
DESIGN OF HIERARCHICAL, MOBILE, MULTI-SINK ROUTING FOR LOW-POWER
AND LOSSY NETWORKS

by

Kevin Andrea
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Master of Science
Computer Science

Committee:

Dr. Robert Simon, Thesis Director

Dr. Hakan Aydin, Committee Member

Dr. Sean Luke, Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Ball, Dean,
Volgenau School of Engineering

Fall Semester 2014
George Mason University
Fairfax, VA

Design of Hierarchical, Mobile, Multi-Sink Routing for Low-Power and Lossy Networks

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Kevin Andrea
Bachelor of Science

George Mason University, 2012

Director: Dr. Robert Simon, Professor
Department of Computer Science

Fall Semester 2014
George Mason University

Fairfax, VA

Copyright c© 2014 by Kevin Andrea
All Rights Reserved

ii

Dedication

I dedicate this thesis to my parents for supporting me in my decision to return to finish my
degree and to the friends who told me I was a fool for working so many long hours for so
many years on this pursuit.

iii

Acknowledgments

Over the past many years of my studies at George Mason University, several faculty members
have both aided and influenced me on my path towards this work. I would like to thank
Prof. Simon, for introducing me to this topic, directing me in my research for these past two
years, encouraging me to begin this work, and for serving as the chairman of my committee.
I want to thank Prof. Luke and Prof. Aydin for their encouragements as I began on this
pursuit, and for agreeing to join me on this journey as members of this committee. I also
wish to thank the National Science Foundation for their support of this line of research.
I would also like to recognize Prof. Duric and Prof. White for their guidance and their
encouragements towards my pursuing a graduate degree.

I extend my deepest appreciation to my colleagues for assisting with myriad aspects
of this work, particularly James Pope, Arda Gumusalan, Chris Vo, and Raven Russell. I
would also like to thank KB2995388 for encouraging me to take some time to sit back and
reflect on the work of the coming day; for helping me to slow down during my deadline
rush.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . ix

Abstract . xi

1 Introduction . 1

1.1 Contribution to the Community . 4

1.2 Roadmap . 5

2 Background and Related Work . 7

2.1 The Internet of Things . 7

2.2 Wireless Sensor Networks . 8

2.3 WSN Hardware . 9

2.3.1 Hardware Considerations for Deployment 10

2.4 IEEE 802.15.4 . 11

2.5 IPv6 . 12

2.6 Operating System (Contiki) . 13

2.7 IPv6 Transmission over IEEE 802.15.4 (6LowPAN) 15

2.7.1 Transmission Concerns . 16

2.8 Network Layer Routing (RPL) . 17

2.8.1 Routing within RPL (DODAG) . 18

2.8.2 Assessment of RPL . 20

2.8.3 Overview of Design Goals . 21

2.9 Motivating Implementation . 23

2.10 Related Work . 24

3 HOIST Architecture . 28

3.1 Design Considerations . 29

3.1.1 Increasing the Size of the Deployment 30

3.2 Analysis of the Common WSN Architecture 32

3.3 HOIST Architecture . 40

3.3.1 Design . 40

v

3.3.2 Demonstration of the Architecture 44

3.3.3 Network Communications . 47

4 Implementation . 51

4.1 Assessment of the Routing Protocol . 51

4.1.1 Problems with the Contiki 2.7 RPL Implementation 53

4.2 Analysis of Contiki 2.7 Multiple Instance Routing 54

4.2.1 Base Contiki 2.7 Multiple Instance Routing Analysis 55

4.3 Completed Modifications to Contiki 2.7 for Multi-Instance Routing 60

4.3.1 Optimizing the Environment . 60

4.3.2 RPL Parents Table Modifications . 61

4.3.3 RPL Header Modifications . 65

4.3.4 RPL Routing Decision Modifications 70

4.3.5 RPL Instance Whitelist Modification 72

4.3.6 RPL Instance Lifetime Modification 73

5 Validation of Modifications and Architecture . 77

5.1 Initial Validation . 78

5.1.1 Unmanned Aerial System Evaluation 78

5.1.2 Initial Assessment . 93

5.2 Validation Phases . 93

5.2.1 Phase One: Bridge and Messenger 94

5.2.2 Phase Two: Collector and Bridge . 95

5.2.3 Phase Three: Collector, Bridge, and Observer 96

5.2.4 Phase Four: Collector, Bridge, and Messenger 98

5.2.5 Phase Five: Collector, Bridge, Observer, and Messenger 100

5.3 Validation through Simulation . 101

5.3.1 Validation Setup . 101

5.3.2 Mobility Definitions . 102

5.3.3 Validation of Implementation . 104

5.4 Analysis of Validation . 111

5.4.1 Necessary Adjustments for Implementation 112

6 Evaluation . 114

6.1 Evaluation of Architecture . 114

6.1.1 Evaluation 1: Twenty Collectors . 114

6.1.2 Evaluation 2: Fifteen Collector Comparison 117

7 Conclusion . 120

7.1 Accomplishments . 120

vi

7.2 Limitations of this Technology . 121

7.3 Future Work . 121

Bibliography . 123

vii

List of Tables

Table Page

3.1 Downward Routing Table for Collector 8 in figure 3.3 39

4.1 Routing of Messages using the Multiple Instance Scenario 57

4.2 Summary of Changes for Multiple Instance Routing 60

4.3 Firmware Size Comparison of Optimizations 62

5.1 Initial Range-Check Flight Configuration Data 82

5.2 Second Range-Check Flight Configuration Data 85

5.3 Initial Phase One Implementation Test Flight Configuration Data 86

5.4 Phase One Implementation UAS Test Data 90

5.5 DIO Reception . 91

5.6 Test Completion Times . 92

5.7 Validation Initial DIO Messages . 104

5.8 Initial DAO Messages . 105

5.9 Initial Data Collection Prior to Messenger 105

5.10 Data Transmissions Following Observer Arrival 106

5.11 Data Transmissions Following Messenger Arrival 107

6.1 Twenty Collector Data Arrival Times . 117

viii

List of Figures

Figure Page

1.1 A Representation of the HOIST Architecture 3

2.1 Zolertia Z1 WSN Mote[1] . 9

2.2 TelosB WSN Mote[2] . 11

2.3 Comparison between the canonical Open Systems Interconnection model

(OSI) and the IEEE 802.15.4 Implementation 12

2.4 IPv6 Packet Header (40 octets) . 14

2.5 ContikiMAC Operation[3] . 14

2.6 Comparison between the IEEE 802.15.4 stack and the Contiki Stack 16

2.7 Sample RPL DODAG . 18

2.8 WSN Packet Routing Per Send Period . 21

2.9 Hierarchical DODAG . 22

2.10 Vegetative Index Sample from St. Francis Winery and Vineyards[4] 24

3.1 The HOIST Architecture . 29

3.2 Basic RPL Architecture . 33

3.3 Basic RPL Architecture Following Movement 35

3.4 Multi-Sink Tree Topology in a Simulated RPL Network 36

3.5 Multi-Sink Star Topology in a Simulated RPL Network 37

3.6 Analysis of the Tree Topology . 38

3.7 Analysis of the Star Topology . 38

3.8 The Designed Architecture . 41

3.9 The HOIST Architecture . 45

3.10 HOIST Network after Mobility . 46

3.11 Start of Messenger Data Transmission . 48

3.12 End of Messenger Data Transmission . 48

3.13 Start of Observer Data Transmission . 49

3.14 End of Observer . 50

4.1 Multitest.csc Topology . 55

4.2 Full DIO Reception Showing Preferred Parents 56

ix

4.3 Showing the Default Instances in the Scenario 58

4.4 The Fatal Flaw of a Global Parents Table 59

5.1 The Full Architecture . 77

5.2 Implementation for the Unmanned Aerial System 78

5.3 Payload Bay with WSN Device . 79

5.4 Control Table - WSN Devices along with the Payload Bay and Skate 80

5.5 Placement of WSN Device 7 in the Field . 81

5.6 Planned Placement of WSN Device in the Field 83

5.7 Launch of the Skate UAS . 84

5.8 Placement of WSN Device in the Field . 85

5.9 Placement of WSN Devices in the Field . 87

5.10 Loading the Devices for Test 2 . 88

5.11 Placement of WSN Devices in the Field for Test 2 89

5.12 Phase One Validation . 94

5.13 Phase Two . 95

5.14 Phase Three . 97

5.15 Phase Four . 98

5.16 Phase Five . 100

5.17 Cooja Simulation . 102

5.18 Start of Observer Data Transmission . 106

5.19 Start of Messenger Data Transmission . 108

5.20 End of Messenger Data Transmission . 110

6.1 Twenty Device Implementation in Cooja . 115

6.2 Twenty Collector RPL Logical DODAGs . 116

6.3 Fifteen Collector Comparison - Traditional Architecture 118

6.4 Fifteen Collector Comparison - HOIST Architecture 119

x

Abstract

DESIGN OF HIERARCHICAL, MOBILE, MULTI-SINK ROUTING FOR LOW-POWER
AND LOSSY NETWORKS

Kevin Andrea, M.S.

George Mason University, 2014

Thesis Director: Dr. Robert Simon

Wireless Sensor Network (WSN) devices are small, low-powered sensors that are deploy-

able for long-periods of time to provide information on the local evironment to the world at

large. These devices are designed to be deployed and operated for extended periods of time

with a minimum amount of maintenance. These inexpensive devices open up a new field in

computing, providing the ability for small groups to gather data on their environment for

use in myriad tasks.

This work presents the Hierarchical network of Observable devices with Itinerant Sinks

Transporting data (HOIST), a WSN architecture I designed to alleviate the effects of the

disadvantages that lie within a WSN deployment. I began this design by dividing the

traditional sender-sink model into a three-tier hierarchial model. This model separates the

senders and the ultimate destination sink into tiers joined together by a series of bridging

sinks. These bridging devices each control a smaller fragment of the collectors, enabling

downward routing to a larger degree than otherwise possible with a traditional single DAG,

while also coordinating the transmission of data between the collectors and the destination

sink.

Furthermore, HOIST adds in mobility to the model, allowing the highest tier sink to

move about the deployment area, minimizing any set of bridging sinks from being the sole

route burdened with relaying the messages of all of the devices on the network to the sink.

This architecture further defines the role of the bridges to coordinate their local collectors

to send data one device at a time, enabling the expansion in network traffic to increase

logarithmically with respect to the increase in the number of collectors.

HOIST also allows further scaling by using the first mobile sink, designated as the

messenger, to travel between geographically segregated deployment areas to enable each

cluster to send their data without having to create unnecessary lines of devices to connect

the fields together. Furthermore each of the collectors is designed to locally store all of

their data until the messenger next arrives, when it will receive a dump of all collected data

before leaving. In this manner, a central data processing facility would be able to send the

messenger to each of the remote deployment areas and receive back all of the collected data

for processing.

Further extending this design, I have added the ability to use a second mobile sink,

designated as an observer, to perform live collection on the local cluster it is in, allowing

a responsible party to perform a spot-check of the environment. The architectural design

required significant modifications to the open-source, commonly used Contiki operating

system. These modifications fall within the guidelines of the routing protocol specifications

and represent unfinished aspects of Contiki’s implementation. Additional modfications

were also made beyond the protocol specification to further allow the operating system

the capabilities to properly manage general, multiple-sink routing networks.

The objective of this work is to assess, design, and implement modifications for the Con-

tiki operating system to enable the validation and implementation of the designed HOIST

architectural framework. The operating system modifications serve as a standalone compo-

nent of this work to enable generalized multiple sink routing applications.

Chapter 1: Introduction

Wireless Sensor Network (WSN) devices are small, low-powered sensors that are deployable

for long-periods of time to provide information on the local environment to the world at

large[5]. These devices are designed to be deployed and operated for extended periods

of time with a minimum amount of maintenance[6]. These inexpensive devices open up

a new field in computing, providing the ability for small groups to gather data on their

environment for use in myriad tasks.

These devices, by way of example, are currently being used throughout private resi-

dences to provide information to both the occupants and to other devices, enabling them

to govern the temperature, manipulate the lights, and provide quality of life adjustments

autonomously [7]. Beyond consumer service, these devices are also used in both industrial

[8] and emergency response situations [9], among many other fields. One of the principle

advantages WSN devices have, which allows such a versatile range of deployments, is that

they are able to create ad-hoc networks without any prior information about the deploy-

ment area[10]. WSN devices are able to assess their surroundings and communicate with

each other to build large networks autonomously[5]. Once the destination for the data is

identified, typically through a special information message, the devices are able to assess

a suitable route and begin sending their data[11]. WSN devices not only operate in this

manner for a static networked environment, but they can adjust to changing conditions

through continual reassessment and maintain the network despite positional changes or

device outages[12].

Furthermore, as these devices typically operate under very low power conditions, they

can survive in an environment for months, or even years at a time with little to no main-

tenance required on the power available in a pair of consumer batteries[1]. This resilience

1

is what has driven this technology to the forefront of a larger movement; the Internet of

Things (IoT)[13].

This thesis works to leverage these advantages and build on them by developing an

architecture to enable these devices to form this autonomous network in a more stable and

efficient manner than is typically implemented. The commonly used model [14], [15], [16],

[17], [18], [11] for WSN deployment involves the emplacement of devices in two principle

roles: sender and sink. This is the standard multipoint-to-point routing model in which

all of the devices are collectors that send their data to a single destination device, known

as the sink. This flat model presents problems related to the sending of replies back down

through the network from the sink to the original sender[19], in addition to a significant

energy drain problem for the senders closest to the sink[20].

This work presents a Hierarchical network of Observable devices with Itinerant Sinks

Transporting data (HOIST), an architecture I designed to alleviate the effects of these

disadvantages that lie within a WSN deployment. This architecture breaks up the sender-

sink model into a three-tier hierarchical model; which separates the senders and the ultimate

destination sink into tiers joined together by a series of bridging sinks. These bridging

devices each control a smaller fragment of the collectors and coordinate the transmission of

data between the collectors and the highest, destination sink. Furthermore, this architecture

adds in mobility to the model, allowing the highest tier sink to move about the deployment

area, minimizing the prevalence of any set of bridging sinks from being the sole route

burdened with relaying the messages of all of the devices on the network to the sink.

The HOIST architecture allows the increase in the number of collectors for a deployment

area by subordinating them under the bridging sinks. When the number of collectors is

no longer supported by the present bridges, due to the memory-constraints placed on the

routing tables, a new bridging sink can be added to increase the deployment size. This

architecture further defines the role of the bridges to coordinate their local collectors to send

data one device at a time, enabling the growth of network traffic to increase logarithmically

with respect to the increase in the number of collectors.

2

5

Collector

6

Collector

7

Collector

8

Collector 9

Collector

10

Collector

11

Collector

12

Collector

13

Collector

1

Bridge

2

Bridge

3

Bridge

4

Bridge

O

Observer

M

Messenger

Bridge Instances

Instance ’O’

Instance ’M’

Figure 1.1: A Representation of the HOIST Architecture

This architectural design also allows further scaling by using the first mobile sink, des-

ignated as the messenger, to travel between geographically segregated deployment areas to

enable each cluster to send their data without having to create unnecessary lines of devices

to connect the fields together. Furthermore each of the collectors is designed to locally store

all of their data until the messenger next arrives, when it will receive a dump of all collected

data before leaving. In this manner, a central data processing facility would be able to send

the messenger to each of the remote deployment areas and receive back all of the collected

data for processing.

Further extending this design, I have added the ability to use a second mobile sink,

designated as an observer, to perform live collection on the local cluster it is in, allowing a

responsible party to view data as it is collected. This observer enables quick assessments of

3

the local area without disrupting any ongoing network actions. If each bridge is presently

coordinating the transfer of data from one of its collectors to the messenger, the remaining

collectors continue to collect and send their live data to the observer.

While this architecture complies with the standards for the standard WSN routing pro-

tocol, RPL[21], Contiki, the popular operating system running these devices[22], precludes

its implementation at present. This limitation on the implementation of HOIST is due to

areas of RPL which have not yet been fully implemented in that operating system. This

work responds to this situation by assessing the present implementation of RPL in the cur-

rent version of Contiki, then designing and implementing modifications to several areas of

this operating system, enabling the full hierarchical, multiple-destination capabilities of this

routing protocol. This portion of the work is separable from the HOIST design and may

be used for general applications of WSN deployments that require multiple sink networking

environments.

1.1 Contribution to the Community

The issues addressed in this work are twofold. First, the modifications to the operating

system make possible the ability to logically route to multiple, mobile sinks, as specified

by the RPL protocol for low-powered and lossy communications[21]. This extension to the

standard multipoint-to-point routing is not only essential to the hierarchical nature of this

architecture, but also enables such secondary observers and other collectors to access data.

This extension adds the capability to route under more than one set of metrics that are used

by an objective function to select the best routing path for each device. This is a feature

that is presently missing, which adds a great benefit for emergency modes of operation.

Secondly, this work presents the HOIST architecture, which enables deployments of

devices to be scaled in practice without succumbing to network failure from flooding or the

drastically uneven energy consumption that the bordering devices typically face[20]. This

scaling, by using the hierarchical model, allows the logarithmic increase in transmissions

with respect to the expansion in the number of collectors. By way of an example, the

4

increase of 15 new collector devices in a deployment on a Zolertia Z1 device, using the

Contiki 2.7 operating system, could only add one additional transmission per unit time

to the mobile sink under this designed architecture if they all associate with a single new

bridge sink.

This level of deployment affects fields outside of small, home based uses. Precision

agriculture, as the motivating example for this implementation, requires large deployment

areas for field coverage and, as multiple fields may be geographically segregated from each

other, a means for effectively bringing this data back for processing. While a line of devices

would enable routing back to a base station, stringing fields together would only succumb

to the same energy consumption problems as each device now needs to retransmit multiple

fields worth of data per transmission cycle. Implementing HOIST enables mobile messenger

devices to acquire the data from each field and then bring them back to the data collection

point in an energy efficient manner. The role of the mobile messenger device is tested on

an unmanned aerial system (UAS) for suitability.

In this manner, the overall objective for this implementation is to transport data from

geographically segregated deployment areas, while accomplishing two principle objectives:

demonstrate the ability to increase the number of devices arbitrarily while maintaining the

ability to support downward routing and reduce of the energy drain issues related to the

nodes closest to the sink.

1.2 Roadmap

This thesis is divided into a series of chapters. Each chapter seeks to introduce an aspect of

this architecture, assess the current environment for factors to consider ahead of a design,

motivate its need under the current environment, and analyze its implementation. The

second chapter begins by discussing a background into the field of wireless sensor networks

and the common routing protocol used therein. The third chapter discusses the myriad

considerations for the design of an architecture, as well as the design of the HOIST archi-

tecture itself. The fourth chapter continues with the implementation and modification of

5

the Contiki operating system to enable the implementation of the designed architecture.

Chapter five then explores the efficacy of the architecture through evaluations of both prac-

tical and simulated environments. Chapter six provides a basic set of evaluations of HOIST

as a viable framework of this thesis. Finally, chapter seven ends with a conclusion and the

continued work which may be undertaken.

6

Chapter 2: Background and Related Work

This work presents the Hierarchical network of Observable devices with Itinerant Sinks

Transporting data (HOIST), a WSN architecture I designed to alleviate the effects of the

disadvantages that lie within a WSN deployment. The objective of this work was to design

a network architecture which would enable the effective collection of data from multiple,

geographically segregated fields of WSN devices.

This chapter introduces the background necessary for the design of such an architecture

by looking at the broad topic of modern, wireless ubiquitous computing and introducing

the concepts of how wireless sensor networking devices are fulfilling a primary role therein.

This chapter describes one of those devices to provide a background on the type of hardware

currently in use, the protocols the hardware runs, and the networking protocol stack that

enables the data to be successfully transmitted. This chapter then frames all of these topics

by introducing Contiki, the popular open-source operating system that connects all of these

concepts together.

Finally, this chapter also provides a brief overview of the related work in this field and

how it relates to the architecture design of this thesis, by way of a motivating example for

a practical implementation.

2.1 The Internet of Things

A modern trend in computing involves the inter-connection of ubiquitous devices to achieve

a connection between the physical world and the internet. This trend is encapsulated within

the growing concept of the Internet of Things (IoT), in which such devices gather and com-

municate information to put IoT capable objects “at the services of humanity”[13]. IoT

initially grew out of the Radio-Frequency Identification (RFID) community, however, the

7

term has come to imply the interconnection of ordinary objects to provide users assistance

with myriad applications, from household appliance power savings to agricultural crop man-

agement[23]. Recently several companies, such as [24], [25], and [26] have begun marketing

IoT capable systems to the consumer market. Nest Labs, for instance, offers not only smart

thermostats that are able to alert appliances to enter sleep modes when users are no longer

home, but a partnership with Mercedes-Benz also allows your vehicle to notify your ther-

mostat to begin cooling your home as you begin your evening commute[27]. Companies

such as Nest Labs are able to leverage modern technology to bridge the divide between

traditional computer systems and household appliances.

2.2 Wireless Sensor Networks

As a subset of IoT, Wireless Sensor Network (WSN) devices provide a direct bridge between

real world events and the networked community at large. As was alluded to in the previous

section, in order for the thermostat to alert the lights to enter a sleep mode, it must first sense

that each of the rooms in the house are empty. WSN devices provide that key functionality

by using myriad integrated sensors to detect the current state of their local environments

and relaying that information to an interested party. As described by [5], wireless sensor

networks are “multihop [networks] consisting of spatially distributed autonomous sensors

with sensing, computation, and wireless communications capabilities.” As with other IoT

objects, WSN devices, hereinafter referred to as motes, are designed to use very little power

and operate without maintenance for extended periods of time[6]. These motes can be

configured for ad-hoc networking and are able to autonomously form their own networks

during their own deployment. This makes motes ideal for many situations in which sensor

data is required across a geographically large area, where traditional wired systems are not

feasible for deployment.

8

2.3 WSN Hardware

There are several models of WSN devices on the market, to include the TelosB[6] and

Tmote Sky[28]; however, this work will exclusively feature one of the newest motes on the

market, the Zolertia Z1 (figure 2.1). Like many other devices in the WSN family, the Z1

is a low-power device that communicates over the 2.4GHz ISM band and is designed for

long-term unattended operations[1]. Among the device features listed in [1] is an integrated

temperature sensor as well as a three-axis accelerometer. The radio is the IEEE 802.15.4

compliant CC2420, which is controlled by a TI MSP430 ultra-low power processor. The

MSP430 is a key feature of this device as it is the same processor used in other models,

making the code easier to port between the devices. The Z1 is able to run its microprocessor

as high as 16MHz at full power and features 96KB of flash memory for program storage and

10KB of RAM, representing an improvement over previous WSN devices[29]. In addition

Figure 2.1: Zolertia Z1 WSN Mote[1]

to the Z1, TelosB WSN devices may be used to supplement a WSN implementation. These

devices are older than the Z1 and feature half of the flash memory; however, they use

9

the same CC2420 radio and MSP430 processor, allowing them the ease of running nearly

identical code for the same task[6].

