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Abstract

SCHEDULING ALGORITHMS OPTIMIZING THROUGHPUT AND ENERGY FOR NET-
WORKED SYSTEMS

Zhi Zhang, PhD

George Mason University, 2013

Dissertation Director: Dr. Fei Li

Scheduling problems consider allocating limited resources under constraints among com-

peting requests in order to fulfill their obligations. Practical resource management algo-

rithms with provable performance guarantees are of great importance. In this dissertation,

we study scheduling algorithms for resource management in networked systems. Mainly, we

design, analyze, and implement two types of scheduling algorithms: (1) throughput-aware

scheduling algorithms, and (2) energy-aware scheduling algorithms.

Throughput-aware scheduling algorithms. Throughput is a main metric that schedul-

ing algorithms are designed to optimize. We study algorithms for network routers to sched-

ule weighted packets with time constraints over a wireless fading channel. The wireless

channel’s fading state determines the channel’s achievable throughput per unit time. How-

ever, the fading state may change over time and is unknown to network routers. We design

both offline and online algorithms to maximize weighted throughput, which is defined as

the total weight of the packets successfully sent before their respective deadlines. We give

theoretical proofs of the offline algorithm’s optimality and its running time complexity. For

practical considerations, we design online algorithms and analyze their performance using



competitive ratio, which has been widely used as a theoretical metric in evaluating online

algorithms’ performance. We also develop an online learning algorithm and compare its

performance with the best expert in hindsight using external regret.

Energy-aware scheduling algorithms. Energy consumption is very critical to com-

puters and networked systems, which has become an important performance metric in

designing scheduling algorithms for such systems. Two advanced hardware techniques, dy-

namic power management (DPM) and dynamic voltage scaling (DVS), have been widely

employed in designing energy-aware scheduling algorithms.

DPM-based scheduling algorithms. DPM is an architecture-level design based on

clock gating or power gating. DPM is commonly used to cut a system’s energy cost via

eliminating or reducing power consumption of one or more of its components. A constant

amount of energy called transition energy is usually associated with power state transition.

Thus, suspending a system is beneficial only when the idle and sleep time (without running

jobs) is long enough. In this dissertation, we consider DPM-based scheduling algorithms

for network routers and Points of Presence (PoPs).

For network routers, we first study a problem of scheduling jobs with values and dead-

lines to maximize net profit, which is defined as the difference between the revenue obtained

from the jobs sent before their respective deadlines and the cost of total energy consump-

tion during this course. This model and its variants are studied in details and we provide

this model’s hardness analysis and running time complexities. Suspending a router’s for-

warding mechanisms to save energy incurs jobs’ increased delays. Motivated by this, we

study the trade-off between energy consumption and jobs’ flow time or stretch in an online

setting. We design bi-criteria power-down algorithms optimizing both and analyze their

performance using competitive ratio.

For PoP design, current IP core networks operate at a nearly constant power rate inde-

pendent of the traffic load. Thus, the gap between the available network capacity and the

temporal traffic demand presents opportunities for reducing network power consumption



by deactivating network components without noticeably affecting network performance. We

study a theoretical model for PoP design. In this model, a PoP has multiple chassis and

each chassis can accommodate multiple traffic links. A chassis has to be at the active state

with energy consumption when one or more of its assigned traffic links have traffic flows.

The objective is to find out an assignment between traffic links and chassis such that the

total energy cost of the PoP is minimized. We analyze the hardness of this model and

design several approximation algorithms with proved near-optimal performance.

DVS-based scheduling algorithms. DVS is a technique that adaptively changes a

processor’s voltage and frequency levels to meet service performance requirements. Energy

consumption can be reduced due to a physical semi-conductor law that in some scenarios,

executing a job at a lower clock frequency uses less energy than that at a higher clock

frequency.

For a given processor, each speed change involves time and energy overhead, as well

as a negative impact on its lifetime reliability. Motivated by this observation, we study

theoretical energy-aware scheduling problems by considering the number and the cost of

processor’s speed changes. Four related problems based on this framework are studied. By

using convex programming techniques, we develop polynomial-time algorithms that perform

arbitrarily close to the optimal solutions.

Research contributions. The research in this dissertation provides provable algorithmic

solutions to several fundamental problems on performance and profitability in networked

systems. Novel algorithmic design techniques are developed to optimize throughput and

energy cost for networked systems, which provide insights into fundamental problems of

optimal resource allocation.



Chapter 1: Introduction

1.1 Scheduling Problems

Scheduling problems consider allocating limited resources among competing requests in or-

der to fulfill their obligations [1]. This kind of problems arises in many areas in our daily

lives; for example, scheduling of flights competing for runways, scheduling of assembling

parts of automobiles competing for assembling machines, and scheduling of classes com-

peting for classrooms. Such kind of problems requires smart combinatorial optimization

techniques rather than simple heuristic approaches when the input sizes grow out of hand.

This gives the rise of scheduling theory. In this dissertation, we develop effective and effi-

cient scheduling algorithms for some problems in networked systems with great algorithmic

interests and practical importance.

1.2 Online Algorithms and Competitive Analysis

In general, scheduling algorithms are designed in two kinds of settings: offline setting and

online setting. In the offline setting, the inputs are given completely beforehand and our

task is to design algorithms to optimize some objectives subject to the resource constraints.

In the online setting, the whole input may not be available beforehand and an online al-

gorithm has to make decisions before all the inputs complete. An online algorithm makes

non-revocable scheduling decisions upon a request’s arrival without the information of fu-

ture input sequence. Some scheduling problems that we consider in this dissertation are

intrinsically online. Thus, it is preferred to design online algorithms for them.

Consider an example called the bin-packing problem [2, 3]. Given a set of items with

their sizes in the range of (0, 1) and all bins with size 1, we put one or more items in one

1



bin as long as the sum of their sizes is less than or equal to 1. The objective is to minimize

the number of bins used to accommodate all the items. If the set of items are given in

advance, then this problem is an offline problem. If the items are known one by one when

they arrive, then we have to determine in an online manner whether a newly arriving item

should be grouped with some already-known items in the bins or this newly item should

be put into a new bin. Once a decision of putting an item into a bin is made, it cannot be

revoked. This problem is therefore an online problem.

In order to evaluate the worst-case performance of an online algorithm, we compare it

with an optimal offline algorithm. The offline algorithm is a clairvoyant algorithm, empow-

ered with the information of the whole input sequence in advance to make its decision. A

competitive online algorithm, on the contrary, does not know the input sequence beforehand

and has a request information only when it arrives. We use competitive ratio as the worst-

case metric. In contrast to stochastic algorithms that provide statistical guarantees under

some mild assumptions over the input sequences, competitive online algorithms guarantee

the worst-case performance.

Definition 1.1 (Competitive Ratio [4]). Given a maximization (respectively, minimization)

problem, an online algorithm ON is called k-competitive if its objective for any instance is

at least 1/k (respectively, at most k times) of the objective achieved by an optimal offline

algorithm for this instance. For a maximization problem,

k := max
I

OPT (I)− δ
ON(I)

,

where OPT (I) is the optimal solution of the input I and δ > 0 is a fixed constant (δ

becomes insignificant when the size of the input |I| increases). The parameter k is known

as the online algorithm’s competitive ratio. We also call the optimal offline algorithm

adversary.

The upper bounds for competitive ratios are achieved by some known online algorithms.

2



A competitive ratio less than the lower bound is not achievable by any online algorithms.

An online algorithm is said to be optimal if its competitive ratio achieves the lower bound.

If the additive constant δ is no larger than 0, then the online algorithm ON is called strictly

k-competitive. Competitiveness has been widely accepted as the metric to evaluate an

online algorithm’s worst-case performance in theoretical computer science and operations

research [4].

1.2.1 The necessity of employing worst case analysis and extensions

In this dissertation, we primarily use worst-case analysis (such as worst-case asymptotic

running time, approximation ratio, and competitive ratio) [4–7] in evaluating the proposed

algorithms rather than probabilistic analysis [8,9]. Worst-case analysis is the only choice in

situations when the input cannot be modeled or predicted precisely. Compared to proba-

bilistic analysis, worst-case analysis better exposes the fundamental properties of the models

and the limitations of the algorithms, and thus has significant implications from theoreti-

cal perspectives. In addition, for those mission-critical applications with zero-tolerance of

failure, worst-case guarantee is necessary.

Competitive analysis is certainly not the only way to evaluate the performance of an

online scheduling algorithm with uncertainty of future input instance. For example, if

we have a reasonable approximation of the input probability distribution, average-case

analysis can be done either analytically [7, 8, 10] or experimentally. However, when such

information is unavailable or unreliable, and/or when analytical worst-case performance

guarantees are needed, competitive analysis is of fundamental importance. Note that in

competitive analysis, the input can be intentionally generated in an adversarial manner

to worsen the online algorithm’s competitive ratio. Thus, sometimes, competitive ratio

provides the worst-case guarantees but they are pessimistic.

Note that competitive analysis is sometimes too pessimistic as the adversary is empow-

ered to change the input according to what the online algorithm does over time. Many alter-

native metrics have been proposed (see [4] and the references therein). In this dissertation,

3



we also consider external regret as a metric in measuring online algorithms’ performance

using online learning approaches. Motivated by Occam’s razor (a principle stating that

“the simplest explanation is usually the correct one”), we assume that there exist multiple

experts (i.e., algorithms) following simple but fixed policies for the problem that we con-

sider. The experts’ policies are not changed dynamically over time. Then the best expert

is defined as the one optimizing the objective in hindsight. When we design online algo-

rithms, instead of comparing them with the optimal offline algorithm, we compare online

algorithms with the best expert in hindsight. The difference between the online algorithm

and the best expert in hindsight is called external regret. Use news-vendor problem [11] as

an example. The newspaper boy buys newspapers and resells them to customers on the

streets. He does not know future demands on newspapers. The revenue is the gain from

the newspapers sold minus the money that he pays for all the newspapers he buys. Let us

assume there are multiple experts. Each expert predefines a quota of the newspaper that

the expert buys for every day. For a fixed number of days, the best expert will be the one

with the maximum revenue in hindsight. The online learning algorithm has the flexibility

of changing the newspaper boy’s quota each day but lacks the power of foreseeing the future

demands.

1.3 Problems Studied

In this dissertation, we study efficient and effective scheduling algorithms for resource man-

agement in networked systems and energy-critical systems. The problems studied in this

dissertation can be roughly grouped into the following two classes:

1.3.1 Throughput-aware scheduling problems

In the first part of my dissertation (Chapter 2), we study a throughput-aware scheduling

problem motivated by providing better Quality-of-Service (QoS) for wireless networked

systems. This model generalizes the well-studied model — bounded-delay model for QoS
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buffer management in network routers [12].

In the model, packets arrive at a router over time and they compete for the outgoing

link’s bandwidth. Packets are unit-length and each packet has a deadline. A packet is said

to be successfully scheduled if it is transmitted completely before its deadline. Throughput

is determined by the number of packets scheduled successfully. Sometimes, it is more ap-

propriate to consider the differentiation among packets from different types of applications.

Therefore, in the bounded delay model, each packet is associated with a non-negative weight

which indicates its level of importance. Then the objective becomes to maximize weighted

throughput, defined as the total weights of all successfully sent packets. Generalizing this

model to the wireless channels, we consider scheduling packets over a fading channel. The

fading channel’s state changes over time and the success of delivering a packet depends on

the channel’s signal strength. (If the fading state is perfect all the time, then this model

becomes the well-studied bounded delay model.) This additional restriction (fading states)

complicates algorithm design and analysis. The objective is to maximize the weighted

throughput. Our study on designing efficient scheduling algorithms for this model aims at

improving the performance of the wireless networked systems.

1.3.2 Energy-aware scheduling problems

Considering energy issues in designing scheduling algorithm has theoretical and practical

significance. Due to the huge operational costs to maintain the sustainability of computing

infrastructures and the increasing emission of greenhouse gases such as CO2 into the global

environments, effective power management has become a critical issue [13]. According to

the United States Environmental Protection Agency’s report [14], “The energy used by

the nation’s servers and data centers is significant. . . ., (in 2006) servers and data centers

alone account for approximately 61 billion kilowatt hour, for a total electricity cost of about

450 million annually. . . ., (the energy use) is estimated more than doubled the electricity

consumed for this purpose in 2006. Under current efficiency trends, national energy con-

sumption by servers and data centers could nearly double again in another five years to
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more than 100 billion kilowatt hour”. High power consumption also leads to destructive

effects of high current density and heat dissipation. If the temperature is raised beyond

the safety limit, processors and devices may work erratically or even halt. Any organiza-

tion running large-scale computing systems or data centers has a strong urge of reducing

power from both engineering and economic concerns [15]. Possible strategies towards en-

ergy management have been commented by Steven Chu, former U.S. Secretary of Energy

(2008) [16], “A dual strategy is needed to solve the energy problem: (1) maximize energy

efficiency and decreases energy use — This will remain the lowest hanging fruit for the next

few decades; and (2) develop new sources of clean energy.” As a successful case, by employ-

ing energy-aware scheduling algorithms, Kyoto University has saved 0.2 million dollars per

year [15].

In the second part of my dissertation (Chapter 3 — Chapter 5), we design energy-

aware scheduling algorithms. We focus our study on operating system level algorithms to

maximize energy usage efficiency and to minimize energy consumption, and still maintain

the system performance such as throughput, job’s flow time, and chip’s lifetime reliability.

The main hardware techniques supporting algorithms to reduce energy consumption can be

broadly classified into two categories: dynamic voltage scaling (DVS) and dynamic power

management (DPM).

• DVS is a technique to dynamically set a processor’s voltage and frequency levels to

meet service performance requirements. Consider a processor in the DVS setting. The

processor has variable clock frequencies. Under frequency s, the processor consumes

energy P (s) per unit time. In general, the function P (·) is convex. The total energy

consumed by a schedule is the integral of energy consumption over time, i.e., E =∫
P (s(t))dt where s(t) is the processor frequency at time t. Thus, energy consumption

can be reduced since executing a job at a lower clock frequency uses less energy than

that at a higher clock frequency.

• DPM is an architecture-level design based on a function component called clock gating
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or power gating. A system equipped with DPM functionalities has a higher-power

ACTIVE state and one or more lower-power SLEEP or STANDBY states. Jobs can

be processed only when the system is in ACTIVE state but not in any lower-power

state. DPM is commonly used to reduce a system’s energy consumption by setting

one or more of its components into the lower-power state. A constant amount of

energy called transition energy is usually associated with transitions between the

higher-power state and the lower-power states.

In addition to the challenges of the classic scheduling problems that we have to deal

with, the following two challenges complicate the design of job scheduling algorithms when

energy consumption is taken into account.

1. Energy is a kind of resource neither sharable nor renewable without extra cost.

Different from resources such as processor availability or job queue sizes in classic

scheduling problems, energy is neither sharable nor renewable without extra cost.

This makes allocating energy in an online manner challenging. An energy-efficient

algorithm needs to specify not only when to execute a job but also at which speed to

run the job and/or how much energy is allocated to the job.

2. Mixed objectives involving job completion time and energy consumption may have

inherent conflicts.

For example, objectives of minimizing flow time and minimizing energy consumption

are two orthogonal objectives. If we want to save energy, then we have to use a slower

speed which unavoidably extends a job’s flow time. On the other hand, if we want to

complete job in a shorter time by running the processor at a higher speed, then more

energy has to be consumed.

In this dissertation, we design scheduling algorithms for energy-aware scheduling prob-

lems in systems equipped with DVS and DPM technologies.

7



1.4 Thesis Organization

The research in this dissertation provides solutions to several fundamental algorithmic prob-

lems on performance and profitability of networked systems and energy-critical systems.

The goals are to understand the mathematical structure of these problems, design elegant

and easy-to-implement offline and online algorithms, and provide mathematically rigor-

ous analysis on their performance bounds. We expect that this research produces robust

and insightful algorithm design and analysis techniques for scarce resource management in

throughput-aware scheduling problems and energy-aware scheduling problems.

For throughput-aware scheduling problems, we design and analyze offline and online

packet scheduling algorithms over fading channels for better resource utilization in Chap-

ter 2. Furthermore, we design online learning algorithms to evaluate the power of learning

fading signal strength in this model.

Discussion of the research related to energy-aware scheduling focuses on systems ca-

pable of using DPM and DVS, respectively. In Chapter 3, we consider two models. One

is a net profit model of scheduling jobs with deadlines in which costs of energy used in

completing jobs should be paid. In the other model, to schedule jobs without deadlines, we

study the trade-offs between saving energy and hazarding users’ experience — flow time or

stretch. These problems are for system equipped with DPM techniques. In Chapters 4, we

study energy-efficient scheduling problems in a single-machine system equipped with DVS

techniques. We mainly focus on investigating energy-aware real-time scheduling algorithms

with speed change constraints. In Chapter 5, we design topologies for DMP-based PoPs

to save energy cost. We design and theoretically analyze several approximation algorithms

with near-optimal performance.

Other research that I have done during my Ph.D. study is included in Appendix C.
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Chapter 2: Scheduling Packets over a Wireless Channel

2.1 Motivation

Motivated by providing various Quality-of-Service to Internet users, we consider buffer

management within network routers. Figure 2.1 illustrates the functionalities of the buffer

management inside a router. A buffer management algorithm is in charge of two tasks

— packet queuing and packet delivery. When new packets arrive, a buffer management

algorithm decides which ones to admit and queue for potential deliveries, and which ones

already in the buffer to drop permanently due to the constraints from packet deadlines

or from the buffer capacity. In each time step the buffer management algorithm selects a

packet in the buffer to send.

Figure 2.1: Buffer management inside routers.

Consider discrete time. For wired networks, one packet can be delivered in each unit

of time. For wireless networks, the throughput rate (in other words, how many packets

delivered in a unit of time) depends on the wireless signal strength. This signal strength,

called fading channel state or fade state, is changing over time. In this research, we make

no assumptions over the stochastic properties of the fade states. In this chapter, we propose

algorithms to schedule weighted packets with time constraints over a wireless fading channel.
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2.2 Model Description

In this model, time is assumed discrete. Each unit of time is called a time step and a few

continuous time steps are called a time interval. Packets arrive at a router with buffer size

B ∈ Z+ over time. All packets are with the same length l ∈ R+ (l is a constant). Each

packet p has an integer release time (arriving time) rp ∈ Z+, a positive real value wp ∈ R+

to represent its weight (value), and an integer deadline dp ∈ Z+. We also use the pair

(wp, dp) to denote a packet p. The time required to send a packet depends on the state

quality qt (qt ∈ [qmin, qmax]) of the fading channel during a time step t. For simplicity, we

assume qmin = 0 and qmax = l such that if the fading channel is at its highest quality qmax,

one packet can be sent in a time step. Without loss of generality, we assume the fade state

in a single time step keeps unchanged. A packet has to be sent in consecutive time steps.

Completely sending a packet p takes t(p) time steps subject to

te∑
t=ts

qt ≥ l, ts, te ∈ Z+,

where the packet sending process begins at time ts and ends at time te. Therefore, t(p) =

te − ts + 1. If [ts, te] ⊆ [rp, dp], then we say that the packet p is successfully sent before its

deadline dp, and its weight wp is contributed to our objective.

A schedule S is a matching between packets and time steps such that these packets are

all successfully sent before their respective deadlines subject to the constraint stated above.

The weighted throughput W of S is W =
∑

p∈S wp.

Here, we enforce that two or more packets cannot be sent in the same time step. For

each packet p, we associate an indicator variable χp(t) defined as below.

χp(t) =


1, if time step t is matched to packet p

0, otherwise

.
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For each time step t and all the packets sent in schedule S, we have
∑

p∈S χp(t) ≤ 1. The

objective is to maximize the weighted throughput W subject to the deadline constraints

of packets and the varying fading channel states. The model can be an overloaded system

(defined in Appendix A) such that due to packets’ deadline constraints, no algorithm can

deliver all packets in the input instance, even if the fading channel state is at its maximum

all the time. Hence, some packets have to be dropped in this case. Note that in an

underloaded system (defined in Appendix A), the classic algorithm EDF (Earliest-Deadline-

First) delivers all the packets before their deadlines and it is optimal in both offline and

online settings.

We design two kinds of algorithms: offline algorithms and online algorithms. All input

information (including the fading channel states, and the packets’ release times, deadlines,

and weights) is known to an offline algorithm in advance. For an online algorithm, the

complete packet input sequence is unknown beforehand and a packet’s deadline and weight

are known to the algorithm only at the time when it arrives at the router. The fade state

of the channel is unknown or partially known to the online algorithm, depending on the

assumptions in the variants of the online version of this problem.

We also apply online learning approaches to the online version of this model to examine

possible effects on algorithms’ performance which learning could bring. The main idea is

learning from experts’ advices, in which an expert fixes one policy at the beginning of the

schedule. Instead of designing competitive online algorithms, we design a group of online

algorithms and refer them as experts among which the online learning algorithm chooses

one to follow in each time step. Instead of comparing the performance with the optimal

offline algorithm, we compare an online learning algorithm with the expert having the best

performance in hindsight.
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2.3 Previous Work

Scheduling packets over fading wireless channels has received much attention (see [17–21]

and the references therein). A scheduling algorithm can significantly improve the com-

munication performance by taking advantages of the changing channel states. In previous

studies, the objective is usually to maximize the total number of packets delivered by their

deadlines. However, for many practical problems, it is more reasonable to differentiate

various packets and take into account the amount and/or the significance level of the in-

formation associated with the packets. Thus, in this chapter, we address the problem of

optimizing weighted throughput of packets with time constraints in a fading wireless chan-

nel. Our results show that the algorithmic solutions for maximizing weighted throughput

as well as their computational complexity are significantly different from those optimizing

throughput of packets with identical values.

Resource allocation for fading channels has been a well-studied topic in the area of in-

formation theory. The quantity to maximize is often the Shannon capacity, defined as the

tightest upper bound of the amount of information (i.e., the total number of packets) that

can be reliably transmitted per unit time over a communication channel. Tse and Hanly [17]

have found capacity limits and optimal resource allocation policies for such fading chan-

nels. They also studied the greedy approach for channel allocations in multi-access fading

channels, assuming all packets arriving at the router are successfully delivered. Prabhakar

et al. [22] have considered proactively adjusting the rate of packet transmission for saving

energy where the quality of the fading channel is assumed to be fixed and the energy con-

sumption rate is a convex function of the transmission speed. The discrete version of this

algorithm has been proposed in [23] for a more general problem setting. In [18], the authors

applied a dynamic programming approach to getting the optimal solution for scheduling

uniform-value packets under both time and energy constraints. However, this algorithm

in [18] runs in exponential-time in overloaded systems. A polynomial-time optimal offline

solution of scheduling packets with hard deadlines was given in [19, 20]. In their problem
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settings, energy is minimized under the assumption that all arriving packets are success-

fully delivered. An optimal offline algorithm maximizing throughput and a heuristic online

approach of scheduling identical-value packets with different deadlines were given in [21].

No theoretical analysis has been provided for the heuristic online solution.

Note that in these previous studies, packets have identical values and their arrivals at the

router are usually modeled by a Poisson distribution. However, packets from different users

and various applications may have different significance levels of embedded information.

For the sake of being realistic and practical, we associate packets with weights (values) to

indicate the significance of their embedded information. None of the previous algorithms for

delivering packets can be generalized to this problem setting, because a schedule with the

maximum throughput does not imply its optimality on maximizing weighted throughput.

Moreover, we made no probabilistic or stochastic assumption over the incoming traffic which

generalizes the previous work.

We have realized the connection between this problem and the bounded-delay model

in buffer management. For the bounded-delay model (the buffer size is assumed to be

infinite), an optimal offline algorithm has been proposed in [12], running in O(n log n)

time where n is the number of packets released. For online algorithms, the best known

lower bound of competitive ratio of deterministic algorithms is φ = 1+
√

5
2 ≈ 1.618 [24–26];

this lower-bound also applies to instances in which the deadlines of the packets (weakly)

increase with their release dates. A simple greedy algorithm that always schedules the

maximum-value pending packet in the buffer is 2-competitive [12, 24]. For a variant in

which the deadlines of the packets (weakly) increase with their release times, Li et al. [27]

proposed an optimal deterministic φ-competitive algorithm. Using the same analysis, but

in a more complicated way, Li et al. provided a ( 3
φ ≈ 1.854)-competitive deterministic

algorithm [27] for the general model. Independently, Englert and Westermann presented a

1.894-competitive deterministic memoryless algorithm and a (2
√

2−1 ≈ 1.828)-competitive
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deterministic algorithm [28]. Closing the gap [1.618, 1.828] of competitive ratio for de-

terministic algorithms is a difficult open problem. A randomized online algorithm with a

competitive ratio of e
e−1 ≈ 1.582 was proposed in [29]. The lower bound of competitive ratio

of randomized algorithms is 1.25. How to tighten the gap [1.25, 1.582] in the randomized

bounded-delay model remains open. If the buffer size is a finite number, the generaliza-

tion of the bounded-delay model is called a bounded-buffer model. In [30], a 3-competitive

deterministic algorithm and a (φ2 ≈ 2.618)-competitive randomized algorithms were given.

Fung [31] provided a 2-competitive deterministic algorithm and Li presented an alternative

proof [32]. When the number of size-bounded buffers is more than 1, Azar and Levy [33]

provided a 9.82-competitive deterministic algorithm and Li [34] improved the competitive

ratio to 3 +
√

3 ≈ 4.723. Note that the bounded-delay model [12, 24, 27, 28, 35] implicitly

applies an assumption of ideal channel quality such that in every time step, one packet can

be delivered. However, things may become much more complicated when channel quality

varies over time, and new algorithms need to be built to tackle with this challenge.

In this chapter, we design offline algorithms, competitive online algorithms and online

learning algorithms to maximize weighted throughput for packets with time constraints over

a fading channel.

2.4 Algorithms and Analysis

We classify our algorithms and present them as offline algorithms, online algorithms and

online learning algorithms in Section 2.4.1, Section 2.4.2 and Section 2.4.3, respectively.

Note that in designing offline algorithms, there is no difference between these two settings,

non-preemption and preemption-restart (see their definitions in Appendix A). Let the input

sequence be I and |I| = n. All packets have the same length l.
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2.4.1 Offline algorithms

In this section, we present a few exact (optimal) algorithms running in polynomial time for

several variants, assuming all input information is known beforehand. At first, we note the

following result.

Theorem 2.1. [36] Assume the fading channel has a fixed quality q ∈ [qmin, qmax] during all

time steps. If all packets are with the same value, then there exists an exact polynomial-time

optimal algorithm running in time O(n log n), where n is the number of packets released.

We then consider an important variant in which packets are with agreeable deadlines,

i.e., for any two packets i and j, ri < rj implies di ≤ dj . This variant allows an optimal

algorithm running in an online manner. Here, we study the Earliest-Deadline-First (EDF)

algorithm, which is one of the most studied policies in the area of real-time scheduling.

Note that EDF runs in an online manner. We have the following result.

Theorem 2.2. Assume the fading channel has a fixed quality q ∈ [qmin, qmax] during all

time steps. If all packets are with the same value and if they are with agreeable deadlines,

then EDF is an exact polynomial-time optimal algorithm running in linear time O(n).

Proof. To prove Theorem 2.2, it is sufficient to show that at any time t (t does not have to

be an integer), EDF finishes no fewer packets than any algorithm ALG. Let A(I) denote

the throughput of an algorithm A with input I. The proof (to show EDF (I) ≥ ALG(I))

consists of proving the following two parts:

1. Given any algorithm ALG and the set of packets I ′ (⊆ I) that ALG schedules, we

can create an earliest-deadline-first scheduler EDF′ finishing all packets in I ′ before

their deadlines. That is,

EDF ′(I ′) = |I ′| = ALG(I). (2.1)

2. Given the input I for EDF and the input I ′ for EDF′, EDF is no worse than EDF′
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in the number of packets finished before their deadlines at any time t. That is,

EDF (I) ≥ EDF ′(I ′). (2.2)

Equation (2.1) and Equation (2.2) imply EDF (I) ≥ ALG(I).

At first, we note that if the fading channel has a fixed quality q, for any packet p with

length l, it takes dl/qe time steps to deliver p. Given the set of packets I ′ finished by

an algorithm ALG as the input of EDF′, we can use the exchange argument to show that

EDF′ can finish the packets in I ′. Secondly, since all packets are with the same value and

processing time, we can always replace the packets ∈ (I ′ \ I) using the packets ∈ (I \ I ′)

with no later release times or no later deadlines. Thus, the second part of the proof is true

as well.

Finally, we study EDF’s running time complexity. If packets are with agreeable dead-

lines, newly arriving packets can be appended at the end of the packet queue. EDF sends the

first pending packet which has not expired yet in the next dl/qe time steps. The scheduling

algorithm runs in linear time O(n).

In the following, we prove that there exists an optimal offline policy for this problem in

the general setting. First, we assume that the channel’s quality is a fixed constant. Then,

we apply this algorithm to the general setting in which the fade states of the channel vary

over time.

Theorem 2.3. Assume the fading channel has a constant quality q ∈ [qmin, qmax] during all

time steps. Then, there exists an optimal algorithm in maximizing weighted throughput.

Before proceeding to the proof of Theorem 2.3, we would like to point out that since it

may not be feasible to deliver all packets ever arrive at the router in an overloaded system,

the optimal solutions in the previously studied models in [18, 21, 37] cannot be directly

applied to our model. Instead, we design an exact algorithm that depends on the following

two critical observations (on the matroidal structure of the model).
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Remark 2.1. Given a set S of packets, any feasible schedule on S can be converted to an

earliest-deadline-first schedule in which the earliest-deadline packet ∈ S is scheduled as long

as it is available for the router.

Remark 2.2. Denote S∗ as both the optimal solution maximizing the weighted throughput

and the set of packets delivered. If a packet pj ∈ S∗ is pending at time t and it is not

scheduled at time t, then there must exist a packet pi ∈ S∗ such that rpi ≤ t+ d lq e and pi is

scheduled at time rpi.

Proof of Theorem 2.3. Let the set of packets arriving at the router be {p1, p2, . . . , pn}. It

takes dl/qe continuous time steps to deliver one packet. The set of time steps that a packet

can be sent is a subset of all the time steps T ,

T :=
⋃
i

[rpi , rpi + n · d l
q
e], (2.3)

where q is the constant channel quality. Let the time steps in T be t1, t2, . . . , tm, where

|T | ≤ n · n · d lq e ≤ n
2 · lq + n2.

We have a greedy algorithm as follows. Based on Remark 2.1 and Remark 2.2, if there

are two pending packets available for delivery, we can always pick one with the earlier

deadline to send in a time step ∈ T . We call this order a canonical order. Our following

algorithm is based on the matroidal property of the model.

