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In this thesis, we investigate the scheme to improve the group secret key generation

efficiency in 5G mmWave Massive MIMO networks by enhancing the efficiency of channel

probing for group key generation. A new channel probing strategy for star-topology net-

works group key generation is proposed, which focuses on multiplexing of downlink probing

signals to perform the downlink channel probing concurrently. The hybrid precoder has

been considered in this scenario to mitigate the inter-group interference, which includes a

analog precoder and baseband precoder. To further balance the group key rates, a genetic

algorithm (GA) based power allocation algorithm is developed to allocate more power to the

nodes with unfavorable channel conditions. What’s more, we propose a scheme to estimate

group key rates based on the maximum likelihood estimator (MLE) so that we can estimate

the group key rates based on the probing samples. Various numerical results are provided

including the group key rates and bits disagreement ratio (BDR). The numerical results

show that the GA-based downlink channel probing scheme can increase the efficiency of

channel probing and have higher group key rates compared with the existing channel prob-

ing schemes. When the SNR is 25dB, the key rates of GA-based power allocation scheme

are 20% higher than the scheme with the conventional channel probing strategy.



Chapter 1: Introduction

1.1 Background and Motivation

Thanks to the emerging fifth generation (5G) technologies, such as millimeter wave (mmWave),

massive MIMO and hybrid precoding, 5G wireless communication are supposed to be the

key enabler to satisfy the increasing demand for data service like ultra-reliable communi-

cation, massive machine type communication and so on [1–3]. To ensure the secure and

reliable communication service, the efficient and lightweight security mechanism is desired

in the design of 5G networks. To this end, we focus on the security of 5G mmWave wireless

networks and consider physical layer key generation in the aforementioned networks.

Different from the traditional Diffie-Hellman (D-H) key exchange mechanism, physical

layer key generation mechanisms do not require expensive computation and have the poten-

tial to achieve information-theoretic security. For instance, instead of relying on D-H key

exchange, physical layer key generation is based on the principle of channel reciprocity. That

is, within the channel coherence time, two wireless devices, operating on the TDD-mode,

can observe a similar small-scale wireless channel fading induced by the multipath effect,

so that the identical secret bits can be extracted independently at the both side by the

sampling the common radio channel between them. In this thesis, we focus on the physi-

cal layer group key generation, which is an extension of the concept of physical layer key

generation. For instance, physical layer group key generation extends the pair-wise physcial

layer key generation to a multiple-node scenario. Here multiple wireless nodes in a group

aim to generate the common secret key shared among the group members, independently

by observing the randomoness extracted from the wireless channels.

Although significant efforts and progress on physical layer group key generation have

been made in recent years [4–9], there are many roadblocks need to be addressed. First,
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the sequential channel probings conducted to obtian the channel measurements between any

two nodes in the same group can cause huge overhead. For example, for multi-user mmWave

wireless networks operating in the time division duplex (TDD) mode [2], the bi-directional

channel probings are required, which are performed sequentially. As the increasing of the

group size, the time spent on a single-round channel probing for all of group members can

grow rapidly. At the same time, the number of channel measurements that can be observed

in a given time period will be limited as well. In this manner, the scalarbility of physical

layer group key generation can be limited by the large communication overhead.

To tackle the challenge mentioned above, techniques like multi-user multiplexing in 5G

mmWave communication networks can be utilized to improve the efficiency of channel prob-

ings, especially for the networks with the star-topology. In this thesis, we propose an effi-

cient channel probing scheme for star-topology wireless networks. Please note, the proposed

scheme can be extended to the ring-topology and mesh networks with further efforts. To

achieve the concurrent tranmission at the downlink stage to improve the channel probing

efficiency, a baseband (BB) precoder is applied to combine with the analog precoder, which

is a new concept named as the hybrid precoding [2]. In the downlink channel probing,

the channel probing signals of several edge nodes (ENs) are multiplexed in a single slot for

channel probing, which enables the central node (CN) to send downlink probing signals to

ENs concurrently. For example, for M ENs, in TDD mode, the existing probing schemes

need 2M channel probings while in our scheme, only M + 1 channel probings are required.

Such a function is enabled by BB precoder within the hybrid precoder. By allowing to

set a precoder at baseband, hybrid precoding provides the design of freedom to have each

downlink effective channel approximately orthogonal to other downlink effective channels.

Secondly, to further improve the efficiency of downlink channel probing and increase the

group key rate per channel probing, we model the power allocation for group key generation

as a multi-objective optimization problem and propose a power allocation algorithm for

downlink channel probing. At each algorithm run, GA applies the genetic operator to get the

offspring population produced by the parent population. To avoid the algorithm wandering
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in the infeasible searching region, non-dominant sorting genetic algorithm (NSGA II) [10] is

incorporated in the power allocation scheme. The assignment of the transmission power on

each downlink stream is determined by NSGA II, which can guide to a spread-out solution

set for power allocation parameters and avoid the local optimality.