2.3.1 Hardware Considerations for Deployment

While these devices have several strong features for use in an IoT situation, certain con-

siderations must be taken into account with regards to their use within a network. The

low-power nature of these devices means that the effective communications range is a fac-

tor. The radiated signal strength of radio frequency energy at any point in space decays

on the order of the square of the distance from the transmitter, however, this ideal decay

is only valid in open space. When placed very low, ground interference causes the radiated

strength to decay as the fourth-power of the distance, dramatically reducing the range[30].

Additional considerations to the deployment of such devices also include other factors

in the environment that may attenuate the signal, such as vegetation, buildings, and terrain

occlusions. Placing these devices too close to each other also leads to the opposite problem,

with receivers able to detect radiated signals from multiple transmitting devices at once,

leading to local flooding, causing local interference[15].

Operarational life is also a factor in any implemented intended for long-term, unattended

operations. Though counterintuitive, the CC4240 radio, like others in the class, uses ap-

proximately the same amount of power transmitting data as it does receiving data[1]. This

goes against the intuition that a radio can stay in reception mode until ready to transmit,

minimizing lost packets. To conserve battery life, these devices often use a radio duty cy-

cling protocol, which only powers a radio on very briefly to check for any signals, before

returning to a low-powered state[30]. While that is the primary means of conserving power,

placing the motes in smaller clusters, geographically closer to each other and their effective

root enables each node to reduce transmission power. The datasheet on the CC2420 radio,

for instance, shows that cutting the power level by 5 dBm leads to a reduction in current

consumed by 3.5 mA (21%)[31]. While such energy conserving techniques are not directly

within the scope of this work, these protocols are used in this implementation.

10

The issue with energy on small and low-powered devices is critical for any implemen-

tation that seeks to deploy devices over long periods of time – up to and including years –

with minimal maintenance required. The Zolertia Z1 device, for reference, in its low-power

standby mode, uses 23.2 µA of power[1]. Using two standard 2,000 mAh rated AA batteries,

this device would remain operational for approximately 10 years in standby mode. In full

active mode, while either transmitting or receiving, the Z1 draws 18.8mA, which would run

for approximately 70 hours on the same battery source.

Figure 2.2: TelosB WSN Mote[2]

2.4 IEEE 802.15.4

WSN hardware, as described in the previous section, are very small and the computing

power therein is limited and memory-constrained. A common standard for enabling such

computationally constrained devices to communicate efficiently is IEEE 802.15.4, which is

the IEEE Standard covering Low-Rate Wireless Personal Area Networks (PAN) [32]. This

standard only defines the lowest two layers of the network stack, leaving the implementation

of the upper layers to software stacks, such as ZigBee, XBee, or Contiki’s uIP. Figure

2.6a shows the standard, 7-layer conceptual network stack model as compared with the

implementation provided by IEEE 802.15.4. Completed with a the upper layers, IEEE

802.15.4 is currently being used as a communication standard for IoT applications [33].

The advantage this standard has over traditional wireless implementations is that the

Physical (PHY) and Media Access Control (MAC) layers of the standard OSI-Model are

11

Application

Presentation

Session

Transport

Network

Media Access Control

Physical

OSI Layers


(a) OSI Stack

Application

Transport (UDP)

Network (IP,RPL)


Upper Layers
(IP and UDP)

Media Access Control

Physical

}
IEEE 802.15.4
Layers

(b) IEEE 802.15.4 Stack

Figure 2.3: Comparison between the canonical Open Systems Interconnection model (OSI)
and the IEEE 802.15.4 Implementation

defined by IEEE 802.15.4 to enable low-powered devices to conserve power by spending

most of their time in sleep-mode. When a device wishes to transmit, it must first power-on

its receiver to ascertain if there is any Electromagnetic Interference (EMI) detected on the

assigned channel. In the presence of EMI, the device will wait in accordance with the PHY

implementation of Carrier Sense Multiple Access (CSMA) with Collision Avoidance (CA)

[32]. Once the channel is clear, it will broadcast the data and then resume a sleep-state. [32]

further describes this as a “robust wireless technology that could run for years on standard

primary batteries.”

2.5 IPv6

The stack defined by IEEE 802.15.4 ends at the MAC layer, leaving the upper protocol

layers up to the implementation to define. The first of these upper layers is the network

layer. In this model, the network layer uses the Internet Protocol (IP), which enables the

various machines on the Internet to inter-communicate. The first IP public addressing

scheme to emerge from DARPA in 1984 was Internet Protocol version 4 (IPv4). For the

time, this provided a sufficient address space for up to 232 different systems to be uniquely

12

addressable. In a recent feature article, networking corporation Cisco Systems published

the figure of 8.7 billion objects that are currently connected around the world [34]. The

means of allowing more connected objects than available global addresses is covered through

private or link-local addressing, in which small Local Area Networks (LANs) are able to

locally address objects without direct global addressing capabilities. With [34] estimating

that there may be 1.8 trillion connected things by 2020, the need for an enhanced addressing

space is present.

This was one of the chief catalysts behind the creation of the Internet Protocol version

6 (IPv6) in 1998. IPv6 increases the addressing size of devices from 32 bits to 128 bits [35].

In essence, this increased the limit on directly addressable devices from approximately 4

billion, to 2128, which is a value that approaches the approximate number of atoms in the

Earth, as estimated by the Department of Energy, Jefferson Laboratory[36]. As this far

exceeds the estimate by Cisco, this provides the ideal protocol for working with the growing

IoT category of devices, allowing each to have their own globally accessible address. This

protocol also supports extensions and options to the base packet, readily enabling custom

protocol routing for WSN devices. One principle disadvantage of using this protocol is the

increase in the size of the header for the packet frames, though this is addressed in section

2.7.

2.6 Operating System (Contiki)

The model that synthesizes together the lower and upper stack layers is implemented by

an operating system. I have chosen the Contiki Operating System, which an open-source

system that both completes the networking implementation in addition to providing appli-

cation support for the motes[37]. Contiki, currently on version 2.7, provides this common

implementation in addition to two other key networking features for WSN operations: a

radio duty cycling protocol and 6LowPAN.

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Figure 2.4: IPv6 Packet Header (40 octets)

Enhancing the IEEE 802.15.4 stack, Contiki implements a Radio Duty Cycling Proto-

col (RDC) in the form of ContikiMAC. ContikiMAC provides responsive communications

service wherein roughly 99% of the time the radio is powered off [3]. ContikiMAC achieves

this first by periodically conducting a pair of Clear Channel Assessment (CCA) probes of

the current channel.

Figure 2.5: ContikiMAC Operation[3]

14

The two probes, shown in figure 2.5 as narrow, parallel vertical bars on the Receiver

timeline, are timed such that they occur on a slightly longer delay than maximum time

between a rebroadcast event of another mote to ensure transmission events are not missed.

If neither of the CCA probes result in any detected signals, the mote will resume a powered

off state. If non-relevant EMI is detected, the mote will receive just enough to discern that

a proper message is not present and will likewise return to a powered down state. Only

when a proper message is detected will the device begin receiving the first data packet and

respond with an acknowledgment message. The sender will continually send only the first

packet of data until the receiver responds back with an acknowledgment.

2.7 IPv6 Transmission over IEEE 802.15.4 (6LowPAN)

As IEEE 802.15.4 leaves the details of transmissions up to the application, Contiki still

required a means for transmitting the IPv6 packets over the motes. For this reason, the

Internet Protocol stack was chosen to fulfill this implementation. RFC 6282 (6LowPAN),

which is the standard for the transmission of IPv6 packets over IEEE 802.15.4 networks,

addresses this [38]. This RFC primarily addresses the reduction in size of a standard

IPv6 packet (Fig. 2.4) to fit within the physical limitations presented by the motes. The

standard IPv6 header is 40 octets in length, however, this only governs IP routing. UDP

adds another 8 octets for port addressing. With the IEEE 802.15.4 Maximum Transmission

Unit (MTU) of 127 octets and its own header size of 25 octets without security, this only

leaves 54 octets for the payload [39]. Adding in AES-128 security, this drops by another 21

octets to 33 data octets. This also does not include any of the routing protocol extension

headers, which, though relatively small, only serves to further demonstrate the need for a

compression scheme.

6LowPAN, at its core, handles this form of header compression. In the best case,

6LowPAN can compress the IPv6 header down to only 2 octets, however, for IP routing,

it still requires 7 octets of space [38]. 6LowPAN accomplishes this by assuming certain

15

Application

Transport

Network

Upper Layers
(IP and UDP)


Media Access Control

Physical

IEEE 802.15.4
Layers

{

(a) IEEE 802.15.4 Stack

Application

Transport (UDP)

Network (IP,RPL)

6LowPAN Adaptation


Upper Layers
(uIP and UDP)

Media Access Control

Radio Duty Cycling

Physical


IEEE 802.15.4
Layers

(b) Contiki Stack

Figure 2.6: Comparison between the IEEE 802.15.4 stack and the Contiki Stack

field values that are essentially fixed within most IPv6 packets and removing them from

the header. This protocol also removes the IP addressing and replaces it with a link-local

addressing scheme using a link-local prefix. This enables direct addressing of the WSN

devices while also allowing them the ability to transmit significantly larger data payloads

without fragmenting the packets. This is precisely the implementation that will enable

aggregated data to be transmitted efficiently to a mobile receiver.

2.7.1 Transmission Concerns

The transmission of the data across the medium between devices is a driving concern when

planning deployments. The base problem is that if there are two devices communicating

with each other on the same frequency, there exists the potential for interference.

Wireless communications on these devices are half-duplex in nature. This means that the

wireless radio can not receive and transmit simultaneously. When a radio is transmitting,

it does so at a base power level that is greater than the current strength of the signal

it wishes to receive, thereby preventing reception. Due to this occurrence, if two devices

communicate with each other and the transmission of the first device arrives immediately

after the second device begins transmitting, then the first message will be lost in the noise.

The technique for dealing with the problems of a wireless medium involves listening

16

for any sign of incoming transmissions before attempting to send. On any sensed activity,

the transmitter will delay its own transmission before trying again. This alleviates the

problem by shifting the outgoing signals temporally. The Contiki operating system handles

this through the Carrier Sense-Multiple Access (CSMA) MAC layer. Contiki implements

CSMA as a default to complement the previously mentioned ContikiMAC[3] (figure 2.5.

For a large, dense mesh network in which multiple devices are continually within each

other’s range, these interferences can occur frequently. Increasing the deployment size of

this scenario by adding more devices will only serve to exacerbate this problem. Even

devices beyond the expected transmission range of each other will nevertheless still pose

the danger of interfering with communications.

2.8 Network Layer Routing (RPL)

With Contiki and IEEE 802.15.4 and 6LowPAN, we have addressable WSN devices oper-

ating over IPv6; however, there remains a lack of a selected protocol for routing messages

between the devices. I have selected to use RFC 6550 (RPL), which is the IPv6 Routing

Protocol for Low-Powered and Lossy Networks [12]. With RPL, each device that exists

within this logical structure, hereinafter referred to as nodes, participates in the creation

of an ad-hoc network. The primary function of RPL, is to facilitate multipoint-to-point

communication to transfer the collected data from the sender nodes to a single root node,

also known as a sink [19]. RPL features instances, each of which may contain a single

routed network and contains one set of routing metrics and constraints for routing [11].

The formed network within each instance creates a Destination Oriented Directed Acyclic

Graph (DODAG), in which each node selects a preferred parent towards the root.

This process begins when a specially designated sink starts transmitting a DODAG

Information Object (DIO) message over the IPv6 Link-Local Multicast address to all nodes

within range for the current RPL instance. When a node receives this message, it first

checks to see if it is already a member of the RPL instance being announced. If not, the

17

node will immediately join the instance, select a preferred parent towards the root, increase

the advertised current rank, and rebroadcast the DIO to enable more distant nodes the

ability to join the instance. If the receiving node was already in the instance, it checks

to see if the rank of the received message is lower than its own and adjusts its preferred

parent accordingly. Each instance has its own Objective Function (OF), which, among

other things, specifies a metric to determine which of the node’s neighbors to select as the

preferred parent.

2.8.1 Routing within RPL (DODAG)

A

Sink

B

Sender

C

Sender

D

Sender

E

Sender

F

Sender

Pa
re
nt

Parent

P
ar
en
t P

a
ren

t

P
arent

Figure 2.7: Sample RPL DODAG

This list of neighbors forms as the result of a second message type that is sent between

the nodes. This message is a DODAG Information Solicitation (DIS) and serves as a means

to receive information about the neighbors in communications range [11]. These, like the

DIO, are sent out periodically to allow each node to detect any changes in the network

topology or in the quality of the link between the nodes. Link quality is determined through

an assessment of the conditions in the network. This is primarily achieved through one of

two different means. The first of these means is the Estimated Number of Transmissions

18

(ETX) necessary to deliver a successful message to an adjacent node. A second metric that

is also commonly used is the Received Signal Strength Indication (RSSI). This relies on

the radio to measure the strength of the received signal, which is difficult to do without

more sensitive equipment, making this moderately unreliable[40]. For this reason, the ETX

link quality assessment metric has been assessed by [41] as the best of the readily available

metrics.

With a formed DODAG, we have the ability to quickly send messages from all of the

nodes to the sink, however, there are not yet any means for the sink to send any messages

to the nodes, either individually or en masse. RPL handles this by giving each node the

ability to create and maintain a table of all of its children. This is accomplished with a

Destination Advertisement Object (DAO) message, which is sent by the nodes up to the

root. The DAO contains the IPv6 address of the device originating the message as well as

the address of the device currently transmitting it. In RPL, the feature which governs this is

called storing-mode. When storing-mode is enabled, each device receiving a DAO will add

two entries to its downward routing table: the originator’s IPv6 address and the currently

transmitting device’s address[19]. In this manner, each node knows not only which devices

are its children, but, more importantly, which devices to send messages through in order to

reach them.

By way of an example using figure 2.7, if sender D originates a DAO, it will be sent

up to sender B. B, if storing-mode is enabled, will add D to its table with a next-hop of D,

before retransmitting the DAO to its own parent, A. When sink A receives this DAO, it too

will add D to its downward routing table, but the next-hop will be B. In this manner, if

any device now wishes to send a message to E, it is able to send its message up to the first

common ancestor of E, which will have the information on how to route back downward to

ensure delivery.

Storing-mode in RPL does come with a memory overhead and Contiki places limits on

this functionality to attempt to curb the overhead. In Contiki, only 12 neighbors are ever

stored by a node and it was recommended by [19] not to exceed clusters of 30 nodes for that

19

reason. Even with the proper precautions taken, support for point-to-multipoint is limited

and point-to-point transmissions are described by [19] as “esoteric”.

2.8.2 Assessment of RPL

The problem with the present implementation of RPL in Contiki is that only one DODAG

is permitted per instance [11] and only one instance is routable per node. For this reason,

I have designed and implemented a modification to the RPL implementation in Contiki

to allow multiple instances to be routable by each node; these modifications are detailed

in chapter 3. This enables each node to work as a part of multiple instances, each with

its own DODAG and routing metrics. By employing these in a hierarchical manner [42],

[43], a cluster of sensors can each maintain a static network to the nearest sink, which,

in turn, can form a DODAG and send the blocks of collected data to a mobile messenger

sink when present. Moreover, this also allows a direct observer to enter the cluster, form

its own DODAG amongst the sensors, and receive real-time data. RPL, with just a few

modifications, performs these tasks well.

One of the biggest failings with RPL is that is has no explicit design support for mobile

nodes [19]. Mobility is handled through as a side-effect of the parent recalculation process.

When a regularly scheduled timer recalculation timer goes off, all of the neighboring devices

are assessed for the quality of their link and their rank to the destination. In an environment

with a mobile sink, as it moves around, the nodes that are now closest will receive an

updated DIO and change their ranks to reflect their new proximity to the sink. After

updating their internal DODAG table, the devices will rebroadcast a DIO reflecting their

new rank. When a node runs its rank recalculation routine, it will compare the ranks and

link quality information of the neighbors it has received a DIO from and ultimately change

its preferred parent to reflect the new position of the mobile device. The down side of this

process is that each device may take a while to update its parent, due to a combination of

hysteresis and stale DIO messages showing ranks from an outdated position.

Another serious problem is that the process RPL uses to construct the DODAG causes

20

the devices nearest to the sink to suffer from ”high energy drainage”[20]. According to [19],

[42], and [20], this occurs because the nodes nearest to the sink act as a router for all of

their children’s messages, in addition to their own, as shown in 2.8. By having to route a

disproportionate number of packets, that node is spending more of its time with the radio

powered on and in use than its children, causing it to drain its power faster.

Figure 2.8: WSN Packet Routing Per Send Period

2.8.3 Overview of Design Goals

The HOIST architecture I designed and present in the coming chapters of this thesis began

with the goal of creating an implementation which will allow for multiple, geographically

segregated networks to send data back to a data processing center. Such a network must be

able to function for long periods of time without maintenance and be able to cover multiple,

large deployment areas without succumbing to problems of local flooding or uneven, high

energy drainage.

21

One solution to this problem that has been proposed widely by [19], [44], [42], [15],

and [18] is to have the sink move around the cluster to prevent any one set of nodes from

succumbing to this energy drain situation. By distributing the load around the network, it

will lead to a longer lasting network over time. The problem remains, however, that while

RPL can adjust to the environment and change over time as a sink moves around, there

is a considerable delay in the route changes, leading to disconnected networks, particularly

when using ETX as the OF metric [41]. One proposed solution to this problem in RPL

was also investigated by [41], who found that using the number of hops from the sink to

the node, the Hop Count, as the metric yielded a 36% higher throughput than with ETX,

owing to the faster reform time. This metric does poorly, however, with static networks as

it does not take into account link quality information.

A

Bridge

B

Collector

C

Collector

D

Collector

E

Collector

F

Collector

G

Bridge

H

Collector

I

Collector

J

Collector

K

Collector

L

Messenger

Figure 2.9: Hierarchical DODAG

22

For this implementation, I have elected to use the best of each approach by separating

the static portion of the network from the mobile portion of the network, using a three-

tier hierarchical model. In this design, I use ETX as the routing metric for the lowest

tier of static collectors, and Hop Count for the bridge sinks dealing with the mobile data

messenger, as shown in figure 2.9. In this manner, the static DODAG will persist over time

and form the best routing based on link quality, without any disruptions by the mobile

collector; the links to that collector will only affect the sinks, which will be able to track it

faster by favoring direct connections.

2.9 Motivating Implementation

The above analysis of each of the components of WSN devices and its communications

shows both strengths and failings, however, only by placing this within the context of a

practical implementation can a real assessment be made on the feasibility of the technology.

As a motivating example to illuminate the various aspects of this technology, and a means

through which I can frame my own architectural design, I have chosen to utilize field of

precision agriculture.

Precision Agriculture (PA) is a new, yet growing field within the farming community. As

described by [45], PA involves five critical steps: “data collection, diagnostic, data analysis,

precision field operation, and evaluation.” The goal of PA is to allow farmers to adjust their

land and crop management techniques to meet the immediate needs of particular areas of

their land. In order for PA to work, there naturally needs to be some variability to the land

and a means to allow such adjustments to affect the growing conditions. Until recently, PA

has typically involved commissioned satellite flights to provide images of the farmland; such

images are critical for presenting information about growth using the Normalized Difference

Vegetative Index (NDVI) to measure crop health [46]. As such commissions can take up to

two weeks to get the data, a lot of farmers are turning to Unmanned Aerial Systems (UAS)

to provide a cheaper and near-realtime picture of their land [47].

With this rise in PA, farmers are also beginning to explore other options for monitoring

23

Figure 2.10: Vegetative Index Sample from St. Francis Winery and Vineyards[4]

their crops by using pH sensors, anemometers, thermometers, and humidity sensors, which

they deploy throughout their fields [45]. These fields, as [45] describes and as shown in Fig.

2.10, are often hundreds of meters in size and each parcel of land may be separated from

its neighbors by kilometers; wired technology is simply no an option.

By embracing modern networking and sensing technology, farmers are presently provid-

ing an ideal infrastructure for deployment and the practical use of WSN devices. Moreover,

this practical implementation scenario involves each of the aforementioned concepts and

stresses the advantages of employing a new architecture within these frameworks. This

architecture is described in detail in the coming chapters of this work.

2.10 Related Work

There are several key aspects of this work, each of which has its own representative body of

literature. The core of this work is the use of wireless sensor networks in a field environment

in which direct communications with the network is not feasible.

The first aspect of my design employs multiple sinks to split the load of the network. In

[14], the researchers employed a combination of infrared cameras and WSNs in order to more

24

rapidly alert first responders to fires in regions containing cultural heritage sites. In their

work, they utilize multiple sinks for the purpose of redundancy as “data collection centres

may also be affected by the fire [14].” Their technique differs from this work in that their

sensor traffic is simultaneously routed to multiple sinks, with each sink being co-located

at a data collection center. In my architecture, centrally located sinks split the network of

sensors, leading to shorter routes and a tendency towards the star topology, further reducing

power and hop counts of the sensors, as is described in the following section. Their model

focuses on having multiple collection centers in which the sinks are located, however, in

this work the assumption is that the deployment area is not such that is feasible to connect

directly with.

With respect to the real-time observer, [43] describes a fire detection system scenario in

which firefighting units carrying mobile sinks are able to directly connect with the network.

This connection allows the first responders information on the location of the fire to better

direct their efforts. This is a one-tier model in which an existing network of static nodes

sends their data to one or more sinks. As the fire fighter enters the area, their sink joins

the network and begins receiving a copy of all of the sensor data. In this work, I use

a similar technique for each of the clustered fields, allowing direct, real-time observation

of the local environment. My work implements this along side the mobile collection and

ferrying of aggregated field data. Furthermore, the Contiki operating system does not

support multiple sinks; a feature that my work proposes a design and implementation for.

Concerning the multi-tier approach and mobile ferrying, the research conducted by [44]

proposes a three-tier model for data collection, aggregation, and distribution via a mobile

sink. The Mobile Ubiquitous LAN Extension (MULE) approach is a design for sparse sensor

networks that enables data to be locally collected and aggregated before being transmitted

to wandering mobile sink devices [44]. Once collected, these MULEs transport their sinks

to within range of an access point, where the data can be downloaded and connected to

the larger Internet. The authors elected this approach for the same reason that [45] cites,

namely the cost in motes necessary to bridge the gap would not only be prohibitive, but each

25

of those bridging motes leading to the data collection center would all suffer greatly from

the energy drain effect as they are relaying entire deployments of traffic. My approach and

implementation seeks the same benefit of the MULE implementation, however, my approach

maintains a static network between two tiers of static motes, holding a link quality derived

network to wait for the mobile sink to arrive. Once the mobile sink arrives, the lower tier of

static motes is able to send through pre-existing routes to a second-tier static sink, which

then is able to send data across its dynamic network to the mobile system. This achieves

the data collection of the MULE approach, while reducing the need for dynamic routing on

the first tier.