Algorithm 1 Offline-Optimal(I)

1: Initialize the set of packets to be sent P ′ = ∅.
2: Initialize the set of packets to be considered P = I (= {p1, p2, . . . , pn}).
3: while |P ′| ≤ n and there are packets left in P do
4: remove the maximum-value packet p from P ;
5: if the set P ′ ∪ {p} can be feasibly scheduled in T under the canonical order (i.e., all

packets can be sent before their deadlines) then
6: insert the packet into P ′ and update P ′ as P ′ ∪ {p}.
7: end if
8: end while
9: return P ′.
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The generated schedule in P ′ is the optimal solution and its correctness is based on

the fact that feasible schedules form a matroid. The running time of this algorithm is

O(n · log n + n · |T |) = O(n log n + l
q · n

3 + n3) = O(n3). For each packet p, it takes time

O(|T |) to verify the feasibility of adding p into the existing schedule. For this case, our

result improves the algorithm in [38], whose running time is O(n10) and which also holds

when q is fixed but not a constant value.

Following the proof of Theorem 2.3, we immediately have the following result.

Corollary 1. Consider scheduling weighted packets with deadlines in a fading channel.

There exists an optimal algorithm in maximizing weighted throughput in time O(n·log n·m),

where m is the number of time steps we consider.

In the model, as long as an interval with time steps [ts, te] has
∑te

t=ts
qt ≥ l, a packet

can be sent. For each release time rp, we seek the following n consecutive time intervals

such that for each time interval [ts, te], we have
∑te

t=ts
qt ≥ l. Let the union of all such time

steps be T ′. Then, the number m in Corollary 1 is |T ′|.

Note that our proof of Theorem 2.3 depends on the following three assumptions (1) all

packets have the same length, (2) packets are sent continuously, and (3) packets do not

share a time step. If any one of these assumptions does not hold, we conclude that the

offline version of this problem cannot be found in polynomial time unless P = NP1.

Theorem 2.4. Consider packet scheduling in fading channels. Assume a packet can be

preempted before the router finishes it. Only its unfinished part of the packet is resumed

later. Then, maximizing weighted throughput is a NP-hard problem, even if all packets

share a common release time and a common deadline.

1A problem D1 belongs to P if there exists an exact polynomial-time algorithm. A problem D2 belongs
to NP if a given candidate solution of D2 can be verified in polynomial time. For a NP-complete problem
D3, D3 ∈ NP and if D3 can be solved in polynomial time, then so can every problem in NP. Although any
given solution to a NP-complete problem can be verified quickly, there is no known efficient way to locate a
solution unless P = NP.
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Proof. To prove the NP-hardness, it is sufficient to show that we can reduce a well-known

NP-complete problem to our problem in polynomial time. To prove Theorem 2.4, the

remaining work is to reduce the NP-hard TWO-PARTITION problem to our problem.

The TWO-PARTITION problem is defined as follows. Given an instance that has a

finite set I and a size si ∈ Z+ for i ∈ I, the objective is to find out if there exists a subset

I ′ ⊆ I such that
∑

i∈I′ si =
∑

i∈I\I′ si. This problem is NP-complete [39].

Here is the NP reduction. Given any instance I of the TWO-PARTITION problem, we

normalize I such that
∑

i∈I si = 2 · l. Then we generate the channel quality qi = si for each

i ∈ I and we have two packets whose release times are 0, weights are 1, and deadlines are∑
i∈I si = 2 · l. This conversion takes polynomial time. Consider any algorithm ALG. If

ALG returns a throughput of 2, then ALG returns two sets of fading states such that each of

them is with a total quality
∑

j qj = l. The time steps of delivering one packet (respectively,

the other packet) constitute one partition set (respectively, the other partition set) for the

TWO-PARTITION problem. Since TWO-PARTITION problem is NP-complete, then ALG

cannot be solved exactly in polynomial-time. Hence, maximizing (weighted) throughput

with time varying quality, is NP-hard.

Though it is not possible to build an exact polynomial-time optimal offline algorithm for

varying channel quality setting (unless P = NP), a pseudo-polynomial-time optimal offline

algorithm exists by reducing the problem to a bipartite matching problem. Before stating

the algorithm, we first introduce two concepts.

Definition 2.1 (Matching [7]). Given an undirected graph G = (V,E), a matching is a

subset of edges M ⊆ E such that for all vertices v ∈ V , at most one edge of M is incident

on v.

Definition 2.2 (Bipartite Graph [7]). Given an undirected graph G = (V,E), a bipartite

graph is a graph in which the vertex set can be partitioned in to V = L ∪ R, where L and

R are disjoint and all edges in E go between L and R.
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In a maximum weighted bipartite matching problem, each edge e ∈ E in the graph is

associated with a weight function c(·) : E 7→ R. The weight of a matching is the sum of the

weight of its edges, i.e.,
∑

e∈M c(e). A maximum weighted bipartite matching problem can

be solved in time O(n3), where n = max{|L|, |R|}, using the Hungarian algorithm [40].

Theorem 2.5. When the channel reliability varies over time, there exists an optimal offline

algorithm running in pseudo-polynomial time.

If the buffer size B is infinite, then an optimal offline algorithm has been given for the

bounded-delay model in [12] with a running time of O(n log n). If the buffer size B is a

constant, then an optimal offline algorithm was proposed in [41] with a running time of

O(n2 log max{B,n}).

Proof. We consider the generalization in which the channel reliability may not always be

constant. Given a set of packets P = {p1, . . . , pn}, each packet pi is denoted as a 3-tuple

(ri, di, wi). Let rmin = min{ri|i ∈ {1, . . . , n}} and dmax = max{di|i ∈ {1, . . . , n}}. All

possible scheduling time slots are in the range of [rmin, dmax]; they are known as feasible

intervals. Consider these m (= dmax − rmin + 1) time slots. Let the sequence of known

channel quality be {q1, . . . , qm} respectively.

The reduction from the model with varying channel quality to the maximum weighted

bipartite matching problem works as below. We first construct a graph G = (V,E), and

V = L∪R where L∩R = ∅. Each ai ∈ L represents a packet pi and each bj ∈ R represents

a time slot in the feasible intervals. Obviously, we have |L| = n and |R| = m. We create

an edge connecting each ai and bj with rpi ≤ bj ≤ dpi . Each edge has a weight defined as

c(eij) = qj · wpi , where qj is the channel quality at time slot represented by vertex bj and

wpi is the weight of the packet represented by vertex ai. At this point, our problem could

be solved by finding the generalized maximum weighted matching of bipartite graph G and

this results in a maximum total weight W .

The running time complexity of this algorithm includes two parts: the construction

part and the part of solving the reduced problem. The construction will take a linear time
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O(|V | + |E|), and the solving part is mainly the running time in solving a maximum flow

problem, which is O(|E|3), using the Hungarian algorithm.

2.4.2 Online algorithms

We first investigate the challenge of designing efficient online algorithms for this problem.

Without time constraints on packets, weighted throughput is maximized by simply deliv-

ering all packets that ever arrive at the router. When time constraints are enforced on

identical-value packets, the objective of this problem becomes to send as many packets

as possible before their respective deadlines — this variant is the same as the problem

of scheduling equal-length jobs [42]. A 2-competitive deterministic algorithm and a 1.5-

competitive deterministic algorithm have been given for this variant in the non-preemption

setting and the preemption-restart setting respectively [42]. Both online algorithms’ com-

petitive ratios are tight (i.e., the lower bounds of competitive ratio).

Though optimal competitive online algorithms have been proposed in [42] for a variant

in which throughput (of uniform-value packets) is maximized, this problem is open and

becomes more interesting and complicated when packet weights are different. Now we

present an example in which the fade state of the channel is ideal (i.e., qt = qmax = l,∀t)

but packets have different weights.

Example 1. Consider two packets p1 and p2 with dp1 = 1 < dp2 = 2 and wp1 < wp2 at

time 1 in an overloaded system. Note that the router has no knowledge of future arriving

packets. Sending the packet p1 in the first time step may cause p2 not to be sent anymore if

we assume that another packet p3 with dp3 = 2 and wp3 > wp2 arrives at time 2 (since p2 and

p3 cannot be sent simultaneously in step 2 before their deadlines). A better (clairvoyant)

way is to send p2 in the first time step and send p3 in the second time step. On the other

hand, if the online algorithm picks p2 to send in the first time step, it leads to the expiration

of the packet p1. In the case that p3 is not released in step 2 in the input sequence, the

online algorithm loses the value of p1 — it is better to send p1 and p2 in the first two

consecutive time steps clairvoyantly.
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In summary, even under ideal fade states, the challenge of designing efficient online

algorithms lacking of information about future input is to balance wisely between sending

an earliest-deadline packet and a largest-weight packet. Our proposed online algorithms are

based on this intuition. Another challenge of this model is due to the uncertainty of the

fade states of the wireless channel. We will address more on these challenges and on our

solutions later.

We consider non-preemption and preemption-restart settings separately. In both cases,

the algorithm gets credit only for packets that are executed continuously from the beginning

to the end before its deadline. We also call the optimal offline algorithm adversary. Let

wmax and wmin, respectively, denote the maximum value and the minimum value of a packet

in the input sequence I.

In the non-preemption setting

We first show a pessimistic result, and then propose an optimal online algorithm for a

variant of this model.

Theorem 2.6. In the non-preemption setting, no online algorithm has a constant competi-

tive ratio, even if the fade state is a fixed value q (but q < qmax = l) and if packets are with

agreeable deadlines. The lower bound of competitive ratios can be up to wmax/wmin.

Note that if packets have the same value and if the fading channel has a fixed quality,

EDF is 2-competitive [42]. Thus, associating values to packets complicates the model.

Proof. We set the channel’s quality q = 0.5 · l. Any packet can be sent in consecutive 2

time steps. Let an online algorithm be ON. We use (w, d) to denote a packet with value w

and deadline d.

In the first time step, a packet (wmin, 2) is released. The adversary keeps releasing a

packet (wmin, 2 · (i+ 1)) in each time step 2 · i+ 1 (i ∈ {1, 2, 3 . . .}) until one of the following

events happens: (1) ON picks up a packet (wmin, 2 · k) to send, or (2) the adversary has

released one such packet with value wmin, and ON does not pick it up to send.
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For the second case, the adversary stops releasing new packets and it schedules the

packet ever released with a total gain of wmin. On the other side, ON gains nothing overall.

For the first case, when ON picks up a packet (wmin, 2 · k) to send, the adversary releases a

packet (wmax, 2 · k + 1) at time 2 · k. Note that in the non-preemption setting, ON cannot

stop sending the packet (wmin, 2 ·k) till the time 2 ·k when this packet is finished. Thus, ON

cannot execute the packet (wmax, 2 · k+ 1) at time 2 · k to get it finished before its deadline.

After releasing the packet (wmax, 2 · k + 1), the adversary releases nothing. Overall, the

optimal offline algorithm will send all packets (wmin, 2 ·1), (wmin, 2 ·2), . . . , (wmin, 2 · (k−1))

and (wmax, 2 · k + 1). On the other side, ON executes only one packet (wmin, 2 · k). The

competitive ratio is

(k − 1) · wmin + wmax

wmin
= k − 1 +

wmax

wmin
≥ wmax

wmin
.

Then, ON is no better than (wmax/wmin)-competitive.

To complement Theorem 2.6, we note the following result.

Theorem 2.7. [43] In the non-preemption setting, no online algorithm has a constant

competitive ratio, even if the fade state is ideal (q = qmax = l). The lower bound of

competitive ratios can be up to
√

wmax
wmin

.

Given the assumptions that the channel state is a fixed value and packets are with

agreeable deadlines, we have proved that at any time t, EDF finishes no fewer packets than

any algorithm (see the proof of Theorem 2.2). Given an input I, we assume EDF finishes

s packets with a total value W ≥ s · wmin. Any algorithm finishes no more than s packets

with a total value ≤ s · wmax ≤W · (wmax/wmin). Thus, we immediately have the result.

Corollary 2. In the non-preemption setting, if the fade state is a fixed value and if packets

are with agreeable deadlines, then EDF is an optimal online algorithm.
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If the fade state is at its maximum all the time (such that a packet is sent in a single time

step), this variant of the online problem is the same as the bounded-delay model [12,24,27,

28,35]. An optimal online algorithm has been proposed for the agreeable deadline case [27].

For the general case, the best known lower bound of competitive ratios is φ := 1+
√

5
2 ≈

1.618 [24] and the best known upper bound is 1.832 [28, 35]. Closing the gap [1.618, 1.832]

is still an intriguing open problem [44].

In the preemption-restart setting

In the preemption-restart setting, we first provide an example to show that if the fade

states are unknown to the online algorithms (there are no stochastic assumptions as well),

no online algorithm can have a competitive ratio better than wmax/wmin.

Theorem 2.8. If the fade states are unknown to online algorithms, then no online algorithm

can have a competitive ratio better than wmax/wmin.

Proof. Consider time step 1 and two packets are released. We use (w, d) to represent a

packet p with value w and deadline d. Let an online algorithm be ON. The fade state at

time step 1 is 0.5 · l. A packet p1 := (wmin, 2) is released at time step 1.

The fade state keeps its quality 0.5 · l from time step 1 to time step 2. At time step 1,

a packet p2 := (wmax, 3) is released. If ON schedules p1, we keep the fade state at 0.5 · l till

time step 3 and ON cannot schedule p2 before its deadline. The optimal offline algorithm

will schedule p2 instead and the competitive ratio is wmax/wmin. On the other hand, if ON

schedules p2 at its arrival, the fade state sharply changes to 0 at the end of time step 2 and

keeps 0 since then. Thus, even though ON starts to schedule p2, it cannot finish it. Instead,

the optimal offline algorithm schedules p1 and the competitive ratio is wmin/0, which can

be arbitrarily large.

Based on Theorem 2.8, we know that if the fade states are completely unpredictable,

without one step of look-ahead, then no online algorithm can have a competitive ratio
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better than wmax/wmin. Therefore, we consider a practical scenario and make the following

assumption that is widely accepted:

Assumption 1. [17,19,20] The online algorithms have the ability of looking one-step ahead

of knowing the fade states of the channel. At the time when an online algorithm starts to

schedule a packet, the algorithm knows that this “committed” packet can be sent successfully

according to future fading states. However, the online algorithm is allowed to preempt-

restart this packet later, and this packet is not guaranteed to be sent successfully if it is

preempted.

Assumption 1 applies to all the following variants that we consider.

Assume that both the fade states and the packet input sequence are unknown

to the online algorithms. Two packets are with more interests when neither the fade

states nor the input sequence is known to the online algorithm:

1. packet i: the currently running packet. If i is not available, we simply create a virtual

packet i with wi = 0.

2. packet h: the packet with the maximum-value among all pending packets in the router.

From previous results, we conclude that always sending the packet with the earliest

deadline or with the maximum weight results in a competitive ratio arbitrarily large. Here,

we employ the following ideas to design an online algorithm with a better competitive ratio:

If the currently sending packet i has a sufficiently large value, then we keep sending it.

Otherwise, we let packet h preempt it. The algorithm we study is called SEMI-GREEDY.

Algorithm 2 SEMI-GREEDY(α > 1)

1: Let the maximum-value pending packet be h, with ties broken in favor of the earliest
deadlines.

2: Let the currently being sent packet be i. If h (or i) does not exist, we set wh = 0 (or
wi = 0).

3: if wh ≥ α · wi then
4: abort i and send h.
5: end if
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Before we prove the competitive ratio for the algorithm SEMI-GREEDY, we define a

concept that is useful for the proof.

Definition 2.3 (Packet Chains). We define a packet chain C of k packets as C := {p1, . . . , pk}

with the following property (α > 1), wpi ≤
wpi+1

α , ∀i = 1, 2, 3, . . . , k − 1. We use W (C) to

represent the total value of the packets of C.

Lemma 1. Given a chain C of k ≥ 2 packets p1, p2, . . . , pk, we have W (C) ≤ 1
α−1 ·

αn+1−1
αn ·

wpk .

Proof.

W (C)

wpk
=

∑k
i=1wpi
wpk

=
wp1 + wp2 + · · ·+ wpk−1

+ wpk
wpk

≤
wp1 + wp2 + · · ·+ wpk−1

+ α · wpk−1

α · wpk−1

= 1 +
1

α
·
wp1 + wp2 + · · ·+ wpk−1

wpk−1

≤ . . .

≤ 1 +
1

α
+

1

α2
+ · · ·+ 1

αk−2
+

1

αk−1

=
1

α− 1
· α

k − 1

αk−1

Theorem 2.9. The SEMI-GREEDY algorithm has a competitive ratio of max{1 +α, 1
α−1 ·

αn−1
αn−1 }. It is (φ2 ≈ 2.618)-competitive when α = φ ≈ 1.618.

Proof. We use a charging scheme to prove Theorem 2.9. The idea is: For the packets sent

by the adversary, we charge them into different time intervals and we prove that in each

pair of corresponding intervals, the value we charge to the adversary in that interval is no

more than max{1 + α, 1
α−1 ·

αn+1−1
αn } times of what SEMI-GREEDY achieves.
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Let the subset of packets chosen by the adversary (that is, an optimal offline algorithm)

(respectively, SEMI-GREEDY) be Π1 (respectively, Π2). Without loss of generality, we

assume that the adversary sends packets in a canonical order, i.e., for any two pending

packets pi and pj , the adversary sends the packet with an earlier deadline. We are going to

prove ∑
pj∈Π1

wpj∑
pi∈Π2

wpi
≤ max{1 + α,

1

α− 1
· α

n − 1

αn−1
}

The proof depends on the following two observations:

1. Given a set of packets S at time t, we assume that an online algorithm schedules a

packet pi ∈ S. We consider time t′ > t. Since all packets have the same length, if the

packet pi cannot be finished by time t′, any packet in S cannot be finished completely

by time t′, no matter what the fade states of the channel are.

2. Given a set of packets S at time t, we assume that the SEMI-GREEDY algorithm

schedules a packet pi ∈ S. We have wpi ≥ maxpj∈S
wpj

α .

If we assume pi is aborted at time t′ > t by a packet pk, then we have wpi < wpk/α

and pk /∈ S. If the preempting packet pk is not sent by the algorithm SEMI-GREEDY,

then pk must be aborted by another packet which has the potential of being sent. So

on and so forth, we regard all aborted packets and the last-sent packet pl as a chain.

From Lemma 1, all ever-aborted packets have value ≤ wpl · 1
α−1 ·

αn−1
αn−1 .

Note that no chains share a same packet, since each preempted packet and its pre-

empting packet are in the same chain.

For any packet p ∈ (Π1 \Π2) sent only by the optimal offline algorithm, either p expires

before SEMI-GREEDY sends it or p was sent, SEMI-GREEDY aborted p before p could

be finished, and p is never completed before its deadline. If p expires, any packet that

SEMI-GREEDY sends since time rp has a value ≥ wp/α (from the algorithm). For each

time interval in which a single packet is sent, we examine it for both the optimal offline
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algorithm and this online SEMI-GREEDY algorithm in a sequential order. Our charging

scheme works as follows:

1. For any packet p ∈ (Π1 \ Π2) that SEMI-GREEDY has not ever run, we charge it to

the corresponding time interval that SEMI-GREEDY sends a packet.

We note that SEMI-GREEDY must have one pending packet to send in this interval

since this packet p is a candidate. The packet SEMI-GREEDY sends, say p′, in this

corresponding interval has a value no less than wp/α. Also, SEMI-GREEDY finishes

p′ no later than the adversary finishes p since p and p′ have the same processing time

and p and p′ are being executed in corresponding time intervals when both algorithms

send packets.

2. For any packet p ∈ (Π1 \ Π2) that SEMI-GREEDY ever sends but aborts it later,

we know that (from above observations) p belongs uniquely to a chain and the last

element of this chain, say p′, is sent by SEMI-GREEDY. Thus, we charge wp to the

time interval when p′ is sent by SEMI-GREEDY.

3. For any packet p ∈ (Π1∩Π2), we charge wp to the time interval when SEMI-GREEDY

sends p.

Clearly, for any packet acting as the last-element of a chain, this charging scheme

results that the value ratio is bounded by 1
α−1 ·

αn−1
αn−1 (see Lemma 1).

The remaining part of the proof is to argue that when we charge a packet p ∈ (Π1 \

Π2) that SEMI-GREEDY has not ever run yet in the corresponding time interval, SEMI-

GREEDY sends a packet p′, wp′ ≥ wp/α. This claim is easy to prove since if wp′ < wp/α, p′

will be aborted by p immediately at the time when p arrives. Thus, for each packet p that

SEMI-GREEDY sends, the charged value to p for the adversary is bounded by 1 + α and

1
α−1 ·

αn−1
αn−1 times wp. All packets sent by the adversary have been charged. Theorem 2.9 is

proved.
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Closing or shrinking the gap [2, 2.618] for deterministic online algorithms still remains

as an open problem.

Assume that the fade states are known to the online algorithms, but the packet

input sequence is unknown. Now we consider a variant in which the fade states are

known beforehand, but the packet input sequence is unknown. To illustrate the challenge,

we present an instance in which packets have the same value and the fade state of the

channel is fixed at qt = l
2 , ∀t.

Example 2. Consider one packet p1 with deadline 5 at time 1. If an online algorithm

executes p1, the adversary releases another packet p2 with deadline 3 at time 2. So, the

online algorithm cannot finish both jobs and the competitive ratio is 2, given the adversary

finishes both packets in the order of p2 and p1. If the online algorithm aborts p1 but

executes p2 at time 2, the adversary releases another packet p3 at time 2 with deadline 4.

Here, the online algorithm cannot finish both p2 and p3, but the adversary can finish p1 and

p3 by their deadlines in order. Thus, the lower bound of competitive ratios for this variant

(wpi = 1, ∀i and fade states keep constant l/2) is 2.

It is intuitive to abort a running packet if it can be sent later with respect to the given

set of pending packets and fade states of the channel. Our proposed online algorithms are

based on this intuition. In order to check if a set of packets can be delivered successfully,

we define a concept first.

Definition 2.4 (Provisional Schedule [28, 42]). At any time t, a provisional schedule is a

schedule for the pending packets at time t (assuming no new arriving packets). This schedule

specifies the set of packets to be transmitted, and for each packet, it specifies the delivery

time. An optimal provisional schedule is the one achieving the maximum total value of

packets among all provisional schedules.

In the following, we provide a modified earliest-deadline-first algorithm called EDFβ.

Since the fade states are known, there exists an efficient algorithm in calculating an optimal
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provisional schedule for time t. We are interested in two packets in this provisional schedule:

the earliest-deadline pending packet e and the packet h with the maximum value. We

either schedule e (if e has a sufficiently large value) or another packet f satisfying wf ≥

max{β · we, wh
β }.

Algorithm 3 EDFβ
1: Abort the currently running packet i only if the new arrival with value ≥ β ·wi, ties are

broken in favor of the packet with the earliest deadline.
2: if there is no currently running packet then
3: calculate the optimal provisional schedule, based on the set of pending packets and

the known fade states;
4: if we ≥ wh

β then

5: execute e;
6: else
7: execute a packet f satisfying

wf ≥ max{β · we,
wh
β
},

where ties are broken in favor of the earliest-deadline packet. Note h itself is a
candidate for f .

8: end if
9: end if

Theorem 2.10. Assume fade states are known to online algorithms. Algorithm EDFβ is

max{2, β, 1
β−1 ·

βn−1
βn−1 }-competitive, and it is 2-competitive when β = 2.

Proof. We use a potential function method and a loop invariant method to prove The-

orem 2.10. We compare our algorithm EDFβ with the adversary ADV. Let ΦADV
t and

ΦEDF
t denote the potentials of the adversary and EDFβ respectively. Specifically, ΦADV

t

denotes the total value achieved since time t from the pending packets at time t for the

adversary. Let this set of packets be S∗t . Let ΦEDF
t denote the total value of the optimal

provisional schedule of the pending packets at time t for EDFβ. We use pt and p′t to denote

the t-th packet sent by EDFβ and ADV respectively. If such a packet does not exist, then

pt (p′t, respectively) is a null packet with value 0. To prove Theorem 2.10, we need to show
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that for any t, we always have

c · wpt + ∆ΦEDF
t ≥ wp′t + ∆ΦADV

t ,

where c := max{2, β, 1
β−1 ·

βn−1
βn−1 }. We provide the following loop invariants and prove their

correctness by case study.

• Denote the pending packets at time t for ADV and EDFβ as P ′t and Pt. P ′t ⊆ Pt.

Note that EDFβ may not deliver all packets in Pt.

• When a packet is sent, the sum of the actual gain and the credit charge (see below) is

called amortized gain. We prove that for the i-th packet sent, ADV’s amortized gain

is no more than c times of EDFβ’s amortized gain.

For arrivals, with the first invariant, the invariants are easy to prove. Note wpt = wp′t =

0. In the following, we consider packet deliveries only. Let the packet EDFβ chooses to send

in this time interval be p. One fact that we will use in the proof is: Given two packet p and

p∗ with dp ≤ dp∗ , if p is not in the optimal provisional schedule, but p∗ is, then wp∗ ≥ wp.

This fact further implies that if p is the packet EDFβ is currently sending, any packet not

in the optimal provisional schedule has a value ≤ β · wp.

1. Assume that ADV sends a packet p′. Assume that p is sent successfully by EDFβ.

Based on the invariants, wp′ , wp ≤ wh. From the algorithm itself, wp ≥ wh/β. Since

all packets have the same length, under any fade states, EDFβ finishes p no later than

ADV finishes p′.

If dp′ < dp, we have wp′ < wp in the optimal provisional schedule. Then we charge

wp′ + wp to the adversary and we have wp′ + wp ≤ 2 · wp. If dp′ > dp, p will not be

sent by the adversary. Then we charge wp′ to ADV and we have β · wp ≥ wh ≥ wp′ .

31



2. Assume that ADV sends a packet p′. Assume that p is aborted by EDFβ before it is

finished.

If the adversary will send p, we will charge wp to the packet that preempts it. Like the

chain we have calculated in Lemma 1, the value gained by sending the last packet of

the chain is at least (β−1) · β
n−1

βn−1 times of the total value we charge for the adversary.

3. Assume that ADV has nothing to send from the currently pending packets for EDFβ.

We claim that either p has been sent by ADV or ADV must have one new arrival

before EDFβ finishes the packet p which it chooses to send. Otherwise, ADV can get

more value by delivering p. It does not hurt if we have run p till new arrivals come.

This analysis is similar to what we have had in above cases.

Theorem 2.10 implies that extra information (for example, the known fade states) helps

improve competitive ratios.

Assume that the fade states are unknown, but the packet input sequence is

known. We first provide the lower bound φ ≈ 1.618 of competitive ratio for deterministic

online algorithms for this variant. Then we discuss the relation between this model and

another well-studied online problem.

Theorem 2.11. Consider a variant in which the fade states are unknown, but the packet

input sequence is known to online algorithms. The lower bound of competitive ratio for

deterministic online algorithms is φ ≈ 1.618.

Proof. Such an instance is easy to construct. Assume there are two packets in the input

sequence only. One packet p1 is with value 1 and deadline 2. The other packet p2 is with

value φ and deadline 4. These two packets are released at time step 1. Let an online

algorithm be ON.

If ON schedules p1, the optimal offline algorithm schedules p2 and the fade states are

0.5 · l from time step 1 to 3. Note here the Assumption 1 still holds. Then the competitive
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ratio is φ. If ON schedules p2, the optimal offline algorithm schedules both p1 and p2 given

the fading states are 0.5·l from time step 1 to 4. Thus, the competitive ratio is 1+φ
φ = φ.

Next, we reveal the relation between this variant and a well-studied model called the

bounded-delay model (see [28,35] and the references therein). In the bounded-delay model,

packets are released in an online manner. Each packet is associated with a value and a

deadline before which it should be sent. In each time step, a packet can be sent and the

goal is to maximize the total value of the packets sent before their respective deadlines.

Theorem 2.12. Assume that the fade states are unknown, but the packet input sequence is

known to online algorithms. A c-competitive algorithm for the bounded-delay model implies

a c-competitive algorithm for our model.

Proof. Consider an input sequence I for the bounded-delay model. Let the packets sent by

an optimal offline algorithm be O and the algorithm be OPTd.

Given a time t, we create the fade states such that the optimal offline algorithm OPTf for

this variant achieves the same weighted throughput as OPTd. Also, for an online algorithm,

the extra given information about the whole input sequence cannot circumvent the difficulty

brought by the unpredictable fade states. The construction of fade states is as follows.

For the bounded-delay model, let the set of packets O be p1, p2, . . . , pm and they are

sent in time steps 1, 2, . . . ,m respectively. (If there is no packet sent in a step i, we create

a dummy packet pi for step i with wpi = 0.) Without loss of generality, all packets pi can

be sent in the earliest-deadline-first manner. Then we modify the deadlines of the packets

in O such that dpi < min{dpi+1 , . . . , dpm}, for all i = 1, 2, . . . ,m − 1. At last, we force the

quality of the fade states from time dpi to dpi+1 be l/(dpi+1 − dpi). This guarantees that

a packet can be sent under such fade states, and if pi is pending to an online algorithm

at time dpi−1 and the online algorithm sends any packet other than pi, pi cannot be sent

by the online algorithm any more. We ensure that the optimal offline algorithm for this

variant works the same as the optimal offline algorithm for the bounded-delay model. Also,

the extra information about the packet input sequence does not help the online algorithm,
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since it has no knowledge about the fade states. With Assumption 1, the online algorithm

knows that only one packet can be sent once it is committed and this is exactly the same

as what is assumed in the bounded-delay model.

Closing or shrinking the gap of competitive ratios [1.618, 1.832] for the bounded-delay

model is an intriguing problem and thus, from Theorem 2.12, the gap still applies to the

variant in which the fade states are unknown, but the packet input sequence is known to

online algorithms.

2.4.3 Online learning algorithms

Driven by the observation that adversary is too powerful in generating inputs against on-

line algorithms and competitiveness is sometimes too pessimistic in evaluating an online

algorithm, we want to use another metric external regret to evaluate the performance of

an online algorithm using online learning approaches. We note that competitive online al-

gorithms and online learning algorithms can be both applied as online approaches to this

model without making any stochastic or probabilistic assumptions on input arrivals. The

main question here will be: Does there exist a finite input instance such that any online

learning algorithm cannot achieve a constant external regret?

Theorem 2.13. Consider a finite but large input sequence. There is no online learning

algorithm that can have a constant external regret.

Proof. In order to show that for a given finite input sequence, no online learning algorithm

has a constant external regret, we need to show that compared with the best algorithm in

hindsight, any online learning algorithm has a constant competitive ratio which is larger

than 1. We consider packets with agreeable deadlines. This example is modified from the

one given in [25]. We first show that for any online policy π, its competitive ratio c ≥ φ− ε,

for any small ε > 0.

