges and Solutions

A general discussion of the open issues and challenged in making data oriented scientific

discovery was presented in chapter 1. The three main challenged were of interest to the

thesis: First, development of techniques that can help in finding interesting objects in

any given data sets. Second, identifying key features from the datasets that can explain

the underlying reason behind certain scientific phenomenon. Third, how to find unknown

features that were not captured in the datasets that can be utilized in extracting the most

interesting or the representative sample belonging to any particular class. All these are

aimed at preparing the scientists, especially astronomers deal with the data challenges

faced by the future sky survey telescopes such as LSST.

6.1.1 Thesis Generated Publications

Designing machine learning algorithms that can be used to make scientific discovery is a

central motivation of the work presented in this thesis. In the course of writing the thesis,
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a number of algorithms were developed and several interesting applications to already ex-

isting machine learning algorithms were proposed that can harness the power of big data.

List of Thesis generated articles and Talks:

1. Baehr, Steven, et al. ”Data Mining the Galaxy Zoo Mergers.” CIDU. 2010.

2. Borne, Kirk D., and Arun Vedachalam. ”Surprise detection in multivariate astronom-

ical data.” Statistical Challenges in Modern Astronomy V. Springer New York, 2012.

275-289.

3. Vedachalam, Arun. ”Machine Learning Explorations of Citizen Science Data.” Talk

given at Chapman University Symposium on Big Data and Analytics: 44th Sympo-

sium on the Interface of Computing Science and Statistics

6.2 Suggestions for Future Work

A few research issues were stated in some of the chapters of the thesis but were reserved for

future work. This section briefly expands on some of these issues and other research topics

stemming out from this thesis and warranting future investigation.

Chapter 2 presented a novel algorithm developed in the course of writing this thesis. For

better results from this algorithm, a theoretical study of how the value of K and choice of

p-value a↵ect the e↵ectiveness of the algorithm need to studied. Thus rigorous theoretical

investigations are required to establish stability, generalization bounds of the methods.

Also, applicability of this method to the results produced in chapter 4 needs to evaluated

to confirm the other set of results i.e the true outliers in the dataset.

Chapter 5 presented a whole new dimension towards the idea of surprise discovery or

representative learning by extracting latent features. This approach is feasible in this the-

sis because of the presence of crowd sourced citizen science information. Extending this

approach to other traditional data sets require some tweaking to the model. A theoreti-

cal study of the needed adjustments the prior and the assumed baseline distribution need
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to be further understood. Also, the relationship of the baseline distribution to the model

accuracy need to be studied. Computationally, applicability of more advanced Variational

Bayesian as an alternative to MCMC methods, for approximating intractable integrals aris-

ing in Bayesian inference need to be evaluted. Also these Non-parametric Bayesian latent

variable models rely heavily on the prior distribution to incorporate the domain knowledge

for discovering latent variables. Recently, [71] proposed methods that can overcome this

idea of using the prior imposing constraints on the posterior distribution.The literature on

nonparametric Bayesian has made some recent advancements to extracting multiple latent

variables from the data. This can be done by replacing the Dirichlet Process used in our

model by some simple generative process called the Indian bu↵et process or the Chinese

restaurant process.

Second part of the problem is to understanding the latent variables. This can be done

exploring the relationship with the observed variables that are in the SDSS catalog. Several

correlation measures and dimensionality reduction methods such as PCA can be used in

getting the relationship. Since we arent aware of the relationship that exists between the

latent variables and the observed variables, more generalized measures like the Maximal

information coe�cient (MIC)[72] or distance correlation [73] can be used.The fundamental

plane of elliptical galaxies is one the well know problem in astronomy that explains the

relationship between the e↵ective radius, surface brightness and the velocity dispersion of

elliptical galaxies. The elliptical galaxies lie on a plane in the three dimensional space. It has

been well demonstrated in the astronomy literature that this relationship when properly

utilized can help in classifying elliptical galaxies. There are other examples in machine

learning literature as well that utilize correlations among features for classifications. Having

latent variables extracted from the galaxy zoo data set provides us with few parameters that

are previously unknown or unmeasured. Searching these new parameter space for any such

relationship like the fundamental plane opens up the door for scientists for more detailed

analysis. Since we are not aware of what the latent variable actually represent, it is not

possible to predict the type of relationship that exists the observed variables. So MIC like
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measure makes sense and can help astronomers understand the type of relationship between

the latent variables and existing variables. This might help in extracting some new scientific

features from the images that can lead to novel science discovery.

Also for the problems explained in Chapter 3 and Chapter 5 the applicability of other

machine learning methods such as Deep Learning(DL) [74] need to be evaluated as it at-

tempts to model high-level abstractions in data.
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