Other papers, such as [20] and [5] discuss the advantages of using mobile sinks for

increased throughput and lower power requirements. These approaches show the benefit to

a mobile sink, however, in their research, such mobility is to reduce the prevalence of the

excessive energy drain problem and not for any form of data ferrying. My work addresses the

reduction of the energy drain problem through centrally located static bridging sinks, which

tend towards star topological formations, and using mobile sinks traveling in a predictable

manner to perform periodic data collection from a smaller tier of static sinks brings with it

the same advantages as discussed in the referenced works.

One recent publication, [42], presents a very similar approach using a three layer system

in an approach called Load Balanced Clustering and Dual Data Uploading (LBC-DDU).

Their first layer consists of the base collectors, deployed throughout an area. A clustering

technique is then used to elect cluster heads from among the collectors, with these devices

distributed throughout the deployment area. These cluster heads coordinate their local

cluster members; each cluster member must be able to communicate with a cluster head

using exactly one hop. Once the cluster heads are elected, they coordinate data transfers

with the top layer, which consists of a mobile sink called a SenCar. This SenCar uses a

planning technique to determine a route such that it is able to collect data from each cluster

head using exactly one hop. This network features many of the same approaches I have

26

chosen to use, such as a bias towards a star topology for first and second layer communica-

tions to reduce hop counts. The notable difference between this work and HOIST is that

the architecture presented in this thesis is immediately implementable using standard hard-

ware and the common RPL networking protocol. This enables the deployment of a HOIST

system to use low computationally capable devices, which do not have to run elections or

coordinate clustering for one-hop transmissions. Furthermore, HOIST is designed to work

using a simple mobile messenger sink that only has to be within communications range of

one bridging sink. Implementations, such as those present with precision agriculture, may

prevent mobile devices from maneuvering throughout a deployment area, as is needed by

the LBC-DDU framework proposed by [42].

27

Chapter 3: HOIST Architecture

After examining the technology available for this implementation, I designed an architecture

to transport data from geographically segregated deployment areas, while accomplishing

two principle objectives: the ability to increase the number of devices arbitrarily while

maintaining the ability to support downward routing and to reduce of the energy drain

issues related to the nodes closest to the sink. I have designated this architecture as the

Hierarchical network of Observable devices with Itinerant Sinks Transporting data (HOIST).

The goal of this is to be able to send mobile sinks to remote deployment fields to retrieve up

and transport back all of the collected data. Additionally, at any point, the devices in the

fields may be directly observed, without interrupting either data collection or data retrieval

by the mobile messenger.

The HOIST architecture creates a network able to cover multiple, large deployment

areas and provides a means for transferring this data back to a data processing center. In

addition to meeting these goals, I have also added the secondary task of enabling live data

collection by an observer device, which may operate alongside the primary data couring,

messenger device. I employ a three-tiered hierarchical design, featuring four distinct device

roles, as shown in figure 3.1.

The collector device communicates over a standard RPL network to a bridging sink.

These bridging sinks coordinate all communications between the collectors and mobile,

destination sinks. These mobile sinks consist of an observer device, which is sent live data

from each collector as they gather it, and a messenger device that is sent all of the data

collected from each collector since the last data dump event. The bridges coordinate all of

this traffic such that only one of their children are transferring data at a time, enabling the

amount of concurrent transmissions to scale logarithmically with respect to the increase in

the number of collectors.

28

5

Collector

6

Collector

7

Collector

8

Collector 9

Collector

10

Collector

11

Collector

12

Collector

13

Collector

1

Bridge

2

Bridge

3

Bridge

4

Bridge

O

Observer

M

Messenger

Bridge Instances

Instance ’O’

Instance ’M’

Figure 3.1: The HOIST Architecture

To properly motivate the design decisions behind this architecture, I will begin this

chapter by detailing the considerations necessary to examine for any WSN architectural

development of this type. I will continue this chapter by presenting a standard, single-layer

example WSN network under which an examination of these considerations may be made.

The conclusion of this analysis serves to motivate the design of the architecture, which is

presented in the final section of this chapter.

3.1 Design Considerations

The principle concerns for this intended deployment of wireless systems is the ability to

arbitrarily increase in the size of the deployment and the ability to utilize mobility to

29

reduce the prevalence of energy drains, while simultaneously enabling delivery of data to

remote locations.

3.1.1 Increasing the Size of the Deployment

A paramount concern to WSN architectural development is the ability to arbitrarily increase

the number of deployed devices in a manner such that the network is able to continue to

support it[42]. With the Contiki operating system, the first practical limitation on the size

of a deployment is the restriction on the size of the downward routing table. This table,

as mentioned in section 2.8.1 is necessary to enable point-to-point or point-to-multipoint

routing in the network. As HOIST is concerned with delivery assurance, the sinks will need

to send acknowledgment messages back down to the senders.

With the limitation in Contiki of 15 entries in the downward routing table, a single-sink

implementation will only be effective for up to 15 devices before downward routing is no

longer possible. Moreover, as Contiki only uses a single downward routing table for all

instances on the same device, multiple instances may enter a state wherein each sink is

at the opposite end of the network form the other. In this example, all devices would be

downward with respect to at least one of the instances. For this reason, I have elected to

utilize two concepts in my architectural design.

First, I will be employing a hierarchical model to separate the collecting devices from

their destination by using a bridging sink. In this manner, the collector devices are able to

be coordinated in groups up to 15 by this bridge device, which will manage all downward

routing to the collectors on behalf of the destination sinks. I employ multiple bridge sinks

across each deployment area of the network. Each of these sinks is able to increase the

number of collectors by up to 15. The practical constraint on the expansion of a deployment

is now 15 bridge sinks, which allow for a total of 225 collector devices which may be

directly addressed by the single destination sink. Following on with this model, if the bridge

sinks coordinate data delivery to the destination by instructing each of their collectors to

send data one at a time, then the local flooding issue is also mitigated. Instead of 225

30

devices attempting to send data over 15 bridges to 1 destination sink simultaneously, in the

worst case, now the model can limit this to 15 devices communicating over 15 bridges to

1 destination sink. This implies that the increase in the transmissions is logarithmic with

respect to the increase in the number of collectors.

Secondly, this three-tier model presents itself with the ability to reduce the hop-count of

the devices by placing the bridge devices in the center of each of their clusters of collector

devices. An analysis of this design consideration is presented in section 3.2.

Routing under Mobility

The second of the primary considerations is the reduction of the energy drain of the devices

closest to the sink. As [20] mentions, this phenomena may be reduced by adding mobility

into the design of the network. By moving the sink about the network formation, no one set

of border devices will be burdened continually with a disproportionate amount of messages

to reroute during each time period; encircling the deployment area will allow all border

devices to share evenly in this burden, better distributing the energy expenditures.

The difficulty with mobility, as alluded to in section 2.8 is that it takes time for all of

the DIO and DAO messages to propagate to allow each device to update its tables to reflect

the new location of each sink. The parent recalculation process uses a series of metrics to

assess the quality of each neighbor before selecting one of them at the new parent. This

process is guided entirely under the direction of the Objective Function (OF) set forth by

the sink via the DIO message. There are presently only two registered OF functions[48]:

OF0 and MRHOF.

MRHOF [49], which is the default OF in Contiki 2.7, uses link metric information to

determine which neighbor of the device might be the best parent. As link quality metrics,

such as ETX, can fluctuate, this function uses hysteresis to maintain the current parents

over short-term assessment periods to prevent frequent routing changes. Only when a link to

a new parent is consistently better over time will the device change its routing information.

OF0 [50], on the other hand, is a simple function which primarily utilizes hop-count as

31

the metric for parent selection. During each recalculate event, all neighbors are assessed for

their ranks within the current instance. The neighbor with the lowest rank is then selected

as the new parent. While this does result in far more rapid changes to the network, a node’s

rank is only a rough gauge of its radial distance from the sink. A route utilizing two hops

to the sink may offer better throughput than a route utilizing a single hop, albeit with very

poor link quality. OF0 has no ability to assess this and will always select the greedy choice

to minimize rank.

The primary concern with routing under mobility is the length of time it will take to

rebuild the network after the sink begins moving. Once the initially adjacent nodes are no

longer able to communicate with the sink, it would be ideal for the devices to immediately

seek alternative parents. For this reason, as assessed by [15], ETX ”cannot handle mobility

in practice.” Likewise, if a child node detects that they are now a single hop from the

destination sink, it should immediately change routing to prefer the direct connection. The

role of the OF in the design of the architecture was selected to address this consideration.

Now that the these primary considerations have been presented along with the options

available, I will describe the common architecture used for WSN deployment and analyze

which aspects need to be modified for an architecture to meet the design goals.

3.2 Analysis of the Common WSN Architecture

The commonly used model [14], [15], [16], [17], [18], [11] for WSN deployment involves

the emplacement of devices in two principle roles. This first role is that of the sender

device, whose sole function is to collect and then send that data to a sink device. The

sink device, under RPL, may exist alone or in conjunction with multiple such sinks. Many

papers describing large deployments, such as [14], allow the sender devices to select the most

appropriate destination sink for their data. Furthermore, RPL permits multiple DODAGs

within a given DODAG instance as well as multiple instances within a network, allowing

for multiple different destination sinks to interoperate.

A sample deployment under such an architecture is displayed in figure 3.2. This example

32

5

Collector

6

Collector

7

Collector

8

Collector 9

Collector

10

Collector

11

Collector

12

Collector

13

Collector

1

Collector

2

Collector

3

Collector

4

Collector

O

Observer

M

Messenger

Instance ’O’

Instance ’M’

Figure 3.2: Basic RPL Architecture

will serve as the baseline for analysis of several key concepts that drive the creation of

my architecture. As depicted, this multiple-sink architecture allows for the desired level of

multipoint-to-point routing, with each collector node showing its preferred parent for routing

to each of the two sinks. As depicted below, the network is partitioned into two different

DODAG instances to correspond with different sinks. The messenger sink, designated M is

able to receive select data under different routing metrics from the observer sink, designated

as O. The sender devices here are all designated as collectors to highlight their role in this

implementation.

In this network, by way of an initial example to highlight the key nodes, the route to

O is such that all devices must route their packets through either collector 10 or collector

7. Collector 7 must route 10 packets during each transmission period for the collectors,

whereas collector 1 only has to route three packets each period. This disproportionate use of

33

the radio to transmit packets highlights the disproportionate energy use in a standard WSN

deployment. In this model, collector 7 will run out of power significantly before collector

1, fragmenting the network and causing a modification of the routing structure. Assuming

collector 10 is the only remaining device within range, it will then bear the task of routing

and making 12 transmissions each period until it too ceases to function, bringing the entire

network down.

Mobility Analysis

Techniques such as described in [17] and [15] alleviate this problem by proposing strategies

wherein the sinks move about the structure, allowing a more even distribution of the load.

Note that these techniques still suffer drawbacks when using multiple sinks, as depicted in

figure 3.2. While the ability of the sinks to move about does address this problem, scaling

networks upwards only serves to exacerbate the energy drain effect. The only means of

alleviating this effect is if each mobile sink is likewise able to penetrate the mote deployment

field and move about the devices, providing equitable amounts of time for each mote. Figure

3.3 below shows a depiction of the initial network following movement about the topology.

In this depiction, the prior unbalanced routing overload formed at collector 7 has been

alleviated insofar as it is now only responsible for transmitting two packets per send period.

Collector 8, however, now has the full load of the network under it, forcing it to relay and

transmit all 13 packets per send period.

Although the mobility of the sinks has lessened the burden, the implementation of the

mobility still leads to systematic inefficiencies. Let us assume that the messenger sink M

is physically constrained from entering the deployment area. Circling about the motes

fully will preclude any one of the perimeter devices from succumbing to the energy drain

problem, however, the interior nodes remain continually under higher load than those on

the perimeter. Collector 2, for instance, had to transmit 5 packets per send period towards

messenger sink M. After its movement, the next period will require collector 2 to transmit

3 packets per send period. While an improvement, it will never be directly adjacent to the

34

5

Collector

6

Collector

7

Collector

8

Collector 9

Collector

10

Collector

11

Collector

12

Collector

13

Collector

1

Collector

2

Collector

3

Collector

4

Collector

O

Observer

M

Messenger

Instance ’O’

Instance ’M’

Figure 3.3: Basic RPL Architecture Following Movement

destination. As the number of devices in this deployment scales upwards, the inner devices

will route a disproportionately high number of packets over the full duration of the network

relative to those on the perimeter.

The second instance, headed by the observer sink O, has a more desirable effect. By

moving to the center of the topology, more collectors have direct communications access

with the observer sink O, reducing the overall load on the network. For this state, the

most duress on any sender is from collector 6, which must route four packets per period.

The average number of transmitted packets across the four directly adjacent senders is now

just over 3. This topology reduces the hop count of the network, however, for a larger

deployment, this sink would need to travel to each of the senders to provide them all an

equitable opportunity to be adjacent to the sink. This is not practical for large deployments

and may not be physically possible depending on the deployment conditions.

35

Test 384, RPL Graph Analysis (64, 64 quarter-second send
rates)

End Simulation
Time: 299849

N8
(-73,-35)

TX: 18->1, 18->2

N4
(-27,-26)

TX: 18->1, 18->2

N10
(14,-47)

TX: 18->1, 18->2

N5
(4,-11)

TX: 18->1, 18->2

N9
(-64,1)

TX: 18->1, 18->2

N3
(61,-49)

TX: 18->1, 18->2

Root (1)
(40,-90)
RX: 138

Mobile Sink (2)
(-17,28)
RX: 144

N7
(110,-41)

TX: 18->1, 18->2

N6
(76,-13)

TX: 18->1, 18->2

Figure 3.4: Multi-Sink Tree Topology in a Simulated RPL Network

Topological Analysis

One important item to consider is that of an ideal topology to favor for the designed

architecture. Is there a simple topological formation which may provide a limitation on

hop-count, while not degrading packet delivery rates to the sink?

The observations on the changes to routing in M and O serve to introduce two principle

networking topological formations to examine: tree and star. The tree topology, as shown

in figure 3.41, is representative of a closely clustered deployment of senders wherein the sink

is on the perimeter of the formation. The star topology, depicted in figure 3.52, however,

offers a much lower overall hop-count across the entire network. A perfect star, wherein

each sender is an immediate neighbor of the sink, eliminates the hotspot problem by defi-

nition, however, may introduce a greater level of interference as each node must be within

1Multi-Instance RPL DODAG depicted after 300s of simulation in Cooja
2Multi-Instance RPL DODAG depicted after 300s of simulation in Cooja

36

transmission range of the sink.
Test 316, RPL Graph Analysis (64, 64 quarter-second send
rates)

End Simulation
Time: 297768

N9
(28,-3)

TX: 18->1, 18->2

Root (1)
(0,10)

RX: 143

Mobile Sink (2)
(0,-10)

RX: 142

N10
(4,-41)

TX: 18->1, 18->2

N8
(-32,1)

TX: 18->1, 18->2

N4
(6,-31)

TX: 18->1, 18->2

N3
(9,33)

TX: 18->1, 18->2

N6
(-25,-30)

TX: 18->1, 18->2

N5
(-29,27)

TX: 18->1, 18->2

N7
(37,-13)

TX: 18->1, 18->2

Figure 3.5: Multi-Sink Star Topology in a Simulated RPL Network

While reducing the hopcount of the sender nodes would greatly reduce the energy drain,

it still needed to be demonstrated that reducing the problem to a star topology would

not negatively affect the collection rate of the deployment field. The following charts are

based on simulated runs on a two instance deployment. The simulation in Cooja ran for

300 seconds and data was collected using 2, 4, 8, 16, and 32 sender devices each. Each

simulation of the star topology was run using positions selected randomly using the Box-

Muller transform[51] using a mean of 3/4 of the transmission range and a variance of the

difference between the mean and the transmission range, divided by 3. This enabled each

newly added device to be placed within the transmission range of the sink for the star

topology. The tree topology used manually selected positions to provide a deterministic

tree-like structure. Each test was repeated three times and averaged for the following data.

This collection was not aimed to be an exhaustive analysis, but rather serves to provide

initial confidence to begin exploring a star based topology.

37

2 4 8 16 32
0

100

200

300

400

500

600

Average Throughput - Tree Topology

Transmitted

Received

Motes

P
ac

ke
ts

(a) Average Throughput

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

0
2
4
6
8

10
12
14
16
18
20

Average Per-Mote Packet Delivery Rate to Sink
(Tree - 32 Motes - 16 sec / Packet Rate)

Transmitted

Received

Mote

P
ac

ke
ts

(b) Average Per-Mote Packet Rate

Figure 3.6: Analysis of the Tree Topology

2 4 8 16 32
0

100

200

300

400

500

600

700

Average Throughput - Star Topology

Transmitted

Received

Motes

P
ac

ke
ts

(a) Average Throughput

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

0
2
4
6
8

10
12
14
16
18
20

Average Per-Mote Packet Delivery Rate to Sink
(Star - 32 Motes - 16 sec / Packet Rate)

Transmitted

Received

Mote

P
ac

ke
ts

(b) Average Per-Mote Packet Rate

Figure 3.7: Analysis of the Star Topology

This set of quick tests demonstrated that even in a cluttered environment where a single

sink receives data from 32 devices, featuring a star topology in the architecture design would

not present throughput degradation as compared to a more typical tree-based structure.

RPL Analysis under Resource Constraints

One further problem with such a deployment presents itself once the architecture is imple-

mented on physical, memory-constrained devices. Every consideration towards this archi-

tecture has been solely focused on routing data packets upwards. Upward routing towards

a sink remains easily implemented through the storage and use of a single key IPv6 address

representing the logical parent of the node. Downward routing, however, become untenable

even in small implementations due to the need to store information about all of a node’s

38

children. In RPL, downward routing enables the ability to send messages from the sink

down to a particular sender device. This also enables point-to-point routing by sending a

message up to the common ancestor and then routing it downward to the destination.

RPL implements this form of routing by storing the IPv6 address of each child device

in addition to the IPv6 address of each device the information was directly received from.

This routing table of destination and next-hop information uses a lot of space on a memory-

constrained device. The Contiki operating system, for instance, only allows 15 routes for

the Zolertia Z1 device.

Table 3.1: Downward Routing Table for Collector 8 in figure 3.3

Destination Next Hop

fe80::09 fe80::09
fe80::10 fe80::09
fe80::07 fe80::09
fe80::08 fe80::08
fe80::05 fe80::08
fe80::06 fe80::08
fe80::01 fe80::08
fe80::11 fe80::08
fe80::02 fe80::08
fe80::12 fe80::08
fe80::13 fe80::08
fe80::03 fe80::08
fe80::04 fe80::08

In a standard deployment, if one device served as the sole route to the sink and there

were more than 15 other devices, the downward routing table on that device would not

receive the complete list of devices, preventing proper routing. While the transmissions

are typically upward [12], any form of transmission assurance will require the downward

routing of an acknowledgment back to the originator. This simple architecture precludes

proper responses, succumbing to the problems of scale.

39

The designed architecture must assess the capabilities of the standard devices for imple-

mentation and reduce the expected number of downward nodes in any given device’s routing

table. By preferring an architecture that biases the design to use smaller hop counts and

distributes the collector devices among multiple intermediary sinks, this consideration will

be met.

3.3 HOIST Architecture

The fundamental tenet of this design is to enable data collection to occur in multiple,

geographically segregated regions and to transport that data back to a central processing

center. Two primary aspects of this design were posed to address the issues of the common

model: the ability to increase the size of the deployment and the mitigation of the energy

drain issues of a static deployment.

The approach used in this architecture combines hierarchical, multi-tier routing with

the reduction of the majority of the devices to a star topology to address these issues. A

similarly constructed observer sink is also supported to allow live-collection to occur on site,

while data stored on each collector may be retrieved periodically by a mobile messenger.

3.3.1 Design

The design meets the constraints by rebuilding the canonical network using a hierarchical

model. There are three tiers of this hierarchical design, featuring four distinct device roles.

In tier one, the WSN devices are actually collecting data on the environment. Tier two con-

sists of bridging sinks that are responsible for routing to the mobile sinks and coordinating

data transfers between collector devices and their destinations. Tier three consists of the

two mobile sink types: the messenger and the observer. The messenger collects blocks of

data from each deployment area for the physical transfer to a processing center, while the

observer is sent real-time information from the field when in range.

40

5

Collector

6

Collector

7

Collector

8

Collector 9

Collector

10

Collector

11

Collector

12

Collector

13

Collector

1

Bridge

2

Bridge

3

Bridge

4

Bridge

O

Observer

M

Messenger

Bridge Instances

Instance ’O’

Instance ’M’

Figure 3.8: The Designed Architecture

Tier One - Collectors

The first phase of this design is to designate a geographically contained area for sensor

deployment. The primary WSN devices may be placed throughout the environment as

desired by the implementation. This first tier of devices represent the mainstay of the

network and are hereinafter referred to as collectors. These collectors are programmed to

activate their sensors on a routine schedule and store these data into an array for later

access. As there is no routine data transmission on collection, the energy requirements of

the network drop as compared to the traditional network deployment.

Upon reception of instructions to begin sending data for the messenger sink, the collector

will stop collection and begin transmitting all of the stored values, beginning with the first

41

element of the array and proceeding until the array is exhausted and all data has been send

and their proper transmission confirmed.

If, on the other hand, the collector receives instructions to begin transmitting data to

the observer, then it will continue normal collections and populate the array; however, it

will additionally send the live data out for ultimate reception by the observer. There are

no delivery guarantees for the observer under this design. In an environment in which the

observer and messenger are active simultaneously, those collectors sending to the messenger

will cease communications with the observer until they have finished. At this point, the

collectors will resume data collection and their live transmissions to the observer.

Tier Two - Bridges

The second tier of this design is the new addition to the standard model. These bridge sinks

are the crux of this architecture. The bridges firstly enable the collectors to maintain static

routing without any perturbation by the mobile sinks in the environment. By removing the

necessity to have responsive updates to the routing on the part of the collectors, they can

use the more powerful MRHOF function, which allows them to select the routing using link-

quality aware metrics, such as ETX. This provides more stability and better transmission

quality to the majority of the devices in the deployment, the collectors.

These bridge devices shall be placed in a linear topology along the central line of the

collector deployment area. As bridges are the root of their own DODAGs, the nearest

motes to each bridges will select them as their preferred root, fragmenting the collectors

up into much smaller units that surround the bridges. This biases the constructed network

towards a star topology, which both reduces hop-count and the effects of the energy drain

phenomena.

Furthermore, as the bridges themselves are the only ones needing to route to the mobile

sinks, they can use the more responsive OF0 to adapt to the movements of the sinks. The

smaller number of these bridges compared to the collectors also reduces the number of

routing changes that are necessary as the mobile sinks traverse the environment.

42

The bridges also actively coordinate all transmissions from their subordinate collectors.

Instead of succumbing to a flooded environment when the messenger sink arrives, each

bridge uses their downward routing tables to signal each collector, one by one, to transmit

their data as fast as they are able to receive acknowledgments.

These features of the bridging tier principally allow for scaling of the environment on

physical memory-constrained devices.

Tier Three - Mobile Sinks

The third tier represent the ultimate destinations of the data. The first device that may

be a member of this tier is the messenger. This sink enters each deployment area using a

nomadic pattern. The device will arrive, establish a network, receive the data while orbiting

in the same geographic area, and then leave to either travel to the next deployment area or

to return to the collection station for a data dump.