At each time step t, two packets pt and p′t with span (the difference between deadline and

release time) 1 and 2 respectively are released with values wt and wt+1 respectively. Assume
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a deterministic online algorithm runs policy π, and its competitive ratio is c. Initially, we

set τ =
√

5 − 2, w0 = 1, w1 = φ + ε, and wi+1 = wi−wi−1

τ . (Explicitly, we set wi =

(1− ε)φi + ε(φ+ 1)i, ∀i ≥ 0.)

1. Let k be a sufficient large number. If there exists 0 ≤ j < k, π selects p′j in step j

(i.e., time interval [j, j + 1]), its adversary stops releasing packets after j.

Policy π does not select pj to send in step j, and ∀i < j, π selects pi to send in step

i. On the contrary, π’s adversary delivers p′i in step i, ∀i < j, pj in step j, and p′j

in step j + 1. Note that limk→∞
wk
wk−1

= φ + 1 and
∑n

i=1wi = (wn−1 − w0)/τ . The

competitive ratio is

c ≥ (w1 + w2 + · · ·+ wj+1) + wj
(w0 + w1 + · · ·+ wj+1)− wj

> 1 +
2τ

1− τ
−
(

2τ

1− τ

)2

ε

> φ− ε.

2. Otherwise, the adversary releases all packets pi and p′i up to step k − 1 and at time

k, only pk is released.

∀i < k, π selects pi to send in step i. π’s adversary delivers all packets p′i in step i up

to step k, where pk is sent. Assume k is large.

c ≥ w1 + · · ·+ wk + wk
w0 + w1 + · · ·+ wk

= 1 +
wk − w0

w0 + w1 + · · ·+ wk

k→∞−−−→ 1 +
(1 + φ)wk−1 − 1

1 + φ+
wk−1−1

τ

k→∞−−−→ 1 +
φ+ 1

τ−1
= φ.
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Thus, no online algorithm can achieve a competitive ratio better than φ > 1. Therefore,

no online learning algorithm has a constant external regret. The limit of online learning

algorithm is due to the fact that the partial input sequence cannot reveal more information

on the optimality of each static algorithm until the end of this input sequence.

Online learning algorithms description

We design online learning algorithms for both the bounded-delay model and its general-

ization, as well as a few of its variants. We name a static algorithm an expert. Based

on Occam’s razor (a principle stating that “the simplest explanation is usually the correct

one”), we interpret that in general, we prefer simpler explanations. Consider the model that

we study. Packet values, packet deadlines, and channel quality are the three factors that

we need to consider in the online-decision making procedure. Thus, the static algorithms

should be simple functions of packet values, packet deadlines, and channel quality only.

First, we design a few experts (static algorithm with hindsight). Then we design online

learning algorithms based on the observed performance of these experts. Note that the

number of experts cannot be large since this value determines the running time of the online

learning algorithm in each time step. Thus, we apply the well-known geometric rounding

technique. Consider all distinct packet values wmin = w1 < w2 < . . . < wn = wmax. We

let wmax = (1 + δ)kwmin, where k ≤ n. Then for each value wi, it falls in the range of

[wmin(1 + δ)i−1, wmin(1 + δ)i), i ∈ {1, . . . , k}. Thus, we have log1+δ
wmax
wmin

distinct intervals.

Let M = dlog1+δ
wmax
wmin
e. We first introduce the ways these M experts work. Then we

represent our online learning algorithm under various scenarios respectively.

We have two phases of delivering a packet for each expert. In the first phase, the quality

of the channel is predicted. In the second phase, the expert chooses one pending packet to

send. In selecting a packet to send, packet values play the role and we have two (families

of) strategies.

1. (A strategy based on absolute values.)
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Sort all pending packets in increasing order of deadlines, with ties broken in favor of

the one with larger value. Choose the packet with a value ≥ its predefined threshold

with absolute value. If such a packet is not available in its buffer, this expert sends

nothing. This algorithm is described in Algorithm 4.

Algorithm 4 EBAV

1: Sort packets in the buffer in canonical order, i.e., in increasing order of deadlines with
ties broken in favor of larger value.

2: Send the first packet p satisfying wp ≥ wmax

(1+δ)j
. If p does not exist in the buffer, send

nothing.

Each expert only admits the packet that it will send eventually. Thus, for the expert

EBAV with a parameter j, it only accepts packets with values ≥ wmax/(1+δ)j . If the

buffer size is limited, when overflow happens, we apply the greedy approach to filter

out the packets that cannot be accommodated. That is, we drop the minimum-value

packets when packet overflow happens; ties broken arbitrarily.

2. (A strategy based on relative values.)

Sort all pending packets in increasing order of deadlines, with ties broken in favor of

the one with a larger value. Choose the packet with a value ≥ its predefined threshold

with relative value defined using the maximum-value packet in the buffer, with ties

broken in favor of the earlier released packet. We note that such a packet is always

in the buffer.

Algorithm 5 EBRV

1: Sort packets in the buffer in canonical order, i.e., in increasing order of deadlines with
ties broken in favor of larger value.

2: Let h be the maximum-value packet in the buffer.
3: Send the first packet p satisfying wp ≥ wh

(1+δ)j
. The packet p can always be found since

either the first satisfying packet or the packet h is a candidate.

In admitting packets, we apply the approach of identifying the optimal provisional

schedule, which is similar to the one used in competitive online algorithms. Given a set

of pending packets P , a provisional schedule S specifies which packets in P should be

sent in which time step. An optimal provisional schedule S∗ is the one that achieves the
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maximum weighted throughput among all provisional schedules on pending packets

P (channel quality is assumed perfect). Clearly, an optimal provisional schedule S∗

at time t can be calculated via a maximum-weighted bipartite matching over pending

packets in O(|P |2) (see [30]).

The channel quality is always perfect. This is the typical bounded-delay model. Here,

we introduce two learning algorithms based on the same strategy: Follow the ‘best expert’.

One is simply following the strategy of the expert who has the best gain up to the current

time, and the other is following the strategy of the expert who has the best gain after

delivering all packets in its buffer successfully. We call these two online learning algorithms

‘Follow COPT’ and ‘Follow OPT’, respectively.

The channel quality varies over time. When the channel quality is not a fixed value,

we need to consider the channel quality’s variability as well. Thus, we employ a set of

experts in predicting the channel’s quality over time.

In estimating the channel quality, we introduce two experts. (We can adapt our algo-

rithm to multiple experts.) Each expert insists on giving a fixed prediction of the future

channel states, which is either H (representing ‘high’) or L (representing ‘low’). These two

experts are named EH and EL, respectively. We then use the “weighted majority algo-

rithm” [45, 46] in predicting the state of the channel quality. We associate credits to these

experts, which means to how much extend an expert’s opinion can be trusted. Let the

credit for expert EH at time t be cEHt and for expert EL be cELt , respectively. Initially, we

set cEH0 = cEL0 = 1. In each time step 1, 2, . . . , t − 1, we have a label indicting whether

the channel quality is ‘H’ or ‘L’. Then we proceed as the following Winnow Algorithm

(Algorithm 6).

However, in admitting packets, we are not only predicting the next step’s channel quality,

we also need to estimate the future channel’s state when we calculate an optimal provisional

schedule. Hence, we need to study the ‘chain effect’ of the prediction. Let E(·) be the
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Algorithm 6 Winnow(EH, EL)

1: Initially, set cEH0 = cEL0 = 1.

2: if
∑
cEHt ≥

∑
cELt then

3: predict ‘H’;
4: else
5: predict ‘L’.
6: end if
7: if the channel’s quality was ‘high’ then

8: cEHt+1 = 2cEHt ;

9: cELt+1 = cELt /2;

10: else
11: cEHt+1 = cEHt /2;

12: cELt+1 = 2cELt .

13: end if

predicted value using Algorithm 6.

Lemma 2. If E(cEHt ) ≥ E(cELt ) (respectively, E(cEHt ) < E(cELt )) holds at time slot t, then

E(cEHt+1) ≥ E(cELt+1) (respectively, E(cEHt+1) < E(cELt+1)) holds at time t+ 1.

Proof. Let ηt denote the predicted quality at time t. We have ηt =
E(cEH

t )

E(cEH
t )+E(cEL

t )
. Based

on the Winnow Algorithm, we have

E(cEHt ) = ηt−1E(cEHt−1) + (1− ηt−1)
E(cEHt−1)

2
, (2.4)

E(cELt ) = ηt−1
E(cELt−1)

2
+ (1− ηt−1)E(cEHt−1). (2.5)

Given the assumption that E(cEHt ) ≥ E(cELt ), we have ηt ≥ 1
2 . Then from Equa-

tions (2.4) and (2.5), we have

E(cEHt+1) = (1 + ηt)
1

2
E(cEHt ) ≥ 3

4
E(cEHt ),

E(cELt+1) =

(
1− 1

2
ηt

)
E(cELt ) ≤ 3

4
E(cELt ).

Lemma 2 is completed.
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Theorem 2.14. If the initial expected credits of experts satisfies E(cEH0 ) ≥ E(cEL0 ) (re-

spectively, E(cEH0 ) < E(cEL0 )), then the quality of channel ηt is non-decreasing (respectively,

non-increasing) for t.

Proof. Theorem 2.14 can be proved using the inductive method. Based on the definition of

η and E(·), we have

ηt =
E(cEHt )

E(cEHt ) + E(cELt )
,

ηt+1 =
E(cEHt+1)

E(cEHt+1) + E(cELt+1)

=
(1 + ηt)

1
2E(cEHt )

(1 + ηt)
1
2E(cEHt ) +

(
1− 1

2ηt
)
E(cELt )

=
(1 + ηt)E(cEHt )

(1 + ηt)E(cEHt ) + (2− ηt)E(cELt )
.

Therefore, we have

ηt+1

ηt
=

(1 + ηt)E(cEHt )

(1 + ηt)E(cEHt ) + (2− ηt)E(cELt )

(
E(cEHt ) + E(cELt )

E(cEHt )

)

=
(1 + ηt)E(cEHt ) + (1 + ηt)E(cELt )

(1 + ηt)E(cEHt ) + (2− ηt)E(cELt )
.

Assume that we have the initial case of E(cEH0 ) ≥ E(cEL0 ). Based on Lemma 2, we have

E(cEHt ) ≥ E(cELt ). That is, 1
2 ≤ ηt ≤ 1. So 2 − ηt ≤ 3

4 ≤ 1 + ηt, which indicates (1 +

ηt)E(cELt ) ≥ (2−ηt)E(cELt ) (E(cELt ) > 0). Thus, it is obvious that ηt+1

ηt
≥ 1. Theorem 2.14

is completed.

Theorem 2.14 indicates that the predicted quality of the channel at a certain time highly

depends on the result predicted in the previous step. Thus, the ‘predicted state’ can be
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rolled over along the time we send packets. We have the following Algorithm 7.

Algorithm 7 PCR(EH, EL)

1: Apply the Winnow Algorithm to predict channel’s quality at time t.

2: if E(cEHt ) ≥ E(cELt ) then
3: assign all predicted channel state ‘High’;
4: else
5: assign all predicted channel state ‘Low’.
6: end if

After we identify the channel state over time, we can apply the bipartite matching to

find the optimal provisional schedule and arrange packets in canonical order. In summary,

we assign all the pending packets to their latest time slots that they can be feasibly sent

before deadlines if E(cEHt ) ≥ E(cELt ). If E(cEHt ) < E(cELt ), these pending packets are

assigned to the earliest time slots for delivery.

A special case of only two experts. When there are two experts, the algorithmic

decisions of these experts work the same as there are multiple ones. We consider this

variant for analysis only.

Analysis of the online learning algorithms

We apply the local optimization technique to analyze the online learning algorithms that

we have. We first consider two packets, one is sent by the best expert and one is sent by

our algorithm. Then we show that the regret is bounded by a ratio of these two packets.

Finally, we generalize this ratio to the case in which there are multiple values for packets.

Assume that there are only two kinds of packets denoted as ps and pb, where ws = 1

and wb = α > 1. In this case, it is obvious that only two experts are needed. The first

expert denoted as EA will schedule the earliest deadline packet whose weight is equal to or

larger than ws, but if there exist both ps and pb sharing the same earliest deadline, it will

schedule pb. The second expert denoted as EB will schedule the earliest deadline packet

whose weight is equal to or larger than α, but if there are only ps remained in the current

pending set, it will schedule ps anyway. These two experts are not like EBAV or EBRV,
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they are for the purpose of analysis only.

Let the best expert among EA and EB be EXP. Let the total gains of the best expert

and of the online learning algorithm are GEXP and GON , respectively. Then the average

regret R is expressed as

R =
GEXP −GON

T
, (2.6)

where T is the overall time spent in scheduling all the packets for the online learning

algorithm.

We case study the regret R. Given a time step, if the online algorithm has exactly

the same behavior (schedules the same packet) with the best expert in hindsight, then the

average regret will be zero. Otherwise, if the average regret is larger than zero, then we can

claim that there exist a time step t such that the packet scheduled by the online learning

algorithm is different from the one scheduled by the best expert.

• Assume that the best expert EXP sends a packet ps and the online learning algorithm

ON schedules a packet pb.

We have the claim as below.

Remark 2.3. The best expert must send a packet pb in the future, i.e., after the time

the online learning algorithm sends the packet ps.

Proof. We prove Remark 2.3 using the contradiction method. Assume that the claim

fails at some time t′ > t. We know that in any time step t′ > t, the best expert

sends a packet with less or equal weight comparing to the online learning algorithm.

Since t is the first time step that the online learning algorithm differs from the best

expert, the best expert will have a strict less gain than the online learning algorithm.

This is a contradiction to the assumption that the best expert outperforms the online

learning algorithm. This claim is proved.

In this case, we charge EXP the value 1 +α and charge ON the value α. We have the
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internal regret of 1 and the ratio of gains is bounded by (1 + α)/α.

• Assume that the best expert EXP sends a packet pb and the online learning algorithm

ON schedules a packet ps.

In this case, the packet pb is either sent by ON already or it is pending in ON’s buffer.

If ON has sent this packet, we can charge EXP the value α to the time step when ON

sends it. In that time step, EXP sends a packet with value 1; otherwise, EXP will

choose to send a large-value packet, say α, and no packet pb is available for sending

now.

Now, assume that EXP schedules another large-value packet in the future. Instead,

ON schedules the packet pb and may lose the value of pb. We consider two time steps.

Overall, the value is bounded by a ratio of (α+ α)/(1 + α).

We come to the result that for this variant only, the internal regret is bounded by α−1.

This analysis approach can be applied to the cases in which packets have more than two

values. We skip the details of expanding this analysis.

Example 3. Here, we give a tight example for the online algorithm we present. We have

two kinds of packets with values 1 and α respectively. Initially, B packets with value 1

arrive and their deadlines are 1, 2, . . . , B. Then, B packets with value α arrive and their

deadlines are B + 1, B + 2, . . . , 2B. For the online learning algorithm EBRV or EBAV, if

it chooses the packets with value 1 to send (of course, it plans to send the packets with

value α), we generate input of B packets with value α at time B+ 1 and these packets have

deadlines of 2B. If the online learning algorithm chooses packets with value α to send, we

stop releasing new packets. In either case, the average regret is (α− 1)/2.

Simulations

We design simulations to evaluate the performance of online learning algorithms in Ap-

pendix B. In summary, both online learning algorithms and competitive online algorithm

perform nearly as good as the optimal offline algorithms. The online learning algorithm
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has much lower running time complexity (O(log n) for each arriving packet) compared with

competitive online algorithms (O(n) for each arriving packet).

2.5 Conclusions

In this chapter, we design offline and online algorithms to maximize weighted throughput

for scheduling packets with values and deadlines over a wireless channel. The achievement

of this work are summarized as below.

1. We provide an polynomial-time optimal offline algorithm for channel with constant

quality, as well as a pseudo-polynomial-time optimal offline algorithm for channel with

varying quality.

2. We present online algorithms and their competitive analysis, as well as the lower

bounds of competitive ratio. Without any information about the channel quality and

packets, we design a 2.618-competitive online algorithm SEMI-GREEDY. If packets

characters are unknown but the fading states are known beforehand, a 2-competitive

online algorithm is achieved by EDFβ (β = 2). If packet release sequence and their

characterizes are known a prior, we provide the lower bound 1.618 of competitive ratio

for deterministic online algorithms.

3. We apply online learning approaches to this model as well as a few of its variants. We

design online learning algorithms and analyze their performance theoretically in terms

of external regret. We also measure these algorithms’ performance experimentally.

We conclude that no online learning algorithms have a constant regret. However, in

general, the designed online learning algorithm works as almost well as the best known

competitive online algorithm in practice.

44



Chapter 3: Energy-Aware Scheduling Algorithms in the

DPM Setting

Starting from this chapter, we explore energy-efficient algorithms for scheduling jobs in

energy-critical systems. Here, the system is equipped with dynamic power management

(DPM) as the energy-saving technique which is commonly used to cut a system’s energy

cost via eliminating or reducing power consumption of one or more of its components.

The system has a higher-power ACTIVE state and one or more lower-power SLEEP or

STANDBY states. Jobs can be processed only when the system is at its ACTIVE state

but not at any lower-power state. Usually, a constant amount of energy called transition

energy and a constant time called transition time are associated with state transition. We

consider two models of energy-aware scheduling problems in this chapter.

In the previous throughput-aware scheduling problems (discussed in Chapter 2), weighted

throughput is considered as the gain of the system regardless of the energy consumption.

However, this may not be the case in an energy-critical system, where energy cost is in-

volved. Therefore, the profit gained by the system is diluted by its energy expense. In one

problem discussed in this chapter, we switch the maximization target to net profit which is

the value gained by scheduling jobs less the cost paid for energy consumption in the course

of scheduling.

Based on the concept of DPM, it is better for the jobs to be grouped together from

the energy-saving’s point of view. That is, without deadlines, earlier released jobs can

be delayed and combined with later released jobs in order to save extra energy spent in

powering on or spinning. However, from the perspective of users’ experience, a job should

not be delayed for too long time. Thus, there exists a tradeoff between saving energy

and enhancing users’ experience. In this chapter, we also investigate the impact on job

processing delay introduced by power-down energy-saving mechanisms. We consider two
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important user-perspective system performance metrics — flow time and stretch (see their

definitions in Section 3.2). Specifically, we study bicriteria algorithms that minimize the

maximum flow time or largest stretch given a fixed energy budget, and minimize the total

energy consumption given an upper bound of flow time or stretch. We consider both offline

and online algorithms.

3.1 Net Profit Model

In the settings, time is discrete and each time interval [t, t + 1) is called a time step t. A

job j with processing time pj ∈ Z+ can be finished within pj time steps.

Machine. There is one machine (for instance, a packet transmitter in a wired/wireless

communication system). At any time, at most one job can be run on the machine. For

practical considerations of the current hardware support in embedded networks [47], the

machine has only two states: ACTIVE and SLEEP. If the machine is currently running a

job, it must be at its ACTIVE state and a machine cannot run a job at its SLEEP state.

When the machine does not run any job (though there may exist pending jobs), it can be

at either its ACTIVE or SLEEP state. We call the machine spinning when it is at the

ACTIVE state but no job is running. When it is at the ACTIVE and SLEEP states, the

machine consumes energy µ ∈ R+ and e(s) ∈ R+ per unit time, respectively. Without loss

of generality, we assume

µ > 0 and e(s) = 0. (3.1)

In order to power on (respectively, off) the machine from a SLEEP (respectively, an

ACTIVE) state to an ACTIVE (respectively, a SLEEP) state, we have to pay transition

energy C(s/a) ∈ R+ (respectively, C(a/s) ∈ R+). We denote

C = C(s/a) + C(a/s). (3.2)
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Jobs. Let the set of jobs released be I. Each job j ∈ I is released at an integer time

rj ∈ Z+. Any job j has a reward (value) vj ∈ R+. If j is processed, its reward/value vj is

contributed to our objective. Let V denote the total profit gained by completing a set of

jobs S ⊆ I, we have

V =
∑
j∈S

vj , (3.3)

Jobs have deadlines. A job j has an integer deadline dj ∈ Z+. Only jobs that can

be finished before their respective deadlines contribute their values to our objective. We

do not expect to finish all released jobs in the schedule and hence S ⊆ I. We consider

under-loaded systems in which all jobs in I can be finished (before their deadlines) as long

as the machine processes jobs immediately at their arrivals or in a non-decreasing deadline

order for all pending jobs.

In this chapter, we consider the general case and some important variants of the net

profit model as well. One variant is called s-uniform deadline instance. We define the span

of a job j as dj − rj and s-uniform deadline as below.

Definition 3.1 (s-uniform deadline [29]). Given a constant s, if for any job j we have

dj − rj = s, then we say that this input instance has s-uniform deadlines.

Energy cost. Let E denote the total energy used by the machine in finishing a set of jobs

S ⊆ I. Let T (a) (respectively, T (s)) denote the total amount of time the machine remains

at the ACTIVE (respectively, SLEEP) state. Let m ∈ Z+ be the number of times that the

machine is powered on during the course of scheduling jobs. Without loss of generality, the

machine is assumed at its SLEEP state initially and finally. The total energy cost is defined

as

E = µ · T (a) + e(s) · T (s) + (C(s/a) + C(a/s)) ·m = µ · T (a) + C ·m. (3.4)

Since the values we consider include energy costs and jobs’ rewards, we need to keep

the units of energy and reward consistent. Thus, we define a constant r to denote the value
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paid per unit of energy.

In the net profit model, our objective is to maximize the total net profit P of scheduling

jobs. Here, P = V − r · E, where V and E are specified in Equation 3.3 and Equation 3.4,

respectively. Without loss of generality, we assume that for any job j ∈ I,

vj ≥ r · µ · pj . (3.5)

For those jobs not satisfying Inequality 3.5, we simply drop them out of the input

sequence since executing such jobs cannot make any positive net profit.

3.1.1 Previous Work

In previous research, many researchers have developed algorithmic solutions either to mini-

mize the total energy consumption while all released jobs are expected to be finished (such

as [48, 49]) or to maximize the total reward by completing a selected set of released jobs

under a given energy budget (such as [50,51]). Unfortunately, such prior work has not fully

addressed those proposed algorithms’ efficiency of using energy, with respect to the patterns

of the job sequences. For example, let us assume all jobs will have the same reward upon

being finished. Then an algorithm spending amount E of energy in finishing n jobs may

not be considered more ‘efficient’ than an algorithm spending amount E/4 of energy in fin-

ishing 3n/4 jobs. Unlike what other researchers have worked on, we target on maximizing

the difference between the total reward achieved by running jobs and the total energy cost

paid during this course. We call this difference net profit. As a result, some jobs may not

even be considered for scheduling in our settings, due to the considerations of maximizing

net profit. The model we propose is called a net profit model.

The first online algorithm studying energy efficiency in completing jobs in the DVS

setting was proposed in [52]. Instead of having a fixed reward upon completing a job, Pruhs

and Stein defined a job’s income as a non-increasing function of its flow time. For this

problem, the lower bound of competitive ratio of online algorithms cannot be bounded by
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any function of the number of jobs. The underlying idea of the proof is to construct such

an example: The online algorithm is forced to run a job, however, another job with a higher

profit will be released later. In [52], Pruhs and Stein considered resource augmentation

approaches in the multi-processor setting. In this chapter, we consider the DPM setting

instead.

3.1.2 General net profit model

The net profit model has its unique challenges. Through the following Example 4, we illus-

trate the difference between the model of minimizing the total energy cost while completing

all jobs (the model discussed in [49]) and the model of maximizing the total net profit by

selecting a subset of jobs to be completed. Note that these two models differ only by their

objectives.

Example 4. The set of 6 jobs {j1, j2, . . . , j6} has the same reward 2, the same processing

time 1, and they have agreeable deadlines as shown in Table 3.1. We assume µ = 1 (µ is

the energy cost per time unit when the machine is ACTIVE), C = 4 (C is the transition

cost as that in Equation 3.2), and r = 1 (r is the net profit of finishing one job).

Table 3.1: A set of jobs with uniform rewards and agreeable deadlines.

jobs release time deadlines reward/reward

j1 1 2 2
j2 2 5 2
j3 3 6 2
j4 7 9 2
j5 8 10 2
j6 9 11 2

We realize here that even for such a simple instance (with agreeable deadlines and

uniform rewards), the scheduling results of minimizing the total energy and maximizing

the total net profit are different. As shown in Figure 3.1, in minimizing the total energy,

the machine will be spinning for two time steps with a total energy cost of E = 12 and

hence, the net profit is 0 (note that all jobs are finished). In maximizing the net profit, the
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Figure 3.1: Schedules minimizing total energy cost versus maximizing net profit.

machine is allowed to skip running some jobs and thus, job j1 is skipped and the resulted

schedule has a total energy cost of E′ = 9 and a total net profit P ′ = 1. The energy costs

and rewards are calculated as follows (we assume that the machine is at its SLEEP state

initially).

E = 4 + 8 = 12. P = 2 · 6− 1 · E = 0.

E′ = 4 + 5 = 9. P ′ = 2 · 5− 1 · E′ = 1.

We consider both overloaded systems and underloaded systems in the net-profit model.

Remember that in both systems, jobs can be preempted. Based on the definitions given

above, we note that preemptive EDF (earliest-deadline-first) policy can identify whether

a system is overloaded or underloaded. In a non-preemptive underloaded system and in a

preemptive overloaded system, we prove that the problem of maximizing net profit is NP-

complete, which implies that it is unlikely to find exact algorithms running in polynomial

time unless P = NP. A problem called strongly NP-complete indicates that even a pseudo-

polynomial time algorithm cannot exist unless P = NP. Our proofs follow polynomial-time

reductions from two other proved NP-complete problems.
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Definition 3.2 (3-PARTITION [39]). Given a finite set A of 3m elements, a bound B ∈ Z+,

and a ‘size’ s(a) ∈ Z+ for each a ∈ A, such that each s(a) with B/4 < s(a) < B/2 and∑
a∈A s(a) = m · B, can A be partitioned into m disjoint sets S1, S2, . . . , Sm such that for

1 ≤ i ≤ m,
∑

a∈Si
s(a) = B?

Definition 3.3 (SUBSET-SUM [39]). Given a set of integers and a number M , does the

sum of the numbers in some non-empty subset equals exactly to M?

Theorem 3.1. Consider a non-preemptive underloaded system. The general net profit

problem is a strongly NP-complete problem.

Proof. Given a subset of jobs, we can verify in polynomial-time whether these jobs can be

scheduled with a given target profit. This verifier applies the routine in [49] which has a

running time of O(n5). Note that given a subset of jobs, their total reward is fixed. Thus,

minimizing the total energy cost leads to maximizing the total net profit subject to all jobs

in this subset are finished.

We reduce the net profit problem from a strongly NP-complete problem 3-PARTITION [39].

The reduction works as follows. Given an instance of 3-PARTITION with 3m sizes s(1), . . . , s(3m)

and a target sum B, we create 4m jobs such that for 3m of them, job i has a processing

time pi = s(i). All these 3m jobs share the same release time R = 0, a uniform value 1, and

a common deadline D =
∑3m

i=1 s(i)+δ · (m−1). Also,
∑3m

i=1 s(i) = m ·B. There are m other

jobs. A job j, j ∈ {1, . . . ,m}, has a release time j ·B+(j−1)δ, a processing time δ, a value

1, and a deadline j · B + j · δ. We let all energy consumption be zero. Thus, the objective

of the net profit model becomes simply to maximize the total value of the schedulable jobs

within an interval [0, D]. The reduction takes linear time O(n). It is easy to show that we

could maximize the total net profit up to 4m if and only if there is a positive answer to the

3-PARTITION problem. The proof is completed.

Theorem 3.2. Consider an overloaded system. Even if all jobs share the same release time

and the same deadline, maximizing net profit is a NP-complete problem.
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Proof. Similarly, we claim that we have a polynomial-time verifier for the net profit prob-

lem. We reduce the net profit problem to a NP-complete problem SUBSET-SUM [39] in

polynomial time. Given an instance of SUBSET-SUM with n integers m1, . . . ,mn and a

target sum M , we create n jobs such that a job i has processing time pi = mi and a value

vi = mi. All jobs share the same release time R = 0 and a common deadline D = M . We

let all energy consumption be zero. Thus, the objective of the net profit model becomes

simply to maximize the total value of the schedulable jobs within an interval [0,M ]. The

reduction takes linear time O(n). It is easy to show that we could maximize the total net

profit up to M if and only if there is a positive answer to the SUBSET-SUM problem. The

proof is completed.

3.1.3 Some variants in underloaded systems

In this section, we consider a few important variants of the net profit model. As what

we have discussed, given an overloaded system, it is unlikely to get an efficient algorithm

running in polynomial time of the input size. Given an under-loaded system, preemptive

EDF achieves the optimal total reward gained but it may not lead to an optimal net profit.

In this section, we consider underloaded systems only.

Jobs sharing a common deadline

Assume that all jobs share a common deadline. Then for any subset of the jobs, they can be

finished in a back-to-back manner. (Remember that we consider an underloaded system.)

Thus, only one time of power-on is sufficient. The schedule maximizing the net profit is the

same as the one of maximizing the total reward.

Algorithm 8 Greed-Based(D)

1: Sort jobs in increasing order of release time.
2: if the total reward is larger than the total energy cost then
3: run all jobs in the sorted order;
4: else
5: run nothing.
6: end if
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Theorem 3.3. For the variant in which all jobs share a common deadline, Algorithm 8 has

a running time complexity of O(n log n) in maximizing net profit, where n is the number of

jobs.

Proof. Sorting jobs in increasing order of release time takes time O(n log n). Thus, the

algorithm’s running time complexity is O(n log n) where n is the number of jobs. The proof

is completed.

Jobs sharing a common release time

Note that all jobs are available at the same time, thus, any subset of jobs can be run in a

back-to-back manner. Similarly, the problem of maximizing net profit could be reduced to

maximizing total values under this setting.

Algorithm 9 SRPT-Based(R)

1: Sort jobs in increasing order of deadlines.
2: Apply SRPT (shortest-remaining-processing-time first) policy on the jobs.
{As the system is preemptive and underloaded, all jobs can be finished before their
deadlines.}

3: if the total reward is larger than the total energy cost then
4: run all jobs in the sorted order;
5: else
6: run nothing.
7: end if

Similar to the analysis of Theorem 3.3, we have the following result.

Theorem 3.4. For the variant in which all jobs share a common release time, Algorithm 9

has a running time complexity of O(n log n) in maximizing net profit, where n is the number

of jobs.

Jobs with agreeable deadlines

We consider the following variant: Jobs may have different release time and different dead-

lines. The deadlines of jobs satisfy the agreeable-deadline requirement. That is, earlier

released jobs have no later deadlines. In this variant, we assume that all jobs have integer
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release time, integer processing time, and integer deadlines. This assumption implies that

each job starts and ends at integer time.

At first, we study the characteristics of an optimal solution and have the following

observations for agreeable-deadline instances.

