
Survey on Performance Analysis of Virtualized

Systems

Han Wang

George Mason University

hwang31@gmu.edu

Abstract—This survey goes over the important concepts in

virtualization in the overview section, after that we cover the

virtualization implementations, performance analysis challenges,

and virtualization measurement tool.

I. OVERVIEW

Virtualization is an important concepts in modern computer
system. According to Siblerschatz, Gagne, Galvin, the
fundamental idea behind the idea of virtual machine is to create
the illusion that the hardware of a single computer’s system
(CPU, memory, drives) is being running on different
environment(s) (guest), and multiple environments can run on
that system as if the system is the native OS and guest is in full
control [1]. The guest process obtains the virtual copy from the
host [1], which means multiple guest can run on a host in a time
sharing system. In a nutshell, host is basically the physical
hardware that virtual machines, or guest is running on [1].

Currently, virtualization is widely used in data centers and
personal computer due to the increase in improvement of CPU
and its support of virtualization over time [1]. Cloud computing
is a domain that is possible thanks to virtualization, where the
server provides the resources such as CPU, memory, I/O to
customers via internet (API) [1]. Hence, thanks to the
virtualization capabilities, cloud computing technology is able
to provide clients software-as-a-service, infrastructure-as-a-
service, and platform-as-a-service [5].

The host and guest are completely different in term of
functionality. Per creation of virtual machine, it is created and
run by the hypervisor, or the virtual machine manager (VMM)
[1], and there are different types of hypervisor with different
implementation. The types of hypervisor are Type 0, Type 1, and
Type 3 [1]. Each different hypervisor is implemented differently
and being used with different purpose [1]. Further explanation
is provided in the next section.

There are several important requirements for virtualization,
those are:

Fidelity: environment must be identical to the original
machine [1]

Performance: program shows minor performance decreases
when running in virtual environment [1]

Safety: VMM must be in complete control of the
environment [1]

II. VITUALIZATION IMPLEMENTATIONS

A. General/Classical Implementation

This section will introduce how virtual machine is

implemented generally, where most virtualization option is

implemented, which is called virtual CPU [1] (VCPU). VCPU

represents the state that the virtual machine is in, but it does not

execute any code [1], and it is under directly to VMM, which

maintain VCPU for each guest’s CPU state and load the right

context during context-switched [1].

For safety, virtual machine (guest) could not have the

privilege of the kernel level [2]. However, if the virtual system

could not access to kernel level, how could the guest’s system

call be implemented. There must be transfer of control between

virtual user mode and virtual kernel mode [1]. Such transfer of

control must occurs on physical machine, where physical user

mode is transferred into physical kernel mode [1].

This kind of transfer is addressed by the important concept

is Trap-and-Emulate (TE) in virtualization architecture.

Figure 1.0 TE implementation [1]

This concept is basically one of the key players in the

classical virtualization world. TE is essentially a condition must
be met to satisfy the requirement of fidelity and safety.

The functionality of TE is described as whenever kernel tries to

run the privilege instruction, it causes a trap to the VMM (in the

real machine), and VMM executes, or also known as emulate

[2] and returns control to the virtual machine [1]. Without TE,

safety condition could not be met.

B. Intel x86 Implementation

For the virtualization world, Intel x86 was known for lack

of hardware support [2]. The reason for this is that the x86 was

not built with virtualization considered. The problems of x86

are many, but here are a couple of main reason why it could not

virtualize. The visibility of privileged state is not fully

implemented where the guest can see that it has been

deprivileged [2], this is a problem because the guest must not

know that it does not have access to privileged instructions.
Another major problem is the lack of traps when privilege

instructions run at user-level, this causes the VMM not able to

perform TE [2]. Lack of traps is caused by CPU’s user mode

popf command fail to load all the flag register from the content

of the stack [1]. Importantly, user mode’s popf command deters

any attempt to change the flag “IF”, which control interrupt

deliveries [2], and this trap could not be generated because of

this.