The messenger arrives and creates its network as the root of its own DODAG. As the only

devices which will join the messenger are the bridges, this network forms much faster than

the traditional model where the DIO sent out must first propagate to every sender before

routing is completed. As the bridges have already established their static networks with

the collectors, this initial network creation phase by the messenger is rapid. Furthermore

as a second message, the DAO, must be sent out following DIO reception, this model also

enables downward routing in a significantly more rapid manner, as the bridges would have

already built their routing tables.

Once in position, the bridges signal their collectors to send and then serve to route this

data to the messenger. Once each message arrives, the messenger sends an acknowledg-

ment, which is repeated and propagated down to each collector. The data received by the

messenger contains the collected value of the sensor, the index of the collected value for

general collection time information, and the originator of the data. It then places all of

these data into its own array. Once the bridges all signal that their data collection has

ended, the messenger will signal the mobile carrier to proceed to the next destination.

43

The second device on this tier is the observer. Like the messenger, when it arrives, it

sends a DIO to begin the process of receiving data. The bridges send a start signal to the

collectors, which in turn send their data up to the observer. This data is live and presented

as collected, with the first block of data from each device being the last recorded values. In

this manner, the entity using the observer device can immediately see the conditions of the

area. As new values are collected, they are directly sent to the observer.

As each mobile sink leaves the area, the instances they generated ultimately reach the

end of their lifespan and the bridges drop their entries, awaiting the next event.

3.3.2 Demonstration of the Architecture

Figure 3.9 demonstrates a sample deployment of the same devices under this architecture.

This model introduces a second tier of sink devices to serve as a bridge between the collectors

and the messenger sink. These bridges are deployed in the center of the WSN deployment

field to fragment the network into multiple, smaller star-based networks, aimed at reducing

hop-counts to satisfy both the energy and resource constraint considerations. This archi-

tecture differs from the prior, standard architecture in two fundamental ways: hierarchical

routing and star topological formations.

Hierarchical Routing

This design incorporates a new hierarchical layer to the existing sender and sink nodes.

This layer of bridging sinks seeks to mitigate the most severe problems of the prior model

by fragmenting the collecting nodes into smaller, geographically separated units and then

completely removing the mobility aspect from their routing.

Examining the above example of different topological formations and the hotspot phe-

nomena, this architecture places these bridging nodes in the center of the deployed collection

fields. Segregating the collecting nodes into smaller units across a network by this tech-

nique not only reduces the hopcount between any given collector and the sink, but also

reduces the size of the downward routing table. In a canonical example, one network may

44

5

Collector

6

Collector

7

Collector

8

Collector 9

Collector

10

Collector

11

Collector

12

Collector

13

Collector

1

Bridge

2

Bridge

3

Bridge

4

Bridge

O

Observer

M

Messenger

Bridge Instances

Instance ’O’

Instance ’M’

Figure 3.9: The HOIST Architecture

only be able to field 15 collectors due to this routing table limitation in Contiki. Each of

these bridging sinks may now support up to 15 collectors, enabling the ability to scale the

deployment through the addition of more bridging sinks.

On the other end of the bridging sinks are the messenger and observer devices. These

nodes remain mobile and may traverse each environment as physically able. The difference

under this architecture, however, is that the collectors no longer need to adjust routing as

they wander the environment, as shown in figure 3.10. The bridging nodes are the only

devices that need to adjust to the new locations. By selecting OF0 as the OF of these

instances, the lack of hysteresis enables bridge sinks to more quickly adjust to the new

locations of the two mobile sinks. As the link quality to these sinks are always in flux,

45

having a link-quality aware OF will not be as helpful as having one that is most responsive.

5

Collector

6

Collector

7

Collector

8

Collector 9

Collector

10

Collector

11

Collector

12

Collector

13

Collector

1

Bridge

2

Bridge

3

Bridge

4

Bridge

O

Observer

M

Messenger

Bridge Instances

Instance ’O’

Instance ’M’

Figure 3.10: HOIST Network after Mobility

By developing this architecture hierarchically, this enables a deployment area to use

link-quality based, static routing without any need for adjustments over time for most of

the routes and rapidly changing routing based on minimizing the hop-count for routing

to the transient devices. Once these mobile devices have left, the instances they manage

decay and are purged, removing all communications and destroying the DODAGs until their

return, further minimizing the energy expenditures.

46

3.3.3 Network Communications

The network communications model for facilitation of HOIST is described in this section.

The goal of this communications model is to provide a means for the bridge sinks to detect

and coordinate all data transfers from their collectors to the arriving mobile sinks.

The messenger sink requires the sending of all stored data by each collector with data

delivery assurance. The bridge sinks need to coordinate each of their collectors, one at a

time, to send their data until they have finished, at which point the next collector may

begin their transmission.

The observer sink will not interfere with messenger operations or any of the collected

data. When this sink arrives, the bridge will signal each of its collectors to send their

latest collected data immediately, following which, they will send each new piece of data as

collected. If the messenger is active in the area, the observer will not receive any data until

the messenger has left, at which point, it will resume receiving live updates.

Messenger Arrival

The messenger, as an RPL sink, sends out regular DIO messages. If the DODAG formed

around the RPL instance is stable, then the time between each message doubles, out to the

maximum send time. The first DIO received by a bridge from the messenger sink is the

catalyst that begins the networking process, as shown in figure 3.11.

The timeouts depicted are present to govern data assurance. The bridge begins the

sequence after receiving the initial DIO by sending a M_BEGIN_TX packet to each collector

in its downward routing table, one by one. If the collector does not reply within the given

timeout window, a duplicate transmission is made. Once a collector replies with the same

begin message, it will then begin sending data from its collection array. This array initially

begins at index 0 and is reset to index 0 following each successful data dump to a messenger

sink. Any interruptions in the link will resume at the index following the last successfully

transmitted index.

Each data transmission from a collector begins a local retransmission timer. If it receives

47

Messenger Bridge Collector
Messenger

Arrival
DIO Send

DIO
M_BEGIN_TX

M_BEGIN_TX

M_DATA[0]

M_DATA[0]

M_ACK
M_ACK

M_DATA[0]

T
im

eo
u

t

T
im

eou
t

Figure 3.11: Start of Messenger Data Transmission

a M_ACK message in response before the timeout, it will reset the timeout and send the next

block of data. Otherwise, it will resend the data and reset the timeout, in a cycle, until the

data is either acknowledged or the link to the messenger is dropped by the bridge.

At the conclusion of the collector’s data transmission, it will generate a M_DATA_END

message for the bridge, as shown in figure 3.12.

Messenger Bridge Collector

M_DATA[n]

M_DATA[n]

M_ACK

TX Complete
Send END

M_ACK

Confirm END

M_DATA
_END

M_DATA_END

Begin Next Collector M_BEGIN_TX

T
im

eou
t

Figure 3.12: End of Messenger Data Transmission

Once the bridge receives M_DATA_END, it replies immediately with the same to the

48

sending collector and then sends M_BEGIN_TX to the next collector in the downward routing

table. The collector receiving the reply will stop its timeout and resume normal collection

operations. If the reply is lost, the collector will simply retransmit the end message again

until acknowledged.

Once the bridge receives the end data message from its last collector, it will reset the

current collector reference to the first entry in its downward routing table and then signal

the messenger sink that it has finished. The messenger sink, having received a number of

completions equal to the size of its downward routing table will have the option to either

signal its carrier to continue, or will simply wait until the autonomous vehicle naturally

leaves the area.

Observer sink operations behave similarly to the messenger data transfers. The begin-

ning of this process is depicted in figure 3.13.

Observer Bridge Collector
Arrival

DIO Send
DIO

O_BEGIN_TX

O_BEGIN_
TX

O_DATA

O_DATA O_DATA

T
im

eou
t

Figure 3.13: Start of Observer Data Transmission

The difference between this and figure 3.11 is that the collector begins by sending the

most recently collected block of data and then only sends a new packet when data is normally

collected. The only verification for reception is between the bridge and the collector, to

ensure each collector receives the instructions to either begin or conclude transmissions.

One implementation item of note with this diagram is that the collector only sends data

during its collection phase. When the messenger sink arrives and the bridge coordinates

a transmission start message, the first action the collector takes is to disable its collection

49

timer. This effectively terminates observer transmissions. This is an intended effect to

prevent undue interference during the messenger data transfers. Once the messenger has

left the scene and its lifetime has decayed, the bridge will send the terminate signal and the

collector will resume collection operations. At this point, the observer will resume receiving

data.

As there is no natural conclusion to this form of observation, the process will only

cease when the observer either leaves range or self-terminates. At this point the lifetime of

the instance will decay until it is purged by the bridge. Once the bridge terminates this

instance, it sends messages with delivery assurance to each collector that they can stop

their transmissions, as shown in figure 3.14.

Observer Bridge Sender

O_DATA

O_DATA

Observer Leaves

O Instance Purge O_DATA_END

O_DATA_END

O
L

ifetim
e

T
im

eou
t

Figure 3.14: End of Observer

50

Chapter 4: Implementation

The HOIST architectural design from the previous chapter is based on the IEEE 802.15.4

and RFC 6550 (RPL) specifications. While the Contiki operating system implements both

of these protocols, there are two key factors to note. First, these protocols do not fully

define how they are to be implemented. RPL, for instance, specifies that while it permits

multiple instance networks, it is beyond the scope of RFC6550 to provide an implementation

thereof[12]. Second, the nature of WSN devices is such that they are memory-constrained.

Developers of the Contiki operating system have left several aspects of RPL as presently

unimplemented, likely for space restrictions for compatibility with older devices. This poses

a problem for the implementation of the designed architecture, necessitating the modifica-

tion of the operating system to complete or define the protocols prior to implementation.

This chapter will cover the assessment of the present RPL code in Contiki 2.7 and de-

scribes my design and implementation of modifications necessary to implement the necessary

aspects of RPL for this architecture implementation.

4.1 Assessment of the Routing Protocol

The IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) is specified by IETF

RFC 6550[12]. This standard was partially implemented by the Contiki operating system to

facilitate the routing of messages over the IEEE 802.15.4. Each sink device is a designated

destination for multipoint-to-point routing. In this common routing scheme, all non-sink

senders route using only a single preferred-parent per instance, which serves as the next

hop to transmit the message for ultimate destination to the sink. This simple mechanism

allows such low-powered and memory constrained devices to successfully route messages to

their intended destinations.

51

When a sink first comes online, it creates a logical collection of Destination-Oriented

Directed Acyclic Graph (DODAG)s under a common DODAG instance. While an instance

may contain multiple DODAGs, RFC6550 specifies they must all operate under the same

Objective Function (OF). That is, they all use the same metrics for determining routing.

This information is propagated initially by the sink, using a DODAG Information Object

(DIO) message. When this DIO is received by the senders, if they have not previously

associated with this instance they will join it and add the device they received this message

from as its preferred parent for routing. After this action, the senders will rebroadcast the

DIO to motes more distant from the sink than themselves. Any future routing this node

performs on received messages will use these preferred parents as the next intermediate hop

to send the messages to.

One of the core requirements of the designed architecture of this thesis is that multiple,

discrete, routable tiers of devices must be able to inter-operate in order to facilitate scaling

of device deployments. Mechanically, there are two aspects of RPL which may, from the

outset, be employed to enable this multiple routing requirement: DODAGs and Instances.

RFC 6550, the definition standard for RPL, permits multiple DODAGs to be created

under a single instance, allowing routing to separate destinations as befits the design of

the network. Section 8.2.2.3 (DODAG Selection) of that document, however, specifies

that “a node must only join one DODAG per RPL Instance,” which rules single-instance

implementations out as a feasible possibility to extend for allowing multiple-sink routing.

Contiki, as of version 2.7, also does not presently support multiple DODAGs per instance.

As such, there is only one fundamental facet of RPL which may be used to achieve

this objective: Multiple Instances. RFC6550 specifies in section 1.1 that “[a] network

my run multiple instances of RPL concurrently,” however, the implementation of such a

network is left up to the designer of the network and is out of scope of the RFC. Contiki,

unfortunately, also does not presently support this, rendering the implementation of this

architecture impossible to directly perform. The analysis of this problem is detailed by the

next section.

52

4.1.1 Problems with the Contiki 2.7 RPL Implementation

Despite RFC 6550 specifying that multiple instances are valid, the Contiki implementation

only partially supports multi-instance networks. This partial support appears in the form

of limited data structure support for multiple instances. The majority of functions in this

implementation of RPL either use the default_instance of the intermediate routing

node for all decision making on the next hop for a message, or are otherwise hardcoded

assuming only a single instance exists.

The existence and use of a default instance itself is also specified in RFC6550 and would

achieve a partial success towards the implementation of this architecture. As either the

messenger or observer came online, the bridge could signal down to its children to begin

transmissions. The collectors at this point would be free to send messages directly to either

the messenger or observer. As the addresses used for this style of routing would not exist

within the current collector-bridge DODAG, the confused collectors would simply route

the messages up to their local sink. Once arrived, the bridge would assess routing and

recognize the destination as its own registered sink and route it properly from this point

forwards. Unfortunately, the downward routing of acknowledgments would be impossible

so no message delivery assurance would be possible. Moreover, this approach still requires

multi-instance networking to handle both an observer and a messenger. As this partial

solution is not tenable, further assessments were required.

Continuing the assessments, it was determined that under the Contiki implementa-

tion, routing over RPL is never done using the addressing information on the messages

themselves. The operating system uses the preferred parent of the default instance on the

intermediate routing node solely for routing decisions. As there can be only one default

instance, the last modification to this reference is the only one observed. For a single in-

stance implementation, this will still result in the proper routing as there is only ever one

parent to select from; however, once a second instance is added, the routing will always

favor the last set default instance. As if it were bad enough that messages are being routed

without checking its headers, but the headers themselves are actually overwritten by each

53

intermediate routing node’s default instance values. This corrupts the addressing on each

message while simultaneously ignoring it, as demonstrated in the log on table 4.1.

Further exacerbating this problem, each routing node must, by definition, maintain

information about the list of potential parents that each DODAG may use to select a

preferred parent to route to. Each DODAG by necessity must track its own parents and

their rank, link metric, and Destination Advertisement Trigger Sequence Number (dtsn),

among other metric-based values. These metrics must be tracked separately by DODAG

and, ultimately, by instance.

In Contiki 2.7, there is only one, global, parents list for RPL. All updates to each parent

overwrite the metrics in that parent’s list entry, regardless of which DODAG or instance

to which those metrics refer. This issue will ensure, regardless of the other improperly-

implemented aspects of multiple instance routing, that each preferred parent recalculation

will force the preferred parent of each instance to align to a single destination; this will

prevent proper routing to one or more of the instances. This problem is demonstrated in

Figures 4.2, 4.3, and 4.4 in the following section.

4.2 Analysis of Contiki 2.7 Multiple Instance Routing

To assess the problems with the routing, it was first necessary to understand the mechanisms

in the operating system which govern instance creation, neighbor tracking, parent assigning,

and message routing. The first stage in building the network is for DIO messages to be sent.

Once a sink comes online, it logically creates its own DODAG instance and begins sending

out DIO messages to announce to the network that an instance is available for joining.

The key phase of processing occurs when the receiving node calls the rpl_process_dio

function. In this function, the instance information is extracted from the DIO and checked

against the instance_table for a known match. If there is no entry in this table, then

the new instance is joined through the rpl_join_instance function. The DODAG is

likewise assessed and added, if not already present.

Once this processing is complete, the desired result is that a new instance is added to the

54

existing instances, the DODAG specified in the DIO is likewise added to the new instance,

and a preferred_parent for that DODAG is added and refers to the node that sent this

DIO message. The function allocates a new DODAG, adds the source as the new preferred

parent, sets the OF as specified by the DIO, copies over the DODAG address, and sets this

as the default_instance if one does not already exist. Finally, the function starts a

DIO timer to handle local rebroadcasts of this DIO for more distant nodes.

4.2.1 Base Contiki 2.7 Multiple Instance Routing Analysis

For this initial test, a scenerio, depicted in the following figure, was implemented in the

Cooja simulator. This linear topology features one sink at each end. The large circle that is

centered around sender 4 represents the transmission range of the device. All of the devices

have similar transmission ranges, ensuring they can only communicate directly with their

immediate neighbors.

1

Sink
3

Sender
4

Sender
5

Sender
2

Sink

Figure 4.1: Multitest.csc Topology

In this scenario, each of the nodes are configured to send one message every four seconds.

55

The destination of each message alternates between sink 1 and sink 2 after each send.

Correspondingly, if sender 3 sends one message to sink 1 at the 13 second mark of the

simulation, it will send its next message at 17 seconds to sink 2.

When this network comes online and all devices power up, sink 1 creates an instance

with instance_id == 1 and dag_id == aaaa::1 and sink 2 creates its instance with

instance_id == 2 and dag_id == aaaa::2.

Sink 1 starts by sending a DIO out, which is initially received by sender 3. Sender 3

processes this DIO and adds instance 1 to its table, with sink 1 as its preferred parent.

Sender 3 then transmits its own copy of the same DIO, which is received by sink 1 and

sender 4. As it already has an entry for this instance at a lower rank, sink 1 discards the

DIO immediately. Sender 4, on the other hand, adds instance 1 to its instance table and

sets sender 3 as it’s preferred parent.

After the full cycle of DIOs from both sink 1 and sink 2, the network looks like the

situation depicted in figure 4.2.

Preferred Parent - Instance 2

Preferred Parent - Instance 1

1

Sink
3

Node
4

Node
5

Node
2

Sink

Figure 4.2: Full DIO Reception Showing Preferred Parents

At this point, the network is well formed for two instances and the first messages are

ready to be transmitted. This is where the implementation of RPL begins to fall apart

rather abruptly. The following table describes a sequence of six messages transmitted, as

56

was observed through a Packet Capture (PCAP) analysis with the Wireshark program. The

entries that are italicized and in red show incorrect states.

Table 4.1: Routing of Messages using the Multiple Instance Scenario

Message Source Destination Route RPL Header Delivery Status

1 4 2 4 ⇒ 5 None Delivered to 5
5 ⇒ 2 Instance 2 Delivered to 2 and Accepted

2 3 2 3 ⇒ 1 None Delivered to 1 and Rejected

3 5 2 5 ⇒ 2 None Delivered to 2 and Accepted

4 5 1 5 ⇒ 2 None Delivered to 2 and Rejected

5 3 1 3 ⇒ 1 None Delivered to 1 and Accepted

6 4 1 4 ⇒ 5 None Delivered to 5
5 ⇒ 2 Instance 2 Delivered to 2 and Rejected

This is the typical result of attempting to send messages to multiple instances in Contiki

at present. There are several critical failures which led to this failed routing.

First, only two of the six messages contained a valid RPL header, and these messages

only received the header after the first hop. This lack of headers on initial send is a bug

in the uIP implementation within Contiki that affects all of Contiki’s RPL traffic. While

a single-instance environment has no technical need of headers as routing can be handled

through the default router, once multiple instances exist in a network, headers become

critical for proper routing. None of the messages initially transmitted by a sender attach a

header. Even when a message is received for retransmission, the existence of an RPL header

is never ascertained; a new header is generated using the current node’s default instance

information and blindly overwrites the header on the message.

This model presents a crippling flaw in Contiki’s RPL routing; however, it only presents

itself under the case of multiple instance routing. Under a single instance only, the address-

ing of the header would always point to the same location that each intermediate router’s

default instance would, mitigating the need to even check.

Second, the routes of half of the messages are incorrect. In figure 4.3, the initial preferred

parents follow the sources of the DIO messages and properly reference the appropriate

57

parents; however, the parents of instances aren’t directly used. All routing is done through

the preferred_parent of the default_instance if the destination is neither a directly

adjacent neighbor nor in the downward routing table.

Default Route

Preferred Parent - Instance 2

Preferred Parent - Instance 1

1

Sink
3

Sender
4

Sender
5

Sender
2

Sink

Figure 4.3: Showing the Default Instances in the Scenario

Figure 4.3 shows the path of the default instances as existed during this run. The default

instances are represented as red, dashed arrows in the center of the routing. The preferred

parents for the instance for sink 1 are solid black lines arced below and the preferred parents

for the instance for sink 2 are dashed black lines arced above.

Any message sent from either sender 4 or sender 5, regardless of which sink and instance

it is addressing, will be routed directly to sink 2. Likewise any message received by sender 3

will route directly to sink 1. Table 4.1 shows the incorrect routing in italicized red. Beyond

this, each new DIO received that affects the default_instance may arbitrarily switch

the direction of the routing until the next DIO comes in from the other instance.

Furthermore, this depiction only survives until the first rank recalculation event for the

instance. At this point, all parents are investigated for their ranks to see if a change is

warranted for the preferred_parent. In the case of sender 4, both sinks are equally

distant, so hysteresis should allow its parents to remain stable. The other nodes, unfortu-

nately, will not be so fortunate. Sender 3, for instance, will perform the recalculation and

58

see that the rank on sink 1 is significantly less than the rank on sender 4 and adjust the

preferred_parent for each instance to sink 1.

This occurs because there is only one, global, RPL parent’s table. This table holds

entries for all neighbors seen and contains metric information for the communications link,

however, there is no reference associating this to a specific DODAG or instance. Due to

this, if sender 3 receives a DIO from sink 1 for instance 1, then the parent’s table entry for

sink 1 will contain a rank of 256, which is the minimum rank for Contiki, and will be the

initial preferred parent for instance 1. When the same node receives a DIO from sender 4

for instance 2, then the parent’s table entry for sender 4 will contain a rank of 712, and

sender 4 will be the initial preferred parent for instance 2.

1

Sink
3

Node
4

Node
5

Node
2

Sink

Default Route

Preferred Parent - Instance 2

Preferred Parent - Instance 1

Figure 4.4: The Fatal Flaw of a Global Parents Table

When the recalculation event begins for instance 2, all parents are checked and it is

noted that the rank for sink 1 is significantly lower than the rank for sender 4. At this

point, the preferred parent for instance 2 is erroneously changed to sink 1. Figure 4.4 is a

representation of the preferred parents over time, highlighting this critical flaw.

At this point in the scenario, even if routing could be based on the instance intended,

the erroneously modified preferred_parent entries would prevent the appropriate des-

tinations from receiving the messages. This highlights the initial state of Contiki 2.7 for

59

multiple sink operations.

4.3 Completed Modifications to Contiki 2.7 for Multi-Instance

Routing

This section documents the updates to Contiki 2.7, in phases, that were made to support

multiple instance routing, as needed for the implementation of this thesis.

Table 4.2: Summary of Changes for Multiple Instance Routing

Count Actions Performed

8 Source File Changes

1 Function Obsoleted
5 Functions Added
5 Function Prototypes Added

25 Functions Modified
2 Structures Added
2 Structures Modified
1 Header Added
5 Function Debug Outputs Amended
1 Multiple Instance Debug Block Added

4.3.1 Optimizing the Environment

As this thesis implementation requires aggregation and storage of collected sensor data, the

first stage of the application is to optimize the code environment. The Contiki operating

system consists of a single process running on a microprocessor in an infinite loop. Appli-

cation code for Contiki is linked into this kernel process and is executed as a module of

the overall system. As such, Contiki supports a wide swath of options to support many

different applications.