Lemma 3. In an optimal schedule, the selected jobs can be sorted in increasing order of

their release time and they finish before their deadlines. Also, no job is preempted.

Proof. For an underloaded system, we can use preemptive EDF to schedule all jobs before

their deadlines. Note that all jobs are with agreeable deadlines (a later released job has

a weakly later deadline), thus, no job is ever preempted in the preemptive EDF schedule

in which all jobs are finished. Consider an optimal schedule maximizing net profit. If we

ever run a job j partially, we should include j completely in the optimal schedule, since its

completion contributes more reward but (under an underloaded system) including this job

does not introduce energy cost of powering on the machine. Thus, the optimal schedule

maximizing net profit is an arrangement of a subset of the complete jobs. For agreeable-

deadline instances, all these jobs are feasibly aligned in increasing order of their release time

and finished before their deadlines. The proof is completed.

We consider a case in which C = µ. For this case, the machine can be regarded as

never spinning. At any time it finishes a job and if there is no pending jobs, the machine

will shut down and restart to process the next job in the given schedule. We can view a

final optimal schedule which maximizes the net profit as multiple, say m, non-overlapping

‘blocks of jobs’ B1, B2, . . . , Bm. Each block Bi consists of jobs consecutively executed in a

back-to-back manner without any ‘gap’ in-between. Given a block Bi, all the jobs in it may

be shifted as a whole, but in the same relative order of execution, to the left or to the right

subject to the constraints from the jobs’ release time and deadlines. If a block cannot move

to the left or to the right further without generating a ‘gap’, we say such a block fixed at

its position.

Lemma 4. If C = µ, in one optimal schedule maximizing net profit, all blocks of jobs are
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fixed at their positions.

Proof. From Lemma 3, all selected jobs in the optimal schedule can be arranged in the

increasing order of their release time (deadlines). Thus, for each block Bi of jobs, all jobs

can keep the fixed relative order when we run this set of jobs. If Bi can be shifted as

a whole to its left (or its right), we can proceed to shift it until a ‘gap’ is generated. If

a ‘gap’ is not generated during this shift, this block must meet another block of jobs to

its left or to its right. It is better to combine these two blocks together with one time of

transition energy-cost saved. If a ‘gap’ is generated subject to the release time and deadline

constraints, we would better keep this set of jobs as a whole in order to save an extra time

of transition cost. The proof is completed.

Based on Lemma 3 and Lemma 4, we design Algorithm 10 based on the techniques

of both dynamic programming and divide-and-conquer to maximize net profit. The high-

level ideas come as follows: Consider a job i running continuously from time si to si + pi

([si, si + pi] ⊆ [ri, di]) in the optimal schedule (based on Lemma 3). Then, there must not

exist a block without job i overlaps the range [ri, di]. Otherwise, we can shift i and combine

it with the other block to save one time of power-on cost. If i must exist in the optimal

schedule, then we can force any jobs j having [rj , dj ] to overlap with the block that i is in

to share the same block with i. We consider jobs in decreasing order of deadlines. Let the

packet with the latest deadline be l. The optimal schedule with the best net profit is chosen

from the following two cases: (1) l not in the optimal schedule; and (2) l in the optimal

schedule and in the last block such that the last block cannot shift to the left without

generating a ‘gap’. If l is in the optimal schedule, the total reward of the block which it

resides in (or l itself if this block has only one job) must be ≥ C.

Theorem 3.5. For the variant in which all jobs have agreeable deadline and C = µ, Algo-

rithm 10 has a running time complexity of O(n2 log n) in maximizing net profit, where n is

the number of jobs.

Proof. We note that if a job l is in an optimal schedule, then all jobs calculated in B(l)
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Algorithm 10 DP-Based(C = µ, I)

1: Sort all jobs of a given set S in decreasing order of deadlines. Initially, this set is I.
2: Let the last released job in this set S be l.
3: Use B(i) to denote the block containing a job i.
4: Construct the last block including l with the earliest execution time for the whole block.

This step can be implemented as follows: Initialize B(l) = {l}. Insert jobs in decreasing
deadline order as long as B(l) can be successfully finished. Shift the block B(l) as a
whole to its fixed position at its left side, if necessary.
{Since we consider jobs in decreasing order of deadlines, we move a block to its fixed
position on the left. Otherwise (if we sort packets in increasing order of release time),
we shift a block to a fixed position on the right.}

5: Let S(l) be the start time to execute the block B(l) containing l.
6: The optimal net profit P (S) is calculated recursively as

P (S) = max{P (S \B(l)) +
∑
i∈B(l)

vi − C,P (S \ {l})}. (3.6)

7: Apply above formula for each subset of jobs after we identify whether or not to keep
the block of jobs B(l) in each iteration.

in Algorithm 10 must be in the optimal schedule as well, since we can always increase the

total reward without paying extra energy cost of powering on the machine. From Lemma 4,

if l is in the optimal solution, then the calculated B(l) must belong to an optimal schedule

as well. These observations imply the correctness of the algorithm. Also, we conclude that

in calculating P (S), the results P (S \B(l)) and P (S \ {l}) can be stored in a table whose

size is O(n). Let the set of jobs sorted in order be {j1, j2, . . . , jn}. Let Zi = {j1, j2, . . . , ji}.

Then the table contains values of P (Z1), P (Z2), · · · , P (Zn). We will fill in this table during

the execution of Algorithm 10 and the optimal solution will be obtained.

Now, we consider the running time complexity of Algorithm 10. Let T (n) denote the

total running time of a given input instance with a size of n. Here we employ a table to

memorize all the calculated temporary values (say, rewards P (S\B(l)) and P (S\{l})) after

we identify later released jobs (say B(l) and l). Consider the recurrence Equation (3.6).

P (S \ B(l)) is used by both P (S) and P (S \ {l}). From Equation (3.6), we have T (n) =

T (n− 1) + T ′(S) +C0, where T ′(S) is the total cost of calculating B(l) and C0 is the total

cost of comparing P (S \B(l))+
∑

i∈B(l) vi−C with P (S \{l}). In calculating T ′(S), sorting
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jobs takes time O(|S| log |S|). Calculating B(l) takes time O(|S|). (We can run EDF to

examine whether or not a packet j can be inserted into B(l) without generating a ‘gap’.)

C0 is a constant. Thus, the whole running time of the algorithm is O(n2 log n). The proof

is completed.

3.1.4 Conclusions

In this section, we design scheduling algorithms for jobs with release time, processing time,

rewards and deadlines. We address a model in which we maximize the difference between

the total reward achieved by delivering jobs and the total energy cost paid during this

course. We discuss the hardness of the general model and introduce a few polynomial-time

optimal algorithms for some important variants. This work lies in the line of research on

DPM. In Table 3.2, we summarize our main results on the net profit model.

Table 3.2: Summary of hardness of the net profit model.

Settings Overloaded Underloaded

Non-preemptive Strongly NP-complete Strongly NP-complete
(Theorem 3.1) (Theorem 3.1)

Preemptive NP-complete Some polynomial-time algorithms
(Theorem 3.2) (Section 3.1.3)

3.2 Tradeoff Model (Between Flow/Stretch and Energy)

In this model, the system that we study is in a one-machine environment. The machine

has only two states: ACTIVE and SLEEP. A job is eligible of being processed only when

a machine is at its ACTIVE state. Without loss of generality, the machine is assumed to

consume energy 1 unit and 0 unit per unit time when it is at the ACTIVE and SLEEP

states, respectively. For each time of powering on the machine from the SLEEP state to

the ACTIVE state, we have to pay a constant transition energy cost Etran ∈ R+. Without

loss of generality, the transition energy cost from the ACTIVE state to the SLEEP state

can be assumed negligible, since we can always count this cost to the cost of its most recent
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previous powering on event.

Jobs arrive at the machine for processing over time. Each job Jj has an arriving time

rj ∈ R+ and a processing time pj ∈ R+. Jobs can be preempted and resumed later. There

is no cost associated with each job preemption or resumption. Let cj denote the completion

time of Jj . A job Jj ’s flow time fj and stretch sj are defined below.

Definition 3.4 (Flow Time, Stretch). A job Jj’s flow time fj is defined as the difference

between its completion time and release time. Jj’s stretch sj is defined as the ratio between

its flow time and its processing time.

fj = cj − rj .

sj =
fj
pj

=
cj − rj
pj

.

The maximum flow time and the largest stretch are denoted as Fmax = maxj fj and Smax =

maxj sj, respectively.

Stretch is a natural and useful metric such that jobs with longer processing time must

prepare to tolerate longer waiting time (flow time) [53, 54]. Also, bounding the maximum

flow time or the largest stretch for jobs avoids job starvation in multi-task environments.

Let EALGtotal denote the total energy consumption by the machine using a power-down

strategy ALG. Let TALGactive and TALGsleep denote the total amount of time that the machine

remains at the ACTIVE and SLEEP states, respectively. We omit the superscripts of these

notation when the power-down strategy ALG is of no confusion. Let m ∈ Z+ denote the

total number of times the machine being powered on during the course of scheduling jobs.

The total energy cost is then calculated as

Etotal = 1 · Tactive + 0 · Tsleep +m · Etran = Tactive +m · Etran.

Let Fbound denote the upper bound of a job’s flow time, Sbound denote the upper bound
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of a job’s stretch, and Ebudget denote the total energy budget. The objectives considered in

this model are (recall Fmax = maxj fj and Smax = maxj sj):

1. minEtotal, subject to Fmax ≤ Fbound;

2. minFmax, subject to Etotal ≤ Ebudget;

3. minEtotal, subject to Smax ≤ Sbound;

4. minSmax, subject to Etotal ≤ Ebound.

3.2.1 Previous Work

We note that stretch is a natural and useful metric such that jobs with longer processing

time must prepare to tolerate longer waiting time (flow time or sojourn time) [53, 54].

Also, bounding the maximum flow time or the largest stretch for jobs avoids job starvation

in multi-task environments. However, energy consumption has not been considered as a

constraint in these models.

There are two research work closely related to mine. Albers and Fujiwara [55] studied

an online version of the model in a DVS setting whose objective is to minimize the sum of

total energy cost and total flow time. Instead, we consider DPM setting here. Baptiste et

al. [49] studied offline version of scheduling jobs with release time and deadlines in a DPM

setting with the objective of minimizing total energy consumption. However, they did not

consider the negative impact of energy-saving on jobs’ flow time or stretch.

3.2.2 Offline algorithms

In this section, we introduce four offline algorithms optimizing energy consumption and

maximum flow time or largest stretch, respectively. The ideas associated with these al-

gorithms are the greedy approach, the dynamic programming approach, and the doubling

technique.
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Minimizing total energy consumption subject to an upper bound of flow time

Let an optimal solution minimizing the total energy consumption Etotal subject to an upper

bound of flow time Fbound be OPT. We first study a few properties of OPT and then we

design OPT based on these properties.

In the single-machine environment, we have the following critical observation.

Lemma 5. In OPT, the earlier released jobs are finished earlier (no later) than the later

released jobs. Also, no jobs are preempted.

Proof. Lemma 5 can be proved using a simple exchange argument. First, we prove that

in OPT, jobs are executed in the order that Lemma 5 specifies. Otherwise, assume that

we are given a schedule with two jobs Ji and Jj that are running ‘out of the order’. Then

we can always swap the order of executing these two jobs, within the time periods that

have been allocated to these two jobs for execution in the given schedule, to reduce the

maximal flow time among these two jobs. This swapping does not introduce more energy or

increase other jobs’ flow time. Next, we convert an OPT with possible preemption into one

without preemption. As earlier released jobs are to be finished earlier (no later) than later

released ones, we can always execute earlier released jobs without preemption until they are

completely finished. Adding this restriction does not increase a job’s flow time.

Lemma 5 states that all the jobs in OPT are executed in a FIFO (First-In-First-Out)

order, though these jobs may not be executed in a back-to-back manner.

To construct a min-energy schedule OPT with an upper bound of flow time Fbound, we

start with a schedule with a minimum maximal flow time but without energy considerations.

Let this schedule be ALG. In ALG, there is a job queue and every newly released job is

appended at the end of this queue. The machine is non-idling (that is, the machine has to

run a job as long as the queue is not empty) and it processes all the pending jobs in a FIFO

order. See Algorithm 11 below for the description of ALG.

Based on Lemma 5 and its proof, we immediately have the following result.

Corollary 3. ALG has the smallest maximum flow time among all algorithms.
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Algorithm 11 ALG

1: Append newly arriving jobs at the end of the pending job queue.
2: while there are pending jobs do
3: execute jobs in a FIFO order.
4: end while

In the schedule constructed by ALG, we cluster jobs into groups according to their

execution patterns.

Definition 3.5 (Batch of Jobs). In the schedule constructed by ALG, all the jobs executed

in a back to back and consecutive manner are grouped together as a batch of jobs. These

batches are indexed in increasing order of the start time of the first jobs in these batches as

G1, G2, . . . , Gk.

Lemma 6. Let the k batches of jobs generated by the algorithm ALG be G1, G2, . . . , Gk,

respectively, in increasing time order. All the jobs in the same batch Gi are still executed

in a back to back manner in OPT.

Note that it is possible that multiple batches of jobs are grouped in execution as one

larger batch of jobs.

Proof. Assume OPT has k∗ so-called optimal batches G∗1, G
∗
2, . . . , G

∗
k∗ . In the following, we

prove that Gi(i ∈ {1, . . . , k}) belongs to exactly one optimal batch, from which Lemma 6

can be proved.

From Lemma 5, we know that all the jobs in OPT are executed in a FIFO order. Thus,

the jobs in OPT should follow the same relative order as they are in the algorithm ALG.

This observation turns out that if any assumed batch Gi belongs to two different optimal

batches in OPT, for example, G∗u and G∗w with u < w, then we must have u+ 1 = w — G∗u

and G∗w are two neighboring batches in OPT. Denote the part of Gi belongs to G∗u (G∗u+1,

respectively) as G̃i1 (G̃i2 , respectively). Next we will prove that in one optimal min-energy

schedule OPT, this case that Gi consists of two separate groups G̃i1 and G̃i2 does not need

to happen. Consider any given batch of jobs Gi from the algorithm ALG. Note that if we

split Gi into two neighboring parts, the only reason is to save possible energy by merging
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the second part with the following batch as Gi+1, otherwise, the split is unnecessary upon

increased energy consumption or flow time. However, this ‘split and merge’ procedure can

be saved because the energy reduced through merging will be no more than the extra energy

that we have to pay through splitting since the machine either keeps ACTIVE during the

gap generated between G̃i1 and G̃i2 or the machine has an extra cost of Etran.

From Lemma 5, Corollary 3, and Lemma 6, we have the following greedy idea to calculate

OPT: Start from the batches G1, G2, . . . , Gk generated by the algorithm ALG. For the batch

Gi (i ∈ {1, . . . , k− 1}), the algorithm postpones the start time of this batch till a time such

that some job in this batch has its flow time reach Fbound, or till Gi meets the following

batch Gnext. (During the course of this algorithm, Gnext may not always be Gi+1, due to

possible merging. See below.) If any job in Gi’s flow time violates the constraint Fbound

before Gi’s last job’s completion time meets the start time of its following batch, then we

denote Gi as G′i and study the next batch Gnext. If Gi’s last job’s completion time meets the

start time of its following batch, then we combine these two batches as a single new batch.

We still call the newly generated batch Gi and repeat the same process, so on and so forth.

The algorithm stops when all the batches are considered and the optimal schedule is consist

of a set of batches G′1, G
′
2, . . . , G

′
k′ . The algorithm OPT is described in Algorithm 12.

Algorithm 12 OPT (Fbound)

1: Run ALG and get batches G1, G2, . . . , Gk.
2: Set i = 1, next = i+ 1.
3: while i < k do
4: postpone the start time of Gi till a time such that some job in Gi has its flow time

reach Fbound or Gi’s last job’s completion time meets the following batch Gnext’s start
time.

5: if Gi does not meet Gnext then
6: set G′i = Gi, i = next;
7: else
8: update Gi with Gi ∪Gnext;
9: set next = next+ 1.

10: end if
11: end while

Theorem 3.6. OPT minimizes total energy consumption subject to each job’s flow time

bounded by Fbound. OPT has a running time of O(n2).
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Proof. Theorem 3.6 can be proved using an exchange argument. Based on Lemma 5 and

Lemma 6, the relative order of G1, . . . , Gk remains the same as in OPT’s solution G′ =

{G′1, . . . , G′k′}. Consider an optimal solution G∗ = {G∗1, . . . , G∗k∗}. If there exists some i

such that G′i 6= G∗i , we can always modify G∗i to be G′i without introducing extra flow time

or extra energy consumption. Without loss of generality, we assume i = 1.

• Assume that G∗1 contains the same set of jobs as the batch G′1.

It is always possible to set G∗1’s start time same as that of batch G′1. Note that G′1

has the latest position to be executed without violating the flow time bound Fbound,

G∗1 cannot start later than G′1. We postpone G∗1, if needed, till the start time of G′1

without increasing energy cost or violating flow time bound.

• Assume that G∗1 contains a different set of jobs from the batch G′1.

G∗1 contains fewer number of jobs than G′1, since from Algorithm 12, G′1 can not be

further merged with any following batches without violating flow time bound. The

set of batches Gdiff = G′1 \ G∗1 must appear in the front of the next batch G∗2. We

append Gdiff at the end of G∗1 without increasing energy or violating flow time bound

and convert G∗1 to be G′1.

Next, we show OPT’s running time complexity. The algorithm ALG takes time O(n).

For each batch, we examine the last time that it can be postponed, which takes time

O(n). For each batch, we need to run this test once, thus OPT has its total running time

O(n2).

Minimizing maximum flow time subject to a bounded energy consumption

In this section, we consider minimizing the maximum flow time subject to a given energy

budget Ebudget. Note that Lemma 5 and Lemma 6 still hold for this setting. Let the

maximum flow time returned by the algorithm ALG (see Algorithm 11) be F̃ . Realizing

that F̃ is the lower bound of maximum flow time that an algorithm can achieve, we start
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from an estimated flow time F̃ and run the algorithm OPT (Algorithm 12) to find out the

minimum energy cost Ẽ. If Ẽ > Ebudget, we relax F̃ and employ the doubling technique

to estimate F ∗max — the optimal maximum flow subject to a bounded energy consumption

Ebudget. Noticing that the algorithm OPT takes time O(n2), we thus have the following

result.

Theorem 3.7. There exists an optimal algorithm minimizing the maximum flow time sub-

ject to the total energy consumption bounded by Ebudget. This algorithm has a running time

of O(n2 logF ∗max).

Minimizing total energy consumption subject to an upper bound of stretch

Consider a job Jj . Its stretch is defined as sj = fj/pj , where fj = cj − rj and cj is the

completion time of the job Jj . Let the upper bound of stretch be Sbound. For a job Jj ,

we need to guarantee that sj =
fj
pj

=
cj−rj
pj
≤ Sbound, which is cj ≤ rj + pj · Sbound. Thus,

in order to make sure that every job Jj has its stretch bounded by Sbound, we associate a

variable with each job Jj to denote its deadline dj and set dj = rj + pj · Sbound.

Now, our objective is to generate a schedule satisfying all the jobs’ deadlines and mini-

mizing the total energy consumption. [49] has given a dynamic-programming based solution

to minimize the total energy consumption of scheduling all jobs subject to jobs having re-

lease time, processing time, and deadlines. The algorithm has a running time of O(n5).

Note that our conversion (dj = rj + pj · Sbound) takes linear time. We have the following

result.

Theorem 3.8. There exists an O(n5)-time algorithm minimizing total energy consumption

subject to each job’s stretch bounded by Sbound.

Minimizing largest stretch subject to a bounded energy consumption

At first, we have the following observation.
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Remark 3.1. Given a set of jobs with release time and processing time, an optimal algo-

rithm with energy budget E1
bound has a no-smaller largest stretch than that of an optimal

algorithm with energy budget E2
bound, where E1

bound ≤ E2
bound.

Then based on Remark 3.1 and Theorem 3.8, using binary search, we easily conclude

the following theorem.

Theorem 3.9. There exists an O(n5 logSmax)-time algorithm minimizing the largest stretch

Smax subject to the total energy consumption bounded by Ebudget.

3.2.3 Online algorithms

Executing jobs and dynamically powering-on/off the machine is essentially an online decision-

making problem. Algorithms for such kind of problems must operate without knowing ar-

riving time or service requirements of future requests. This demand motivates us to study

online algorithms for the bicriteria model. In this section, we design two online algorithms

with the objectives of minimizing energy consumption subject to an upper bound of flow

time and an upper bound of stretch, respectively.

The most widely employed metric in evaluating online algorithms’ performance is com-

petitive ratio [4]. However, competitive analysis sometimes provides a pessimistic result of

an online algorithm’s performance since the adversary can adaptively generate the input to

beat the online algorithm. Consider the following example.

Example 5. Fix a constant c. We will show that there exists an input instance such that

any online algorithm has a competitive ratio (of flow time or total energy consumption)

> c. In this input instance, all the jobs are unit length. We name an online algorithm ON

and an optimal offline algorithm OPT. Initially, a job J1 is released at time 0. Remember

that the machine consumes energy 1 (0, respectively) unit per unit time when it is ACTIVE

(SLEEP, respectively).

• Assume that at time c− 1, ON has not processed J1.
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Then no more jobs are released and OPT processes J1 at time 0. ON has J1’s flow

time > c while OPT has J1’s flow time = 1. OPT has energy cost Etran + 1, the

minimum among all the algorithms processing J1. The competitive ratio of maximum

flow time is > c.

• Assume that at time t < c− 1, ON processes J1.

At time t+ 1, ON finishes J1. If ON keeps ACTIVE till time

t′ = t+ 1 + (c− 1) (Etran + 1) ,

and ON consumes energy at least

Etran +
(
t′ − t

)
· 1 = c (Etran + 1) ,

then OPT does not release any new jobs. OPT executes J1 at time 0 for one unit

time with energy cost of Etran + 1 and flow time 1. ON has energy cost of c times of

what OPT has. ON’s maximum flow time is t times of what OPT has.

Assume that ON processes J1 and keeps active before t′. Then at the time when ON

powers off the machine, OPT releases one unit-length job. We repeat this pattern:

As long as ON powers off its machine after processing the x-th released job at time t,

if ON keeps ACTIVE < c (Etran + x) and its maximum duration of being SLEEP is

< c, then OPT releases the (x+ 1)-th job at time t. Otherwise, OPT stops releasing

new jobs.

For the first x released jobs, if ON keeps ACTIVE ≥ c (Etran + x) or its maximum du-

ration of being SLEEP is ≥ c, then OPT can execute each of these x jobs immediately

at their release time and go to SLEEP after completing them. The ratio of maximum

flow time or energy consumption is at least c. If ON keeps ACTIVE < c (Etran + x)

and its maximum duration of being SLEEP is < c for the first x released jobs, we

keep this pattern repeat for sufficient time. Thus, ON powers on the machine many
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times, compared with OPT which powers on the machine only once but processes all

the released jobs in a back-to-back manner. The energy consumption ratio can be

larger than any given constant c. (However, OPT has a larger maximum flow time.)

Due to the pessimistic results returned by the standard competitive analysis (see Ex-

ample 5), in the area of scheduling algorithms, people usually consider the resource aug-

mentation approach [56] as an alternative analysis method for online algorithms. In the

framework of resource augmentation, online algorithms are given extra resources, such as

faster machines or more number of machines, than their adversaries to compensate the lack

of future input instances. In this section, we study online algorithms in a framework similar

to that of resource augmentation. Instead of speeding up online algorithms in executing

jobs, we compare online algorithms with extra flow time F̂ or with α times of optimal

stretch against non-idling adversaries.

Consider a non-idling adversary OPT. OPT cannot be in the SLEEP state if there are

pending jobs. Let OPT’s maximum flow time be F ∗, largest stretch be L∗, and energy

consumption be E∗. Consider an online algorithm ON which is allowed to be in the SLEEP

state even though there are pending jobs.

Definition 3.6 (Weak Competitive Ratio with respect to Flow Time). Let ON’s maximum

flow time be FON and energy consumption be EON. The weak competitive ratio with respect

to extra flow time is EON/E∗ subject to FON ≤ F ∗ + F̂ .

Definition 3.7 (Weak Competitive Ratio with respect to Stretch). Let ON’s largest stretch

be LON and energy consumption be EON. The weak competitive ratio with respect to larger

stretch is EON/E∗ subject to LON ≤ αL∗, where α is a given number.

In following, we introduce two online algorithms with extra flow time and larger stretch,

respectively. We also analyze their weak competitive ratios.
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An online algorithm ONF in minimizing total energy consumption subject to

an upper bound of extra flow time F̂

In OPT, jobs are not preempted and they are executed in the FIFO order (see Lemma 5). In

the scope of discussing and designing algorithms below, we only consider algorithms running

jobs in the FIFO order since this consideration does not lose OPT’s optimality. Consider

a non-idling algorithm ALG. The non-idling adversary OPT executes the same job at the

same time as what ALG does. Remember that OPT optimizes its energy consumption and

sets either a SLEEP or an ACTIVE state when there are no jobs to run, since it is capable

of foreseing the next release time of jobs.

The algorithm ONF. The algorithm ONF’s idea has the flavor of “lazy scheduling”.

The machine is at its SLEEP state initially. If the machine is at its ACTIVE state, it will

execute all the pending jobs in the FIFO order. After finishing all the pending jobs, the

machine goes to its SLEEP state immediately. Newly arriving job will be appended at the

end of the pending job queue. The machine is powered on to its ACTIVE state only when

the current time reaches the first pending job Jj ’s rj + F̂ . This algorithm is described in

Algorithm 13.

Algorithm 13 ONF(F̂ )

1: Append newly arriving jobs at the end of the pending job queue.
2: while the machine is at its ACTIVE state do
3: if there are pending jobs then
4: execute jobs in a FIFO order;
5: else
6: go to the SLEEP state.
7: end if
8: end while
9: while the machine is at its SLEEP state do

10: if the current time reaches rj + F̂ for the first pending job Jj then
11: power on the machine to its ACTIVE state.
12: end if
13: end while
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The analysis of ONF.

Theorem 3.10. The algorithm ONF finishes all the jobs arriving at the machine. Each

job Jj has its flow time bounded by f∗j + F̂ . ONF has a running time complexity of O(n)

where n is the number of jobs in the input instance.

Proof. ONF’s running time complexity is linear O(n) of the number of jobs since we process

each arriving job in constant time. Now, we prove that each job Jj has its flow time fONF
j

bounded by f∗j + F̂ , where f∗j is the flow time of Jj in the non-idling adversary OPT.

Consider a job Jj .

Assume that Jj is not the first job to run after the machine sleeps for some time. At

the time when ONF runs Jj , we consider the most recently executed job Jf since the last

SLEEP state. Note that Jf is executed at time rf + F̂ . Remember that all the jobs are

executed in the FIFO order, Jj is executed at time F̂ after rj + f∗j . Assume that Jj is the

first job to run after the machine sleeps for some time. We have fONF
j = F̂ + pj .

Remember our assumption of consuming energy 1 unit and 0 unit per unit time being

ACTIVE and SLEEP, respectively.

Theorem 3.11. The algorithm ONF has a weak competitive ratio of 2·Etran

Etran+F̂
with respect

to extra flow time F̂ .

Proof. Our proof employs a phase-based charging scheme. We first define non-overlapping

phases created by the online algorithm ONF. We then prove that in each phase or in multiple

consecutive phases, with an appropriate charging scheme, ONF is
(

2·Etran

Etran+F̂

)
-competitive.

This directly results that ONF’s competitive ratio is
(

2·Etran

Etran+F̂

)
over the whole schedule.

Let I be a sequence of jobs. Note that ONF does not spin, that is, ONF does not

keep ACTIVE but run no jobs. Then, ONF’s schedule consists of ACTIVE and SLEEP

periods alternatively. We define each active period as a phase of processing jobs. For the
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set of jobs in each phase defined by ONF, we compare ONF with an optimal offline non-

idling algorithm OPT. (OPT has F̂ = 0.) Consider a phase and the set of jobs P that is

processed by ONF. ONF consumes energy Etran +
∑

Jj∈P pj . Now, we study OPT’s energy

consumption for the same set of jobs. From Lemma 5, OPT runs this set of jobs in the

same order as ONF’s schedule. Also, note that ONF executes a job no earlier than OPT

does for the same job.

1. Assume that OPT executes the job Jf at time > rf .

Then ONF executes the job which is released before Jf no earlier than OPT does.

When Jf is released, both OPT and ONF are ACTIVE and thus, Jf should not be

the first job to execute after a SLEEP period.

2. Assume that OPT executes the job Jf at time = rf .

Then OPT consumes energy min{Etran, T ′sleep} +
∑

Jj∈P pj , where T ′sleep is the idle

time from the last active time to rf in OPT’s schedule.

If T ′sleep < F̂ , then ONF should have been ACTIVE at time rj and thus, Jf is not the

first job to execute in P . If T ′sleep > F̂ , OPT consumes energy min{Etran, F̂} +
∑

Jj∈P pj .

If min{Etran, F̂} = Etran, for this set of jobs P , the cost ratio is 1. If min{Etran, F̂} = F̂ ,

we understand that OPT keeps ACTIVE just before running the first job Jf in P . We then

trace back to the immediate proceeding period in which OPT and ONF run the same set of

jobs P ′. We keep tracing back till we locate a period in which OPT starts to run a job from

its SLEEP state. This period must exist since we assume both OPT and ONF start from

the SLEEP state. Let the set of jobs to be run during these periods be
⋃
P . Note that

OPT keeps ACTIVE in all these periods. We observe that for ONF’s each time of power-on

to run a set of jobs Pi, if OPT consumes energy less than F̂ before OPT runs Pi, then this

set of jobs Pi should not be delayed for F̂ units. Thus, there is no energy cost associated

with powering on the machine to run Pi. Let the immediate proceeding set of jobs to run
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be Pi−1. Combining these two neighboring periods, we have ONF’s competitive ratio as

2 · Etran +
∑

Jj∈Pi∪Pi−1
pj

min{Etran, F̂}+
∑

Jj∈Pi∪Pi−1
pj
≤ 2 · Etran
Etran + F̂

.

When F̂ is set 0, from Theorem 3.11, we immediately have the following result.

Corollary 4. When online algorithms are enforced to be non-idling, the algorithm ONF is

2-competitive.

Corollary 4 is the standard result that has been presented in [57]. Note that when

F̂ = 0 for online algorithms, the lower bound of competitive ratio of ONF is 2. Thus, in

the bicriteria model, increasing F̂ beats any deterministic non-idling online algorithms. Let

the optimal non-idling offline algorithm be OPT.

Next, we present the lower bound of competitive ratio β with respect to flow time for

deterministic online algorithms against non-idling offline algorithms for the bicriteria model.