To address this problem, in the early day of x86

virtualization, a solution proposed for such problem would be

executed on an interpreter rather than being directly on a

physical CPU [2]; however, such solution is disregarded

because of the Performance criteria is not guaranteed [2]. The

reason for that is because fetch-decode-execute cycle from the

interpreter cost hundreds of CPU cycle per one guest instruction

[2]. Because it is costly, it is disregarded. The technique calls

Binary Translation (BT) to helps virtualization possible by

combining interpterion with high performance efficiency [2]. A

simple idea technique called binary translation helps
virtualization in x86 possible [2].

Figure 1.1 BT implementation [1]

The functionality of BT works like what is described in

Figure 1.1, if VCPU is in user mode, guest can run the
instruction on the physical CPU [1], if VCPU is in kernel mode,

VMM check what the guest VCPU is going to run in the next

few instruction by using program counter, and the privileged

instructions would be translated to perform the same task [1][2].

C. Type 0 Hypervisor Implementation

Type 0 Hypervisor is a hypervisor type that is close to bare

metal implementation [1]. Due to its long existence, it was

known under different name, such as “partition” and “domains

[1].

Figure 1.2 Type-0 Hypervisor general structure [1]

This hypervisor is close to bare metal implementation

because VMM is already embedded in firmware and is loaded
at boot time [1]. Because the guests do physically have

hardware, that simplifies the implementation details [1].

Moreover, because type 0 can run multiple guests (each with

different OS), each has their own hardware and allow each to

even have their guests hosted [1], hence, virtualization-within-

virtualization is possible only on type-0 hypervisor [1].

D. Type 1 Hypervisor Implementation

Type 1 is similar to type 0; it is known for company data
centers, and also known as “the data-center operating system”
or special purpose operating system [1]

Figure 1.2 Type 1 Hypervisor [3]

Unlike type 0 hypervisor, where hypervisor is embedded in

hardware, type 1 hypervisor is running above the hardware and

monitor the guest [4]. The examples of type 1 hypervisor are

Xen, VMware ESX, and Hyper-V (Microsoft) [4]. Type 1

hypervisors operates in kernel mode to gain the benefit of
hardware protection to satisfy Safety criteria [1]. The main

advantage of type 1 hypervisors in comparison to other

hypervisors is the implementation of device drivers for other

hardware to run and other fundamental OS management (I/O,

memory, security) [1].

E. Type 2 Hypervisor Implementation

Figure 1.3 Type 2 Hypervisor [3]

Type 2 hypervisor implementation is simply application run on

operating system but provide VMM feature [1], where the guest

OS is the software layer above the host OS/Hypervisor [3][4].

Example for those type of hypervisor are KVM, Parallel

Desktop, Oracle Virtual Box, and VMware Workstation and

Fusion, QEMU [1][4].

III. PERFOMANCE ANALYSIS CHALLENGES

Performance analysis in virtualization is quite challenging,
partly because there are a lot of issue must be under control and
there could be many areas to measure; otherwise it is quite hard
to effectively measure the performance. There are different
metrics and different kind of test. One of the first measurement
exist is the measuring live migration of Virtual Machine,
conducted by Clark et. al [5]. Live migration is the instance of
moving the live OS and all its applications as one unit to another
host [5]. The challenge for this surround migrating the memory
and local resources [5]. For migrating memory, the challenge is
that the migration must minimize the downtime and total
migration time [5].

For local resources, the challenge for this part of migration
is what to do with the resources that are associated with the
physical machine that they originally are virtualized on [5].
Moreover, the researchers in this paper have to worry about
measuring network resources and workloads [5]. Moreover the
implementation is quite complex as well, it comes with
complicated system design with various of step, such as pre-
migration, reservation, iterative pre-copy, stop-and copy,
commitment, activation [5]. Moreover, the researchers need to
take care of measuring the memory management of the guest
OS, such as pages in order to have accurate measurement of live
migration [5].

Figure 2.1 Pages tracking using SPECINT2000 [5]

Figure 2.2 Expected downtime caused by last-round memory

copy [5]
Figure 2.1 and 2.2 are result samples from the research paper

discussed above. Figure 2.1 shows the measurement of local
resource migration and Figure 2.2 shows measurement on
memory migration. These two graphs show how complicated
measurements of virtual machine migration can be.