The first stage of any project is to optimize the environment to reduce the memory

footprint on these severely constrained devices. The Zolertia Z1, for instance, has only 8KB

of RAM and 92KB of flash memory for all data storage. Of this, only 64KB of memory had

60

been supported using the msp430f2617 compiler toolchain, greatly reducing the available

space. The most recent update to this compiler extends this, however, other devices, such

as the Tmote Sky with its 48KB of total flash memory, must also be able to run this code.

The following snippets from the Makefile show the optimizations applied for all appli-

cations created for this thesis implementation.

Listing 4.1: Makefile

CFLAGS += -DPROJECT_CONF_H=\"project-conf.h\"

CFLAGS += -ffunction-sections

LDFLAGS += -Wl,--gc-sections,--undefined=_reset_vector__,--undefined=InterruptVectors,

--undefined=_copy_data_init__,--undefined=_clear_bss_init__,--undefined=

_end_of_init__

Listing 4.2: project-conf.h

#define PROCESS_CONF_NO_PROCESS_NAMES 1

#define UIP_CONF_TCP 0

The following table shows the data collected on the efficacy of these optimizations at

reducing the firmware size. The values are in bytes and are listed by their sections.

4.3.2 RPL Parents Table Modifications

One of the core problems with implementing multiple instance networking within Contiki

2.7 is that there is no means for storing metric information in each candidate parent that is

associated with a particular instance. The solution I chose for this problem is to remove the

existing global rpl_parents table and replace it with a similar table that is associated

61

Table 4.3: Firmware Size Comparison of Optimizations

Filename Version .text .data .bss .dec

static-sink.c Original 44289 210 7386 51885
static-sink.c Optimized 40927 196 7144 48267

sender.c Original 44262 210 7652 52124
sender.c Optimized 40861 196 7410 48467

with each DODAG.

Logically, the parents are strongly associated with the DODAG, so this was the best

place for the data structure to be anchored. Mechanically, since each instance in Contiki’s

RPL implementation may have only one DODAG associated, it functions strongly as the

list of parents for the instance.

Listing 4.3: Modified DODAG Structure (rpl.h)

/* Directed Acyclic Graph */

struct rpl_dag {

uip_ipaddr_t dag_id;

rpl_rank_t min_rank; /* should be reset per DAG iteration! */

uint8_t version;

uint8_t grounded;

uint8_t preference;

uint8_t used;

/* live data for the DAG */

uint8_t joined;

rpl_parent_t *preferred_parent;

rpl_rank_t rank;

struct rpl_instance *instance;

LIST_STRUCT(parents);

rpl_prefix_t prefix_info;

/* BEGIN - MOROMI_IN */

/* Moved the global rpl_parents to a DAG based structure

* so it can handle multi-Instance routing */

nbr_table_t *rpl_parents;

62

/* END - MOROMI_IN */

};

typedef struct rpl_dag rpl_dag_t;

This change does not substantially increase the size of the DODAG structure as I only

added in a pointer to the new rpl_parents table. The set of individual DODAG tables of

known candidate parents was added to the top of the main RPL source, directly replacing the

existing table. This necessitated adding a sufficient number of such tables for the maximum

number of instances as Contiki has only limited dynamic memory allocation functionality.

The potential parent tables are managed by the neighbor table system, which provides

support for up to a maximum of eight tables. Contiki uses 3 tables outside of RPL, which

provides support for up to 5 instances to operate simultaneously.

Listing 4.4: Modified rpl parents Tables (rpl-dag.c)

/* BEGIN - MOROMI_IN */

/* Adds two arrays to store the RPL parents information.

* References to this table are stored in each DAG (dag->rpl_parents)

* This completely replaces the original global rpl_parents table because it did

* not support multi-instance networks

*/

static nbr_table_t rpl_parents_table[RPL_MAX_INSTANCES];

static rpl_parent_t rpl_parents_memory[RPL_MAX_INSTANCES][NBR_TABLE_MAX_NEIGHBORS];

/* END - MOROMI_IN */

The above code defines the maximum number of parents tables as the maximum number of

RPL instances as set in the Makefile of the project. The rpl_parents_table definition

is what contains the necessary data for the neighbor table functions to operate with this

63

data set. The definition for the rpl_parents_memory table creates the space to hold

each of the potential parents and their metrics based on the instance.

One very useful aspect of the parents information is that it also provides a pointer to

the DODAG in which it is stored. This was included in the original Contiki 2.7 specification

for the structure and becomes very useful now that a specific parent entry is stored within

its DODAG.

A particularly egregious problem that arose when modifying the code to use the new

DODAG based tables was Contiki’s innate assumption that there would only ever be one

instance and only one DODAG in existence. Several functions to perform operations on

parents carried no information on the instance the operation was performed on.

Listing 4.5: Example of a Function Lacking DODAG/RPL Context

rpl_rank_t

rpl_get_parent_rank(uip_lladdr_t *addr)

{

rpl_parent_t *p = nbr_table_get_from_lladdr(rpl_parents, (rimeaddr_t *)addr);

if(p != NULL) {

return p->rank;

} else {

return 0;

}

}

This above function is seldom used, however, its sole purpose is to provide the rank of the

parent, specified by its IPv6 address, in an RPL network. Each node may belong to only one

DODAG within an instance, however, it may belong to multiple instances; each instance

will have a different rank for each parent as fits its own DODAG. This lack of context leads

to continuations of the earlier problem noted with the design. Such functions highlight the

64

problem with simply expanding the rpl_parents table.

4.3.3 RPL Header Modifications

In addition to the changes necessitated by the expansion of the rpl_tables structure into

each DODAG, there exists the problem that RPL header information is either lacking or

completely incorrect.

No RPL information is ever added to a message on its initial send operation. Compound-

ing the problem of addressing, when such header information is added at each intermediate

routing node, the instance information is that of the routing node’s default instance. These

headers are added without using any context from the received message and are facially

incorrect.

RPL is a routing protocol that provides a means for delivering messages under the follow-

ing three means: multipoint-to-point, point-to-multipoint, and point-to-point. Multipoint-

to-point messages comprise most of the RPL traffic and refers to some number of nodes

sending information to a single sink device. This delivery is facilitated by each router ex-

amining the RPL headers of the incoming messages and sending the message to the router’s

local preferred parent of that instance. The messages are not guaranteed the best route at

all times to the sink, but they continue to make progress until final delivery is made.

In the current code, as specified in Section 4.1.1 and shown in Figure 4.3, arbitrar-

ily routes messages to the default instance of the intermediate router. To address these

problems, two fundamental changes needed to be made. First, all upward-destined RPL

messages need to be sent with accurate RPL instance headers. Second, all intermediate

routers, when recognizing the destination is neither a direct neighbor nor along a downward

route, must use the RPL header information to select the proper instance’s preferred parent

to send the message to.

The first change involved two fundamental steps. First, the outgoing messages need to

include RPL headers if the message is being sent upwards. This is logically a straightforward

determination insofar as all upward routed messages will be destined for a known RPL

65

instance sink.

Listing 4.6: Code to Ascertain if Destination is a Known Instance Sink (rpl-dag.c)

/* Added to check if the destination address is a known instance sink

* Only called on initial send and on re-routing when no RPL information

* is in the message.

* Returns: Instance pointer if dest_addr is a known sink and NULL otherwise.

*/

rpl_instance_t *

rpl_is_addr_sink(uip_ipaddr_t *dest_addr) {

uint8_t instance_index;

rpl_instance_t *instance;

for(instance_index = 0; instance_index < RPL_MAX_INSTANCES; ++instance_index) {

instance = &instance_table[instance_index];

// If the destination IPv6 address matches the DAG ID of the selected instance,

return 1

if(instance->used == 1 && uip_ipaddr_cmp(dest_addr, &instance->current_dag->dag_id

) != 0) {

return instance; // The dest_addr is a known sink, this is RPL routable.

}

}

return NULL; // The dest_addr is not a known sink, this is not RPL routable.

}

This above function iterates through the table of instances looking for a DODAG ID that

matches the destination address. Using this scheme for instance creation – selecting the

DODAG ID to match the local sink IPv6 address – allows RPL addressing information to

be sent with the DIO and stored as a member of each node.

Listing 4.7: Setting the RPL Header from the Destination Address (rpl-ext-header.c)

66

void

rpl_set_instance_from_dest(uip_ipaddr_t *dest)

{

uint8_t i;

int uip_ext_opt_offset = 2;

int last_uip_ext_len = uip_ext_len;

rpl_instance_t *instance = NULL;

uip_ext_len = 0;

/* Searches all known instances for a matching destination--DAG ID

* DAG ID is normally set using the sink’s ipaddress using rpl_set_root()*/

for(i = 0; i < RPL_MAX_INSTANCES; i++) {

if(uip_ip6addr_cmp(dest, &(instance_table[i].current_dag->dag_id)) != 0)

instance = &instance_table[i];

}

/* We haven’t seen such an instance yet, add the header, but don’t route

* With Instance -1 as nonexistent, all recepients will discard */

if(instance == NULL) {

UIP_EXT_HDR_OPT_RPL_BUF->instance = -1;

UIP_EXT_HDR_OPT_RPL_BUF->senderrank = 0;

}

/* Destination DAG is associated with an instance, set it on message */

else {

UIP_EXT_HDR_OPT_RPL_BUF->instance = instance->instance_id;

UIP_EXT_HDR_OPT_RPL_BUF->senderrank = instance->current_dag->rank;

}

uip_ext_len = last_uip_ext_len;

}

Once it is determined that the IPv6 destination for the message is a sink, then the RPL

information may be added to facilitate proper routing to the destination. The below code

was added to the uIP uip_process function to insert a proper RPL header only if the

destination is a sink. If the destination is not a known sink or is a multicast address, then

no headers are added and the message is routed normally.

67

Listing 4.8: Adding RPL Header to Outgoing Messages (uip6.c)

/* Add the header to the packet after the checksum is calculated

* rpl_update_header_empty generates the proper header to add.

* rpl_insert_header, which was used previously, only adds the header if the

* message already contains an OPT RPL extension, so it was not useful.

* Only adds RPL information if the destination address is a known sink.

*/

#if UIP_CONF_IPV6_RPL

if(!uip_is_addr_mcast(&UIP_IP_BUF->destipaddr) && (rpl_is_addr_sink(&UIP_IP_BUF->

destipaddr) != NULL)) {

rpl_update_header_empty();

/* The empty header now needs the instance to add to the OPT, set it here */

rpl_set_instance_from_dest(&UIP_IP_BUF->destipaddr);

}

#endif

This only addresses half of the original problem. The other facet of this issue is that

intermediate routing nodes, when receiving this message, would replace the RPL header on

the message with their own default routing information. This had to be changed along the

same lines as the above listing. If the message contains RPL headers, then those headers

should be left alone. On the other hand, if there are no RPL headers and the message

destination is an instance sink known by the intermediate router, then it should add RPL

headers to facilitate proper routing.

Listing 4.9: Reading the RPL Header from a Received Message (rpl-ext-opt.c)

rpl_instance_t *

rpl_get_current_instance()

{

int i;

rpl_instance_t *instance = NULL;

68

int uip_ext_opt_offset = 2;

int last_uip_ext_len = uip_ext_len;

uip_ext_len = 0;

/* Searches all instances for the one matching the received packet. */

for(i = 0; i < RPL_MAX_INSTANCES; i++) {

if(instance_table[i].instance_id == UIP_EXT_HDR_OPT_RPL_BUF->instance &&

instance_table[i].used != 0)

instance = &instance_table[i];

}

uip_ext_len = last_uip_ext_len;

return instance;

}

Listing 4.10: Adding RPL Headers In Transit (uip6.c)

/* If the packet does not contain a RPL OPT header with a known instance and

* is not a multicast addressed message, then see if it is RPL capable,

otherwise

* continue to use current packet options.

*

* This previously always added an empty header using default instance

information.

*/

if(rpl_get_current_instance() == NULL && !uip_is_addr_mcast(&UIP_IP_BUF->

destipaddr)) {

/* If the destination address is a known RPL sink, then add a new header */

if(rpl_is_addr_sink(&UIP_IP_BUF->destipaddr) != NULL) {

rpl_update_header_empty();

}

}

69

At this point Contiki is now sending and receiving RPL information in the messages prop-

erly, however, routing is still arbitrary and based on non-relevant default instance informa-

tion on each intermediate routing node.

4.3.4 RPL Routing Decision Modifications

The final set of major modifications to the RPL implementation in Contiki 2.7 was to the

primary routing function, tcpip_ipv6_output. Despite having TCPIP in the name of

the function and its source file, this is the primary function for all message routing. The

primary purpose of this function is to ascertain the next hop to add to the message on

transmission.

The original function performed four steps in attempting to ascertain the proper next

hop for the message routing.

1. If the message is destined for the multicast address (ff02::1), then send it immedi-

ately without further route determination.

2. Else, If the message is destined for a known immediate neighbor, then set nexthop

to that destination and send the message.

3. Else, If the message is destined for an address in the routing table (downward routing),

then set the nexthop to the nexthop field of the destination’s entry in the downward

routing table and send the message.

4. Else, Set the nexthop for the default instance’s preferred parent and send the mes-

sage.

At no point in this process is any RPL information used for upward routing towards

a known sink. Routing to a sink has only used the fallthrough default rule of using the

default instance of the intermediate routing node. The following listing and enumerated

list show the changes made by adding a new step immediately prior to the fallthrough to

route based on the RPL information contained within the message itself.

70

1. If the message is destined for the multicast address (ff02::1), then send it immedi-

ately without further route determination.

2. Else, If the message is destined for a known immediate neighbor, then set nexthop

to that destination and send the message.

3. Else, If the message is destined for an address in the routing table (downward routing),

then set the nexthop to the nexthop field of the destination’s entry in the downward

routing table and send the message.

4. Else, If the message contains RPL information for a known instance, then set the

nexthop to that specified instance’s preferred parent and send the message.

5. Else, Set the nexthop for the default instance’s preferred parent and send the mes-

sage.

Listing 4.11: Added RPL Destination Check (tcpip.c)

/* No route was found, check message for RPL addressing

* If RPL found, route to that instance’s parent

*/

#if UIP_CONF_IPV6_RPL

if(route == NULL) {

rpl_instance_t *instance = rpl_get_current_instance();

if(instance != NULL) {

//nexthop = &instance->current_dag->preferred_parent;

nexthop = rpl_get_parent_ipaddr(instance->current_dag->preferred_parent);

}

}

Following these changes the multisink test was rerun and all apparent routing issues were

resolved. Each node sends one message every four seconds alternating the destination

71

between the two sinks. In eight second intervals, each sink reports successful message

receipt from all nodes.

4.3.5 RPL Instance Whitelist Modification

As with any hierarchical design, the devices need to determinstically join only the instance

of the next superior tier in the hierarchy, without any incidence of joining sibling or sub-

ordinate instances. RFC 6550 itself only defines base operations under a single instance

implementation, leaving such decisions to those implementing the protocol. As Contiki

only operated under a single instance prior to these modifications, it too offered no means

for selectively joining instances.

The modification for this design involved only a minimal addition to the ICMP6 im-

plentation for RPL.

Listing 4.12: rpl-icmp6.c

/* BEGIN - MOROMI_DIO */

#ifdef RPL_ALLOWED_INSTANCES

if(strchr(RPL_ALLOWED_INSTANCES, (char)dio.instance_id) == NULL) {

PRINTF("The instance ’%c’ (0x%x) is not on the allowed list. Rejecting.\n", dio.

instance_id,dio.instance_id);

return;

}

else

PRINTF("The instance ’%c’ (0x%x) is on the allowed list. Joining.\n", dio.

instance_id,dio.instance_id);

#endif

/* END - MOROMI_DIO */

This small modification makes use of a user defined macro, RPL_ALLOWED_INSTANCES,

which is set to an array of values indicating valid instances to join. In this implementation,

72

for ease of use, the instance IDs chosen correspond with the first letter of the sink roles: M,

O, and B. The makefile for each of the devices is then modified to specify which instances

the device may join. For example, the following listing shows the relevant line for the bridge

device.

Listing 4.13: Bridge Makefile

CFLAGS+= -DRPL_ALLOWED_INSTANCES="\"OM\""

This listing specifies that the bridge is able to join instances with an ID of either 0x4F

(’O’) or 0x4D (’M’). Any other DIOs this device receives will be ignored at the beginning

of the processing phase. If RPL_ALLOWED_INSTANCES is not set at compile time, then

the default action of accepting all instances will be followed.

4.3.6 RPL Instance Lifetime Modification

The final major modification to the Contiki 2.7 operating system is implied by the details

of the architecture to implement, while not directly presenting itself as a problem affecting

multiple instance routing environments. For the implementation, when either the messenger

or observer sinks arrive, the send their next DIO to the network. Once each bridge sink

receives a DIO from the mobile sink, they add the information to their instance table, set

up routing, and begin rebroadcasting the DIO information for bridges more distant from

the mobile sink than they are.

The complication arises when the mobile sink either ceases transmissions or leaves op-

erational range while headed to a new destination. Though the routing information will

eventually decay, the instance itself will remain ever-present in the system. The bridges

will continue to output a DIO, flooding the network with out of date information and con-

fusing the routing. Hours after the mobile devices have all left, the bridges will continue to

73

send each other copies of the DIO announcing their ranks to the mobile sinks. The final

modification to this RPL implementation is not described in RFC6550, but rather uses its

description of routing lifetimes to elect to clear instances from devices once their lifetime

has expired.

DIO messages in Contiki carry with them an additional, optional DIO Configuration

header, which describes, among other fields, the default route lifetime and the unit that

lifetime is measured in. The default lifetime for Contiki’s implementation is 65535 lifetime

units, each of which is 255 seconds long. This provides a default routing lifetime of approx-

imately 193 days. Even with this extreme lifetime, Contiki only assesses lifetime for the

neighbor routing table entries.

The first modification follows this by adding a new lifetime field to the instance

structure to allow instance-level lifetime tracking to occur.

Listing 4.14: rpl.h

/* Instance */

struct rpl_instance {

/* DAG configuration */

rpl_metric_container_t mc;

rpl_of_t *of;

rpl_dag_t *current_dag;

rpl_dag_t dag_table[RPL_MAX_DAG_PER_INSTANCE];

/* The current default router - used for routing "upwards" */

uip_ds6_defrt_t *def_route;

uint8_t instance_id;

uint8_t used;

uint8_t dtsn_out;

uint8_t mop;

uint8_t dio_intdoubl;

uint8_t dio_intmin;

uint8_t dio_redundancy;

uint8_t default_lifetime;

/* BEGIN - MOROMI_DIO */

uint16_t lifetime;

74

/* END - MOROMI_DIO */

uint8_t dio_intcurrent;

uint8_t dio_send; /* for keeping track of which mode the timer is in */

uint8_t dio_counter;

rpl_rank_t max_rankinc;

rpl_rank_t min_hoprankinc;

uint16_t lifetime_unit; /* lifetime in seconds = l_u * d_l */

#if RPL_CONF_STATS

uint16_t dio_totint;

uint16_t dio_totsend;

uint16_t dio_totrecv;

#endif /* RPL_CONF_STATS */

clock_time_t dio_next_delay; /* delay for completion of dio interval */

struct ctimer dio_timer;

struct ctimer dao_timer;

/* BEGIN - MOROMI_DIO */

struct ctimer instance_lifetime_timer;

/* END - MOROMI_DIO */

};

The second modification to this system was to add a new timer when a DIO is received. This

timer is set for the proper number of lifetime in seconds, as specified by the received DIO

and is specific to each instance. Once the timer expires, the specified instance decrements

its current lifetime by one unit. If the lifetime reaches 0, the instance is freed and all timers

pertaining to it, to include the DIO resend timer, are halted.

The final modification is to assess incoming DIOs for the same instance for a larger

lifetime than the current instance features. A larger lifetime indicates the instance was

refreshed by an origin DIO from the mobile sink – which always sends the full default

lifetime – and the current node should increase its lifetime to match.

75

Listing 4.15: rpl-dag.c

/* BEGIN - MOROMI_DIO */

if((dio->default_lifetime * dio->lifetime_unit) > instance->lifetime) {

instance->lifetime = dio->default_lifetime * dio->lifetime_unit;

rpl_reset_dio_timer(instance);

}

/* END - MOROMI_DIO */

The tested result of this is when a mobile sink arrives within range of a bridge sink, the

bridge accepts the first DIO it receives and propagates the information to the remaining

bridge sinks. Network communications occur as detailed in the implementation from this

point forward, with each bridge sink decrementing the lifetime of their joined instance.

As the mobile sink sends out new DIO messages, the bridge sinks quickly increase

the lifetime of those instances to match and the instance is refreshed. When the sink is

removed from the environment, each of the bridge sinks slowly degrades, uniformly across

the network, until the instance lifetimes all reach 0. At this point, each bridge sink purges

the instance information and frees the slot in the instance table for a new instance to arrive.

Initially, the function rpl_free_instance() was assessed for suitability, however,

this function had the side-effect of nullifying the node IPv6 address. Following the instance

purge, the node was no longer routable whatsoever. This was bypassed by directly clearing

the instance information in the table by manually stopping the DIO, DIO, and Lifetime

timers before setting the used flag to 0 and clearing the instance.

Following a purge, when the mobile sink returns and sends its next DIO out, the instance

is rejoined and operations resume.

76

Chapter 5: Validation of Modifications and Architecture

The implementation of the HOIST architecture has involved the heavy modification of the

operating system as a necessary prerequisite to support this architecture. This chapter is

dedicated to the proper validation of the design and of the system modifications.

5

Collector

6

Collector

7

Collector

8

Collector 9

Collector

10

Collector

11

Collector

12

Collector

13

Collector

1

Bridge

2

Bridge

3

Bridge

4

Bridge

O

Observer

M

Messenger

Bridge Instances

Instance ’O’

Instance ’M’

Figure 5.1: The Full Architecture

Figure 5.1 shows the intended implementation of the full designed architecture, which

represents the final phase of verification.

77

5.1 Initial Validation

There are two primary aspects of the validation portion of this section. The first is flight

verification testing. This aspect of the validation is primarily focused on the ability to

successfully communicate with an unmanned aerial system that is orbiting about the WSN

deployment zone.

The second aspect of validation is a brief breakdown of the architecture into five discrete

phases, to highlight the various critical components necessary for proper validation. Each

of these phases focuses on separate facets of the architecture for validation prior to the

full evaluation of the design. This section concludes with a thorough run of the completed

implementation.

1

Bridge

2

Bridge

3

Bridge

4

Bridge

M

Messenger Instance ’M’

Figure 5.2: Implementation for the Unmanned Aerial System

5.1.1 Unmanned Aerial System Evaluation

I coordinated with a local Unmanned Aerial Systems (UAS) flight group, Aurora Flight

Sciences, to assess the ultimate implementation of this work on a UAS platform. For

agricultural implementations, UAS aircraft have a natural suitability to maneuver about

the vegetation and their supporting structures to being used as effective collectors from

embedded WSN devices.