Here, we consider an adaptive offline adversary, who generates a job sequence based on the

past behavior of the online algorithm. We refer to the optimal offline algorithm as OPT

and online algorithm as ONF, respectively.

Note that from Theorem 3.11, if F̂ ≥ Etran, we know that there exists an optimal online

algorithm against non-idling offline algorithms. Thus, we only consider the lower bound of

competitive ratio when F̂ < Etran. The main technical contribution here is to show that

any online algorithm cannot perform arbitrarily close to the optimal offline algorithm. This

lower bound even holds for scheduling unit-length jobs, that is, all the jobs have processing

time 1.

Theorem 3.12. Assume F̂ < Etran. The lower bound of weak competitive ratio for deter-

ministic algorithms is ≥ min
(

3+2·Etran
2+2·Etran

, 2+2·Etran

2+Etran+F̂

)
.
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Proof. Initially, we assume that both OPT and ONF have their machines at the SLEEP

states.

Let the adversary release a job J0 at the beginning of step 1. OPT powers on the

machine to process J0. For ONF, there are two options now: (1) letting the machine go to

its ACTIVE state to process J0, or (2) buffering J0 into the queue till some time F̂ − 1.

• Assume that ONF powers on the machine to the ACTIVE state immediately at J0’s

arrival

Then after completing J0 at time 1, ONF either keeps the machine ACTIVE (spinning)

or turns to the SLEEP state.

– Assume that ONF keeps in the ACTIVE state.

The adversary then releases another job J1 at time Etran+ 2. There are no more

jobs released.

In this case, OPT powers off the machine after finishing J0 at the end of step

1 and then powers on to an ACTIVE state at time Etran + 2 to process job J1.

The total cost paid by OPT is E1
OPT = 2 + 2 · Etran.

On the other hand, ONF either keeps the machine ACTIVE till J1 arrives with

a total cost of E1
ONF = 3 + 2 · Etran, or ONF lets the machine SLEEP at some

time before Etran+2 and powers it on to the ACTIVE state at some time before

the deadline of job J1 to process it with a total cost ≥ E2
ONF = 3 + 2 · Etran.

The lower bound of competitive ratio β1 is

β1 ≥
min(E1

ONF, E
2
ONF)

E1
OPT

=
3 + 2 · Etran
2 + 2 · Etran

(3.7)

– Assume that ONF powers off the machine to its SLEEP state at the end of time

1.
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The adversary releases a job J2 at the beginning of step 2. There are no more

jobs released.

OPT keeps the machine ACTIVE to finish job J2 with a total cost of E2
OPT =

2 + Etran.

On the other hand, ONF has chosen to power off the machine to SLEEP. To

get J2 finished, it will need to switch back to the ACTIVE state again at some

time t ≤ F̂ + 2, the latest time for J2 to be executed. The total cost of ONF is

E3
ONF ≥ 2 + 2 · Etran.

The lower bound of competitive ratio β2 is

β2 ≥
E3

ONF

E2
OPT

=
2 + 2 · Etran

2 + Etran
. (3.8)

• Assume that ONF buffers the job J0 into the queue.

ONF must switch the machine to ACTIVE to process J0 at some time t ≤ F̂ + 1.

After time t+ 1, ONF will either choose to power off the machine to the SLEEP state

or keep it spinning. We consider the end of step t+ 1 now.

– Assume that ONF keeps ACTIVE.

The adversary adopts a strategy similar to the strategy used above. It releases

another job J3 at time t+ Etran + 2. There are no more jobs released.

In this case, OPT powers off the machine to the SLEEP state after finishing job

J0 at time 1. Then it switches to the ACTIVE state at time t + Etran + 2 to

process job J3. The total cost paid by OPT is E3
OPT = 2 + 2 · Etran.

On the other hand, ONF will either keep in the ACTIVE state till the job J3

finished with a total cost of E4
ONF = 3 + 2 ·Etran, or switch to the SLEEP state

at some time before t+Etran + 2 and power on the machine at some time before

t+Etran+2+F̂ to process the job J3. The total cost of ONF is E5
ONF ≥ 3+2·Etran.
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The lower bound of competitive ratio β3 is

β3 ≥
min(E4

ONF, E
5
ONF)

E3
OPT

=
3 + 2 · Etran
2 + 2 · Etran

. (3.9)

– Assume that ONF powers off the machine at time t + 1 ≤ F̂ + 1 after finishing

the job J0. (Note t ≤ F̂ .)

Only in this case, we need the assumption in Theorem 3.12 that F̂ < Etran.

The adversary releases a job J4 at time t+ 1. There are no more jobs released.

OPT keeps the machine ACTIVE till finishing job J4 at time t + 2. The total

cost of OPT is E4
OPT = 2 + Etran + t.

On the other hand, ONF powers the machine off and it needs to turn it on again

before time t + F̂ + 1 to process job J4. The total cost of ONF is E6
ONF ≥

2 + 2 · Etran.

The lower bound of competitive ratio β4 is

β4 ≥
E6

ONF

E4
OPT

=
2 + 2 · Etran
2 + Etran + t

≥ 2 + 2 · Etran
2 + Etran + F̂

. (3.10)

Combine Inequalities (3.7), (3.8), (3.9), and (3.10), we have the lower bound β of com-

petitive ratio for the bicriteria model: β ≥ min(β1, β2, β3, β4) = min
(

3+2·Etran
2+2·Etran

, 2+2·Etran

2+Etran+F̂

)
.

An online algorithm ONS in minimizing energy consumption subject to an

upper bound of largest stretch α

For online algorithms minimizing the largest stretch in the one-machine environment, we

have a pessimistic result (the lower bound of competitive ratio), even though we do not

consider energy constraints.
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Theorem 3.13. [53] On a single machine, no preemptive online algorithm is 3
√

∆-competitive

for minimizing largest stretch, where ∆ is the ratio of the maximum processing time to the

minimum processing time.

The adversary constructed in the proof of Theorem 3.13 is non-idling. We cannot expect

to have an online algorithm whose largest stretch is at most a constant times of that of a

non-idling offline algorithm. However, it is reasonable (and there exists hope) to develop

online algorithms whose total energy consumption is bounded by a constant times of that

of an optimal offline algorithm.

The algorithm ONS. Our online algorithm ONS (Algorithm 14) is motivated by the

offline algorithm in minimizing total energy consumption subject to an upper bound of

stretch we have given in Section 3.2.2. For each job Jj , at time t, we assign it a deadline dj .

Since we do not know the exact upper bound of stretch for the optimal offline algorithm,

we apply the following method to calculate each job’s deadline: Consider the input instance

given so far at time t. We calculate the optimal stretch L∗t , assuming no future arrivals.

Then we apply L∗t · α as the estimation of the upper bound of stretch for the optimal

schedule over the complete input instance and calculate each job’s deadline (at time t) as

dtj = rj + pj · L∗t · α.

After identifying the tentative deadlines dtj for all the jobs, we run the pending jobs in

increasing deadline order. Our idea is the same as the one presented in [53]. In Algorithm 14,

we concrete our idea and detail the solution with a procedure of calculating L∗t .

The analysis of ONS. Directly from the analysis in [53], we have the following result.

Theorem 3.14. [53] Algorithm 14 is ∆-competitive in terms of largest stretch when α = 1

and O(
√

∆)-competitive in terms of largest stretch when α = O(
√

∆).

We analyze Algorithm ONS’s competitiveness in terms of the total energy consumed

over the whole input instance.
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Algorithm 14 ONS(α)

1: For each newly arriving job at time t, calculate L∗t , the optimal stretch for all the
released jobs so far.

2: In calculating L∗t , apply the following way over the input instance so far: For the pending
jobs Jj with remaining processing time p′j at time t′, run the job Ji where

i = arg max

(
t′ + p′j − rj

pj

)
.

After executing all the released jobs at time t, return the largest stretch as L∗t .
3: For the pending job Jj at time t, define

dtj = rj + pj · L∗t · α.

4: Execute jobs in increasing order of deadlines dtj .

5: Power off the machine after it processes the last pending job and keeps ACTIVE for
Etran time units.

Theorem 3.15. Algorithm 14 is 2-competitive in terms of total energy consumption.

Proof. Let NOPT denote an optimal non-idling offline algorithm with the optimal largest

stretch and optimal energy consumption. Note that ONS and NOPT both are non-idling.

Hence, at any time when ONS executes a job, NOPT must execute some job (may be a

different one) as well. ONS may keep ACTIVE at the time when NOPT is SLEEP.

Let Ei denote the i-th time period in which ONS keeps ACTIVE while NOPT keeps

SLEEP. From Algorithm 14, we have Ei ≤ Etran, ∀i. We define a charging interval start-

ing from the time when both ONS and NOPT power on the machine and ending at the

immediate following time when ONS and NOPT power on the machine again. We count

energy consumption for NOPT and ONS in each interval. For each interval, either ONS and

NOPT cost the same amount of energy, or ONS keeps ACTIVE for at most Etran units of

time before it powers off but NOPT powers off immediately. Since Ei ≤ Etran, we conclude

that ONS consumes at most 2 times of energy than NOPT does.

3.2.4 Conclusions

Along with the benefit of saving energy, an effective energy-saving power-down strategy, in

general, has an adverse impact on user-perspective performance metrics such as flow time
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and stretch, which are two of the most important factors to optimize in the literature of

queueing theory and scheduling theory. Intuitively, the transition energy cost associated

with powering on the system from a lower-power state to the ACTIVE state can be consid-

erably decreased if the earlier released jobs are postponed in execution and grouped with

the later released jobs to be processed together. However, saving energy in such a way re-

sults in increasing these earlier released jobs’ flow time and stretch. Algorithms optimizing

the two objectives, energy consumption and flow time (or energy consumption and stretch),

conflict with each other. In this chapter, we design bi-criteria power-down strategies that

optimize both.

Table 3.3: Summary of our results on trad-off between energy consumption and flow time
or stretch (n is the number of jobs released).

setting restrictions minimizing performance

offline
bounded

energy consumption O(n2)
maximum flow time

offline
bounded

maximum flow time
O(n2 logF ∗max); F ∗max is

energy consumption the optimal maximum flow time

offline
bounded

energy consumption O(n5)
largest stretch

offline
bounded

largest stretch
O(n5 logSmax); Smax is

energy consumption the optimal largest stretch

online bounded flow time energy consumption
no worse than 2-competitive
against non-idling adversaries

online bounded stretch energy consumption
2-competitive
against adversaries
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Chapter 4: Energy-Aware Scheduling Algorithms in the

DVS Setting

4.1 Motivation

The rapid progress of processor design technologies provides faster processors. Modern

processors, such as those supported by Intel’s “SpeedStep” and AMD’s “PowerNOW” tech-

nologies, have been equipped with a feature to vary the clock frequencies dynamically. The

operating system is able to adjust the processor’s clock frequency (speed) on the fly to ex-

ecute jobs and reduce energy consumption at lower speeds [58]. We call this functionality

speed-scaling technology or dynamic voltage scaling (DVS). Speed scaling is expected to sat-

isfy some quality-of-service measures as well as to reduce overall energy cost, by adaptively

manipulating modern processors’ multiple speeds.

In this chapter, we study energy-aware scheduling problems equipped with DVS func-

tionality. Existing studies considered energy minimization through speed scaling without

much attention to the impact of speed changes. Such changes typically involve time and

energy overhead. Moreover, recent studies indicate that the lifetime reliability of a CMOS

circuit is directly related to the number and span of speed changes. For example, in [59], it

is reported that (hardware) failures, such as cracks and fatigue failures, are created not by

sustained high temperatures, but rather by the repeated heating and cooling of sections of the

processor. This phenomenon is referred to as ‘thermal cycling’. Thermal cycling is caused

by the large difference in thermal expansion coefficients of metallic and dielectric materials,

and leads to cracks and other permanent failures. Using Mean-Time-To-Failure (MTTF)

to describe the expected processor’s life, the following Coffin-Manson formula [60] is used
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to characterize a processor’s lifetime reliability:

MTTF ∝ 1

Co(∆Tmp −∆To)qx
, (4.1)

where Co is a material dependent constant, ∆Tmp is the entire temperature cycle-range of

the device, ∆To is the portion of the temperature range in the elastic region, q is the Coffin-

Manson exponent, and x is the frequency (number of occurrences per unit time) of thermal

cycles [60]. Typically, ∆To � ∆Tmp and 6 ≤ q ≤ 9 for silicon materials. By simplifying

Equation (4.1), we have

MTTF ∝ 1

Co ·∆T qmp · x
. (4.2)

Equation (4.2) clearly indicates that an algorithm which frequently changes the pro-

cessor’s speeds results in large x and ∆Tmp. Thus, such a schedule may introduce a large

temperature cycle-range and therefore significantly impair the processor’s reliability. Simu-

lations in [59] have confirmed that various speed-scaling energy-aware policies have different

impacts on processor’s reliability in terms of MTTF. The number of speed changes (x in

Equation (4.2)) is a critical factor in determining a processor’s reliability (MTTF in Equa-

tion (4.2)) under the thermal cycling effect.

In this chapter, we investigate energy-aware real-time scheduling algorithms with speed

change constraints.

4.2 Model Description

We consider a single-processor setting. The processor has variable clock frequencies (speeds).

Under a speed f , the processor consumes energy e(f) per unit time and we simply assume

that the function e(·) is convex and e(0) = 0. This setting is a generalization of the power

model used in Yao’s paper [23] and its successors [61,62].

We note that in scaling speeds, the processor’s frequency and supply voltage are both
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adjusted (dynamic voltage/frequency scaling). Hence, in the rest of the chapter, we will

assume that frequency/speed change always involves the corresponding voltage change [23].

We consider scheduling a set of n given jobs J = {J1, J2, . . . , Jn}. Each job Jj has a

release time rj ∈ R+, a processing time (also called worst-case execution time) pj ∈ R+

and a deadline dj ∈ R+. Under the speed f , it takes time pj/f to complete the job Jj . We

consider preemptive scheduling and we assume that the cost of preemption is negligible.

The objective in this study is to design scheduling algorithms to finish all the jobs before

their deadlines in minimizing the energy consumption, as well as the number and cost of

speed changes.

Definition 4.1 (Speed Schedule). A speed schedule can be viewed as a piece-wise constant

curve, specifying that at which speed the processor runs during which time interval. Assume

that the CPU speed changes m times during the execution. Then the speed schedule Ψ is

defined by m intervals and the speed used in each of these intervals. Let the m time intervals

be:

I1 := (t0, t1], I2 := (t1, t2], . . . , Im := (tm−1, tm].

Each triplet (ti−1, ti, si) corresponds to the i-th time interval Ii = (ti−1, ti] (0 < i ≤ m

and t0 = 0) in which the processor keeps running at a speed si ≥ 0. The speed scheduler Ψ

is

Ψ : {(t0, t1, s1), (t1, t2, s2), . . . , (tm−1, tm, sm)}.

Figure 4.1 illustrates an example schedule. The schedule employs 4 distinct speeds

f1, f2, f3, f4 in 6 time intervals, where s1 = s4 = f1, s2 = s6 = f4, s3 = f2, and s5 = f3.

We call time ti a speed switching point. Without loss of generality, we assume that the

processor is in idle state initially at time 0 (s0 = 0) and gets back to the idle state after

processing all the jobs (sm+1 = 0). Thus, a schedule with m time intervals have m+1 speed

switching points t0, t1, . . . , tm.

The total energy consumption of such a schedule is calculated as: EΨ =
∑m

i=1 e(si)(ti−
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Figure 4.1: A piecewise curve describing the time intervals and the processor’s speeds in
each interval.

ti−1). For the example in Figure 4.1, we have

EΨ = e(f1)(t1 − 0) + e(f4)(t2 − t1) + e(f2)(t3 − t2) + e(f1)(t4 − t3)

+e(f3)(t5 − t4) + e(f4)(t6 − t5)

= e(f1)(t1 + t4 − t3) + e(f4)(t2 − t1 + t6 − t5) + e(f2)(t3 − t2) + e(f3)(t5 − t4).

To incorporate the penalty of changing CPU frequencies, we consider that each speed

change from the frequency si (in interval Ii) to the frequency si+1 (in interval Ii+1) involves

a cost ci,i+1 ∈ R+. (ci,i+1 reflects the speed change’s negative impact on the processor’s

lifetime reliability.) In [63], analysis and simulation results show the exponential (sα with

α > 2) and super-linear (s1+ε) dependencies of the power-on voltage (speed) s and temper-

ature.

Along with the fact that the processor’s reliability is a convex function of the temperature

change (see Equation (4.2)), we assume that the reliability cost of a speed change is a

convex function of the difference between the speed values of neighboring time intervals.

For instance, switching from f4 to f1 may be more costly than switching from f4 to f3,

providing f1 < f3 < f4. Consequently, the function c(·) is convex and ci,i+1 is the value of

c(|si − si+1|).
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ci,i+1 := c(|si − si+1|),where s0 = sm+1 = 0. (4.3)

Let J denote a set of jobs and let Ψ denote the speed schedule that we are going to

design. We formulate four optimization problems as follows.

P1. [Minimizing sum of energy consumption and costs of speed changes]

Let EΨ denote the total energy consumed by the schedule Ψ to complete a set of jobs

J before their deadlines. Assume Ψ has m time intervals. The total cost associated

with all the clock speed changes during this schedule is
∑m

i=0 ci,i+1 where s0 and

sm+1 are defined as 0 (see Equation (4.3)). In this problem, we want to minimize

EΨ +β
∑m

i=0 ci,i+1, where β is a given constant. After normalizing ci,i+1, we remove β

and formulate our problem as min .
(∑m

i=1 e(si)(ti − ti−1) +
∑m

i=0 c
′
i,i+1

)
, where s0 =

sm+1 = 0 and c′i,i+1 = ci,i+1/β. (Note that c′(·) = c(·)/β is still a convex function.)

We rename c′i,i+1 as ci,i+1.

P2. [Under a fixed number of speed changes]

Let EΨ and m denote the total energy consumed and the total number of speed

changes in the schedule Ψ to complete the jobs in J before their deadlines, respectively.

Let M be the upper bound on the number of speed changes. The objective is to

minimize EΨ subject to m ≤M . That is, min .
∑m

i=1 e(si)(ti − ti−1), subject to m ≤

M .

The problem P2 considers the number of speed changes as a constraint.

P3. [Under a fixed energy budget]

Let E∗ denote the optimal (minimum) energy consumption required to complete all

the jobs J before their deadlines. (We do not have to know E∗ beforehand.) Let

Eb denote the energy budget that we are given. In this problem setting, we al-

ways have Eb ≥ E∗. Let the schedule Ψ have m time intervals. The objective
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is to minimize the total number of speed changes m during the schedule subject

to the constraint that total consumed energy EΨ does not exceed Eb. That is,

min .m, subject to
∑m

i=1 e(si)(ti − ti−1) ≤ Eb.

P4. [Under a bound of span of frequencies used]

Let EΨ andm denote the total energy consumed and the total number of time intervals

of an schedule Ψ to complete the jobs J before their deadlines, respectively. Let

smax = max1≤i≤m si and smin = min1≤i≤m si, with smax ≥ smin ≥ 0. In other words,

smax and smin are the maximum and minimum speed used in Ψ while executing the

jobs. The difference smax − smin is defined as the span of the frequencies used in Ψ.

Let Q be the given upper bound on the span of the speeds which we do not want

to exceed. The objective is to minimize EΨ subject to smax − smin ≤ Q. That is,

min .
∑m

i=1 e(si)(ti − ti−1), subject to smax − smin ≤ Q.

For the problem P4, we bear the understanding that running the processor with a

smaller speed span (small smax − smin difference) results in less fluctuation of tem-

perature (reduced ∆Tmp in Equation (4.2)), and thus, better chip’s lifetime reliability

(improved MTTF in Equation (4.2)).

In the following, we present convex-programming-based algorithmic solutions for the

problems P1, P2, P3, and P4. We analyze their performance as well. Note that Yao et

al. [23] and Li et al. [61] presented algorithms minimizing total energy consumption. The

algorithms in [23] and [61] have no restrictions over the number of processor’s speed changes.

The models that we discussed above have their own algorithmic challenges. As we shall see,

our solutions are totally different from [23,61] that had the objective of minimizing energy

alone. The problem P2 generalizes the well-studied Yao et al.’s model in [23], when we set

the upper bound of speed changes M to a very large number.
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4.3 Previous Work

The first theoretical energy-efficient job scheduling model is studied by Yao et al. [23]. In

this model, jobs have release times and deadlines, and a continuous spectrum of speeds is

available. This framework is by far the most extensively studied algorithmic speed scal-

ing problem. A straightforward implementation has running time of O(n3). Li et al. [61]

improved this result, giving a O(n2 log n)-time algorithm, and this is by far the best algo-

rithm. Li et al. [61] and Kwon and Kim [64] also studied the discrete setting in which the

processor has k discrete speeds. Kwon and Kim [64] achieved a O(n3)-time algorithm. Li

et al. [61] got a O(k · n log n) algorithm in minimizing the total consumed energy. Many

settings and metrics based on this framework are studied in literature, such as maximizing

throughput [65], or minimizing the sum of energy consumption and (weighted) flow time of

jobs [55,66]. Competitive online algorithms for these models are also studied. Yao et al. [23]

provided two natural online algorithms. Bansal et al. [67] improved the competitive ratios.

For online algorithms, their competitive ratios, in general, depend on the convex function

c(·). In above min-energy models, the number or cost of frequency changes is unrestricted.

Our work studies min-energy speed schedulers with considerations of number and cost of

frequency changes. It is a natural next step in this line of research.

Many researchers have addressed how to minimize energy consumption for real-time

systems in which periodic jobs are considered. In [68], an optimal static algorithm is

given, assuming each job has its worst-case workload at each instance. In [69], the authors

proposed an algorithm to update the running frequency based on the workload and the

periodic deadlines. A model in which each frequency transition is associated with energy

cost and delay is considered in [70]. The policy EDF with realistic assumptions is considered.

Feedback control has been introduced for EDF scheduling of real-time jobs in [71]. Our work

falls along the line of Yao et al.’s algorithm in that we do not assume any specific arrival

pattern for real-time jobs, but aim to maximize our metrics for the most general case.
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4.4 Algorithms and Analysis

In this section, we provide algorithmic solutions for the problems P1 − P4.

4.4.1 Minimizing the sum of energy consumption and costs of speed

changes

Assume the schedule Ψ has m time intervals Ii = (ti−1, ti] (1 ≤ i ≤ m) and within each

interval Ii, the schedule keeps running at constant speed si ≥ 0. The system does not

consume any energy after finishing the last job. The objective is

min .

(
m∑
i=1

e(si)(ti − ti−1) +

m∑
i=0

ci,i+1

)
, (4.4)

where ci,i+1 is scaled by a factor β from its definition in Equation (4.3).

Define OPT as an optimal algorithm minimizing the sum of energy consumption and

the costs of speed changes (Equation (4.4)). Our job is to determine all the candidate

values that ti in Equation (4.4) can take. We note that the function c(·) is assumed to be

a general convex function, hence determining the optimal schedule’s speed switching points

heavily depends on the function c(·) itself. Instead of designing algorithms for some specific

functions c(·), we study a large class of algorithms called event-driven DVS algorithms. The

purpose of introducing an event-driven DVS algorithm for the problem P1 is to show that

there exists an optimal convex-programming-based solution, and this solution’s framework

can be proved to generate optimal solutions for the other three problems P2, P3, and P4.

Definition 4.2 (Event-Driven DVS Algorithm). For event-driven DVS algorithms, speed

changes (speed switching points) only happen at jobs’ release times and/or deadlines.

We note here that event-driven DVS algorithms have the distinct advantage of keeping

the run-time overhead due to DVS low, as opposed to DVS algorithms that require speed

change at arbitrary points during execution. The CPU scheduler, that is invoked at task
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release times and deadlines, can also regulate the frequency according to the pre-determined

speed schedule during the same invocation. As a result, we believe that our results regarding

to the optimality of event-driven DVS algorithms will be also very useful in practice.

Let J = {J1, J2, . . . , Jn} denote the n jobs to be scheduled. A job Jj is represented by a

triplet (rj , dj , pj). Let R = {r1, r2, . . . , rn} and D = {d1, d2, . . . , dn}. We use Z = R ∪D to

denote the union of all the release time and deadlines of jobs. Note |Z| = |R ∪D| ≤ |R|+

|D| ≤ 2n. We sort all the values in Z in increasing order and index them as z1, z2, . . . , zn′

where n′ ≤ 2n. Without loss of generality, we assume z1 = 0. Before the last deadline zn′ ,

the time range is divided into n′ − 1 non-overlapping intervals (zi, zi+1], ∀1 ≤ i ≤ n′ − 1.

We name the interval Ti,i′ := (zi, zi′ ] (i′ ≥ i+ 1) as a scheduling interval. There are at most(
n′
2

)
= n′(n′−1)

2 = O(n2) such scheduling intervals. For each scheduling interval Ti,i′ , we

can compute its corresponding workload denoted by a variable Pi,i′ and processing capacity

denoted by a variable Wi,i′ as follows.

Pi,i′ =

∑
j pj

zi′ − zi
, where zi < rj < dj ≤ zi′ , (4.5)

Wi,i′ =

i′∑
l=i+1

s′l, i < l ≤ i′, (4.6)

where s′l, l ∈ {i + 1, . . . , i′}, is the speed variable to denote at which speed the processor

runs in the interval (zl−1, zl] (s′1 = s′|Z|+1 = 0). In order to complete all the jobs before their

deadlines, the processing capacity should be at least as large as the workload requirement

for each time interval.

The remaining task is to determine s′l such that all the jobs in J can be finished before

their deadlines and the objective
∑|Z|

l=2 e(s
′
l)(zl − zl−1) +

∑|Z|+1
l=2 c(|s′l − s′l−1|) is minimized.
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We formulate this problem using a convex program CP1 as below:

min .

|Z|∑
l=2

e(s′l)(zl − zl−1) +

|Z|+1∑
l=2

c(|s′l − s′l−1|)

subject to Wi,i′ ≥ Pi,i′ , ∀1 ≤ i < i′ ≤ |Z|

s′l ≥ 0.

We have Algorithm 15 to compute an event-driven DVS schedule for the problem P1.

Algorithm 15 Convex-Programming-Based Solution

Require: A job set J := {J1, J2, . . . , Jn} where Jj denoted by {rj , dj , pj}
Ensure: A piecewise curve describing the time intervals and the speeds at which the pro-

cessor runs in these intervals
1: Let R = {r1, r2, . . . , rn}, D = {d1, d2, . . . , dn}, and Z = R ∪D.
2: Sort Z in increasing order. Let the distinct values be zi, 1 ≤ i ≤ |Z|. (Without loss of

generality, assume Z has exactly |Z| distinct elements and z1 = 0.)
3: Define Ti,i′ = (zi, zi′ ], for any 1 ≤ i < i′ ≤ |Z|. Define s′l for each (zl−1, zl]. Set s′1 = 0

and s′|Z|+1 = 0.

4: for each pair (i, i′) with 1 ≤ i < i′ ≤ |Z| do
5: calculate

Pi,i′ =

∑
j pj

zi′ − zi
, zi < rj < dj ≤ zi′ ;

6: define

Wi,i′ =
i′∑

l=i+1

s′l, i < l ≤ i′.

7: end for
8: Solve the convex program CP1:

min .

|Z|∑
l=2

e(s′l)(zl − zl−1) +

|Z|+1∑
l=2

c(|s′l − s′l−1|)

subject to Wi,i′ ≥ Pi,i′ ,∀1 ≤ i < i′ ≤ |Z|
s′l ≥ 0.

9: return a schedule running jobs in a canonical order using speeds s′l.

We provide the analysis of correctness and running time for Algorithm 15. For a given

set of real-time jobs with known processing times, preemptive EDF is optimal in the sense
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that any feasible job set can be also scheduled in a feasible manner by EDF policy [72]. We

have the following result.

Lemma 7 (EDF Optimality). An optimal preemptive algorithm can have its jobs executed

in a canonical (deadline) order, that is, for any two or more jobs ready to be executed for

a given time, the job with the earliest deadline has the highest priority, with ties broken

arbitrarily.

Lemma 8 (Convexity of CP1). The formulation CP1 in Algorithm 15 is a convex program.

Proof. We study the objective first. Note that all the z-values are chosen from Z = R∪D.

Thus, e(s′l)(zl − zl−1) is a non-negative linear combination of the convex function e(s′l),

which is convex as well. The norm |s′l − s′l−1| of an affine function s′l − s′l−1 is a convex

function. Note that all the variables |s′l − s′l−1| are non-negative, so, by the definition of

function c(·), c(|s′l−s′l−1|) is a non-decreasing function. As the cost function c(·) is assumed

convex, the composition c(|s′l − s′l−1|) preserves convexity.

We then study the constraints. All the constraints are convex ones (actually, linear

ones). (Note that all the calculated values Pi,i′ are constants in our formulation CP1. We

can rewrite Wi,i′ ≥ Pi,i′ as Wi,i′ − Pi,i′ − δi,i′ = 0, where δi,i′ ≥ 0.)

Let G(·) denote the running time of evaluating e(·) and c(·) and their first and second

derivatives for all the constraints in the convex program CP1.

Theorem 4.1 (Optimal Event-Driven Schedule for Problem P1). Algorithm 15 generates

an optimal event-driven speed schedule and has a running time of O(max{n4, n ·G}), where

n is the number of jobs to be scheduled and G is the time of evaluating e(·) and c(·) and

their first and second derivatives for all the constraints.

Proof. The correctness of Theorem 4.1 depends on Lemma 7 and Lemma 8. First, Lemma 7

guarantees that running jobs in the canonical manner does not hurt the optimality. Second,
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we claim that Wi,i′ ≥ Pi,i′ is the necessary condition to ensure a feasible schedule. This

has been proved in [73]. Combining these two observations and Lemma 8, we conclude that

Algorithm 15 generates an optimal event-driven schedule.

Now, we analyze the running time complexity. Note |Z| ≤ 2n and thus, |Z| = O(n).

Sorting Z takes time O(n log n). The number of scheduling intervals Ti,i′ is O(n2). There

are O(n2) variables for Pi,i′ and Wi,i′ . Calculating Pi,i′ takes time O(n2). (A straightforward

way of calculating Pi,i′ takes time O(n3). Here is one alternative way with faster running

time: We map each pair (rj , dj) of a job Jj to each corresponding time in Z and result in

a convex bipartite graph. Working on this convex bipartite graph improves the calculation

time of getting Pi,i′ to be O(n2).) Before we get to solve the convex program CP1, we pay

time O(n2) for the preliminary work. Note that CP1 has O(n2) constraints. We use the

interior-point method [74] to solve CP1 optimally (arbitrarily close to optimal). Thus, it

takes time O(max{n3, n2 · O(n2), n · G(e(·), c(·))}) = O(max{n4, n · G(e(·), c(·))}), where

G(·) is the time of evaluating e(·) and c(·) and their first and second derivatives for all the

constraints [75].