Besides live migration performance analysis from Clark et
al paper, there are many other form of performance analysis for
other criteria in virtualization and they will be discussed below.

In a paper called “A Distributed Control Framework for
Performance Management of Virtualized Computing
Environments: Some Preliminary Results” by Wang and
Kandasamy [6]. In this paper, it addresses approach of how data
center could optimize server utilization and energy efficiency by
controlling number of machine and, control number of
workload, and turning server on and off as needed [6]. The paper
measure performance derived from its controller that estimates
the incoming request, and then decide to save power of data
center automatically by distribute the loads of CPU to handle the
request from VM [6].

Figure 2.3 Workload concentrated on one Host and others are

turned off [6]
Hence, this saves money of data center because it is able to

saves power consumption, because the heavier the workload is
placed on 1 CPU, the cost would be more expensive [6]. Figure

2.3 demonstrated the idea that if the workload is reduced, the
other hosts would just turned off in order to save power. This
form of performance measurement is completely different that
what have been mentioned before. Hence, there are different
way of measuring performance on virtual machine depending on
what the researchers are interested in.

To demonstrate this point further, in the research
“Everything You Should Know About Intel SGX Performance
on Virtualized Systems” by Ngoc et. al [7], it explains how to
measure the Intel SGX (a software to protect data security that
is used in virtualization) [7]. This research measures the
performance by measuring the main SDK function on both bare-
metal and VMs. For this kind of aim, it measures the
performance of read and write to encrypted memory, read and
write to unencrypted memory, evicting pages, initializing and
destroying enclaves (a protective layer of information in SGX)
[7]

Figure 2.4a Intel SGX – Bare Metal Configuration [7]

Figure 2.4b Intel SGX – Virtualized Configuration [7]

Figure 2.5 Intel SGX – Virtualized Configuration [7]

Figure 2.4 a and b is the basic configuration of Intel SGX in

bare metal and virtual system. The research in the study use

KVM hypervisor as it has SGX support to evaluate

performance and to find optimization possibility [7].

Figure 2.5 is about one of the result that the authors find.
Apparently, since this study focuses on performance of SGX, it
must solely focuses on mostly hardware to measure the
performance of SGX. The challenge for measuring performance
in virtual machine is quite big because it requires a lot of
commitment and research due to the fact that this is heavily
relied on operating system concepts.

IV. VIRTUALIZATION MEASUREMENT TOOL

Measurement performance of virtualization could be helpful
to the user with the right tools. The general ideal tools for user
to use is benchmarking. In the study of Ngoc et al, it uses
encryption benchmark to measure encryption performance, and
it uses HTTP server benchmark to measure networking
performance [7]. Hence, benchmark is an ideal start choice to
measure performance. To start on this lets visit PARSEC. In the
paper “The PARSEC Benchmark Suite: Characterization and
Architectural Implications” [8]. It details what benchmarking by
stating that if there is no program selection that could provide
representative performance of the target application space,
performance could be misleading and invalid conclusion could
be derived [8]. The paper comes with many requirement such as
it must be able to use multi-threaded Application, must cover
beyond the capability of previous benchmark, the workload are
diverse, and must support research [8].

Each application in the figure 3.0 below has already
parallelized and focuses on the emerging workload[8], which
means it focuses on potential type of workload that is emerging
into the market.

Figure 3.0 PARSEC qualitative workload summary [8]

In a paper called “A characterization of the PARSEC
Benchmark Suite for CMP Design”, it evaluates how PARSEC
working set affect the tested subject [9]. Specifically, it
examines DRAM Latency, throughput, thread scaling, and
micro-architecture performance.

Figure 3.1 Cache Performance [9]

Figure 3.1 is an example where it shows cache performance

being measured with different level with different workload.
Moreover, different type of workload affects different degree
and level of cache misses [9]. One example of how this can be
measured is enough to show that this benchmark suite is capable
with testing performance of virtual machine. With its strength,
it also have some weaknesses such as it does not have input set
for the odd thread counts, such as 5 and 7 in facsim workload
[9].