78

Figure 5.3: Payload Bay with WSN Device

On October 2, 2014, the Systems Laboratory met with Aurora Flight Sciences rep-

resentatives to specifically assess the suitability of their Skate UAS model for use in the

implementation of this architecture. At this point in the development cycle, phase one

had been verified and evaluated in simulation and was selected as for the UAS test. I was

provided in advance of the flight with a customizable payload pod, designed to carry up to

200g of equipment.

I modified the payload bay, as shown in figure 5.3, to carry 100g of payload, consisting of

a Zolertia Z1 WSN device with battery pack, two AA batteries, and a Titanis 2.4GHz swivel

antenna. I arranged the interior space such that while the bay is opened, both the reset and

user buttons of the WSN device are easily accessible and the three LED emitters are clearly

visible. While assembled and ready for flight, only the external antenna is accessible. As

the device is powered from battery packs, testing procedures had to be devised under the

assumption that the mobile sink would be fully powered and operational from the point of

assembly, prior to flight.

79

A slot for the external antenna was cut into the nose of the airframe, providing it a

stable location for flights. The swivel antenna was attached such that any position between

vertical and rear-facing would result in a minimization of damage in the event of a hard

landing. The WSN device began transmitting immediately upon power-on, prior to the

closing of the payload bay. These transmissions occur very frequently in the beginning,

then back off over time in accordance with the Trickle algorithm[52]. All transmissions took

place on IEEE 802.15.4 channel 26, which is centered around 2480.0 MHz, with a 2MHz

total bandwidth. External UAS downlink communications were configured to operate on

IEEE 802.15.4 channel 1, which is centered at 2405.0 MHz, mitigating any possibility of RF

interference.

Flight Test Preparations

I constructed the basic test to employ five motes, arranged in a linear pattern in a large,

open field that would be free of obstructions or other sources of interference. Initially, for

the first round of range testing, I configured two WSN devices, labeled as WSN 1 and WSN

2, with the Titanis swivel antenna and loaded both with the default radio-test example

program.

Figure 5.4: Control Table - WSN Devices along with the Payload Bay and Skate

80

The first test conducted was a basic range check to position the bridge device in the field

beyond the range of the UAS mounted observer sink at the launch site. This test was added

to ensure the bridge device would not receive messages from the control table prior to flight

as the UAS device is always powered on. The expected range of the Z1 was approximately

50m of lateral distance using the Titanis antenna. Immediately, we noticed that the achieved

range for bi-directional communications was greatly reduced, with communications failing

at approximately 10m.

I elected to replace these devices with WSN devices 7 and 8 and repeat the experiment.

At this point, we began receiving better signals, out to approximately 40m. The immediate

analysis of the situation was the U.Fl connector on one of the first devices may have not been

seated properly and the orientation of the antennas may not have been properly aligned.

The Titanis swivel antennas are very sensitive to orientation, as ground testing would show.

Figure 5.5: Placement of WSN Device 7 in the Field

At this point, I attached bridge sink 7 to a post at an elevation of approximately

2.5m above the ground and planted it approximately 5m beyond the point of last signal

reception, which was approximately 45m from the control table. The orientation of the

81

antenna was horizontal with respect to the ground, swiveled to face the control table. This

was elected as the common antenna orientation for all ground devices. Figure 5.5 shows

the final placement and inspection to ensure no communications were received. We used a

cell phone based GPS unit to mark the geographic location of the device placement. This

central device was positioned at 38.8300780N/77.807525W.

Initial Range-Check Flight Test

Table 5.1: Initial Range-Check Flight Configuration Data

Mission Altitude Orbit Payload WSN Channel Power Temp Wind

1 100ft AGL 20m 100g 26 (2480MHz) 0dBm 70 F 3-4 kts (10kts gust)
2 75ft AGL 20m 100g 26 (2480MHz) 0dBm 70 F 3-4 kts (10kts gust)

The first flight test employed a single device in the field and single mobile device mounted

within the Skate UAS. The purpose of this first flight was to ascertain suitability for com-

munications with the WSN devices and to determine the best altitude for communications.

The temperature was 70 degrees Fahrenheit on an overcast day with inclement weather in

the distance. Wind speeds sustained approximately 3-4 kts, with gusts up to approximately

10 kts. I placed WSN observer sink 8 in the payload bay and attached the Titanis external

antenna. We conducted a final check by inserting the batteries and verifying that neither

device reported any activity (no blue or green LED lights emitted). Upon this verification,

I sealed the payload bay and handed it off to the flight team. For this first test, the antenna

was oriented horizontally and stowed partially within the nose section, facing the rear of

the aircraft. The tip of the antenna was fully exposed, seated approximately 1/4” below

the payload bay.

The flight team gave the permission for the operation and attached the payload bay to

the Skate UAS. The UAS was brought around to the side of the control table and proceeded

to start its flight checks. After a minor adjustment, the controller announced UAS startup.

82

Figure 5.6: Planned Placement of WSN Device in the Field

After launch, the operator allowed the UAS to enter into a stable flight pattern before

programming the orbit. The plan chosen used an altitude of 100ft AGL with a 20m orbit

radius. The UAS entered into this orbit after several seconds, but had trouble maintaining

a stable orbit due to the wind gusts. The UAS adjusted its flight to ensure it continued to

center itself around the specified location, but the flight profile itself presented unpredictable

antenna orientations. The initial orbit was also several meters north of the target device,

which was expected from the precision of the cell phone positioning. The UAS operator

adjusted the track to place the center over the device.

The bridge sink on the ground began receiving sporadic signals shortly after launch,

but only began receiving relatively stable communications once the orbit was adjusted. In

total, only approximately 60% of the transmissions at 100ft AGL were received, and these

blocks of ideal communications came in bursts as the UAS presented a favorable angle

before correcting to return for the next pass.

After several minutes of collections, I directed the UAS to reduce altitude to 75ft AGL to

assess communications. Approximately 80% of the messages were delivered at this altitude,

83

(a) Flight Checks (b) Launch of the UAS

Figure 5.7: Launch of the Skate UAS

though the orbit was slightly more stable and the UAS had already been adjusted over the

location better.

The first flight provided the initial indication of suitability of the airframe for our re-

search needs. Despite gusty conditions, the UAS persisted in its orbit and maintained ap-

proximately that 20m lateral radius from the device, at approximately the altitude selected.

The 75ft AGL orbit provided significantly more reliable communications than did the 100ft

AGL orbit, however, both featured the same pattern of bursts of reliable communications

followed by moments of disruption.

The periodic communications pattern is not a large concern for our experiments as

each device has a timeout system whereby it will attempt to retransmit the last packet

until a successful reply is received. One observation made by the flight team was that the

recessed antenna may be causing some trouble in our reception on the ground and it was

recommended to repeat the test with the antenna extended.

At this stage, a second flight was requested to assess two more altitude profiles and a

new antenna configuration.

Second Range-Check Test Flight

The temperature remained at 70 degrees Fahrenheit on an overcast day with inclement

weather continuing to drift past in the distance. Wind speeds sustained approximately 4-5

84

Table 5.2: Second Range-Check Flight Configuration Data

Mission Altitude Orbit Payload WSN Channel Power Temp Wind

1 120ft AGL 15m 100g 26 (2480MHz) 0dBm 70 F 4-5 kts (10kts gust)
2 80ft AGL 15m 100g 26 (2480MHz) 0dBm 70 F 4-5 kts (10kts gust)
3 60ft AGL 15m 100g 26 (2480MHz) 0dBm 70 F 4-5 kts (10kts gust)

kts, with gusts up to approximately 10 kts. I kept WSN device 8 in the payload bay with

its Titanis external antenna. We conducted a final check by inserting the batteries and

verifying that neither device reported any activity (no blue or green LED lights emitted).

Upon this verification, I sealed the payload bay and handed it off to the flight team. For

this second test, the antenna was oriented vertically at approximately 80 degrees incident

to the payload bay, slightly swept towards the aft of the aircraft. We assessed that any hard

landing would drive the antenna back into its original semi-housed orientation and reduce

the chances for damage.

Figure 5.8: Placement of WSN Device in the Field

85

There was no servicing of either of the WSN devices prior to the second flight. The

flight team gave the final permission for the operation and attached the payload bay to the

Skate UAS. The UAS was brought around to the side of the control table and proceeded to

start its flight checks. All tests passed and the controller announced UAS startup.

After launch the operator waited until the UAS achieved a stable flight pattern, then

directed the aircraft over the target. The initial altitude selected was 120ft AGL with

a tightened 15m radius orbit around the target. Once the UAS achieved this orbit, the

ground communications device began to receive data, however, the rate of reception was

very poor. After several minutes, we elected to drop the UAS to an altitude of 80ft AGL

and we began receiving packets on a similar rate to the first test flight at 75ft AGL, which

was approximately 80%.

I directed the the altitude to be lowered to 60ft AGL for several minutes and noted a

much stronger communications pattern, as anticipated. With the antenna extended down-

wards and orbiting at 60ft AGL, there were only intermittent drops in communications.

The UAS had some difficulty maintaining a stable flight pattern in the tighter orbit, but it

spent more of its time around the target, providing a very strong communications pattern.

The second flight demonstrated that the UAS was viable at a lower altitude and at a

tighter orbit. I elected to use 60ft AGL and a 15m orbit for the second test. The extended

antenna seemed to provide longer bursts of communications between the UAS and ground

station. We elected to use this antenna position for the first flight for the second test. The

orbit seemed more erratic at this tighter radius, however, our communications improved

with the longer time over target, so it was suitable for continued operations.

First Test Flight of Phase One Implementation

Table 5.3: Initial Phase One Implementation Test Flight Configuration Data

Flight Segment Altitude Orbit Payload WSN Channel Power Temp Wind

1 60ft AGL 15m 100g 26 (2480MHz) 0dBm 70 F 1-2 kts

86

For this third flight, the temperature remained at 70 degrees Fahrenheit on a clear day,

with some overcast conditions in the distance. Wind speeds dropped to approximately 1-2

kts, reducing throughout the duration of the flight. I kept WSN device 8 in the payload

bay and attached the Titanis external antenna, though I reloaded this device with the

static sink program, which was the first iteration of the observer sink.

Figure 5.9: Placement of WSN Devices in the Field

I planned to deploy four additional WSN devices to create a linear topology network

of five ground communications platforms. The deployed ground device location from the

previous test was marked and that device was brought in for reprogramming. I loaded all

five ground devices with the sender program, which was the first iteration of the bridge

sink, and performed a function check at the table.

After loading the devices, I conducted a test of the network and discovered that WSN

device 4 was unable to receive any replies. I checked the configuration of the device and

saw it had been erroneously given an improper IPv6 address which did not match its Node

ID value. I reprogrammed the device to return to its desired configuration, with the final

87

Figure 5.10: Loading the Devices for Test 2

octet of the Node ID and its MAC (and therefor IPv6) addresses to 4. Unfortunately, I

did not account for the earlier substitution made in the beginning of the day, which had

used WSN devices 7 and 8 in lieu of the planned devices. At this point, I now had two

devices on the network with an IPv6 address ending in ::4. The repeat of the test passed

because all five devices were able to directly communicate with each other on the same

table, so when the aerial communications device replied to either of the ::4 devices, both

acknowledged them. This problem with the networking would only affect multi-hop routing,

which occurred during the actual test.

At this point, I moved the devices to the field in accordance with the above mapping of

the placement. All four of the deployed ground devices were powered on and were reset at

the deployment site.

I conducted a final check by inserting the batteries to the airborne WSN device and

verifying that none of the deployed ground devices reported any activity (no blue or green

88

Figure 5.11: Placement of WSN Devices in the Field for Test 2

LED lights emitted). Upon this verification, I sealed the payload bay and handed it off to

the flight team. For this test, the antenna was planned to be oriented vertically, however,

the deployment was done with the antenna in the seated position, aft-facing and seated in

the payload bay. The flight crew finished the preflight checks and launched the UAS from

the control station. After achieving stable flight, the controller directed the UAS to orbit

over WSN bridge sink 7, which was located in the same spot as it was in the prior tests.

The flight proceeded normally for approximately the first four minutes of the test, how-

ever, nearing the end of the duration, the airframe lost altitude and began orbiting only a

few feet off of the ground. The meaningful data collection had already ended at this point

in the flight, so I directed the UAS to land for recovery. Following a rather abrupt landing,

the flight team did a rapid assessment of the airframe and ascertained, and corrected, the

problem immediately, preparing for further flights. As I had enough data from the flight, I

elected to conclude operations for the day.

Upon opening the payload bay following this flight, I noted that the U.Fl connector that

89

attached the Titanis swivel antenna with the WSN device was disconnected. This likely

occurred during the hard landing and was not likely separated during the flight. I noted

that this connector should be secured with an adhesive to the device prior to any future

flights.

WSN Network Analysis

In analyzing the network performance, all times were adjusted to start from the moment

the UAS was directed to begin orbiting the target site. The airframe needed approximately

8 seconds from the input of this command until it was over the target location, due to the

location of its initial orbit and its position in that orbit.

In addition to the visual logging through the debug LEDs, I also used a TMote Sky

device loaded with an 802.15.4 sniffer program and connected to an Asus Nexus 7 tablet

to perform packet analysis and live collection. I started collection approximately 8 minutes

prior to the beginning of the flight, however, the device stopped recording after 10 and a

half minutes, which left most of the flight unrecorded. This is likely due to a minor shifting

of the device in the grass, disconnecting it from the tablet, which stopped the recording.

Table 5.4: Phase One Implementation UAS Test Data

WSN Device IPv6 Position DIO Time RX Time Completion

8 ::3 UAV over WSN 7 N/A N/A N/A
7 ::4 38.830070N/77.807525W +19 sec +32 sec +172 sec
2 ::2 15m SW of WSN 7 +22 sec +33 sec + 179 sec
1 ::0 15m NE of WSN 7 +11 sec - -
4 ::4 5m NE of WSN 1 - - -

Initial DIS Configuration

The sniffer recorded 9 minutes and 4 seconds of communications between the four ground

devices. These were all Destination Oriented Directed Acyclic Graph Information Solicita-

tion (DIS) messages. DIS communicates occur very frequently on initial network startup.

90

These messages serve to announce the identity of the sender to all other WSN devices in

range; this is the level of communications which build the adjacency neighbor lists and are

used to establish signal quality information about each neighbor.

The DIO Received time in this log represents the average time between DIO reception

and SYN transmission. These are recorded times made by observation and a simple wrist-

watch. All times listed in italics are values not taken from the packet analyzer and indicate

a general lack of precision. Also of note is that these mark the first transmissions detected

by the RF sniffing device and may not represent the first packets transmitted.

Initial DIO Reception and Retransmission

Table 5.5: DIO Reception

Time (sec) WSN IPv6 Address Event Selected Parent

12 1 ::0 DIO Received 8
13.416 1 ::0 SYN Transmitted 8
14.092 1 ::0 DIO Retransmitted 8

18 7 ::4 DIO Received 8
19.104 7 ::4 SYN Transmitted 8
21.549 7 ::4 DIO Retransmitted 8

23 2 ::2 DIO Received 7
24 2 ::2 SYN Transmitted 7

25 - - END OF LOG -

The network formed beginning with WSN 1 receiving the first DIO packets from WSN

8 in the UAS. WSN 7 then received a DIO directly from WSN 8 and began retransmitting

the DIO to its neighbors. WSN 2 received the DIO from WSN 7 and added it as the parent,

forming a perfect multi-hop routing tree up to WSN 8. Unfortunately, at this point, the

logging of the 802.15.4 sniffer failed and all packet logging ceased.

The best we were able to ascertain at this point was that WSN 1 changed its parent

to WSN 7 after the UAS entered its stable orbit. WSN 4 received a DIO, however, once

it attempted to associate with WSN 7, it would have been immediately rejected and the

91

entire branch of the DAG would have been nullified as both devices had the same IPv6

address; WSN 7 would have seen WSN 4 as a loop. Messages destined for WSN 4 or WSN

7 would have been received by both, however, further routing would have been problematic

due to the IPv6 address collision. While it is not possible to ascertain the precise nature of

the results, the IP collision prevented proper responses to return to WSN 4 and WSN 1,

preventing their timely completion of the cycle.

Test Completion

Table 5.6: Test Completion Times

Completion Time (sec) WSN IPv6 Address

79 Ideal Ideal

172 7 ::4
179 2 ::2

As downward routing was likely compromised by the IPv6 collision, only two of the

devices maintained proper communications during the entire run, WSN 7 and WSN 2.

All of the initial communications from WSN 2 routed through WSN 7 and both finished

their sequences with similar offsets from each other, implying they were both sharing the

same communication link with the UAS; WSN 7. Both finished within the expected range

of 2-3 minutes of time that was seen in ground testing with occasional communications

disruptions.

The packet send rate for each of the devices is one packet per every 2 seconds. With per-

fect communications, WSN 7 would have finished in 79 seconds from the initial dispatching

of the UAS to the target location. Each missed packet due to communications disruption

results in a 4 second timeout prior to a resend attempt. Several such disruptions occurred

over the datalink between WSN 7 and WSN 8 in the UAS, which is precisely the behavior

observed during the two earlier flights. The upper-bound of acceptability for timing on this

run was 5 minutes, which was easily met; the two logically severed devices notwithstanding.

92

Assessment of the Flight Test

There were three deviations from the expected test profile, two of which affected communi-

cations. The first deviation was the precipitous drop in altitude at the end of the test, which

did not affect the results of the experiment. The second deviation was the orientation of the

Titanis swivel antenna on the UAS communications device, which ostensibly contributed

to the minor attenuation of the emitted signal. This may have slightly extended the run

time of each test, however, the test concluded within the expected timeframe. The third

deviation was a duplication of an IPv6 address in the network, which led to the destruction

of one branch of the linear formation.

The test concluded in the timeframe and manner as expected for the two devices which

were unaffected by the routing issues, making the test a successful implementation of phase

one of the designed architecture.

5.1.2 Initial Assessment

The objectives for phase one were successfully met in both simulation runs and during

a physical implementation involving a UAS. In the presence of multiple sink devices, the

bridge sinks all formed themselves into a DODAG with the mobile sink as its root. None

of the bridge sinks attached themselves to any other bridge sink instance, validating the

modification to enable instance whitelisting. Furthermore, each of the bridge sinks received

replies back as demonstrated through the UAS test, validating the downward routing table

of the mobile sink.

5.2 Validation Phases

This section presents several intermediate phases for the validation of the HOIST implemen-

tation. Each phase examines a different aspect of HOIST, in order to present a set of metrics

necessary for the proper validation of that portion of the architectural implementation.

93

5.2.1 Phase One: Bridge and Messenger

1

Bridge

2

Bridge

3

Bridge

4

Bridge

M

Messenger Instance ’M’

Figure 5.12: Phase One Validation

The first set of metrics of the implementation to consider involve the coordination be-

tween the bridge and the mobile devices. The following subsections describe the categories

of metrics under this phase which must be met before HOIST may be considered as valid.

Selective Instance Joining

Neither the messenger, nor the observer, may join a bridge instance. This is a fundamental

tenet of enabling a working hierarchical design. Following with this logic, the bridge sinks

must also not join an instance run by another bridge. The method for controlling this is

the whitelist modification, which was described in chapter 4.3.5.

Of note, the bridges will appear in the downward routing tables of other bridges. This is

an unfortunate side-effect of the RPL routing process. As each bridge receives a DIO from a

legal instance, it will increase the rank to reflect its own position and then rebroadcast that

DIO out. If this rebroadcast DIO is received by a bridge farther from the mobile sink, it will

do the same, increase the rank, and rebroadcast the DIO. The first bridge will receive this

DIO and see the bridge as a downward neighbor, as it has a higher rank. This causes the

situation in which one bridge will have a routing table entry for another. For this reason, a

94

timeout and retry attempt limiting mechanism is included in HOIST, enabling a bridge to

attempt to send controls to another bridge, time out, then move on to a valid device.

Downward Routing

The data transmitted by the bridge sinks must be acknowledged through a reply by the

messenger sink. This means all of the bridge sinks must be present in the downward routing

table of each of the mobile sinks. As each packet of data is sent to the messenger, a reply

is generated and sent back to the bridge, for ultimate retransmission to the originating

collector. These downward routing tables use the Contiki default for the Z1 device of 15

entries.

5.2.2 Phase Two: Collector and Bridge

5

Collector

6

Collector

7

Collector

8

Collector 9

Collector

10

Collector

11

Collector

12

Collector

13

Collector

1

Bridge

2

Bridge

3

Bridge

4

Bridge

Bridge Instances

Figure 5.13: Phase Two

95

The second set of metrics of the implementation validate the proper star topology-based

clustering of the collectors to associate with nearby bridge sinks.

Single Instance Joining

Each collector must join only a single bridge sink’s instance. The collector must only route

packets to this local bridge. HOIST implements this by having each of the bridges operating

on a different instance ID, which is based on the last octet of the bridge’s IPv6 address.

The reason RPL will not allow each of these bridges to broadcast the same instance ID is

that multiple bridges will receive and add that collector to their downward routing tables.

While the collector will only have one preferred parent, ensuring a clean upward route to

the messenger or observer sinks, any replies would be duplicated by each bridge containing

an entry for that collector, increasing the traffic on the network. Furthermore, as the table

entries are severely constrained, each occurrence of this event further reduces the amount

of collectors each bridge can support.

5.2.3 Phase Three: Collector, Bridge, and Observer

The third set of metrics of the implementation validate the proper hierarchical communi-

cation between the tier one collectors, the tier two bridge sinks, and a tier three observer

sink. When the observer enters the area and sends its first DIO message, the bridges need

to rapidly form a DODAG to the observer and send messages to each of their children

collector nodes to begin observer data transmissions.

Hierarchical Instances

At least one bridge must receive a DIO directly from the observer and join the O instance.

The directly connected bridges must then propagate DIO messages out until all bridges

are members of the O instance and a DODAG is formed with the observer as the root.

No collector device may join the O instance. Bridge devices must then signal each of their

collectors to begin transmitting data. This data is to begin immediately by invoking a new

96

5

Collector

6

Collector

7

Collector

8

Collector 9

Collector

10

Collector

11

Collector

12

Collector

13

Collector

1

Bridge

2

Bridge

3

Bridge

4

Bridge

O

Observer

Bridge Instances

Instance ’O’

Figure 5.14: Phase Three

collection start event. Once the collector has acknowledged the event, the bridge sink then

continues by transmitting the start message to the next collector in its downward routing

table, until no more remain. Any sibling devices (other bridge sinks) in the table should

bring about a similar transmission, but no reply should be received. After the maximum

number of retry attempts, the bridge shall move to the next device in the downward routing

table.

Each collector must immediately schedule a new collection event and send the collected

data to their local bridge. Upon receipt, the bridge will forward that data to the observer.

At this point, as long as the collector is collecting data, an transmission must be generated

to send data upwards.