4.4.2 Minimizing energy consumption under limited number of speed

changes

In this section, we consider speed schedules under a limited number of speed changes. Let

M be the upper bound of the number of speed changes that a speed schedule Ψ is allowed to

schedule jobs. We study the problem P2: minimizing the total energy consumption subject

to satisfying all the jobs’ deadline constraints and bounding the number of speed changes

by M .

Again, let J = {J1, J2, . . . , Jn} denote the n jobs to be scheduled. A job Jj is represented

by a triplet (rj , dj , pj). Let R = {r1, r2, . . . , rn} and D = {d1, d2, . . . , dn}. We use Z = R∪D

to denote the union of all release time and deadlines of jobs. Note |Z| ≤ 2n. This problem

P2 has the following property which guarantees that the number of constraints of our convex
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program is polynomial in the number of jobs in J. Also, Lemma 9 ensures that an optimal

schedule for P2 can be an event-driven DVS one.

Lemma 9 (Upper Bound of # of Scheduling Intervals). An optimal algorithm OPT has its

speed changes only happen at time points in the set Z = R ∪D.

Proof. We prove Lemma 9 using a contradiction method. Without loss of generality, assume

that OPT has M line-segments to indicate the time intervals in which the processor executes

jobs at different speeds. Let t be the first (earliest) time such that t is a speed switching

point and t is neither a release time nor a deadline of a job. Thus, at time t − ε, either

the processor is idle (that is, no job is being executed) or some job, say Jj . has not been

finished and it is being executed at this point.

(1) Assume the processor is idle at time t − ε. At time t, a new job must be released,

since otherwise, in order to save more energy without violating the bound of number of

speed changes, the processor can keep the same speed till the next speed change (if the next

speed at time t is larger than the one at time t− ε) or the processor can immediately slow

down its speed at the time when the processor finished the last job before time t− ε (if the

next speed at time t is smaller than this one at time t− ε). This contradiction shows that

t must be some release time.

(2) Assume the processor is executing some job Jj at time t − ε and t 6= dj . From

Lemma 7, we know that in this OPT, all the jobs are executed in a canonical order. Par-

ticularly, if no job is released at time t, then the processor should keep the same speed

or fasten (respectively, slow down) its speed before t in order to reduce the total energy

consumption. Thus, we have that either at time t some job is released or all the jobs have

been finished before time t.

Based on the above discussion, we claim that Lemma 9 holds, due to the convexity of

the energy consumption function e(·) with e(0) = 0.

In the following, we design algorithms for the problem P2. Similar to the case of P1,

we sort all the values in Z in increasing order and index them as z1, z2, . . . , zn′ where
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n′ ≤ 2n. Thus, the whole time is divided into n′ − 1 non-overlapping intervals (zi, zi+1]

in which the processor runs at possible positive speeds, ∀1 ≤ i ≤ n′ − 1. The interval

Ti,i′ := (zi, zi′ ] (i′ ≥ i+1) is a scheduling interval. There are at most
(
n′
2

)
= n′(n′−1)

2 = O(n2)

such scheduling intervals. For each scheduling interval Ti,i′ , we calculate its corresponding

workload Pi,i′ and processing capacity Wi,i′ as those in Equation (4.5) and Equation (4.6),

given the speed s′l assumed for each interval (zl−1, zl].

The remaining task is to determine s′l such that all the jobs in J can be finished before

their deadlines and the objective is to bound the number of speed changes by M . Note that

the following piece-wise function is a convex one.

ci,i+1 = c(|si − si+1|) =


ε, if |s′i − s′i+1| < δ

H, otherwise

,

where H is a large positive number, and ε is a small positive constant. c(·) is convex since

it can be represented by c(x) = max{y1(x), y2(x)} for x ∈ R+, where y1(x) = ε, ∀x ≥ 0,

y2(x) = H, ∀x ≥ δ and y2(x) = 0, ∀0 ≤ x < δ.

By using the above function c(·), we set the objective to minimizing the energy con-

sumption
∑|Z|

l=1 e(s
′
l)(zl − zl−1) subject to the total cost of speed changes bounded by the

sum of M ·H and the costs associated with those intervals running at similar frequencies

(where the frequency difference is bounded by a specified input value δ). To ensure that

the final schedule has no more than M speed changes, we need to set H � ε · |Z|.

We present the algorithm (Algorithm 16) for this problem using the convex programming

technique.

Theorem 4.2 (Optimal Schedule for P2). Algorithm 16 generates a schedule arbitrarily

close to the optimal and has a running time of O(max{n4, n · G}), where G is the time of

evaluating e(·) and its first and second derivatives for all the constraints.
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Algorithm 16 Bounded # of Speed Changes (M)

Require: A job set J := {J1, J2, . . . , Jn} and Jj = {rj , dj , pj}. The upper bound of number
of speed changes M

Ensure: A piecewise curve describing the time intervals and the speeds at which the pro-
cessor runs in these intervals

1: Let R = {r1, r2, . . . , rn}, D = {d1, d2, . . . , dn}, and Z = R ∪D.
2: Sort Z in increasing order. Let the distinct values be zi, 1 ≤ i ≤ |Z|. (Without loss of

generality, assume Z has exactly |Z| distinct elements and z1 = 0.)
3: Define Ti,i′ = (zi, zi′ ], for any 1 ≤ i < i′ ≤ |Z|. Define s′l for each (zl−1, zl]. Set s′1 = 0

and s′|Z|+1 = 0.

4: for each pair (i, i′) with 1 ≤ i < i′ ≤ |Z| do
5: calculate

Pi,i′ =

∑
j pj

zi′ − zi
, zi < rj < dj ≤ zi′ ;

6: define

Wi,i′ =
i′∑

l=i+1

s′l, i < l ≤ i′.

7: end for
8: Solve the convex program CP2:

min .

|Z|∑
l=2

e(s′l)(zl − zl−1)

subject to Wi,i′ ≥ Pi,i′ ,∀1 ≤ i < i′ ≤ |Z|
|Z|+1∑
l=2

c(|s′l − s′l−1|) ≤M ·H + ε · |Z|

s′l ≥ 0.

9: return a schedule running jobs in a canonical order using speeds s′l.
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Proof. It is obvious that CP2 in Algorithm 16 is a convex program and it can be solved

to provide values for the variables s′l (up to arbitrarily small errors). In the following, we

illustrate that Algorithm 16 solves our problem P2 correctly and we analyze its running

time complexity.

Lemma 9 guarantees that for P2, we only need to consider a speed schedule’s speed

switching points from the time points in Z. Similar to the analysis of P1, we conclude that

Algorithm 16 generates an optimal solution. The running time complexity of Algorithm 16

is similar to that of Algorithm 15.

4.4.3 Minimizing number of speed changes subject to bounded energy

consumption

In this section, we study the problem of minimizing the number of speed changes subject

to satisfying all jobs’ deadline constraints and energy consumption bounded by a given

budget. This problem is motivated by budgeting energy consumption during execution in

energy-constrained environments.

Let E∗ denote the optimal (minimum) energy consumption required to satisfy all the

jobs’ time constraints in J. Let Eb denote the energy budget that we are given. In our

problem setting for P3, we always have Eb ≥ E∗. The objective is to minimize the total

number of speed changes m subject to keeping the total consumed energy EΨ bounded by

Eb. That is, min .m, subject to
∑m

i=1 e(si)(zi − zi−1) ≤ Eb.

Actually, P3 is the dual problem of P2. We can use P2’s objective as our P3’s constraint

and P2’s constraint
∑|Z|

l=1 c(s
′
l, s
′
l−1) ≤ M · H + ε|Z| as P3’s objective. We still use the

function

ci,i+1 = c(|si − si+1|) =


ε, if |s′i − s′i+1| < δ

H, otherwise

,

where H is a large positive number, and ε is a small positive constant. We immediately
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have the following algorithm.

Algorithm 17 Bounded Energy Budget (Eb)

Require: A job set J := {J1, J2, . . . , Jn} and Jj = {rj , dj , pj}. The energy budget Eb

Ensure: A piecewise curve describing the time intervals and the speeds at which the pro-
cessor runs in these intervals

1: Let R = {r1, r2, . . . , rn}, D = {d1, d2, . . . , dn}, and Z = R ∪D.
2: Sort Z in increasing order. Let the distinct values be zi, 1 ≤ i ≤ |Z|. (Without loss of

generality, assume Z has exactly |Z| distinct elements and z1 = 0.)
3: Define Ti,i′ = (zi, zi′ ], for any 1 ≤ i < i′ ≤ |Z|. Define s′l for each (zl−1, zl]. Set s′1 = 0

and s′|Z|+1 = 0.

4: for each pair (i, i′) do
5: calculate

Pi,i′ =

∑
j pj

zi′ − zi
, zi < rj < dj ≤ zi′ ;

6: define

Wi,i′ =

i′∑
l=i+1

s′l, i < l ≤ i′.

7: end for
8: Solve the convex program CP3:

min .

|Z|+1∑
l=2

c(s′l, s
′
l−1)

subject to Wi,i′ ≥ Pi,i′ , ∀1 ≤ i < i′ ≤ |Z|
|Z|∑
l=2

e(s′l)(zl − zl−1) ≤ Eb

s′l ≥ 0.

9: return a schedule running jobs in a canonical order using speeds s′l.

Theorem 4.3 (Optimal Schedule for P3). Algorithm 17 generates a schedule with objective

value close to optimal value arbitrarily and has a running time of O(max{n4, n ·G}), where

G is the time of evaluating e(·) and its first and second derivatives for all the constraints.

Proof. Note that Lemma 9 holds for the problem P3 as well. The proof of Theorem 4.3 is

almost the same as the one for P2 (see Theorem 4.2).
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4.4.4 Minimizing energy consumption subject to bounded span of fre-

quencies

In this section, we study the problem of minimizing the energy consumption subject to the

span of frequencies used in the schedule bounded by a given value. Let EΨ and m denote

the total energy consumed and the total number of speed changes by the schedule Ψ to

complete the jobs in J before their deadlines, respectively. Let Q be a given upper bound

of the span of the speeds used by Ψ. Let smax = max1≤i≤m{si} and smin = min1≤i≤m{si}.

The objective is to minimize EΨ subject to smax − smin ≤ Q. We note that P4 generalizes

the problem P2, given Q is allowed to be sufficiently large.

Let us consider the following idea for P4: Assume that we have the min-energy schedule

for a given job set J. (This min-energy schedule can be achieved by the algorithms in [23,61]

in time O(n2 log n).) We then realize that the processor has to run at a speed smax during

an interval [z, z′]; otherwise, some job belonging to this interval cannot be finished before its

deadline. This speed smax ensures the highest speed to guarantee the feasibility of finishing

J. According to P4, all the speeds of a schedule that we are going to design should be in

the range of [smax −Q, smax]. This range indicates that the processor should keep running

at speed ≥ smax − Q all along the schedule. We thus proceed as if we have “two virtual

processors” for the single variable-speed processor: One (called A), which is running at

speed smax −Q, and the other one (called B) which is running with variable speeds within

range [0, Q].

Based on above ideas, to solve P4, we partition the job set into two parts: One part

of jobs that can be finished by running on A with constant speed smax −Q, and the other

part of jobs can be finished by the variable speed processor B. For these two processors,

we apply two algorithms.

(1) First, we run EDF (earliest-deadline-first policy) over all the jobs using speed smax−

Q, assuming smax−Q > 0. (If smax ≤ Q, we simply use Yao et al.’s algorithm [23,61] as our

solution.) If a job Jj cannot be finished before its deadline, we simply cut the unfinished
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processing time part at its deadline dj and name it J ′j with remaining processing time p′j .

(2) Second, for those unfinished processing time parts of jobs, we run an optimal algo-

rithm to find out min-energy schedule. This step can be solved using a convex program.

The idea of partitioning the jobs into finished part and unfinished part using speed

smax − Q provides us the feasibility of calculating the schedule’s speed switching points

using a convex program. Algorithm 18 shows the details of the algorithm. The analysis is

similar to that of Theorem 4.2.

Algorithm 18 Bounded Span of Frequencies Used (Q)

Require: A job set J := {J1, J2, . . . , Jn} and Jj = {rj , dj , pj}. The bounded span of
frequencies used Q

Ensure: A piecewise curve describing the time intervals and the speeds at which the pro-
cessor runs in these intervals

1: Let R = {r1, r2, . . . , rn}, D = {d1, d2, . . . , dn}, and Z = R ∪D.
2: Sort Z in increasing order. Let the distinct values be zi, 1 ≤ i ≤ |Z|. (Without loss of

generality, assume Z has exactly |Z| distinct elements.)
3: Define Ti,i′ = (zi, zi′ ], for any 1 ≤ i < i′ ≤ |Z|. Define s′l for each (zl−1, zl]. Set s′1 = 0

and s′|Z|+1 = 0.

4: Calculate the min-energy E∗ and the maximum speed smax that E∗ has.
5: if smax ≤ Q then
6: return E∗ as our solution;
7: else
8: simulate the the jobs in J over a machine with a constant speed smax − Q. For any

unfinished job Jj , cut it by the deadline. Name it Jj′ . Jj′ has a remaining processing

time p′j ;

9: solve the convex program CP4:

min .

|Z|∑
l=2

e(s′l)(zl − zl−1)

subject to Wi,i′ ≥ Pi,i′ , ∀1 ≤ i < i′ ≤ |Z|
0 ≤ s′l ≤ Q.

{If Jj is an unfinished job Jj′ after we finish step 8, then the remaining processing

time p′j is used in calculating Pi,i′ as in Equation (4.5).}
10: return a schedule running jobs in a canonical order using speeds s′l + smax −Q.
11: end if
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4.5 Conclusions

Motivated by minimizing negative effects on processor’s lifetime reliability from the per-

spective of designing speed-scaling algorithms, we investigate energy-aware scheduling algo-

rithms in this chapter. Our contributions include a few scheduling algorithms for one model

and three variants, optimizing energy consumption and number/cost of frequency changes.

We apply the convex programming techniques to the general model. Based on this frame-

work, we develop three polynomial-time optimal solutions for three important variants. The

algorithms that we provide are proved to have objective values arbitrarily close to optimal

values. We consider four optimization problems and develop their corresponding solutions.

We also analyze the running time complexities. The results in this chapter are summarized

in Table 4.1.

Table 4.1: Summary of the results in speed scaling algorithms with speed change constraints.
(All the algorithms run in polynomial time.)

algorithms objectives to minimize constraints

Algorithm 15
sum of energy consumption
and costs of speed changes

-

Algorithm 16 energy consumption bounded number of speed changes

Algorithm 17 number of speed changes bounded energy consumption

Algorithm 18 energy consumption bounded span of frequencies used

We note that the results remain valid for arbitrary convex energy consumption functions

e(·) with e(0) = 0. We do not require that e(·) should be in some single closed function

form; it may be given by various closed formulas in different frequency ranges. A recent

study considered the energy minimization for settings in which the frequency of the bus

and the memory can be adjusted independently, but without considering the speed change

constraints [76]. In this dissertation, we assume that only the CPU’s clock frequency can

be adjusted.
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Chapter 5: Power-Aware Design of IP Core Networks under

General Traffic Demands

This chapter is the joint work with Yigal Bejerano at Bell Labs and Spyridon Antonakopou-

los at Google. This work was done when I worked as a summer intern at Bell Labs in 2012.

5.1 Introduction

As the access rate of telecommunication networks grows, an increasing number of devices

and links are deployed to accommodate such growth. As a result, the energy consumption of

the network gradually becomes a big concern [77–80]. Designing and implementing efficient

and effective energy management methods have drawn lots of interest both from industrial

and academic areas [79, 80]. An important discovery of recent studies is that current net-

works operate at a nearly constant power rate independent of the traffic load [81,82]. Studies

also show that the temporal traffic demand is substantially smaller than the overall network

capacity. In [83], the average link utilization in commercial network backbones is reported

around 30 − 40%. Some studies [84, 85] present even worse statistics that the average link

utilization may be as low as 10−15%. It is widely accepted that the significant discrepancy

between traffic demand and network capacity is a consequence of considerable variations in

network traffic over time as well as capacity over-provisioning by network service providers.

This gap between the available network capacity and the temporal traffic demand presents

opportunities for reducing network power consumption by deactivating network components

without noticeably affecting network performance [81, 86–88]. Furthermore, this deactiva-

tion mechanism can be easily incorporated into the hardware of current networking routing

devices [80]. Motivated by the potential for significant energy savings, we consider the

problem of designing power-efficient network topologies and auto-configuration algorithms.
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In particular, we consider the network design issue within an IP core network composed

of multiple Points of Presence (PoPs), which is a common architecture in modern IP net-

works. A PoP is a collection of multiple core and access routers that are physically located

in the same place (e.g., a room) and are connected to several regional networks as well

as several other distinct PoPs. While there are several architectures for designing a PoP,

we consider a contemporary design based on multi-chassis routing systems [89, 90]. In this

architecture, the access routers serve as the end-points of the regional networks and connect

to one or two multi-chassis routing systems. The latter are composed of several line-card

chassis connected to a switching matrix that switches data packets between the line-card

chassis. The main reasons to consider PoPs for power optimization are: 1) IP core routers

have notoriously high energy consumption; 2) sleep-mode capability is easy to implement

in hardware; and 3) each PoP is managed by a single entity, which simplifies deployment of

new designs.

5.1.1 Impact of uncorrelated traffic

An earlier work [91] considered the design problem under correlated traffic demands, how-

ever uncorrelated traffic is more common in networks1. In [92], the links carrying interna-

tional traffic of opposite directions (U.S. to U.K. and U.K. to U.S.) have a 5-6 hours time

shift on their traffic patterns. Even within a regional network, the different traffic classes

(P2P and HTTP) have very different peak hours within a day [93]. Additional evidence

can be found in [94], [95] and [96]. Example 6 shows the impact of uncorrelated traffic in

PoP design.

Example 6. We consider a single PoP with three chassis {C1, C2, C3}, each of which has

2 ports connecting to two regional networks, termed RNx and RNy. We assume each link

connecting with a port carries one unit of traffic, and the maximal traffic demand at any

time is three units. We want to design an optimal connection between RNs and the PoP such

that, for given traffic demands, the number of active chassis is minimized. Figure 5.1(a)

1We use “correlated” and “uncorrelated” terms here with loose relation to their statistical meanings.
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Figure 5.1: Optimal network designs for correlated and uncorrelated traffic demands, re-
spectively.

is the optimal design when the traffic demands over the two RNs are correlated. The

traffic is shown in Figure 5.1(b). We can see that as RNx and RNy’s traffic demands

grow/drop together, chassis will be active/sleep in order of {C1, C2, C3}. Such a design

is obtained from the Port-Sorting algorithm presented in [91]. When the traffic demands

are uncorrelated as shown in Figure 5.1(d), this connection is no longer optimal because of

the different peak periods of RNx and RNy. This happens when two RNs serve different

types of customers [96] (e.g., residential customers and commercial customers). If we use

the same connection as that in Figure 5.1(a), all three chassis have to be active during both

peak periods. However, the optimal solution as shown in Figure 5.1(c) has at most 2 chassis

active during each peak period. Thus, the optimal solution for correlated traffic cannot be

extended to uncorrelated traffic directly. New algorithms need to be developed.
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5.1.2 Our contributions

1) Given the typical time-varying traffic demands between the network nodes, we consider

the problem of minimizing the overall power consumption of an IP network by a careful de-

sign of the link connection and dynamic activation of only the required components, referred

to as auto-configuration. We show that finding an optimal design and auto-configuration

solution requires a complete network-wide view of the traffic demands, since the optimal

auto-configuration solution for one PoP may not be optimal for another PoP. We also show

that even for a given network design, an optimal auto-configuration that minimizes the over-

all network energy consumption has to consider the end-to-end routing of all the temporal

traffic demands, which may require considerable management overhead.

2) In order to provide a simple and easily deployable solution, we consider a variant of

the above optimization problem in which the temporal traffic demands of the links between

two adjacent PoPs are known, however, not the end-point chassis of the links. We show that

for this variant, the energy consumption of the network can be optimized by considering

the connection of each PoP independently.

3) We prove that the problem of minimizing the power consumption of individual PoP

with given traffic demands is NP-complete. We then develop an optimal algorithm, Match-

ing, for a variant where each chassis has only 2 ports. For general cases, we design two

approximation algorithms, Iterative Matching and Disjoint Set Cover, and provide their

approximation guarantees, i.e., the worst case ratio of each algorithm’s solution to the

optimal solution. We also propose an efficient greedy algorithm with a low running time

complexity. The main algorithmic results in this chapter are summarized in Table 5.1, where

N is the number of chassis within a PoP and P is the number of ports per chassis. We show

that these algorithms are optimal when traffic demands are correlated. We also extend our

schemes to support links with various capacities, and address the related network reliability

issues.

4) Our extensive simulations demonstrate 20 − 60% energy savings on line cards and

chassis due to our algorithms, outperforming several other candidate solutions. In some
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Table 5.1: Summary of the results. Note that if either P = 1 or N = 1, the problem is
trivial.

P N ≥ 2

2 Matching: an optimal algorithm

≥ 3
Iterative Matching: a P/2-approximation algorithm
(P = 2κ, κ ∈ Z+)

Disjoint Set Cover: a 2 lnN -approximation algorithm

instances, our algorithms achieve almost twice as much energy savings as that of the Port

Sorting algorithm [91] when the traffic is uncorrelated. They also perform substantially

better than some simple strategies deployed in current networks. We also test our algo-

rithms’ sensitivity to the inaccuracy of the traffic estimation and show that our algorithms’

performance is stable.

5.2 Related work

In 2003, Gupta and Singh [97] examined the excessive energy usage of the wired Internet,

and first proposed the strategy to save energy by selectively putting network interfaces and

components into sleep mode. Since then, more and more emphasis has been put on power

management of the Internet and the devices connected to it. Recent surveys on this topic

are given in [80, 98]. In this section, we discuss only the studies that are most relevant to

our work.

Chabarek et al. [81] considered the power-efficient network design problem as a multi-

commodity flow problem and derived an LP formulation. Similarly, Christensen et al. [87,99]

proposed heuristic methods in powering down idle links or nodes. Heller et al. [100] studied

the problem of minimizing energy consumption in data center networks. They exploited

the unique structure of data center topologies in their proposed solution. However, all these

works assumed that the topology is provided as an input to the problem.

The problem of power-efficient routing in wired networks has also received considerable

attention in recent years. Andrews et al. [86] studied the problem of minimum energy

routing in wired networks using the speed scaling model. In this model, the processing power
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of a network element is adjusted in proportion to its traffic. In [101], the authors considered

the same problem assuming that the network elements have power down capability. The

impact of switching off links on the connection of the network was examined in [88].

Antonakopoulos et al. [102] investigated the potential power savings that are obtained

using a combination of rate-adaptive network elements and power-aware routing. Like [86,

101], the authors employed a power model in which only the power consumption of the

links is considered while the power consumption of routers and switches is ignored. In this

model, the authors proposed a heuristic routing scheme and demonstrated the potential

power savings by simulations.

A novel technique to reduce network energy consumption has been proposed in [103].

Their approach buffered traffic at the edges and introduced burst to allow network devices

to sleep for a longer period of time. However, this work did not consider the network design

problem, which is of interest in this chapter. Restrepo et al. [104] studied the minimum

energy routing by taking the energy profile of devices into account. However, this work

required detailed power models of the various network elements as input, and it did not

consider the network design problem neither.

The PoP design problem was later studied in [91,105]. The main objective in [105] is to

reduce the equipment cost in a PoP, as opposed to reducing power consumption (which is

the main objective of our work). In [91], the authors studied a similar model to minimize

the PoP energy consumption by carefully designing the link connection. However, their

solution is optimal for only the fully correlated traffic demands. On the contrary, our work

deals with uncorrelated traffic demands.
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5.3 Model and Assumptions

5.3.1 The network model

We consider a two-level IP core network. The higher level, referred to as the network level,

consists of multiple points-of-presence (PoPs). Each PoP, e.g., PoP A, provides communi-

cation services to regional networks2 (RNs) and is also connected to several other PoPs. We

refer to these PoPs and regional networks as the adjacent nodes (ANs) of PoP A and denote

this set as RA. Every adjacent node and PoP A are connected with one or more IP links

that can meet the maximal traffic demand between the two nodes. We first assume that

all the links have the same fixed capacity, e.g., 100Gbps. This constraint is relaxed later

in Section 5.5.6. We refer to the graph that represents the network of PoPs as the network

graph, where every node represents either a PoP or a RN and each edge is a hyper-link that

represents all the IP links between two adjacent nodes.

The IP links between adjacent nodes and the internal topology of each PoP constitutes

the lower level of the IP core network. Though there are several possible PoP architectures

(see [89,90,106]), we consider only a contemporary PoP architecture of Single Multi-Chassis

System [89,90], in which a PoP contains a multi-chassis router that allows multiple chassis

to be clustered together to form a single logical router. The latter consists of several line

card chassis (LLCs) that are connected to a non-blocking scalable switch fabric matrix via

their backplanes. Every chassis supports several line cards, each with a fixed number of

ports. Each port is then connected to one link. We refer to the graph that represents the

specific link connection between the chassis of different nodes as the complete graph. The

two graphs of an IP core network are illustrated in Example 7.

We use the power consumption model identical to the one in [81]. We defer the formal

definition of the power consumption of a PoP to Section 5.4.2.

Example 7. Figure 5.2 is an example of an IP core network with two POPs and four

regional networks (RNs). Figure 5.2(a) shows only the network graph while Figure 5.2(b)

2A peering IP core network is also considered as a RN.
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Figure 5.2: An example of an IP core network’s network graph and complete graph.

provides the complete graph with detailed connection. The PoPs are denoted as POP A

and POP B, each with two line card chassis, marked as A1, A2, B1, B2, accordingly. The

two chassis of each PoP are connected via the PoPs’ switch matrix (represented in the figure

by a link between the two chassis of a given PoP). In addition, each chassis is connected by

a link to a regional network and to a chassis at the other PoP. Although there is a single

path between any pair of RNs at the network level as shown in Figure 5.2(a), Figure 5.2(b)

demonstrates that the network provides several paths between any pair of RNs. For in-

stance, RNx and RNw are connected by the following paths: P1 = {RNx, A1, A2, B2, RNw}

and P2 = {RNx, A1, B1, B2, RNw}.

5.3.2 Traffic demands

We consider a general model of time varying traffic between any pair of RNs, which may be

routed along a single path or multiple paths between the two nodes at the network level. We

do not impose any constraints on the routing mechanism nor the traffic patterns. Instead, we

assume that the temporal traffic pattern between two adjacent nodes has periodic behavior

(e.g., a week), which can be predicated3. Given a specific PoP, e.g., PoP A, we denote by

fi(t) the temporal traffic demand function between PoP A and each of its adjacent nodes

i ∈ RA at any time t during a given period of time. The temporal traffic demands are given

using units of link capacity. Thus, at any time t, we have 0 ≤ fi(t) ≤ Ki, where Ki is the

number of links between PoP A and AN i, and dfi(t)e is the minimal number of links that

3Our simulations in Section 5.6 show that our scheme can tolerate significant errors in the traffic demand
predications.
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needs to be active between PoP A and AN i. We divide the time into T slots with fixed

duration and the traffic demands are given in granularity of a time slot4.

In our work, we consider the correlation1 between the traffic demand functions fi(t),

i ∈ RA, of PoP A. Let ui(t) = fi(t)/Ki be the normalized traffic demand between PoP A

and AN i ∈ RA. We consider the maximal and minimal values of these functions at any

given time t, specified by the following functions, umax(t) = maxi∈RA
ui(t) and umin(t) =

mini∈RA
ui(t). The correlation of the traffic demands is specified by a correlation parameter

α ∈ [0, 1] such that,

α = max
t
{umax(t)− umin(t)}. (5.1)

Consequently, each temporal demand function fi(t) can be written as a combination of a

correlated and an uncorrelated components, defined by the functions h(t) and gi(t), accord-

ingly, such that:

fi(t) = Ki · [(1− α) · h(t) + α · gi(t)]. (5.2)

If α = 0, then umax(t) ≡ umin(t) and for every i ∈ RA we have fi(t) = Ki · umin(t), i.e,

h(t) = umin(t) and gi(t) is ignored. In this case, we say that the traffic demands are fully-

correlated. If α = 1, then fi(t) = Ki · gi(t) and h(t) is ignored, and the traffic demands are

termed uncorrelated. If 0 < α < 1, the traffic demands are termed quasi-correlated and the

two components of fi(t) can be calculated by

h(t) =
umin(t)

1− α
, gi(t) =

ui(t)− umin(t)

α
.

As an example, we consider the traffic demands given in Figures 5.1(b) and 5.1(d). In the

former case α = 0, which indicates that the traffic demands are correlated, while for the

later case α ≈ 1, and hence the traffic demands are uncorrelated. Unlike [91] that considered

only correlated traffic demands, our study addresses both uncorrelated and quasi-correlated

4The duration of each time slot is in the order of minutes, which is substantially longer than time overhead
of active/sleep transitions of devices.
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demands.

5.4 Problem Statement

We now define the network design and auto-configuration problems addressed in this study.

5.4.1 Network design and auto-configuration

Definition 5.1 (Network Design and Auto-Configuration Problem). Given a network graph

with temporal traffic demands of each PoP, the goal of the Network Design and Auto-

Configuration (NDA) problem is to find a complete graph and a schedule that specifies the

active and sleep time of each chassis, line card and port, such that the traffic demands

are satisfied by the active components at any time, while minimizing the overall power

consumption of the network.

In the NDA problem, we (1) design the connection of the links, and (2) determine the

time periods for each component in which it is active. As we show in Example 8, finding

optimal design and auto-configuration solution requires a complete network-wide view of

the traffic demands since the optimal auto-configuration solution for one PoP may not be

optimal to another PoP.

Example 8. Consider the network presented in Figure 5.2. Let us assume that at some time

slot, the only traffic in the network is between RNx and RNw. By considering each PoP inde-

pendently, it seems sufficient to keep only one chassis active at each PoP to support this traf-

fic, while in practice at least one of the PoPs has two active chassis. As described in Exam-

ple 7, there are two possible paths between RNx and RNw: P1 = {RNx, A1, A2, B2, RNw}

and P2 = {RNx, A1, B1, B2, RNw}. Note that at each path, the traffic traverses through

two chassis of one of the PoPs, thus the energy consumption of this PoP is not optimal.

Example 8 shows that even for a given network design, an optimal auto-configuration

that minimizes the overall energy consumption of the network has to consider the end-to-

end routing of all the temporal traffic demands. Such approach raises not only a challenging
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algorithmic problem, but also a complex management problem of determining the end-to-

end routing of each flow and active components at each time. To simplify the problem and

to reduce the management complexity of the network, we consider a variant of the NDA

problem that allows us to find an optimal solution, while designing the connection and

auto-configuration of each PoP separately.