Several works studied the performance of big data
applications on modern processors [10, 11, 12, 13, 14, 15]. All
of these works use performance counters to measure and
monitor the performance and behavior of applications. In [16,
17, 18, 19, 20], authors perform a set of comprehensive
experiments to analysis the impact of memory subsystem on
the performance of data intensive applications. In [21, 22],
author uses compress sensing and hardware accelerators to
improve data movement after finding the performance
bottleneck using performance counters. Performance counters
also can be used to trace the applications behavior in order to
find the malicious behavior [23, 24, 25, 26, 27]. Moreover,
there are new approaches to improve the performance of
modern computing systems such as using machine learning
and hardware acceleration [28, 29, 30, 31].

 However, performance counters are not enough for
measuring the performance of hardware accelerators and we
need new mechanism for such goal.

V. CONCLUSION

Virtualization is a field that requires in depth understanding
in operating system, computer architecture, and good
knowledge of how to use benchmarking program to measure
performance. The challenges in virtualization arrives from the
complexity of virtual machine and how it is designed. Hence,
it requires continuously effort of improvement from the
academia and industry in order to improve the virtual machine,
particularly measuring performance to run diagnostic, and use
the result to find improvement or fixing the bug of that
particular machine. Moreover, good benchmarking suite is also
a good place to start to understand and getting into computer
scientific research community.

RFERENCES

[1] A. Silberschatz, P. Galvin and G. Gagne, Operating system concepts, 10th

ed. WILEY, 2018

[2] K. Adams and O. Agesen, "A Comparison of Software and Hardware
Techniques for x86 Virtualization", Vmware.com, 2006.

[3] C. Dall, S. Li, L. Lim and J. Nieh, "ARM Virtualization: Performance and

Architectural Implications", cs.columbia.edu, 2019.

[4]]E. Bauman, G. Ayoade and Z. Lin, "A Survey on Hypervisor-Based

Monitoring: Approaches, Applications, and Evolutions", Utdallas.edu,
2019.

[5] C. Clark et al., "Live Migration of Virtual Machines", Usenix.org, 2005.

[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy
studies on magneto-optical media and plastic substrate interface,” IEEE

Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987.

[7] T. Dinh Ngoc et al., "Everything You Should Know About Intel SGX

Performance on Virtualized Systems", Dl.acm.org, 2019.

[8] C. Bienia, S. Kumar, J. Singh and K. Li, "The PARSEC Benchmark Suite:

Characterization and Architectural
Implications", Parsec.cs.princeton.edu, 2008.

[9] M. Bhadauria, V. Weaver and S. McKee, "A Characterization of the

PARSEC Benchmark Suite for CMP Design", Parsec.cs.princeton.edu,
2008.

[10] Makrani, Hosein Mohammadi, et al. "Evaluation of software-based
fault-tolerant techniques on embedded OS’s components." Proceedings

of the International Conference on Dependability (DEPEND’14). 2014.

[11] Makrani, Hosein Mohammadi, et al. "Energy-aware and Machine
Learning-based Resource Provisioning of In-Memory Analytics on

Cloud." SoCC. 2018.

[12] Sayadi, Hossein, et al. "Machine learning-based approaches for energy-

efficiency prediction and scheduling in composite cores architectures."
2017 IEEE International Conference on Computer Design (ICCD). IEEE,

2017.

[13] Malik, Maria, Dean M. Tullsen, and Houman Homayoun. "Co-Locating

and concurrent fine-tuning MapReduce applications on microservers for
energy efficiency." 2017 IEEE International Symposium on Workload

Characterization (IISWC). IEEE, 2017.

[14] Malik, Maria, et al. "ECoST: Energy-Efficient Co-Locating and Self-
Tuning MapReduce Applications." Proceedings of the 48th International

Conference on Parallel Processing. ACM, 2019.