97

Instance Lifetime

When the observer device leaves range, the O instance must uniformly degrade in lifetime

until all bridges reach a lifetime of 0, at which point they must all purge the instance. Any

bridges with an outlying lifetime that purges its instance early must rejoin the instance

on the next live DIO and resume operations. This implementation is described in chapter

4.3.6. The values governing the DIO send rate and the instance lifetimes will determine the

promptness of the lifetime degradation, the efficacy of the distributed lifetime coordination,

and whether or not an instance will prematurely decay. As a rule, the lifetime of a network

must be at least as great as the maximum DIO send rate of the corresponding instance.

5.2.4 Phase Four: Collector, Bridge, and Messenger

5

Collector

6

Collector

7

Collector

8

Collector 9

Collector

10

Collector

11

Collector

12

Collector

13

Collector

1

Bridge

2

Bridge

3

Bridge

4

Bridge

M

Messenger

Bridge Instances

Instance ’M’

Figure 5.15: Phase Four

98

The fourth set of metrics of the implementation validate the proper hierarchical commu-

nication between the tier one collectors, the tier two bridge sinks, and a tier three messenger

sink. When the messenger enters the area and sends its first DIO message, the bridges need

to rapidly form a DODAG to the messenger and send messages to each of their first children

collector nodes to begin messenger data transmissions.

Hierarchical Downward Routing

The bridges must first form their local networks of collectors and have their downward

routing tables populated by the full listing of the collectors under their coordination. At

least one bridge must receive a DIO directly from the observer and join the M instance.

The directly connected bridges must then propagate DIO messages out until all bridges

are members of the M instance and a DODAG is formed with the observer as the root. No

collector device may join the M instance. Following from the previous validation phase, once

M receives a packet containing a dump of the data, a reply must be sent to the appropriate

bridge and then relayed to the originating collector of the data. This is implemented

throughout chapter 4.3, representing the main portion of this work.

Multiple Events per Packet

When data transmission is started, each collector will suspend new data collection and ob-

server transmissions and send a number of data samples not to exceed the defined maximum

number per packet to the bridge. On successful reception, the collector will send the next

batch of data. On a timeout event, the collector must transmit the same block of data.

This re-transmission will continue until either a proper acknowledgment is received, or the

bridge sends a termination event. After a termination and re-establishment, the collector

must begin transmitting the same data until acknowledged. Once all data has been trans-

mitted, the collectors must signal the bridge, which will then alert the next collector to

begin data transmissions. This process shall continue until all collectors have transferred

their data. Once each collector has finished its transmission, they will resume collection

99

operations.

5.2.5 Phase Five: Collector, Bridge, Observer, and Messenger

5

Collector

6

Collector

7

Collector

8

Collector 9

Collector

10

Collector

11

Collector

12

Collector

13

Collector

1

Bridge

2

Bridge

3

Bridge

4

Bridge

O

Observer

M

Messenger

Bridge Instances

Instance ’O’

Instance ’M’

Figure 5.16: Phase Five

The final set of metrics considers the full implementation as a whole. The key to this

phase is the operation of the network in the presence of both the messenger and observer

sinks. The following components are critical for this full implementation:

Observer Suspension

When the observer arrives, the network should form and collectors must transfer the data, as

it is collected, to the observer sink. Upon arrival of the messenger, the bridges must signal

100

the collectors to begin data transmission to the messenger, one at a time. The selected

collector must suspend its collection operations during the data dump and, with it, suspend

all communications with the observer. Once either the full data transfer has completed, or

the messenger instance has been terminated as the result of lifetime expiration, the collector

will resume collection operations and resume transmissions with the observer.

Observer coordination

When the observer is active and in the transmission range, all collectors not currently

transmitting data to the messenger will continue collecting and transmitting to the observer.

When the observer is removed through lifetime termination, sending to the observer must

cease. This action must occur with or without the presence of the messenger.

5.3 Validation through Simulation

The previous section described the myriad aspects of this implementation necessary to con-

sider the architecture to be implemented as designed. This section presents the analysis of a

sample implementation designed to assess the aforementioned aspects of proper execution.

This validation was run using the Cooja simulator and assessed through internal logging

over the serial ports of the devices and through Wireshark.

5.3.1 Validation Setup

The initial configuration of the network is displayed in figure 5.17a. In this figure the green

circle represents the range on each of the devices, with the range for device 7 depicted. The

purple devices labeled 1, 4, 5, and 6 are collector nodes. The orange devices 7 and 2 are

bridge sinks. The yellow device 8, shown in figure 5.17b is the messenger sink and the green

device 9 is the observer sink.

The initial configuration features four collectors and two bridges, without any of the

mobile sinks present. Collectors 4 and 1 are each in direct communications range of bridge

101

(a) Initial Deployment (b) Messenger and Observer in Range

Figure 5.17: Cooja Simulation

2. Collector 5 is in direct communications range of bridge 7 and collector 6 is in direct com-

munications range of collector 5. This node was placed as such to demonstrate hierarchical,

multi-hop networking during this validation.

At the indicated time periods in the next section, the observer and messenger devices

will enter and leave. The positions they take when they enter the network are displayed in

figure 5.17b.

5.3.2 Mobility Definitions

I conducted this validation in Cooja using the Mobility extension to place and move the

nodes at precise time intervals. The only mobile nodes are the observer and the messenger.

The position file used is as follows.

Listing 5.1: positions.dat

Node 1

0 0.0 62 55

Node 2

1 0.0 47 26

102

Node 4

2 0.0 35 60

Node 5

3 0.0 -26 58

Node 6

4 0.0 -6 91

Node 7

5 0.0 -1 21

Node 8

6 0.0 -231 86

Node 9

7 0.0 -225 -33

MOBILE

Node 9

7 30.0 5 -19

Node 8

6 90.0 -40 5

6 300.0 -231 86

7 330.0 -225 -33

6 540.0 -40 5

The positions.dat file uses a space separated, four column format. The first column specifies

the logical node number in the simulation, beginning with the first created node as 0.

Appropriate comments are included in the file to provide the translation between logical

node number and the device number in cooja.

The second column is the time at which the device will enter the specified position, given

in seconds. The third and fourth columns represent the cartesian coordinates of the devices

in the simulation plane, with x increasing to the right and y increasing to the bottom.

This file begins the simulation with the two bridges and four collectors separated from the

mobile sinks. At the 30 second mark, observer 9 is moved to a position within transmission

range of bridge 7. This forces bridge 2 to form a multi-hop DODAG to 9 through a peer

bridge. At the 90 second mark, the messenger 8 moves to a similar position, again with

103

transmission range to only 7. At 5 minutes into the simulation, messenger 8 is removed

from the environment. 30 seconds later, observer 7 is removed. Finally, at the 9 minute

mark of the simulation, the Messenger is returned to the deployment area.

5.3.3 Validation of Implementation

At the beginning of the simulation, both bridges began sending out DIO messages.

Table 5.7: Validation Initial DIO Messages

Time Sent Bridge Transmitter Time Received Receiver Preferred Parent

00:04.385 2 2 00:04.496 1 2
00:04.385 2 2 00:04.512 4 2

00:04.399 7 7 00:04.710 5 7
00:08.619 7 5 00:08.702 6 5
00:12.611 7 6 N/A N/A N/A

Table 5.7 shows that bridge sinks 2 and 7 began transmitting a DIO to announce their

instances within 5 seconds of boot. The three collectors that are in direct transmission

range received these messages and joined their instances within 350ms. Collector 6 is two

hops away from the originator and had to wait for collector 5 to retransmit a copy of the

DIO before it could join. By the 9 second mark, all four collectors had joined the instance.

At this point, the DODAGs have been properly formed and multipoint-to-point routing

is possible from collectors to their respective bridges. Downward routing, on the other

hand, is not yet possible. To enable downward routing, each of the collectors must send a

DAO message up to their respective bridges, to inform all devices above them of their IPv6

address and the next hop through which they may be reached.

By the 20 second mark after boot of the devices, all devices have full tables of their

subordinate nodes and the network is capable of handling point-to-point and multipoint-

to-point routing. This is critical to occur before the arrival of the mobile devices as this

is the mechanism through which replies are routed. At this point, the deployment area is

104

Table 5.8: Initial DAO Messages

Time Receiving Device Destination Next Hop

00:11.959 5 6 6
00:14.384 2 4 4
00:15.508 7 5 5
00:17.276 2 1 1
00:19.248 7 6 5

fully functioning and is capable of supporting either of the mobile sinks.

At this point in the simulation, each collector began collecting data in 15 second inter-

vals. Table 5.9 shows the initial collection times for each collector, leading up to the arrival

of the messenger and the cessation of collection. One item of note is that the fifth collection

for each device occurs only a couple of seconds after the fourth collection. This occurrence

coincided with the arrival of the observer O, which triggered an immediate collection and

send by all devices.

Table 5.9: Initial Data Collection Prior to Messenger

Collector 1 2 3 4 5 6

5 00:16.200 00:31.208 00:46.216 01:01.224 01:03.232 01:18.296
1 00:16.234 00:31.242 00:46.250 01:01.291 01:07.886 01:22.890
6 00:16.567 00:31.637 00:46.646 01:01.653 01:03.552 01:18.871
4 00:16.751 00:31.759 00:46.767 01:01.775 01:08.393 01:23.400

Collector 7 8 9 10

5 01:33.248 01:48.255 02:03.263 02:18.271
1 01:37.898 01:52.906
6 01:33.567 01:48.575 02:03.583 02:18.591
4 01:38.408 01:53.415 02:08.423

Table 5.10 shows the first several transmissions following the arrival of the observer 9

at the 30 second mark of the simulation. The first DIO was sent by 9 at 00:57.248, which

was its next scheduled send time. This DIO was received by bridge 7 at 00:57.312 and by

105

Table 5.10: Data Transmissions Following Observer Arrival

From Type [Data] From To TX Time RX Time From To TX Time RX Time

7 OBS_START 7 5 01:01.319 01:01.455 5 7 01:01.710 01:01.817
7 OBS_START 7 6 01:01.827 01:02.195 6 7 01:02.444 01:02.672
5 OBS_DATA [5] 5 7 01:03.300 01:03.419 7 9 01:03.442 01:03.550
6 OBS_DATA [5] 6 7 01:03.611 01:03.902 7 9 01:03.924 01:03.425
2 OBS_START 2 1 01:06.384 01:06.487 1 2 01:06.736 01:06.875
2 OBS_START 2 4 01:16.885 01:07.005 4 2 01:07.254 01:07.371
1 OBS_DATA [5] 1 2 01:07.945 01:08.365 2 9 01:08.388 01:08.371
4 OBS_DATA [5] 4 2 01:08.451 01:08.598 2 9 01:08.621 01:08.765
5 OBS_DATA [6] 5 7 01:18.309 01:18.386 7 9 01:18.409 01:18.740

bridge 2 at 01:01.489 (after being rebroadcast by bridge 7.

The packet transmission design for this architecture after reception of the first DIO from

an observer is shown below, in figure 5.18.

Observer Bridge Collector
Arrival

DIO Send
DIO

O_BEGIN_TX

O_BEGIN_
TX

O_DATA

O_DATA

T
im

eou
t

Figure 5.18: Start of Observer Data Transmission

This design is represented in the data collected during the simulation. Looking at the

first row of table 5.10, when bridge 7 received the first DIO, it immediately transmitted the

OBS_START message to the first collector in its downward routing table, collector 5. Upon

receipt, collector 5 immediately sent a reply of the same code back to bridge 7. Shortly

thereafter, it began transmitting data towards the observer. In this case, as noted earlier,

it immediately scheduled a new collection and transmitted data block 5 to its bridge, 7.

When bridge 7 received this data, it immediately routed it to observer 9. Table 5.10 shows

106

all four collectors receiving, and confirming, the OBS_START messages and beginning an

immediate collection and data transfer. The final displayed row in the table shows the next

scheduled collection of collector 5.

This collection cycle continued unabated until the arrival of messenger 8, at 01:30.000.

Messenger 8 sent its first DIO following this movement at 01:59.742. Bridge 7 received this

DIO immediately thereafter, at 01:59.805 and relayed this to bridge 2, which received the

DIO at 02:03.057.

Table 5.11: Data Transmissions Following Messenger Arrival

From Type [Data] From To TX Time RX Time From To TX Time RX Time

4 OBS_DATA [8] 4 2 01:53.474 01:53.808 2 9 01:53.831 01:54.097
7 MES_START 7 2 02:01.601
5 OBS_DATA [9] 5 7 02:03.332 02:03.791 7 9 02:03.814 02:04.306
6 OBS_DATA [9] 6 7 02:03.641 02:03.916 7 9 02:03.939 02:06.377
7 MES_START 7 2 02:04.670
2 MES_START 2 1 02:06.721 02:06.864 1 2 02:06.864 02:07.315
7 MES_START 7 2 02:07.741
1 MES_DATA [1..5] 1 2 02:08.430 02:08.806 2 8 02:08.814
4 OBS_DATA [9] 4 2 02:08.483 02:08.547 2 9 02:08.571 02:09.174
7 MES_START 7 2 02:10.811
1 MES_DATA [1..5] 1 2 02:11.711 02:11.920 2 8 02:11.928 02:12.572
8 MES_ACK 8 2 02:12.611 02:12.906 2 1 02:12.909 02:13.115
1 MES_DATA [6..9] 1 2 02:13.125 02:13.285 2 8 02:13.292 02:13.685
8 MES_ACK 8 2 02:13.721 02:14.144 2 1 02:14.147 02:14.488
7 MES_START 7 2 02:13.961
1 MES_FIN 1 2 02:16.510 02:16.650 2 1 02:16.653 02:16.864
2 MES_START 2 4 02:16.719 02:17.003 4 2 02:17.254 02:17.413

7 MES_START 7 5 02:20.100 02:20.329 5 7 02:20.578 02:20.742

This second selection of data in table 5.11 is a subset representing the packet transmis-

sion activity following the DIO receipt from the newly arrived messenger 8. This selection

has several interesting aspects to it, relating to this validation. The first row shows the

continued, normal transmission of data to observer 9, which is still in reception range. The

second row shows the first attempt by bridge 7 to start the messenger data dump. Unfor-

tunately, bridge 2 is listed as one of its neighbors and has been entered into the downward

routing table. This represents both validation for the design and an interesting aspect of

107

the RPL routing table implementation. As bridge 2 broadcasts its DIO for messenger 8,

bridge 7 receives it. As the DIO is a valid instance for its whitelist and it has a larger rank,

it is added to the table as a downward route. This is an unfortunate, yet unavoidable effect

of using RPL for routing.

As a validation for the design, this data selection shows multiple attempts for bridge 7

to make communications with what it believes is one of its children. The present setting

for retry attempts is 5. The final row of this table represents this successful start, having

skipped over a few prior events as indicated by the horizontal rule. This validates the

delivery assurance mechanism that allows for a certain number of delivery attempts before

pressing on with the next device. In this manner, if a device dies, it will miss the events

occurring during its down time, but will still be polled and communicated with upon its

return.

Messenger Bridge Collector
Messenger

Arrival
DIO Send

DIO
M_BEGIN_TX

M_BEGIN_TX

M_DATA[0]

M_DATA[0]

M_ACK
M_ACK

M_DATA[0]

T
im

eou
t

T
im

eou
t

Figure 5.19: Start of Messenger Data Transmission

The second key validation, as seen in the table entry showing the first MES_START

message from bridge 2, is that the messenger data start procedure does follow the design,

as shown in figure 5.19. After receiving the start message, collector 1 sends the same message

back to bridge 2 as an acknowledgment and then begins broadcasting its first five blocks

of data to its bridge. Once bridge 2 receives this data, it retransmits it to messenger 8.

108

At this same moment, another transmission occurred, which prevented messenger 8 from

receiving the message. After the 3 second timeout period, collector 1 retransmitted the

same first five blocks of data. This message did get through and was received by messenger

8. Following this reception, 8 then sent an acknowledgment message back down to bridge

2, which ultimately sent it to 1. Upon receipt of the acknowledgment, 1 sent its next block

of data, which was similarly acknowledged. Lacking any new data, collector 1 sends the

finish message to its bridge. Bridge 2 at this point cycles to the next collector in its routing

table and sends the start message to 4.

This sequence both validates the network design, but also validates the timeout and

resend of the same data following a timeout. This subset of message transmissions serve

to validate both messenger and observer interactions and show the cessation in observer

transfers by a device during messenger communications. After a collector has their finish

message acknowledged by their local bridge, it resumes collection and resumes sending data

to the mobile observer, if it is still in range.

The data collection continued and all other collectors had successful data transmissions

to the messenger, then resumed collections and transmissions to the observer. At 300

seconds, the messenger was removed from the environment. This was followed 30 seconds

later by the removal of the observer. At this point, both instances are still active in the

system. The lifetime of each of these instances was set for 255 seconds. At the point of the

removal of the messenger, it had approximately 3 minutes seconds remaining. This implies

that it had sent a new DIO out one minute prior, refreshing its lifetime.

Finally, the table also shows proper finish and transfer of control from one collector to

the next by the bridge, as shown in the design figure 5.20.

The final point of validation that is shown in this simulation is the validation of the

instance lifetime decay and rejoin mechanics. As the neither the mobile devices, nor the

bridge sinks know when they will join together, instance decay is absolutely essential to the

termination following the mobile device leaving and the rejoining once the mobile device has

returned. The following listing shows the actions of bridge 7 as pertaining to the lifetime

109

Messenger Bridge Collector

M_DATA[n]

M_DATA[n]

M_ACK

TX Complete
Send END

M_ACK

Confirm END

M_DATA
_END

M_DATA_END

Begin Next Collector M_BEGIN_TX

T
im

eou
t

Figure 5.20: End of Messenger Data Transmission

of stale messenger instance, M.

Listing 5.2: Lifetime Analysis

08:24.380 ID:7 RPL: Instance Lifetime Timer triggered

08:24.385 ID:7 The instance lifetime for 0x4f is now 1

08:24.388 ID:7 Killing Instance 0x4f

08:24.988 ID:7 My downward routing table is:

08:24.995 ID:7 aaaa::c30c:0:0:2 via fe80::c30c:0:0:2

08:25.002 ID:7 aaaa::c30c:0:0:5 via fe80::c30c:0:0:5

08:25.008 ID:7 aaaa::c30c:0:0:6 via fe80::c30c:0:0:5

08:25.096 ID:7 uip_ds6_route_rm: removing route: aaaa::c30c:0:0:2

08:25.109 ID:7 No more routes to aaaa::c30c:0:0:2

08:26.012 ID:7 My downward routing table is:

08:26.018 ID:7 aaaa::c30c:0:0:5 via fe80::c30c:0:0:5

08:26.025 ID:7 aaaa::c30c:0:0:6 via fe80::c30c:0:0:5

08:28.644 ID:7 Instance Dead, starting timeout for 10

Sending (attempt #0) 10 to aaaa::c30c:0:0:5

...

10:49.018 ID:7 Received an RPL control message

10:49.024 ID:7 RPL: Received a DIO from fe80::c30c:0:0:8

10:49.029 ID:7 RPL: Neighbor already in neighbor cache

10:49.035 ID:7 RPL: Incoming DIO (id, ver, rank) = (77,240,256)

110

10:49.042 ID:7 RPL: Incoming DIO (dag_id, pref) = (aaaa::4d:1, 0)

10:49.048 ID:7 The instance ’M’ (0x4d) is on the allowed list. Joining.

...

10:49.122 ID:7 Instance[0].used == 1, ID == ’B’

10:49.126 ID:7 Instance[1].used == 1, ID == ’M’

10:49.136 ID:7 Initial DIO, starting timeout for 3

Sending (attempt #0) 3 to aaaa::c30c:0:0:5

This above listing from this simulation log shows the tracking of the instance lifetime for

instance O (0x4f). Once this lifetime hit 1 at the beginning of the assessment phase, bridge

7 purged instance O from its instance table, removed all routes on that instance, displayed

the full instance table to verify, and began sending the timeout messages to its children. In

this case, it is sending the timeout to the first entry in its routing table, which is collector

5.

The reason bridge 2 was purged from the downward routing table was that bridge 2

sent it a DIO for instances O and M with a higher rank, causing bridge 7 to consider it a

downward child. At this point in the code, M had already timed out and O is being purged,

leaving no references tying bridge 2 to bridge 7, flagging it for a purge. Now that 2 is

no longer in the table, when 7 begins sending data type 10 (OBS_TERMINATE) to its first

child, collector 5.

Finally, this shows receiving the first DIO from messenger 8 following its return. It

checks the instance against the whitelist and joins it. Now that the bridge has joined

instance M again, it begins sending code 3 (MES_START) to each of its children, starting

with collector 5 in this instance.

5.4 Analysis of Validation

This validation has demonstrated the fundamental operational nature of the designed ar-

chitecture in Contiki. The mainstay of chapter 4 pertains to the extensive modification

111

of the operating system to enable each of the necessary components for multiple instance

routing, hierarchical routing, and instance lifetime decay. The architecture as designed in

chapter 3 has validated through a careful analysis of the message traffic and internal logs

of the devices, as demonstrated through comparisons of the packet transmissions and the

network transmission design diagrams.

5.4.1 Necessary Adjustments for Implementation

There are several compile-time definitions that need to be adjusted prior to an implementa-

tion of this architecture. The first of which is the lifetime of each instance. This constant, de-

fined by RPL_CONF_DEFAULT_LIFETIME_UNIT and RPL_CONF_DEFAULT_LIFETIME,

now controls the viability of the instance over time. During the above simulation for val-

idation, this was set to provide a lifetime of 255 seconds for all three instances, which

was the value I selected for testing to ensure the lifetime decay mechanic was operating.

The failure in this was made evident when conjoined with a second adjustment constant:

RPL_CONF_DIO_INTERVAL_DOUBLINGS. I set this constant to 5 for the Messenger and

Observer codebases, giving them a maximum time period between DIO messages of 131

seconds to ensure a DIO would always arrive before the lifetime of an instance decayed.

Unfortunately, I neglected to change the default value for the Bridge codebase, leading to

the following selection below.

Listing 5.3: Incorrect Lifetime Results

11:12.504 ID:4 Received a packet, appdata[0] == 2

11:12.511 ID:4 .. Start Index = 20, Current Index = 20, Last Index = 43

11:12.515 ID:4 Beginning Messenger Data Send

11:12.522 ID:4 .. Start Index = 20, Current Index = 20, Last Index = 43

11:12.524 ID:4 Generated 1

11:12.525 ID:4 ..Type: 1

11:12.527 ID:4 ..Source: 4

11:12.530 ID:4 ..Number of Entries: 5

112

11:12.534 ID:4 ..Seqno for this Instance: 26

11:12.537 ID:4 ..From 4, Index 21, Temp 20

11:12.541 ID:4 ..From 4, Index 22, Temp 21

11:12.545 ID:4 ..From 4, Index 23, Temp 22

11:12.549 ID:4 ..From 4, Index 24, Temp 23

11:12.553 ID:4 ..From 4, Index 25, Temp 24

11:12.556 ID:4 Sending MES Data to

11:12.558 ID:4 aaaa::c30c:0:0:2

...