5.4.2 The PoP design problem

We consider a specific PoP A and an adjacent node i ∈ RA that are connected with Ki links

indexed from 1 to Ki. In the revised NDA problem, we assume that link j, 1 ≤ j ≤ Ki, is

activated only when the traffic demands fi(t) between the two nodes exceed the capacity

of the first j − 1 links, i.e., fi(t) > (j − 1). Revisiting Example 8 and assuming that the

link (A1, B1) has an index 1, then the traffic from RNx to RNw is forwarded only along the

path P2 = {RNx, A1, B1, B2, RNw}.

The following two essential properties are direct results from the above modification:

1. The active time of each link depends only on the traffic demand function fi(t) and its

index, regardless of the specific end-point chassis of the link. So the active time slots

of a link can be represented by a vector of {0, 1} of size T .

2. Since the active time of each link is independent of its specific end-point chassis, the

energy consumption of the entire network can be optimized by minimizing the power

consumption of each PoP independently.

In the following, we consider a PoP with M =
∑

i∈RA
Ki links, each identified by a

unique index in the range LM = {1, . . . ,M}. We represent the temporal traffic demands of

the PoP by a demand matrix F[M,T ] of {0, 1} with M rows and T columns, such that row

l ∈ {1, . . . ,M} specifies the active slots of link l. We assume that the PoP has N identical

chassis, with D line cards per chassis and P ports per line card, such that M = N ·D · P .

The link assignment L of the PoP matching its M incoming links to its M ports is defined
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as follows: Each chassis i ∈ {1, .., N} is associated with a set Li of D · P links, and each

line card j ∈ {1, . . . , N ·D} is associated with a set L̂j of P links.

We now give a formal definition of the power consumption of the PoP. Considering any

set L of links, we denote by H(L) the number of time slots in which at least one of the links

in L is active: (Note that
∨

is an OR operation.)

H(L) =

T∑
t=1

∨
l∈L

Fl,t. (5.3)

Observe that any component (the switch matrix, a chassis, a line card or a port) is

active only when at least one of its associated links is active, otherwise it is switched off for

power saving. Thus, a given link assignment L explicitly defines the time slots in which a

component is active. Consequently, the power consumption of the PoP is given by:

Power = H(LM ) ·Wsw +
N∑
i=1

H(Li) ·Wch +
N ·D∑
j=1

H(L̂j) ·Wlc +
M∑
l=1

H({l}) ·Wp, (5.4)

where Wsw, Wch, Wlc, and Wp denote the power consumption of the switch fabric and each

chassis, line card, and port, respectively5. The power aware PoP design problem is defined

as follows:

Definition 5.2 (PoP Design Problem). Given a PoP with N chassis, D line cards per

chassis, P ports per line card, and temporal traffic demand matrix F[M,T ], where M =

N ·D ·P , the PoP Design (PD) problem seeks for a link assignment L for the M links of the

PoP to its M ports and a corresponding schedule, such that the overall power consumption

of the PoP is minimized.

Equation (5.4) shows that the energy consumptions of the switch fabric and the ports

are fixed for a certain input traffic F[M,T ], regardless of the link assignment L. Therefore,

5Assume that the energy cost of switching on/off any component is negligible.
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we can remove the energy consumption of these components from our consideration. In

real products [107], these components contributes 20 − 30% of total power consumption

of a PoP. By carefully observing the problem definition, we see that the problem can be

solved in a two-iteration way. In the first iteration, we only consider how to match M links

to N different chassis regardless of the line cards assignment. Next, for each chassis, we

iteratively match links with line cards in the same way that we solve the first iteration.

Based on this observation, without loss of generality, we can assume D = 1 and we have

M = N · P links.

After this simplification, we consider a link assignment L = {L1, . . . , LN} with links in

Li being assigned to chassis i. Assuming that a chassis consumes one unit of energy for

one time slot when it is active, the PoP’s power consumption for the assignment L over a

traffic matrix F[M,T ] is given by:

E(L) =

N∑
i=1

H(Li). (5.5)

In spite of this simplification, we prove that the problem is still NP-complete in the

next section. A summary of the main notations used throughout this chapter is given in

Table 5.2.

5.4.3 NP-completeness of the problem

Theorem 5.1. The PoP Design Problem is NP-complete.

Proof. Given a connectivity scheme, we can verify in polynomial time that whether the total

energy consumption under this assignment is larger than E or not by using Equation (5.5).

Thus, the problem is in NP. Then, we will prove its NP-completeness by reducing from

3-PARTITION problem.

In a 3-PARTITION problem [39], there is a set A of 3m elements {a1, a2, . . . , a3m}, and

a bound B ∈ Z+. Each element a in A has a size s(a) ∈ Z+, such that B/4 < s(a) < B/2,
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Table 5.2: Main notation used in this chapter.

Symbol Semantics

AN Adjacent node (a reginal network or a PoP)

RN Regional network

α The correlation parameter

C A chassis within the PoP

D The number of line cards within a chassis

Ki The number of links between the PoP and the i-th AN

l A link or link index

L A set of incoming links

LM The set of all incoming links

L A link assignment

M The number of links connecting to the PoP

N The number of chassis within the PoP

P The number of ports over a single line-card chassis

t Time or time slot index

T The number of total time slots of traffic

F[M,T ] The {0, 1} matrix of traffic demands

Fl,t =0, when link l has traffic at time t; =1, otherwise.

H(L) The number of active time slots of L

E(L) The PoP’s power consumption given L

and
∑

a∈A s(a) = mB. The 3-PARTITION problem wants to partition elements in A into

m disjoint set A1, A2, . . . , Am such that
∑

a∈Ai
s(a) = B, ∀i ∈ [1,m].

Given the above 3-PARTITION problem, we define the following instance in our prob-

lem. We have m chassis and each of which has B ports, and there are mB links to be

assigned. Here, we consider the traffic demands over the time interval [1, 3m], that is,

T = 3m. For each time step t ∈ [1, 3m], we define a group gt of links corresponding to the

element at. This group contains s(at) distinct links which are active only within this time

step t. We assume that the chassis spends one unit of energy while keeping itself active

within one time step.

Now we claim that 3-PARTITION problem has a solution if and only if there is an

assignment of links with total energy consumption 3m.

If there is a partition A1, A2, . . . , Am such that Ai contains three elements ai1, ai2 and
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ai3, then we just assign the links in groups gi1, gi2 and gi3 to the ith chassis. In this way, we

will end up with m chassis. Because the total size of three elements in each Ai, i ∈ [1,m], is

B, each chassis will have B links correspondingly. Based on the way we generate the links,

we also know that all links in a chassis are active within only three time steps. Therefore,

the total energy consumption of all chassis is 3m. In this way, we successfully find an

assignment of links with total energy consumption 3m.

Now we prove from another direction. Due to the constraint B/4 < s(a) < B/2, the

total number of links within each group g will be in the range [B/4, B/2]. So we know

that a chassis can accommodate at most 3 complete groups of links. We also know that

the links within the same group are active within the same single time step and different

group of links will be active in different time steps. Then, if there exists an assignment for

links with total energy consumption 3m, each chassis must be active in exactly 3 time steps.

Otherwise, the chassis which is active more than 3 time steps must contain links from more

than 3 groups. That is, some groups have their links separated over different chassis. This

will obviously cause the total energy consumption growing over 3m. Overall, each router

will contain exactly three complete groups of links which sum up to B, and this indicates

a partition for the original 3-PARTITION problem.

5.4.4 An illustrating example

Throughout this chapter, we use the following example with uncorrelated traffic demands

to demonstrate the problem, the optimal solutions, and the link assignment L obtained

from the proposed algorithms.

Example 9. We consider M = 8 links, denoted by {l1, . . . , l8}, to be connected to a PoP.

The traffic of these 8 links are given over a time span of [1, 9]. Each link is active for several

consecutive6 time slots as shown in Figure 5.3(a). The rectangle bar with index of the link

indicates the time slots in which this link is active. For example, link l1 is active within

time [1, 3]. Given these information, we consider the following two problems: (1) assign

6In general, the active slots of a line are not required to be consecutive.
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Figure 5.3: An example of traffic demands for a PoP with M = 8 and the optimal solutions
for P = 2 and P = 4.

these link to N = 4 chassis {C1, C2, C3, C4} (i.e. P = 2); and (2) assign these links to

N = 2 chassis {C1, C2} (i.e. P = 4), such that the total energy consumption of the PoP is

minimized.

Figure 5.3(b) and Figure 5.3(c) show optimal solutions for P = 2 and P = 4, respectively.

In these figures, links assigned to the same chassis have the same color and are framed

together by black dashed lines. For example, in the case P = 4, links l1, l4, l5, and l7 are

connected to the same chassis C1, and links l2, l3, l6, and l8 are assigned to the chassis C2.

Remember that a chassis is active when any of its links has traffic, and is asleep when none

of its links has traffic. Then, the optimal energy cost, denoted by E, is 15 for the case

P = 2 and 11 for the case P = 4.
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Figure 5.4: The calculated solutions by the Port Sorting algorithm when P = 2 and P = 4.

5.5 Algorithms

5.5.1 Optimal algorithms for some variants

Port sorting for correlated traffic

In [91], an exact optimal algorithm, termed Port Sorting is given for solving our problem

when traffic is fully correlated.

The Port Sorting algorithm takes advantage of special coverage relationship that fully

correlated traffic have. The coverage relationship describes the relation of traffic patterns

of a pair of links. Given two links l1 and l2, we say that l1 covers l2, if at any time slot t

when l2 is active, l1 is also active, i.e., when Fl2,t = 1, we have Fl1,t = 1 as well. In [91], the

authors proved that when the traffic is fully correlated any link which has longer active time

must cover those links with shorter active time. We call this special coverage relationship

nesting property. Therefore, the algorithm sorts the links in increasing order of the amount

of active time slots, and assigns links in such order to chassis.

However, in the case of uncorrelated traffic, the optimality of Port Sorting algorithm

is not maintained. Here, we use the instance described in Example 9 to explain the sub-

optimality of Port Sorting under uncorrelated traffic.

Example 10. Consider the instance presented in Example 9. The Port Sorting algo-

rithm arranges the lines according to their active period and get the following order:

l2, l3, l5, l6, l1, l4, l7, and l8. Then it iteratively associates a set of P consecutive lines to
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each chassis. Figure 5.4 shows the results. Note that, the indices of the chassis reflect

the order in which the algorithm assigns links to chassis. For example, the Port Sorting

algorithm first assigns the links l2 and l3 to chassis C1 in the case P = 2, because these

two links have the least active durations. Given the assignments, the energy costs of the

solutions are 19 for P = 2 and 13 for P = 4.

We can see that the Port Sorting does not provide the optimal solutions here, because

the traffic of the links in Example 10 do not have the “nesting property” as described above.

In Section 5.6 we demonstrate that in general the Post Sorting algorithm provides worse

designs than the ones provided by our algorithms, presented later, for uncorrelated traffic.

Optimal solution for general traffic

Algorithm 19 Matching (P = 2)

1: Input: The traffic demand matrix F[M,T ] of M links.

2: Create a graph G(V,E), V ← ∅, E ← ∅.
3: For Each link li, create a node vi ∈ V .
4: Connect any two nodes vi, vj ∈ V with a link ei,j ∈ E.

5: For any edge ei,j , associate a weight wi,j = H({li, lj}).
6: Find a minimum weighted perfect matching Y on G.
7: if vi and vj are matched in Y then
8: assign links li and lj to the same chassis.
9: end if

10: return the assignment.

For the special case P = 2, we show that there exists an optimal algorithm running in

polynomial time. This algorithm is referred to as Matching and is given in Algorithm 19.

We prove its optimality in Theorem 5.2.

Theorem 5.2. The Matching algorithm provides the optimal solution in polynomial time

under general traffic when P = 2.

Proof. Based on the way that we transform our input M and F to a graph G, we know that

G is a complete graph. Thus, any connection scheme has a corresponding perfect matching

in G. We also know that the total weight of a perfect matching in graph G is the same
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as the corresponding total energy consumption of the connection scheme, because the edge

weight wi,j in G is set equal to the energy consumption by grouping links li and lj together.

Assume that the assignment obtained from the algorithm for P = 2 is not optimal. Let

Match denote the link assignment obtained from Matching, and OPT denote the optimal

link assignment. Then let the corresponding perfect matching of these two link assign-

ments in graph G be YMatch and YOPT . Based on the property of Matching, YMatch is the

minimum weighted perfect matching returned by our algorithm. However, given the above

assumption, we know that YOPT has less total weight than YMatch, which contradicts with

the fact that YMatch is the minimum weighted perfect matching of graph G.

Now, we analyze the running-time complexity of Matching. For the case P = 1 or N = 1,

the algorithm runs in time O(M). By using the Edmond’s Blossom algorithm [108] [109],

minimum weighted perfect matching in a general graph G(V,E) could be solved within time

O(|V |4). This time complexity could be further lowered to O(|V |3) due to Lawler [110] and

Gabow [111]’s work. Since |V | = M in our problem, we know that Matching has a running

time complexity O(M3).

Therefore, Matching is an optimal algorithm for P = 2 running in polynomial time.

This completes the proof.

5.5.2 The Iterative Matching algorithm

Algorithm 20 Iterative-Matching (P = 2κ)

1: Input: The traffic demand matrix F[M,T ] of M links.

2: Let L denote the set of links (super-links) in the current iteration. Initially, L =
{1, 2, . . . ,M}, where li ∈ L is the index of a link.

3: while |L| > N do
4: pairing up links in set S using the Matching algorithm;
5: merge any paired-up links into a new super-link with traffic pattern as the union of

these two;
6: add this super-link into set L, and remove the two paired-up links.
7: end while
8: Assign all links contained in one super-link to the same chassis.
9: return the assignment.

Motivated by the Matching algorithm, we design an approximation algorithm naturally
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derived from it, termed Iterative-Matching. That is, we can do Matching iteratively for

cases in which P = 2κ, κ ∈ Z+. This Iterative-Matching algorithm is described in Al-

gorithm 20. Remember that when P = 2, we have an optimal algorithm Matching by

transforming the problem to a minimum weighted perfect matching problem. Here, we just

use Matching as a subroutine to iteratively build up the solution. Combining with the case

κ = 1, we have Theorem 5.3.

Theorem 5.3. For P = 2κ where κ is a non-negative integer, the Iterative-Matching

algorithm has an approximation ratio of P/2.

Before proving Theorem 5.3, we introduce several useful claims.

Claim 1. For any two sets of links Li and Lj, we have

H(Li ∪ Lj) ≤ H(Li) +H(Lj) ≤ 2H(Li ∪ Lj).

Proof. Recall that for any set L of links the value of H(L) is the number of time slots in

which at least one of the links in L is active. The first inequality in Claim 1 is true since

any time slot t that contributes 1 to H(Li ∪ Lj) also contributes 1 to H(Li) or H(Lj) or

both. The same reason can be used to prove the second inequality, because t may increase

H(Li) +H(Lj) by at most 2.

Claim 2. For any two sets of links Li and Lj with Li ⊂ Lj, we have H(Li) ≤ H(Lj).

Proof. The proof is similar to the proof of Claim 1.

Let IMi be the calculated sets of links after the i-th iteration of the Iterative-Matching

algorithm assuming that each chassis supports 2i links. In addition, let OPTi be the optimal

solution when the number of ports per chassis is 2i.

Claim 3. For any i ∈ [1, κ], E(OPTi) ≤ 2 · E(OPTi+1).
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Proof. For any i ∈ [1, κ], we let Lj be the set of links associated with the j-th chassis in

OPTi+1. Note that |Lj | = 2i+1. We can create a new solution, termed Randi, for P = 2i.

This new solution randomly divides each set Lj into two subsets L1
j and L2

j , each having 2i

links. From Claim 1, it holds that H(L1
j ) +H(L2

j ) ≤ 2 ·H(L1
j ∪ L2

j ) = 2 ·H(Lj). Thus,

E(Randi) =

M/2(i+1)∑
j=1

(H(L1
j ) +H(L2

j ))

≤ 2 ·
M/2(i+1)∑
j=1

H(Lj)

= 2 · E(OPTi+1).

Assume for contradiction that 2 ·E(OPT − i+ 1) < E(OPTi). Then we have E(Randi) <

E(OPTi), which contradicts the assumption that OPTi is the optimal solution for P = 2i.

Claim 4. For any 1 ≤ i ≤ κ, E(IMi+1) ≤ E(IMi).

Proof. The proof is similar to the proof of Claim 3 and it is a direct result of Claim 1.

We now use Claims 3 and 4 to prove Theorem 5.3.

Proof of Theorem 5.3. From Theorem 5.2, we know that after the first iteration, our algo-

rithm achieves the optimal solution for P = 2. Thus, E(IM1) = E(OPT1). From Claim 4,

we know E(IMκ) ≤ E(IM1) = E(OPT1). From Claim 3, we have E(OPT1) ≤ 2E(OPT2) ≤

. . . ≤ 2κ−1E(OPTκ). Combining all these inequalities, we get E(IMκ) ≤ 2κ−1E(OPTκ).

Therefore, our algorithm has an approximation ratio P/2.
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Figure 5.5: The solutions obtained from the Iterative Matching algorithm when P = 2 and
P = 4.

Example 11. We use Example 9 to illustrate how Iterative-Matching works and compare

its performance with the optimal solutions. The results are shown in Figure 5.5. Note that

Iterative-Matching is actually Matching when P = 2, and it gives the optimal solution. So

Figure 5.5(a) shows the same results as Figure 5.3(b). For P = 4, the algorithm iteratively

runs Matching on the result given in Figure 5.5(a) by considering the two links in the

same chassis as a new link with modified traffic pattern. For example, links l1 and l4 are

considered as a single new link which is still active during time [1, 3], while links l7 and l8

are considered as a new link which is active during time [2, 9]. Therefore, the algorithm

outputs an assignment with energy cost 13 when P = 4. We note that in this case the

solution is not optimal.

5.5.3 The Disjoint Set Cover algorithm

For the cases in which P takes arbitrary value rather than power of 2, we give a pseudo-

polynomial approximation algorithm, termed Disjoint Set Cover (DSC). This algorithm

adopts ideas of greedy approximation algorithm for weighted set cover problem.

In the weighted set cover problem [112], there is a universe set U of elements to be

covered. We also have a set S which contains a collection of subsets of U . That is, S =

{S1, . . . , Sk}, where Si ⊆ U and
⋃
i Si = U , for i ∈ [1, k]. Each subset Si has a weight w(Si).

The objective is to find a sub-collection C ⊆ S, C = {S′1, . . . , S′k′}, with the minimum total
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weight W ′ =
∑k′

j=1w(S′j) that covers all elements in U .

In our problem, the universe set U will be all links to be assigned, and set S is all possible

P -combinations of links in U . Then the weight of the set Si is the energy consumption of

the chassis after assigning links in set Si onto it, i.e., w(Si) = H(Si) where H(.) is defined

by Equation 5.3.

For the weighted set cover problem, there is a greedy approximation algorithm [112],

which iteratively finds the most cost-effective subset and removes all elements in this subset

from U till U becomes empty. Here, the cost-effectiveness is defined as the average weight

of uncovered elements in a subset. Recall that in weighted set cover there is no guarantee

that each subset picked will not have overlap with other selected subsets. In our algorithm,

we enforce that the picked subsets do not overlap with each other by doing the following. At

each iteration, we only consider the subsets with P links that do not contains any covered

links and we pick such a subset with the minimum weight. The algorithm is formally

described in Algorithm 21, where U denotes the set of all links and Z denotes the set of

links already covered.

Algorithm 21 Disjoint Set Cover

1: Input: traffic demand matrix F[M,T ] of M links.

2: Z ← ∅, U = LM
3: while Z 6= U do
4: find the subset S of size P in U \ Z which has the minimum weight;
5: assign all links in S to a new chassis;
6: Z ← Z ∪ S.
7: end while
8: return the assignment.

Since we select only disjoint subsets, we cannot claim anymore that at each iteration

our algorithm selects the most cost effective subset. Therefore, we cannot use the proof

in [112] to guarantee a logarithmic approximation ratio to our algorithm. Nevertheless,

several properties of our solution allow us to provide similar approximation ratio.

Theorem 5.4. The Disjoint Set Cover algorithm provides a 2 lnN -approximation solution.

Let DSC and OPT be the solutions calculated by DSC and the optimal algorithm
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accordingly. Let E(DSC) and E(OPT ) be the cost of these solutions. We denote by Li the

subset picked at the i-th iteration by DSC. We now introduce a property that is essential

for proving Theorem 5.4.

Claim 5. At each iteration i, 1 ≤ i ≤ (N − 1):

H(Li) ≤ (
1

N − (i− 1)
+

1

N − i
) · E(OPT )

Proof. Consider the set U \Z of uncovered links at the beginning of the i-th iteration. We

now consider the following two most cost effective subsets, say S1 and S2, each one with at

most P links selected as follows: The subset S1 is the most cost effective set for covering

the links in U \ Z with the largest size, while S2 is the next most cost effective subset for

covering the links in U \ Z \ S1. Recall that the cost of each set is H(Sj), j = {1, 2}. We

argue that P < |S1|+ |S2|. Let us assume for contradiction that |S1|+ |S2| ≤ P . Then from

Claim 1 it holds that H(S1 ∪S2) ≤ H(S1) +H(S2), which contradicts the assumption that

S1 is the most cost effective subset with largest size of at most P links.

We now find bounds on the cost of the sets S1 and S2. S1 is the most cost effective

subset for the collection U \ Z with (N − (i − 1)) · P uncovered links. The optimal cost

of covering these links with subsets of P or less links is at most E(OPT ) and there are at

least N − (i− 1) such subsets in any such coverage. Therefore, H(S1) ≤ E(OPT )
N−(i−1) . S2 is the

most cost effective subset for the collection U \ Z \ S1 with at least (N − i) · P uncovered

links. By using similar arguments we get that H(S2) ≤ E(OPT )
N−i .

Since Li is the most cost effective subset of U \ Z with P links, it holds that its cost is

upper bounded by the cost of any subset of P links of S1 ∪ S2. Thus, from Claims 1 and 2

we get that H(Li) ≤ H(S1) +H(S2). By applying the upper bounds on the cost of S1 and

S2 we get the inequality of Claim 5 and this completes the proof.

We now use Claim 5 to prove Theorem 5.4.
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Figure 5.6: The calculated solutions by the Disjoint Set Cover algorithm when P = 2 and
P = 4.

Proof of Theorem 5.4. By applying Lemma 5 on the N − 1 first calculated subsets Li, and

the fact that H(LN ) ≤ E(OPT ), we get the following inequality.

E(DSC) =
N∑
i=1

H(Li)

≤
N−1∑
i=1

(
1

N − (i− 1)
+

1

N − i
) · E(OPT ) + E(OPT )

≤ 2 ·
N∑
i=1

1

i
· E(OPT )

≤ 2 · lnN · E(OPT )

The third inequality results from rearranging the components and getting the N -th

Harmonic sequence. This completes our proof.

Example 12. We apply the Disjoint Set Cover algorithm to solve the instances of Exam-

ple 9. The results are presented in Figure 5.6. The order of the subsets chosen by the

algorithm is reflected by the indices of the chassis in the figure. When P = 2, the first

subset chosen is the set containing links l2 and l5, because they have the least total amount

of energy cost among all 2-combinations of {l1, . . . , l8}. In the remaining links, the sec-

ond subset of {l3, l6} is chosen based on the same reason. Then {l1, l4} is chosen in the
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third round and {l7, l8} is chosen at last. Consequently, the energy cost of the solution for

case P = 2 is 15. We get the assignment for the case P = 4 using Disjoint Set Cover in

Figure 5.6(b). The energy cost for this case is 13.

Note that in the DSC algorithm, we have to enumerate all possible P -combinations of

links in the worst case, which will take up to O(MP ) time. While this calculation may be

a time consuming task it is substantially shorter than check all possible solutions which is

O(M !). In our simulations we were able to calculate solutions for systems with M = 96

links and P = 16 ports per chassis within several minutes using a personal computer. In

the following section, we will give a simple heuristic algorithm which works more efficiently

and gives satisfactory performance as well.

5.5.4 The Largest Overlap First algorithm

The greedy algorithm introduced in this section implements an intuitive approach, inspired

by the Port-Sorting algorithm in [91]. In this algorithm, we fill up one chassis at a time

using un-assigned links. Whenever there is any extra port on a chassis, we add an un-

assigned link to it, which has the largest active-time overlap with the links already on this

chassis. By adding such a link, intuitively, we save as much energy as possible. We refer

this algorithm as Largest Overlap First (LOF), described in Algorithm 22.

Algorithm 22 Largest Overlap First

1: Input: traffic demand matrix F[M,T ] of M links.

2: All chassis are empty and all links are un-assigned.
3: while there is an empty chassis C do
4: pick an un-assigned link with the largest number of active time slots and assign it to

C;
5: while chassis C has available ports do
6: assign the link with the largest overlap with links on C to chassis C. {Ties are

broken in favor of links with the least energy increment on the current chassis.}
7: end while
8: end while
9: return the assignment.

Example 13. We still use Example 9 to explain our algorithm. For the case P = 2, the

Largest Overlap First algorithm chooses link l7 which has the longest active duration for the
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Figure 5.7: The calculated solutions by the Largest Overlap First algorithm when P = 2
and P = 4.

first empty chassis C1 in Figure 5.7(a). For the remaining port of C1, the algorithm picks

link l5 which has the largest overlap with l7 and, at the same time, has the least energy

increment to C1. Then we consider the second empty chassis. However, for the case P = 4,

the algorithm continues seeking for the next link for chassis C1. In this way, links l2 and l4

are picked in order as shown in Figure 5.7(b). Given the assignments, the energy costs is

15 for the case P = 2 and is 12 for the case P = 4.

5.5.5 Optimality under correlated traffic

Theorem 5.5. Iterative Matching, Disjoint Set Cover, and Largest Overlap First are op-

timal algorithms when the given traffic are fully correlated.

Proof. From previous work [91], when the traffic are correlated, then the optimal solution

has the following property. If we sort all M links in an increasing order of their total active

time slots as L = {l1, . . . , lM}, and we sort all N chassis in the optimal solution in an

increasing order of their respective energy costs as {C1, . . . , CN}, then the i-th chassis Ci

will include the i-th groups of P -links {l(i−1)·P+1, . . . , l(i−1)·P+P }. Therefore, to prove that

our algorithms give the optimal solution when the traffic are fully correlated, it is enough

to prove that our algorithms maintain this property in their solutions.

Iterative Matching. Given a sorted list of links L as mentioned above, then matching

every consecutive 2 links will give us an optimal solution for P = 2. If this matching is

not the same as what Iterative Matching gives us at the first round, we claim that we can
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always swap links to make them the same without increasing the total energy cost. This

is due to the nesting property of correlated traffic. After each iteration of matching, we

combine all links within the same chassis as a super-link (which should be the same as the

longest active link in that chassis). These super-links will still be in increasing order of the

number of active time slots. We consider the next step of matching as a matching of these

super-links, then consecutive 2 super-links are matched due to the same reason above. Then

at the end of the algorithm, we will have the first P links in L assigned to the first chassis,

the second P links to the second chassis, and so on, where the optimal solution’s property

is maintained.

Disjoint Set Cover. Given the sorted list of links L as above, we claim that the Disjoint

Set Cover will pick the first P links as the first set. Due to the nesting property, any

chassis’ energy cost will be the same as the longest active link’s energy cost within that

chassis. So the first P links will give us the smallest total energy cost among all possible P -

combinations, and this is exactly what Disjoint Set Cover looks for. With the same reason,

we can see that Disjoint Set Cover will continuously pick consecutive P links from the list

in order to make a smallest energy cost chassis based on the remaining links. In this way,

we proved that Disjoint Set Cover maintains the same property as the optimal solution.

Largest Overlap First. The proof for Largest Overlap First is quite similar to the proof

for Disjoint Set Cover instead that we are looking at the links in a reverse order. Given

the sorted list of links L, the algorithm will first pick the last link lM which has the largest

number of active time slots for the first chassis. Due to the nesting property, the link with

the largest overlap with lM will be lM−1 and so on. So for the first chassis, we assign the last

P links in list L to it. Then we iteratively do this by assigning the last consecutive P links

to the next chassis. At last, our solution maintains the optimal solution’s property.

5.5.6 Extensions – Various Link Types and Network Reliability

Various Link Types: In a real multi-chassis router, each chassis may contain different

types of line cards, which in turn, support different link capacities. For example, one kind
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of line card may have only a single port that supports a 100Gbps link while another type of

line card may have 10 ports, each of which supports traffic up to 10Gbps. Here, we consider

the case in which each line card supports links of the same type, and the overall capacity

of each line card is the same. Our algorithms can be easily extended to this case as below:

Step 1. For each supported link type, we separately assign links of that type to the corre-

sponding line cards by using one of the above algorithms.

Step 2. Now we have a bunch of line cards with links assigned to them, and we consider

each line card as a new logical link. Thus we have a set of logical links with equal amount

of capacities. Then we do the assignment of line cards to chassis again using the algorithms

in this chapter. Similar methods can be used to analyze the algorithms’ performance.

The problem remains open when the chassis or line cards are not identical in terms of

supporting traffic capacities.

Network Reliability: One of the key concerns of ISPs is preserving the service under

component failures. In our scheme, the fault resiliency can be provided in one of two ways:

1. Traffic protection at the network level by provisioning alternative routes.

2. Augmenting each PoP with redundant chassis that are activated after a line or a

chassis failure.

For the latter, we observed that our scheme is more efficient than other PoP connection

solutions, e.g., the link aggregation technique [83], since it spreads the links between the

considered PoP and each one of the ANs on multiple chassis. More specifically, let bAlgi

denote the maximal number of links between any chassis in PoP A and AN i ∈ RA according

to a link assignment provided by any algorithm Alg. The number of additional chassis that

are required to provide protection against any possible single chassis failure is BAlg =

1
P ·
∑

i∈RA
bAlgi . Since our scheme connects each AN i’s links to multiple chassis, the values

of bIMi and bDCSi are small. Therefore, the number of required redundant chassis BIM and

BDSC is also small.
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5.6 Simulation Results

5.6.1 Simulation Setup

We consider a single PoP, say PoP A, for energy savings. This PoP connects to 8 adjacent

regional networks (RNs) and 4 adjacent PoPs. These 12 ANs (8 RNs + 4 PoPs) are the

sources and destinations of all generated traffic in our setup, all of which is assumed to

transmit through PoP A. There are 6 links associated with each RN and 12 links associate

with each adjacent PoP, so there are total M = 96 links (6× 8 + 12× 4) in our setting.