[15] Sayadi, Hossein, et al. "Power conversion efficiency-aware mapping of

multithreaded applications on heterogeneous architectures: A
comprehensive parameter tuning." 2018 23rd Asia and South Pacific

Design Automation Conference (ASP-DAC). IEEE, 2018.

[16] Makrani, Hosein Mohammadi, et al. "Understanding the role of memory
subsystem on performance and energy-efficiency of Hadoop

applications." 2017 Eighth International Green and Sustainable
Computing Conference (IGSC). IEEE, 2017.

[17] Makrani, Hosein Mohammadi, and Houman Homayoun. "MeNa: A
memory navigator for modern hardware in a scale-out environment."

2017 IEEE International Symposium on Workload Characterization

(IISWC). IEEE, 2017.

[18] Makrani, Hosein Mohammadi, and Houman Homayoun. "Memory

requirements of hadoop, spark, and MPI based big data applications on
commodity server class architectures." 2017 IEEE International

Symposium on Workload Characterization (IISWC). IEEE, 2017.

[19] Makrani, Hosein Mohammadi, et al. "A comprehensive memory analysis
of data intensive workloads on server class architecture." Proceedings of

the International Symposium on Memory Systems. ACM, 2018.

[20] Makrani, Hosein Mohammadi, et al. "Main-memory requirements of big

data applications on commodity server platform." 2018 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing

(CCGRID). IEEE, 2018.

[21] Namazi, Mahmoud, et al. "Mitigating the Performance and Quality of
Parallelized Compressive Sensing Reconstruction Using Image

Stitching." Proceedings of the 2019 on Great Lakes Symposium on VLSI.
ACM, 2019.

[22] Makrani, Hosein Mohammadi, et al. "Compressive Sensing on Storage
Data: An Effective Solution to Alleviate I/0 Bottleneck in Data-Intensive

Workloads." 2018 IEEE 29th International Conference on Application-
specific Systems, Architectures and Processors (ASAP). IEEE, 2018.

[23] Sayadi, Hossein, et al. "Ensemble learning for effective run-time

hardware-based malware detection: A comprehensive analysis and
classification." 2018 55th ACM/ESDA/IEEE Design Automation

Conference (DAC). IEEE, 2018.

[24] Sayadi, Hossein, et al. "Customized machine learning-based hardware-

assisted malware detection in embedded devices." 2018 17th IEEE

International Conference On Trust, Security And Privacy In Computing
And Communications/12th IEEE International Conference On Big Data

Science And Engineering (TrustCom/BigDataSE). IEEE, 2018.

[25] Sayadi, Hossein, et al. "Comprehensive assessment of run-time hardware-

supported malware detection using general and ensemble learning."
Proceedings of the 15th ACM International Conference on Computing

Frontiers. ACM, 2018.

[26] Dinakarrao, Sai Manoj Pudukotai, et al. "Lightweight Node-level
Malware Detection and Network-level Malware Confinement in IoT

Networks." 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2019.

[27] Sayadi, Hossein, et al. "2SMaRT: A Two-Stage Machine Learning-Based
Approach for Run-Time Specialized Hardware-Assisted Malware

Detection." 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2019.

[28] Neshatpour, Katayoun, et al. "Design Space Exploration for Hardware

Acceleration of Machine Learning Applications in MapReduce." 2018
IEEE 26th Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM). IEEE, 2018.

[29] Makrani, Hosein Mohammadi, et al. "XPPE: cross-platform performance

estimation of hardware accelerators using machine learning." Proceedings

of the 24th Asia and South Pacific Design Automation Conference.
ACM, 2019.

[30] Neshatpour, Katayoun, et al. "Architectural considerations for FPGA

acceleration of Machine Learning Applications in MapReduce."
Proceedings of the 18th International Conference on Embedded

Computer Systems: Architectures, Modeling, and Simulation. ACM,
2018.

[31] Makrani, Hosein Mohammadi, et al. "Pyramid: Machine Learning
Framework to Estimate the Optimal Timing and Resource Usage of a

High-Level Synthesis Design." arXiv preprint arXiv:1907.12952 (2019).