11:12.654 ID:4 RPL: Instance Lifetime Timer triggered

11:12.659 ID:4 The instance lifetime for 0x42 is now 2

...

11:13.585 ID:4 The instance lifetime for 0x42 is now 1

11:13.588 ID:4 Killing Instance 0x42

As the above listing shows, very shortly after sending blocks of data 21 to 25, the primary

instance B (0x42) linking collector 4 with its bridge died. The reason for this is that the

default maximum value for the DIO send time on a stable network is 1048 seconds, which is

longer than the 255 second lifespan of the instance. This is a critical problem to understand

when implementing a lifetime. If the means to synchronize the distributed devices with

each other has a longer duration between sends than the lifetime of the network it was

meant to refresh, then that network has a high chance of death. The adjustment necessary

to transition from this validation to an experimental environment is to increase the lifespan

on instance B, as it is designed to be static and stable for the lifetime of the deployment.

Aside from the lifetime issue, I could not find any other issues with this validation run.

Having demonstrated each of the components of this architecture in operation, the next

step is to begin evaluating the efficacy of the design.

113

Chapter 6: Evaluation

This chapter covers experiments to demonstrate the basic functionality of the HOIST ar-

chitecture. While these experiments are not exhaustive in nature, these evaluations demon-

strate that this work provides a solid foundation of this architecture as a viable platform

for further research.

6.1 Evaluation of Architecture

This section covers a couple of experiments designed to provide a basic level of evaluation

over this designed architecture. This section is divided into subsections, each of which will

provide an overview of the evaluation, the scenario setup for Cooja, and the results of the

experiments.

6.1.1 Evaluation 1: Twenty Collectors

This evaluation is designed to examine the architecture under an implementation which

places more collectors than a single traditional Contiki RPL network is able to support

downward routing for. The objective of this evaluation is to demonstrate that the number

of devices may be increased provided enough bridging sinks to divide the load. Moreover,

this evaluation demonstrates the capability of this architecture to handle a large degree of

overlap between collectors wherein multiple bridges are within direct communications range.

This demonstration further shows data assurance over such a dense grouping of devices.

Figure 6.1 shows the Cooja simulation setup for this evaluation. The central line of

devices in purple, labeled 3 through 8 are bridge sinks. The green node labeled as 1 is the

deployment location for the messenger sink. The remaining twenty devices in yellow are all

collectors. The bridge sinks were separated such that each is at the maximum transmission

114

range of its two neighbors. This places most of the collectors within range of multiple

collectors, as well as multiple bridges to choose from.

Figure 6.2 represents the same simulation, albeit using a logical representation of the

network formed. The solid black lines denote the preferred parent observed during the

simulation for each of the collectors. The dashed red lines represent the DODAG formed

when the messenger arrived. The network formed using a star topological formation around

the central bridge sinks, as intended. This reduces the number of hops that data has to

travel before it reaches its ultimate destination.

Figure 6.1: Twenty Device Implementation in Cooja

Despite the growth in the size of this deployment over the four collector validation, the

full network formed with all downward routing tables completed in 19.845 seconds. The

messenger sink 1 was moved to the deployment area at the 30 second mark of the simulation.

It sent its first post-move DIO at 57.558 seconds.

115

3

Bridge

4

Bridge

5

Bridge

6

Bridge

7

Bridge

8

Bridge

28

Collector

20

Collector

15

Collector

17

Collector

13

Collector

11

Collector

19

Collector

21

Collector

10

Collector

18

Collector

16

Collector

14

Collector

12

Collector

26

Collector

24

Collector

9

Collector

22

Collector

25

Collector

27

Collector

1

Messenger

Figure 6.2: Twenty Collector RPL Logical DODAGs

The downward routing necessary to ensure full delivery of responses back to the collec-

tors is solely dependent upon the time needed to receive a DAO from each of the bridge

sinks. This final DAO was received at the 1:23.866 time mark, however, the bridge closest

to the messenger was ready for full communications at 01:01.248. During this 22 second

window as bridges were routing their DAO messages towards the messenger, the closest

collectors were already sending their data. The following table shows the arrival times for

the data to the messenger.

Over an 80 second period, 36 packets were transmitted and 31 were successfully delivered

with confirmation, as detailed in table 6.1. Of the five unsuccessful packets, four were sent

to the messenger before the collector’s bridge had been added to the messenger’s downward

routing table, preventing the acknowledgment from arriving. Only one message was lost in

transit. After failing to receive the acknowledgment, each of the five resent the same data

successfully following the 10 second timeout.

116

Table 6.1: Twenty Collector Data Arrival Times

Time Collector Data Time Collector Data

01:03.336 17 1..4 01:38.650 28 1..5
01:04.575 20 1..5 01:40.263 27 6..7
01:08.925 10 1..5 01:40.987 28 6..7
01:09.414 14 1..5 01:46.347 16 1..5
01:14.616 24 1..5 01:46.347 16 1..5
01:15.604 20 1..5 01:46.710 22 1..5
01:15.753 13 1..5 01:49.322 16 6..7
01:19.692 9 1..5 01:50.060 22 6..7
01:20.056 14 1..5 01:55.251 18 1..5
01:21.668 11 1..5 01:57.619 25 1..5
01:22.032 15 1..5 01:57.788 18 6..8
01:24.895 24 1..5 02:00.977 25 6..8
01:28.121 26 1..5 02:04.840 19 1..5
01:30.222 9 1..5 02:07.941 19 6..9
01:32.605 15 1..5 02:14.420 21 1..5
01:34.061 12 1..5 02:16.018 21 6..9
01:36.048 12 6..7 02:22.343 23 1..5
01:36.912 27 1..5 02:23.845 23 6..9

6.1.2 Evaluation 2: Fifteen Collector Comparison

This evaluation compares a traditional RPL architecture of 15 collecting devices against

the HOIST architecture. Both environments will use the same operating system, however,

the traditional architecture will use a single observer to collect live data from 15 collectors.

Under both models, the observer will enter at the 30 second mark of the simulation.

In this comparison, both implementations use the same position file on mobility. The

simulation runs for 90 seconds before terminating. At the 30 second mark the mobile

collector enters the deployment area at the position occupied by the blue node 16 in figure

6.3. The traditional architecture comparison uses a collector with a single data packet to

deliver. Once a DIO is received, the collector will attempt to deliver this data packet to

the mobile sink after two seconds. If the data is not acknowledged, a four second timeout

is triggered, after which the collector will attempt another send within one second. This

process will repeat until a reply is received from the mobile sink, at which point the next

message received by the mobile sink will count as a delivery success with confirmation.

117

Figure 6.3: Fifteen Collector Comparison - Traditional Architecture

After a 90 second run, this traditional deployment architecture resulted in a successful

packet transmission with delivery acknowledgment for nine out of fifteen collectors. The

initial successes were the devices closest to the mobile sink location, with later successes

arriving from collectors farther away. The most distant success was collector 8, with a

hop count of 2. As of the two minute mark, the final data packets received their initial

acknowledgment at 01:55.989. Only one node, 14, was unable to receive a response within

a two minute cap.

After a 90 second run, the HOIST architectural deployment, shown in figure 6.4, re-

sulted in eleven out of fifteen collectors delivering data. In this scenario, four bridge sinks

(annotated using white circles) were added. All other positions were maintained as they

were in the prior test. Allowing the simulation to continue, the final of the fifteen data

packets arrived at 1:43.473. One stark difference between this and the traditional model

is that initial data came in from across the deployment area; it was not confined to the

immediate surroundings of the mobile sink, expanding outwards over time. The first nodes

to report back were collectors 11, 1, 10, and 13, which represent collection nodes across

118

Figure 6.4: Fifteen Collector Comparison - HOIST Architecture

the deployment field.

119

Chapter 7: Conclusion

My desire for this work was to develop a viable WSN architecture that would support

multiple sink destinations, mobility of the sinks, and the ability to increase the size of the

deployment field without a commensurate increase in the amount of network traffic. I have

pursued this design under the motivating scenario to provide a low-maintenance system,

using commonly accessible hardware and a popular open source operating system, that

would benefit large, geographically segregated deployment areas, such as is present in the

field of precision agriculture.

7.1 Accomplishments

I have provided extensive modifications for the Contiki 2.7 operating system to enable a core

feature of RPL: multiple sink routing. In pursuing these modifications, I have analyzed and

modified core networking structures, reimplemented portions of the IP and RPL network

layers, and added new features not covered by RFC6550, such as the instance join whitelist

and the coordinated instance lifetime decay. These modifications and new features enable

general purpose, multi-instance, hierarchical routing for uses beyond the original aim of this

thesis.

I have also designed, implemented, and validated the HOIST RPL networking archi-

tecture. This architecture has already demonstrated the ability to increase a practical

deployment size for WSN implementations. Pairing this architecture with the unmanned

aerial system testing and evaluation conducted for this thesis, will enable the ability to

manage multiple, independent WSN deployment sites without succumbing to the inherent

problem of energy drain that connecting the sites with repeaters would entail.

120

7.2 Limitations of this Technology

As with any wireless deployment, local flooding will still occur with any dense cluster

of devices. The Contiki RPL system has further issues affecting this implementation at

present. RPL has no means for message-identification of other sinks in a deployment. In

a hierarchical deployment, it is not presently possible to discriminate neighbors against

known sibling sinks and reject their routes. As as result of this, the limitation on the size

of the downward routing table is smaller in actuality, as sibling sinks may be added. In

addition to wasting the very limited amounts of memory for this table, it also slows down

the network by triggering the timeout mechanism on transmissions that are sent to, and

ignored by, such other sinks.

One additional problem was discovered with the implementation of HOIST on the mod-

ified system. This may be present in Contiki 2.7 without the modifications; further testing

is required to continue assessing this newly identified problem. OF0 failed to properly form

a multi-hop DODAG. While this objective function is ideal for the mobile sink instances in

the HOIST design, in this implementation, the OF was reverted to MRHOF.

7.3 Future Work

This architecture makes provisions for a messenger sink to enter a deployment area, collect

the data from the sensor devices, and then leave to either deliver the data or to collect

from the next geographic deployment area. The next stages of this work are to exploit the

weakness in the routing delays inherent with the RPL protocol. One aspect of research in

this would be developing a mobility prediction model for a messenger with a deterministic

circuit of travel. By assessing the delays between the initial DIO reception and each change

in routing, a bridging sink should be able to determine offset times whereupon it could

preemptively change its routing to enhance connectivity. By using this simple technique for

mobility prediction, downtime in the network due to restructuring may be minimized.

121

Further work should be done to attempt to build a better mobility model for the messen-

ger sink. This architecture specifies only a nomadic model, wherein the device would enter

range, remain in range during the data dump process, then leave once all messages have

been received. To more effectively address the energy drain issues, further work should be

undertaken to either manually, or autonomously, program the messenger devices to circle

the deployment at a slow speed, enabling each of the bridge devices an opportunity for

direct connection with the mobile sink.

Finally, while the UAS aircraft provided a valid platform, further testing is required

under the framework of the fully implemented HOIST. This is a continued area of inter-

est that will require time to pursue. Additionally, the unknown nature and scope of the

operating system modifications precluded a final implementation using the Pioneer P3-AT

robots in a large field implementation. This is a logical next step in the validation of such

an architecture, to demonstrate the viability of HOIST on actual devices in a controlled

environment, using such an autonomous robotic system.

122

Bibliography

123

Bibliography

[1] S. Advancare, “Z1 datasheet,” 2013. [Online]. Available:
http://zolertia.com/sites/default/files/Zolertia-Z1-Datasheet.pdf

[2] Jbasic, “English: A wireless sensor node of type TelosB by crossbow technology,”
Nov. 2009. [Online]. Available: http://commons.wikimedia.org/wiki/File:TelosB.jpg

[3] A. Dunkels, “The ContikiMAC radio duty cycling protocol,” Swedish Institute
of Computer Science, Technical Report T2011:13, Dec. 2011. [Online]. Available:
http://soda.swedish-ict.se/5128/1/contikimac-report.pdf

[4] J. Terrell, “Sustainable wine making & tech: The perfect pairing,” Jul. 2014.
[Online]. Available: http://www.foodtechconnect.com/2014/07/17/sustainable-wine-
making-technology-the-perfect-pairing/

[5] E. Hamida and G. Chelius, “Strategies for data dissemination to mobile sinks in wireless
sensor networks,” IEEE Wireless Communications, vol. 15, no. 6, pp. 31–37, Dec. 2008.

[6] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power wireless
research,” in Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth
International Symposium on, April 2005, pp. 364–369.

[7] Thingsquare, “Thingsquare - internet of things technology,” 2013. [Online]. Available:
http://www.thingsquare.com/tech/

[8] K. Islam, W. Shen, and X. Wang, “Wireless sensor network reliability and security in
factory automation: A survey,” Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, vol. 42, no. 6, pp. 1243–1256, Nov 2012.

[9] Y. Yang, A. May, L. Yang, and S.-H. Yang, “Opportunities for WSN for facilitating
fire emergency response,” in Future Wireless Networks and Information Systems, ser.
Lecture Notes in Electrical Engineering, Y. Zhang, Ed. Springer Berlin Heidelberg,
2012, vol. 143, pp. 479–486. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
27323-0 60

[10] A. De San Bernabe Clementa, J. Dios, and A. Baturone, “A wsn-based tool for
urban and industrial fire-fighting,” Sensors, vol. 12(11), pp. 15 009–15 035, Nov. 2012.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522951/

[11] E. Ancillotti, R. Bruno, and M. Conti, “The role of the RPL routing protocol for smart
grid communications,” IEEE Communications Magazine, vol. 51, no. 1, pp. 75–83, Jan.
2013.

124

[12] T. Winter, P. Thubert, A. Brandt, J. Hui, and R. Kelsey, “RPL: IPv6 Routing
Protocol for Low-Power and Lossy Networks,” Internet Requests for Comments,
IETF, RFC 6550, March 2012. [Online]. Available: http://tools.ietf.org/html/rfc6550

[13] IEEE, “IEEE internet of things,” 2014. [Online]. Available:
http://iot.ieee.org/about.html

[14] N. Grammalidis, F. Tsalakanidou, A. Benazza, E. Kuruoglu, D. Torri, E. etin,
K. Dimitropoulos, K. Kose, C. Ersoy, O. Gunay, B. Kosucu, F. Chaabane, S. Tozzi,
and B. Gouverneur, “A multi-sensor network for the protection of cultural heritage,”
in ZENODO, Aug. 2011. [Online]. Available: http://zenodo.org/record/1192

[15] K. Karenos and V. Kalogeraki, “Traffic management in sensor networks with a mobile
sink,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 10, pp.
1515–1530, Oct. 2010.

[16] A. Somov, A. Baranov, D. Spirjakin, A. Spirjakin, V. Sleptsov, and R. Passerone,
“Deployment and evaluation of a wireless sensor network for methane leak detection,”
Sensors and Actuators A: Physical, vol. 202, pp. 217–225, Nov. 2013. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0924424712007297

[17] S. Gandham, M. Dawande, R. Prakash, and S. Venkatesan, “Energy efficient schemes
for wireless sensor networks with multiple mobile base stations,” in IEEE Global
Telecommunications Conference, 2003. GLOBECOM ’03, vol. 1, Dec. 2003, pp. 377–
381 Vol.1.

[18] B. Nazir and H. Hasbullah, “Mobile sink based routing protocol (MSRP) for prolonging
network lifetime in clustered wireless sensor network,” in 2010 International Conference
on Computer Applications and Industrial Electronics (ICCAIE), Dec. 2010, pp. 624–
629.

[19] T. Clausen, U. Herberg, and M. Philipp, “A critical evaluation of the IPv6 routing pro-
tocol for low power and lossy networks (RPL),” in 2011 IEEE 7th International Confer-
ence on Wireless and Mobile Computing, Networking and Communications (WiMob),
Oct. 2011, pp. 365–372.

[20] J. Rao and S. Biswas, “Network-assisted sink navigation for distributed
data gathering: Stability and delay-energy trade-offs,” Computer Com-
munications, vol. 33, no. 2, pp. 160–175, Feb. 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140366409002394

[21] T. Winter, “RPL: IPv6 routing protocol for low-power and lossy networks.” [Online].
Available: http://tools.ietf.org/html/rfc6550

[22] A. Dunkels, B. Grnvall, and T. Voigt, “Contiki - a lightweight and flexible operating
system for tiny networked sensors,” in Proceedings of the First IEEE Workshop on
Embedded Networked Sensors (Emnets-I), Tampa, Florida, USA, Nov. 2004. [Online].
Available: http://dunkels.com/adam/dunkels04contiki.pdf

125

[23] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128610001568

[24] I. Nest Labs, “Works with nest,” 2014. [Online]. Available: https://nest.com/works-
with-nest/

[25] T. Inc., “Intelligent climate control for heating & air conditioning,” 2014. [Online].
Available: http://www.tado.com/de-en

[26] P. G. Corporation, “SmartThings,” 2014. [Online]. Available: www.smartthings.com

[27] R. Brown, “Developer program makes nest a focal point for the smart home,” Jun.
2014. [Online]. Available: http://www.cnet.com/news/developer-program-makes-nest-
a-focal-point-for-the-smart-home/

[28] M. Corporation, “Tmote sky datasheet,” 2006. [Online]. Avail-
able: http://www.eecs.harvard.edu/ konrad/projects/shimmer/references/tmote-sky-
datasheet.pdf

[29] Zolertia, “Z1 compared to telosb/tmote,” 2009. [Online]. Available:
http://zolertia.sourceforge.net/wiki/index.php/Z1 compared to Telosb/Tmote

[30] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,”
Commun. ACM, vol. 43, no. 5, p. 5158, May 2000. [Online]. Available:
http://doi.acm.org/10.1145/332833.332838

[31] C. Products, “CC2420 datasheet,” Texas Instruments, Datasheet, 2014. [Online].
Available: http://www.ti.com/lit/ds/symlink/cc2420.pdf

[32] J. Adams, “An introduction to IEEE STD 802.15.4,” in 2006 IEEE Aerospace Confer-
ence, 2006, pp. 8 pp.–.

[33] D. A. Warren, H. Fiennes, J. A. Dutra, D. Bell, A. M. Fadell, M. L. Rogers, I. C.
Smith, J. Satterthwaite, J. E. Palmer, G. M. Erickson, and A. Mucignat, “United
states patent: 8788103 - power management in energy buffered building control unit,”
Patent 8 788 103, Jul., 2014.

[34] I. Cisco Systems, “Connections counter: The internet of everything in motion
- the network: Cisco’s technology news site,” Jul. 2013. [Online]. Available:
http://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342

[35] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6),” Internet
Requests for Comments, IETF, RFC 2460, December 1998. [Online]. Available:
http://tools.ietf.org/html/rfc2460

[36] D. Weisenberger, “Questions and answers,” 2003. [Online]. Available:
http://education.jlab.org/qa/mathatom 05.html

[37] A. Dunkels, “Contiki: Bringing IP to Sensor Networks,” ERCIM News, Jan. 2009.
[Online]. Available: http://ercim-news.ercim.org/content/view/496/705/

126

[38] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams over IEEE
802.15.4-Based Networks,” Internet Requests for Comments, IETF, RFC 6282,
September 2011. [Online]. Available: http://tools.ietf.org/html/rfc6282

[39] “Ieee standard for local and metropolitan area networks part 15.4: Low-rate wireless
personal area networks (lr-wpans),” IEEE Std. 802.15.4-2011, pp. 1 –294, 2011.

[40] J. A. R. Azevedo and F. E. Santos, “Signal propagation mea-
surements with wireless sensor nodes,” University of Madeira, Portu-
gal, Campus da Penteada, Tech. Rep., Jul. 2007. [Online]. Available:
http://cee.uma.pt/people/faculty/amandio.azevedo/Indoor.pdf

[41] R. Draves, J. Padhye, and B. Zill, “Comparison of routing metrics for static
multi-hop wireless networks,” in Proceedings of the 2004 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, ser.
SIGCOMM ’04. New York, NY, USA: ACM, 2004, p. 133144. [Online]. Available:
http://doi.acm.org/10.1145/1015467.1015483

[42] M. Zhao and Y. Yang, “A framework for mobile data gathering with load balanced
clustering and mimo uploading,” in INFOCOM, 2011 Proceedings IEEE, April 2011,
pp. 2759–2767.

[43] C. Tunca, S. Isik, M. Donmez, and C. Ersoy, “Distributed mobile sink routing for
wireless sensor networks: A survey,” IEEE Communications Surveys Tutorials, vol. 16,
no. 2, pp. 877–897, 2014.

[44] R. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs: modeling a three-tier
architecture for sparse sensor networks,” in 2003 IEEE International Workshop on
Sensor Network Protocols and Applications, 2003. Proceedings of the First IEEE, May
2003, pp. 30–41.

[45] J. Valente, D. Sanz, A. Barrientos, J. d. Cerro, . Ribeiro, and C. Rossi, “An air-ground
wireless sensor network for crop monitoring,” Sensors, vol. 11, no. 6, pp. 6088–6108,
Jun. 2011. [Online]. Available: http://www.mdpi.com/1424-8220/11/6/6088

[46] C. Malveaux, “Investigating the potential for drone use in agriculture,”
Louisiana Agriculture, vol. 57, no. 1, pp. 8–11, 2014. [Online]. Avail-
able: http://text.lsuagcenter.com/NR/rdonlyres/CDDE1EE5-BB6B-4CD4-B100-
B0BA0BCC721D/96270/PDFI.pdf

[47] J. Otto, “UAVs are next wave of agricultural
technology - AgriNews,” Apr. 2014. [Online]. Avail-
able: http://agrinews-pubs.com/Content/News/MoneyNews/Article/UAVs-are-next-
wave-of-agricultural-technology-/8/27/10106

[48] Internet Assigned Numbers Authority, “Routing protocol for low power and lossy
networks (rpl).” [Online]. Available: https://www.ietf.org/assignments/rpl/rpl.xml

[49] O. Gnawali and P. Levis, “The minimum rank with hysteresis objective function.”
[Online]. Available: http://tools.ietf.org/html/rfc6719

127

[50] P. Thubert, “Objective function zero for the routing protocol for low-power and lossy
networks (rpl).” [Online]. Available: http://tools.ietf.org/html/rfc6552

[51] G. E. P. Box and M. E. Muller, “A note on the generation of random normal
deviates,” The Annals of Mathematical Statistics, vol. 29, no. 2, pp. 610–611, 06 1958.
[Online]. Available: http://dx.doi.org/10.1214/aoms/1177706645

[52] T. Clausen, O. Gnawali, J. Ko, and J. Hui, “The trickle algorithm.” [Online].
Available: http://tools.ietf.org/html/rfc6206

128

Curriculum Vitae

Kevin Michael Andrea received his Bachelor of Science in Computer Science from George
Mason University in 2012. He has previously served as a Sergeant in both active service
in the United States Marine Corps and in reserve service for the Army National Guard of
the State of California and the Army National Guard of the Commonwealth of Virginia.
He is a member of the ACM Special Interest Group for Computer Science Education and
his research interests include computer science education, wireless sensor networks, and
robotics.

129