There are N identical chassis in A, each having P ports. In our simulations, we choose

P ∈ {2, 4, 6, 8, 12, 16}. Since we have assumed M = N · P , the corresponding N are chosen

from {48, 24, 16, 12, 8, 6}.

The traffic over PoP A is generated by Equation (5.2). As [113] segments the traffic

into a predictable component and a stochastic component, we use a sinusoidal function as

the correlated component h(t) and a random function uniformly distributed in [0, 1] as the

uncorrelated component gi(t). We control the functions to let links have average utilizations

among 35− 40%. We consider correlation parameter α ∈ {1, 0.75, 0.5, 0.25}

Note that the traffic over ANs is uncorrelated when α = 1 and becomes increasingly

correlated when α decreases. We consider a time range of T = [1, 72], which is equivalent

to sampling traffic every 20 minutes within 24 hours. Therefore, one traffic instance is an

96×72 (M ×T ) matrix. To obtain an average performance for each algorithm, we generate

10 traffic instances for each α.

5.6.2 Candidate algorithms and the metric

We implement the following algorithms in our simulations.

1. Algorithm proposed in this chapter: Iterative Matching, Disjoint Set Cover,

Largest Overlap First.

2. An algorithm from previous work [91]: Port Sorting.
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3. Three simple heuristic algorithms:

• Least Increasing First. This algorithm is inspired by constructing a chassis

with the smallest energy cost in a heuristic way. In this algorithm, we consider

one chassis at a time. For each chassis, we pick a link with the shortest active

time at first, then we fill this chassis by adding links which yield the least increase

of energy cost.

• Aggregate. This algorithm is also referred as bundled link technique [83]. It

considers physical links from the same AN as a single logical link and assigns

them onto consecutive chassis.

• Random. A naive method just assigns each link to an arbitrary chassis.

In our simulations, we consider only the chassis whose energy consumption is under the

algorithms’ control, as described in Section 5.4. We observed that the power consumptions

of the components we considered here will contribute up to 70 − 80% of a PoP’s power

consumption [107]. Therefore, the total energy cost of the PoP could be obtained from

our results easily. We assume that each chassis consumes one unit of energy for each time

slot. We set the maximum power consumption for A as N · T . This is the energy cost of

“always-on scheme”, in which each chassis within A is always active.

Given a pair of α and P , we run each candidate algorithm and record the average energy

cost over 10 traffic instances. The difference between the maximum power consumption N ·T

and the average energy cost of a certain algorithm is the average energy saving achieved

by this algorithm. The metric we use to compare candidate algorithms is the average

percentage of energy saving. This value is the ratio between the average energy saving and

the maximum power consumption.

128



5.6.3 Results

In Figure 5.8, we show the average percentage of energy saving of our candidate algorithms

as a function of a parameter P , for the traffic instances of correlation factor α = 1 (uncorre-

lated traffic). In a similar manner, Figure 5.9, Figure 5.10 and Figure 5.12 show the average

percentage of energy saving of our algorithms when taking traffic instances with correlation

factor α as 0.75, 0.5 and 0.25 respectively. Figure 5.11 and Figure 5.13 are actually the

zoom images of the upper parts of Figure 5.10 and Figure 5.12 respectively, which contains

the performance of those 5 algorithms.

The energy savings of algorithms

1. For all different values of α and P , algorithms Iterative Matching and Disjoint Set

Cover achieve 20−60% energy savings on the line-card chassis. They significantly out-

perform all other candidate solutions. Among all benchmark algorithms, we observe

that Port Sorting has the best performance while Aggregate and Random perform

quite poorly. So we compare our algorithms with Port Sorting in terms of average

percentage of energy savings. When the traffic is uncorrelated (α = 1), our algorithms

achieve almost twice as much savings as that of Port Sorting when P ≥ 6. For in-

stance, when P = 16, Disjoint Set Cover has 20.6% energy savings while Port Sorting

has only 10.3% energy savings. The difference becomes smaller as the correlation of

the traffic increases (α decreases). This is not surprising, because all our algorithms

along with Port Sorting converge to the optimal solution when the traffic is fully

correlated (α = 0).

2. For all values of α, Iterative Matching performs better than Disjoint Set Cover when

P is relatively small (≤ 6). In fact, it is optimal when P = 2. As P goes large,

Disjoint Set Cover outperforms Iterative Matching gradually. This is consistent with

their proved approximation ratios.

3. The Largest Overlap First algorithm has comparable performance with Iterative
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Figure 5.8: Average percentage of energy savings of candidate algorithms for the traffic of
α = 1.

Matching and Disjoint Set Cover when P is relatively small (< 6), and converges

to Port Sorting when P becomes larger. This provides us an efficient solution of

satisfactory performance in the cases where chassis does not have many ports. Sur-

prisingly, Least Increasing First scheme has quite poor performance, which is worse

than Port Sorting.

For each pair of value P and α, we also calculate the two-sided confidence interval of the

average performance of each algorithm at confidence level 95%. These confidence intervals

are shown in the above figures using error bars. The results show that for nearly two thirds

of the cases, the maximum errors are less than 1%, and for almost all cases, the maximum

errors are within 2%.

The Sensitivity of algorithms to traffic estimation error

To show that the performance of our algorithms is not sensitive to traffic estimation error,

we add a Gaussian noise with zero-mean and different standard deviation σ to the input
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Figure 5.9: Average percentage of energy savings of candidate algorithms for the traffic of
α = 0.75.

traffic. For these unmatched traffic, we obtain the power consumption of the assignments

derived from the algorithms using the original traffic (σ = 0).

Firstly, our algorithms take the original traffic and generate assignments. Secondly,

for each value of σ ∈ {0.1, 0.2, . . . , 1}, we generate 10 instances of estimation error and

add them to the original traffic. At last, we evaluate each algorithm for the assignment

obtained in the first step and the traffic with estimation error generated in the second step.

Again, we use the percentage of energy saving as our metric. As an example, we show the

results for α = {1, 0.75, 0.5, 0.25} and P = 8 in Figure 5.14, Figure 5.15, Figure 5.16 and

Figure 5.17 respectively.

From the figures, we see that the performance of our algorithms are relatively stable

for traffic with estimation error. The relative performance of each algorithm follows the

same pattern as described in the previous section. Our algorithms still outperform other

candidates in a same manner.

We note that the estimation error has stronger impact on the algorithms’ performance
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Figure 5.10: Average percentage of energy savings of candidate algorithms for the traffic of
α = 0.5.

when the original traffic is more correlated (α = 0.25).

This is because our algorithms actually benefit from the correlation of the traffic. By

adding estimation error to such traffic, the correlation is weakened and the traffic demands

are more like uncorrelated ones.

Two sided confidence intervals with confidence level 95% are also calculated. Since all

maximum errors are within 1%, the error bars are barely noticeable in the figures.

5.7 Conclusions

We consider the problem of minimizing the power consumption of Internet Points of Pres-

ence (PoPs) given the general traffic demands. We show that this problem is NP-complete

when number of ports on each chassis exceeds 2. We then provide an optimal Matching

algorithm for an important variant where the number of ports on each chassis is 2. For the

general case, we design several approximation algorithms and establish their approximation
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Figure 5.11: Zoom on the average percentage of energy savings with error bars for the traffic
of α = 0.5.

guarantees. A simple greedy algorithm is given for its time efficiency in finding a satisfac-

tory solution in most cases. We also prove that all our algorithms are optimal when traffic

is correlated.

Finally, our extensive simulations demonstrate significant advantages of our algorithms

over other candidate solutions. Our proposals are particularly attractive when traffic is un-

correlated, where they outperform other algorithms substantially. For all cases, we observe

that the naive algorithms do not provide satisfactory performance. Furthermore, we show

that our algorithms have stable performance under traffic with noise, which makes them

practical in real applications.
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Figure 5.12: Average percentage of energy savings of candidate algorithms for the traffic of
α = 0.25.
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Figure 5.13: Zoom on the average percentage of energy savings of 5 algorithms for the traffic
of α = 0.25.
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Figure 5.14: Average percentage of energy savings under traffic with noise when α = 1 and
P = 8.
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Figure 5.15: Average percentage of energy savings under traffic with noise when α = 0.75
and P = 8.
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Figure 5.16: Average percentage of energy savings under traffic with noise when α = 0.5
and P = 8.
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Figure 5.17: Average percentage of energy savings under traffic with noise when α = 0.25
and P = 8.
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Appendix A: Important Definitions

We list several important definitions that frequently appear in the dissertation.

Definition A.1 (Overloaded System). Given an input instance I, a system is called over-

loaded if there does not exist a schedule to complete all jobs in I before their deadlines.

Definition A.2 (Underloaded System). Given an input instance I, a system is called

underloaded if there exists a schedule to complete all jobs in I before their deadlines.

Definition A.3 (Non-preemption Setting). In the non-preemption setting, a packet/job

that is being sent should not be preempted before it is finished.

Definition A.4 (Preemption Setting). In the preemption setting, an online algorithm is

allowed to abort a packet/job during its transmission, and the aborted packet can be resumed

and completed later.

Definition A.5 (Preemption-Restart Setting). In the preemption-restart setting, an online

algorithm is allowed to abort a packet/job during its transmission, and the aborted packet

can be restarted (from scratch) and completed later.

Definition A.6 (Agreeable Deadline [27]). If for any two jobs i and j, ri < rj implies

di ≤ dj, then we say that they have agreeable deadlines.
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Appendix B: Simulation of Online Learning Algorithms

We develop a prototype to simulate the performance of online learning algorithms.

There is a packet generator. This generator generates packets with release time, dead-

lines and values. In total, there are 2000 packets generated. The range of the release time

is [0, 999]. The range of the deadlines is [0, 999]. The range of the packet values is [0, 100].

The maximum and the minimum packet values (vmax and vmin) are not specified by us,

but the ones generated by the procedure. We generate all the parameters in a uniformly

randomized manner. In our simulation, vmax = 99.951 and vmin = 0.009. For the current

version of the simulation, the channel state is fixed. We design the offline algorithm as

follows. We assume the channel reliability is always perfect. We implement all the online

learning algorithms mentioned in Section 2.4.3 of Chapter 2. Actually, they are EBAV

and EBRV. In geometric rounding, we set δ = 0.5. Thus, in total, there are 23 experts

(0.009(1 + 0.5)23 ≈ 99.951).

In our simulated results, the best expert obtains a total gain of 72096.615. It sends 1000

packets and it is the (j = 2)-th expert. That is, in each time step, the expert chooses a

packet with a value ≥ vmax
(1+δ)2vmin

to send. The worst expert yields a total gain of 99.951 with

only 1 packet scheduled — the most valuable packet. The expert who sets the threshold as

the minimum value packet yields a total gain of 56711.178 and 1000 packets are scheduled

successfully. The online learning algorithm who follows the best expert so far gains a profit

as 72050.509 with 999 packets scheduled. Thus, the regret of online learning algorithm is

bounded by 46 and it performs very close to the optimal expert.

Figure B.1 shows the simulated results we have. In Figure B.1, the dotted line represents

the performance of our online learning algorithm. In this figure, we take experts with index

j of 0, 1, 2, 3, 4, 5, 10, 20 among all 23 experts such that the remaining experts’ performance

is bounded by these given ones.

We also develop the prototype to simulate the performance of the optimal offline al-

gorithm as well as two competitive online algorithms: SEMI-GREEDY and EDFβ. The
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Figure B.1: Simulated results of the online learning algorithms.

simulation is run on the same data set used above. In the simulated results, the optimal

offline algorithm has a total gain of 73619.174. It sends 1000 packets. Since we consider the

perfect channel state, SEMI-GREEDY works simply the same as greedy algorithm EDF,

and the algorithm yields a near optimal result 73330.578. EDFβ earns a total gain of

72145.685, where β = 2. We notice that both online algorithms’ performances are very

close to the optimal offline solution.

Figure B.2 shows the simulated results we have. In Figure B.2, the black line represents

the performance of our optimal offline algorithm, the green line represents the performance

of SEMI-GREEDY and the red line represents the performance of EDFβ.
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Figure B.2: Simulated results of the optimal offline algorithm and online algorithms.
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Appendix C: Scheduling Unit-length Packets with Soft

Deadlines

C.1 Motivation

We consider video-on-demand systems as a motivating example. In a timely manner, im-

ages and video frames are delivered from a server to a client across the network. Under

resource-limited scenarios, not all packets queued in the network switches can reach the

client on time. Some packets have to be delayed due to packet overflow. However, video

frames, even arriving beyond some timeline, may still contribute some quality-of-service

(QoS) for the client. Another motivating example comes from a kind of modern computing

platforms, like VNC [114] and other pixel-based remote computing [115–117]. The screen

updates are encoded at the server side and the client side decodes it for recovering computed

results. With various coding methods, the temporal redundancy of the screen updates al-

lows us dropping some packets. How to select packets to be delivered and dropped, with

a progressive QoS, is a very challenging task for clients. In this chapter, we model these

applications and consider scheduling delay-bounded packets with soft deadlines.

With widely foreseen next-generation networks providing guaranteed differentiated ser-

vice, most researchers are working on online algorithms for scheduling packets with hard

deadlines under various settings and constraints [27–31, 35]. In this chapter, we consider

scheduling unit-length packets with soft deadlines such that a packet may contribute differ-

ent values when it is sent at different time. The model generalizes the one discussed in [30]

and [31].

C.2 Model Description

Time is discrete. There is a buffer. All packets in the buffer are available/pending for

delivery. There is one output link, being able to send one pending packet from the buffer per
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unit time. Packets are released over non-trivial integer time. With soft deadline constraints,

each packet j is released at rj ∈ Z+ and it may have different weights in different time slots

from rj onwards. A packet j has a weight function wj(t) ∈ R+ at time t: If j is sent at time

t, it contributes weight wj(t) to the objective function. A packet j’s slack time is defined

as sj = dj − rj , where for any t ≥ dj , wj(t) = 0. Our objective is to maximize the total

weight of the packets delivered.

There is no restriction on the sequence of sending packets. Considering the motivating

applications, we study the following two models.

• General model. The slack sj can be arbitrarily large.

• B-bounded model : Considering the critical requirements on server response time, we

let sj ≤ s for all packets j, where s is the maximal server response time. With s ≤ B,

the buffer has only s positions for buffering packets.

We list three general weight functions for packets with soft deadlines in the B-bounded

model. Each packet j contributes a value wj(t) if being sent at time t (t ≤ rj + B). The

range [rj , rj + B] is called weight range of a packet j. Outside of this range, packet j has

zero weight. Within its weight range, a packet can have its weight functions defined as

follows.

Definition C.1 (Linear Decreasing Weighted). A packet j is said to be linear decreasing

weighted if there exists some αj > 0 such that

wj(t) = max{wj − αj(t− rj), 0}, αj > 0.

Definition C.2 (Monotonic Decreasing Weighted). A packet j is said to be monotonic

decreasing weighted if for any rj ≤ t1 ≤ t2 ≤ rj +B, there exists

wj(t1) ≥ wj(t2).
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Definition C.3 (Periodic Weighted.). A packet j is said to be periodic weighted if its

weight function is periodic within its periodic range (Rj ≤ B). For any t, there exists an

integer A, such that

wj(t) = wj(t−A ·Rj),

where A ·Rj ≤ t < (A+ 1) ·Rj.

C.3 Offline Optimal Algorithm for the B-bounded Model

The following terms are used in the optimal offline algorithmic description. Note that the

algorithm calculating the optimal offline algorithm for the general model is a subroutine of

the algorithm for the B-bounded model.

• B: the output buffer size. In the B-bounded model, every packet has its slack no

more than B.

• OPT: for the B-bounded model, an optimal offline algorithm with the constraint of

buffer size B;

• G(t): the group of packets released at time t. G(t) = {j|rj = t};

• wj(t): the weight of a packet j at time t.

Assume there are k distinct release time: T1, · · · , Tk, then the groups of packets released

are G(T1), · · · ,G(Tk), respectively.

OPT has the property that it can be calculated in an offline manner to get the set of

packets to be delivered. Let OPT have a large enough buffer used to calculate the set of

packets. Procedure OPT-SET calculates the set of packets with the maximal total weights

among all possible selections from the whole set of packets released.

Let SO denote the set of packets selected by OPT-SET. In procedure OPT-SET, it

assumes that no buffer constraint is applied. Therefore, we have the following lemma.
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Algorithm 23 OPT-SET

1: Let OL be a set containing all the packets released. OL =
⋃

G(t). |OL| = n;
2: Let OR denote set of no more than k · n time slots, containing possible time steps in

which OPT sends its packets.
3: Construct a bipartite graph G = (V,E), using e(i, j) ∈ E to represent the weight of the

edge (i, j). Edge (i, j) connects node i in the node set at the left hand side and node j
in the node set at the right hand side. The left side is set OL and the right side is set
OR. OL ∪ OR = V .

4: for j ∈ OL and i ∈ OR do
5: if i ≥ rj then

6: set e(j, i) = wj(i).
7: end if
8: end for
9: Get the maximum weighted matching via the Hungarian algorithm.

10: Every packet j matched is allocated into its matched time slot tj .

Lemma 10. For any instance with soft deadlines, OPT-SET selects the set of packets and

their matched time slots in which they are sent, achieving the upper bound of the maximum

of total weights gained. OPT-SET has its running time complexity of O(n3), where n is the

number of packets released.

We devise an optimal offline algorithm, called OPT. During the course of OPT, at any

time, only the packets in SO are to be kept in the buffer, where the buffer size is B, and at

time ti, packet i is sent. (Assume that (i, ti) is a matched pair.)

Algorithm 24 OPT

1: Run OPT-SET to get SO and any packet j ∈ SO has its matched time slot tj ;
2: Sort all matched packets in decreasing matched-value order, that is, in decreasing order

of wj(t) for j ∈ SO.

3: Initialize O = ∅ and insert packets in SO in decreasing matched-value order.

4: while SO 6= ∅ do
5: if packet overflows upon inserting j then
6: drop j;
7: end if
8: remove j from SO.
9: end while

10: Send the packets in O in those time steps as what OPT-SET does in SO.

Based on the matroid property of the model, we have the following result.

Theorem C.1. In the B-bounded model, for any instance with soft deadlines, OPT gets

the optimal solution, achieving the maximum weight gained in an offline manner. OPT is
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a polynomial-time algorithm.

C.4 Online Algorithms for the B-bounded Model

In this section, we design two simple online algorithms. One is called MATCH, which is

motivated by the optimal offline algorithm for the B-bounded model. The other one is

called GREED, which uses the greedy method. Let BA(t) denote the set of packets in the

buffer at time t for an algorithm A, before the set of packets G(t+) are released (t+ > t).

C.4.1 The algorithm MATCH

Algorithm MATCH runs MATCH(t) at every time t. Motivated by the offline OPT algo-

rithm for the B-bounded model, at any time t, MATCH arranges all packets available to

the output buffer through getting a maximal weighted matching. Similar to OPT-SET,

in algorithm MATCH(t), we construct a bipartite graph G = (V,E), using e(i, j) ∈ E to

represent the weight of the edge (i, j). Edge (i, j) connects node i in the node set at the

left hand side and node j in the node set at the right hand side. The left side is set SL and

the right side is set SR. SL ∪SR = V . Only matched packets are kept in the buffer and we

drop all unmatched packets.

Algorithm 25 MATCH(t)

1: SL = BM (t) ∪G(t).
2: SR = [1, . . . , B].
3: for Jj ∈ SL do
4: for i = 1 to B do
5: e(Jj , i) = wj(t+ i).
6: end for
7: end for
8: Get a maximum weighted matching using the Hungarian algorithm.
9: Drop all unmatched packets.

10: Send the packet matched with the time slot t.
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C.4.2 The algorithm GREED

Algorithm GREED runs GREED(t) at every time t. In each time slot, GREED selects and

arranges the packet available with the maximal weight at that time slot. In identifying the

optimal set of packets in the buffer at any time, we also employ the Hungarian algorithm.

We also use 2 sets to represent the packets available and the time slots in algorithm

GREED(t).

• XL: XL is the packet set BG(t)∪G(t), which includes all available packets at time t.

Index all available packets such that XL = {J1, · · · , Jl}, l = |BG(t)∪G(t)|. The input

buffer contains all packets in G(t) and should be vacated for later arrival packets after

time t.

• XR: let the time slots (positions) in the output buffer are indexed from 1 to B, where

the packet in the first time slot is the one being sent out if all packets are delivered

sequentially. XR is a set of B time slots.

Algorithm 26 GREED(t)

1: if G(t) 6= ∅ then

2: XL = BG(t) ∪G(t).
3: for i = 1 to max{B, |XL|} do
4: for Jj ∈ XL do

5: e(Jj , i) = wj(t+ i);

6: allocate packet Jj with max{e(Jj , i)} in position i;
7: remove Jj from XL.
8: end for
9: end for

10: end if
11: Drop unselected packets.
12: Send the packet in time slot t.

C.5 Analysis

In this section, we consider competitive ratios of MATCH and GREED for the B-bounded

model. We analyze their performance in scheduling the packets with some specific weight

functions.
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C.5.1 Analysis of MATCH

Theorem C.2. The running time complexity of MATCH is O(n3).

Proof. For the online algorithm MATCH, at any time t, let nt = |G(t)∪BM (t)| ≤ |G(t)|+

B. nt is the number of the packets available. The Hungarian algorithm is running on a

bipartite graph with 2nt nodes to find out the maximal weighted matching with running

time complexity of O(n3
t ). With 2nt assignment operations, the running time complexity of

MATCH(t) is O(n3
t ). The total running time complexity of MATCH is at most O(

∑
(G(t)+

B)3) = O((
∑

G(t))3) = O(n3). Theorem C.2 is proved.

To our surprise, the idea leading to an optimal office algorithm does not have a constant

competitive ratio in an online setting.

Theorem C.3. For MATCH, there is no constant competitive ratio for linear decreasing

weighted packet scheduling, periodic weighted packet scheduling, or monotonic decreasing

weighted packet scheduling.

Proof. Table C.1 provides one instance of monotonic decreasing weighted packets and one

instance of periodic weighted packets to prove Theorem C.3.

Table C.1: Instances showing MATCH over 2 kinds of weight functions.

weight function MATCH ADV ratio

linear decreasing L2, L1
L1, L2 ρ2t

ρ2t−1 = ρ
L1, L2 are released in t+ 1

periodic (Rj ≤ B) P2, P1
P1, P2 ρ2t

ρ2t−1 = ρ
P1, P2 are released in t+ 1

Let ρ > 1 be a constant, 0 < ε < 1. We define 4 kinds of packets at time t.

• Linear decreasing weighted packets:

L1 = < ρ2t, ρ2t − ε >

L2 = < ρ2t−1, ρ2t−1 − 2ε >
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• Periodic weighted packets:

P1 = < ρ2t, ρ2t − ε >

P2 = < ρ2t−1, ρ2t−1 − 2ε >

Let the buffer size B = 2. Initially, the output buffer is empty. Two packets are released.

• For the linear decreasing weighted case: L1 and L2 are released at time 1. MATCH

will schedule L2 first and its adversary will schedule L1 first;

• For the periodic weighted case: P1 and P2 are released at time 1. MATCH will

schedule P2 first and its adversary will schedule P1 first.

Based on what MATCH selects, its ADV acts as what is listed in Table C.1. In every

time slot t, both MATCH and ADV have the new released L1 and L2 or P1 and P2. So, in

each time slot, the weight ratio between ADV and MATCH is ρ. We can repeat this period

many times such that the gains of both schedules in the last step are negligible compared

with all other gains in the previous steps. As ρ can be arbitrarily large, Theorem C.3 is

proved.

Remark C.1. Though the weighted matching algorithm (the Hungarian algorithm) works

well in finding the optimal solution in scheduling packets with soft deadlines in the offline

setting, it does not work well in the online setting in B-bounded model, even in scheduling

packets with some simple weight functions.

C.5.2 Analysis of GREED

Theorem C.4. The running time complexity of GREED is O(n2) for each time step.

Note that for each time step in the tentative schedule, we choose the packet with the

maximum-value for that time step. Thus, the correctness of Theorem C.4 is obvious.
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Theorem C.5. For GREED, there is no constant competitive ratio for periodic weighted

packet scheduling.

Proof. Let ρ > 1 be a constant and the buffer size is B. B is even and we define,

• P1 =< 1, ρ, 1, ρ, · · · , 1, ρ >;

• P2 =< 0, 1, 0, 1, · · · , 0, 1 >.

GREED will schedule P1 and P2 sequentially, who gets a total weight of 2 in two

neighboring time slots. However, its adversary will schedule P2 and P1 sequentially in these

2 time slots, who gets a total weight of ρ. In every two time slots, 2 packet, P1 and P2, are

released. We can repeat this period many times such that the gains of both schedules in the

last step are negligible compared with all other gains in the previous steps. The competitive

ratio is ρ/2. As ρ can be arbitrarily large, Theorem C.5 is proved.

Lemma 11. For GREED, it has a competitive ratio of 3 in scheduling monotonic decreasing

weighted packets.

Proof. The proof of Theorem 11 follows the same idea presented in [30]. This theorem also

holds for the general case where the buffer size is bounded.

Let SO(t) be the set of packets sent out in GREED’s adversary by time t (let GREED’s

adversary be OPT) and SG(t) be the set of packets sent by GREED by time t. Denote the

two sets as SO(t) = {1O, · · · , tO} and SG(t) = {1G, · · · , tG} in the indexed order of time

slots. Let rj denote the release date of packet j and wjA denote the weight of packet j at

time t in algorithm A, where A = {GREED(G),OPT(O)}. We also use S to denote the set

of packets sent by OPT.

Let V1 be the set of the time slots, in which GREED sends a packet with no less value

than the packet sent by OPT. Regard the time slot having a packet with value 0, if GREED

has no packet in that time slot. V1 = {j|wjG ≥ wjO}, and V2 = S−V1. Note that SO(t)

is partitioned into the set of packets scheduled in V1, and the set of packets scheduled in

V2.
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Consider the time slot j ∈ V2 in time indexed order, where wjO > wjG . We want to

show a mapping from OPT’s packets in V2 to packets in SG(t) with the following property:

There must exist one corresponding packet iG ∈ SG(t) for at most two packets in OPT’s

V2: jO and kO, which is sent out no later than time slot j and k in GREED, such that

max{rjO , rkO} ≤ i ≤ min{j, k} and wiG ≥ min{wjO , wkO}. If we can find such a mapping,

then Lemma 11 is proved. In the following, we claim that this mapping does exist.

First of all, we know that for every iG (i ∈ V1), iG must be scheduled in OPT. Otherwise,

scheduling iG to replace iO at time slot i gains more value to OPT. For any j ∈ V2, either

packet jO has been scheduled before time slot j in GREED or packet jO is preempted by

another packet in time slot i in GREED due to the buffer constraint, i < j and wiG > wjO .

We make the mapping from time slot j ∈ V2 to time slot i ∈ S, i < j and rjO ≤ i < j:

Choose iG such that (1) iG = jO; or (2) the packet preempts jG in GREED due to the

buffer constraint in the case that GREED drops jG. For the first case, no two packets in

both V2 and SG(t) share the same time slot. For the second case, notice that GREED can

preempt at most one packet in each time slot such that no two packets in OPT’s V2, but

not in SG(t) share one packet in GREED. Therefore, at most two packets in OPT’s V2

share one packet in GREED (One is in case (1) and one is in case (2); Two packets cannot

be in the same case). This results in two times of value in GREED which is more than

those packets in OPT’s V2.

The mapped packet, iG, is called the corresponding packet of jO. Therefore, using our

method, for every jO ∈ V2, there must exist one iG to correspond it and at most two

packets in V2 have the same corresponding packets in SG(t). Let V3 denote the set of all

such JGi . Of course, V1 ⊂ SG(t) and V3 ⊂ SG(t).

∑
j∈SO(t)

wj =
∑
j∈V1

wj +
∑
j∈V2

wj ≤
∑

j∈SG(t)

wj + 2
∑
j∈V3

wj ≤ 3
∑

j∈SG(t)

wj .
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Lemma 11 is proved.

In scheduling packets with soft deadlines, we observe that GREED has the same worst-

case competitive ratio for scheduling linear decreasing weighted packets and scheduling

packets with hard deadlines. We can improve the analysis of Lemma 11 and conclude

Theorem C.6 (from [31]).

Theorem C.6. For GREED, it has competitive ratios 2 and 3 in scheduling linear de-

creasing weighted packets and monotonic decreasing weighted packets, respectively, in the

B-bounded model.

C.5.3 A tight example for GREED

Let ρ > 1 be a constant and the buffer size is B. Two packets are released: L1 and L2 at

time t.

• L1 =< ρ, ρ, 0, · · · , 0 >;

• L2 =< ρ− ε, 0, 0, · · · , 0 >.

GREED schedules L1 first, then L2, and gets a total weight of ρ in the neighboring 2

time slots. However, OPT schedules L2 first, then L1, and gets a total weight of 2ρ− ε in

the neighboring 2 time slots. At every two time slots, 2 packets, L1 and L2, are released.

We can repeat this period many times such that the gains of both schedules in the last

step are negligible compared with all other gains in the previous steps. Let ε ≈ 0. The

competitive ratio of GREED is (2ρ− ε)/ρ ≈ 2.

C.5.4 Extension: bounded linear decreasing function

In a specific case of weight function, bounded linear decreasing weight function, all packets

have their weight function wj(t) = max{wj − αj(t− rj), 0}, where 0 ≤ L ≤ αj ≤ U , L and

U are two constants. This model is motivated by [118].
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Theorem C.7. For GREED, it has a competitive ratio of 2− L/U in scheduling bounded

linear decreasing weighted packets.

Proof. The proof of Theorem C.7 is similar to the proof of Lemma 11. We know that for

the mapping from packets in OPT’s V2 to GREED, the value reduces at least (j− i)L and

(k−i)L for packet j and packet k in OPT’s V2, which map to i in GREED, max{rjO , rkO} ≤

i < min{j, k}.

We know wiG ≥ wjO + (j − i)L and wjG ≥ wkO + (k − j)L if k > j. As wjO 6= 0 and

wjG = 0, L ≤ wiG ≤ U . Therefore, the amortized value ratio for these packets for the two

algorithms is at most

ρ ≤
wiO + wjO + wkO

wjG + wiG
≤ 2− L

U
.

C.6 Conclusions

In this dissertation, we consider scheduling unit-length packets with soft deadlines. Based

on different application requirements, we propose two models of scheduling soft deadline

packets: The general model and the B-bounded model. We design and analysis two simple

online algorithms: MATCH and GREED. The competitive ratios for two online algorithms

are listed in Table C.2.

Table C.2: Competitive ratios for online scheduling algorithms MATCH and GREED.

weight function MATCH GREED

linear decreasing non 2

monotonic decreasing non 3

periodic non non

any non non
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