What’s more, to quantify the performance of the group key rate for the proposed down-

link channel probing scheme and the GA-based power allocation algorithm, the group key

rate at each round is approximated/estimated via maximum likelihood estimator (MLE).

For instance, at first, the group key rates are decoupled and represented as the combination

of several joint entropy. In the second step, parameters defining the distribution of each

joint entropy are estimated based on the MLE. Finally, with the estimated parameters, the

group key rates are computed. The numerical results show that the group key rates after

estimation and the rates based on theoretical derivations are in good agreement.

1.2 Contributions of Thesis

To sum up, regarding the challenges reside in existing group key generation schemes, the

main contributions of this paper are summarized as below:

• We investigated the channel probing efficiency in the physical layer group key genera-

tion. Two different network topologies are discussed: star-topology and chain-topology.

• The downlink channel probing scheme for the star-topology networks, based on hybrid

precoding, has been proposed and carefully investigated. Please note, due to the reason

star-topology is the most common network topology, we focus on the star-toplogy in

this work. In future work, the proposed scheme will be extended to ring-topology and

mesh networks.

• To further improve the group key rates, a GA-based power allocation algorithm is

developed to achieve the Pareto optimality, which can efficiently improve the perfor-

mance.
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• To have a better estimation on the key rate, a fast group key rate estimation method

based on MLE is proposed and its performance is discussed later.

1.3 Notations and Abbreviations

In this paper, boldface lowercase letters represent vectors and matrices are represented by

boldface uppercase letters. (·)⋆ and (·)H denote the conjugate and the conjugate transpose

operations, respectively. |A| represents the size of a set A. ||a||2 stands for the squared

2-norm of vector a. max(·) denotes the element-wise maximization. CM×N represents the

space of complex-valued matrices with the size M ×N . We use R{·} to denote the real part

of its argument.

1.4 Organization of Thesis

In Chapter 2, we introduce the specifications of our system, the basic concept of physical

layer group key generation including its challenges and current network topologies. After

this, the link initialization, uplink, and downlink channel probing are introduced later. In the

following chapter 3, the existing group key generation schemes are introduced. In chapter 4,

the proposed downlink channel probing scheme is introduced. Specifically, the multiplexing

of downlink probing signals, enabled by hybrid precoding, is discussed in detail. Besides,

the group key generation protocol utilized in this work is also introduced. In Section 5.1,

we will give an tutorial on the genetic algorithm at first and then the GA-based power

allocation algorithm for physical layer group key generation is presented. By the end of this

chapter, some numerical results are shown, while the conclusions and future work are listed

in Chapter 6.
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Table 1.1: Summary of abbreviations
5G the fifth generation
D-H Diffie-Hellman
mmWave millimeter wave
TDD time division duplex mode
BB baseband
CN central node
EN edge node
MLE maximum likelihood estimator
GA genetic algorithm
SNR signal-to-noise ratio
MIMO multiple-input multiple-output
MSE mean-squared-error
CSI channel state information
SCA successive convex approximation
ADMM alternating direction method of multipliers
BDR bits disagreement ratio
RSS received signal strength
NSGA Non-dominant Sorting Genetic Algorithm
ULA Uniform linear array
RF radio-frequency
NOVA Northern Virginia
CCI Commonwealth Cyber Initiative
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Chapter 2: Preliminaries

In this chapter, we will introduce some preliminaries on the system model and techniques

adopted in this work including the physical layer group key generation and so on. The

schemes for downlink and uplink channel probings are given in 2.3.

2.1 System Model

We assume all of the nodes operate in the TDD mode and at mmWave frequency band

(28GHz). In the scope of this paper, there are M (M ≥ 3) nodes, wishing to generate a

common group secret key through wireless fading channels under a passive eavesdropper.

Due to the limitation of pages, we will start with a star network, which is most commonly

seen in practice, such as WLAN and cellular networks. In the network, we have M nodes

M = {1, 2, ...,M}, where M consists of a CN c ∈ M, e.g., base station (BS) or access point

(AP), and M−1 ENs. Each node m ∈ M\c. Each EN and CN are equipped with NEN and

NCN antennas. What’s more, the number of RF chains at every central node is NRF , which

affects the maximum number of users that can be simultaneously served by the central node

[2]. Moreover, we assume that the reciprocity of mmWave channels between two nodes holds

for the downlink and uplink. We adopt the narrow band block fading channel models, as

specified in [1, 2, 11], which are constant over multiple channel slots, and change randomly

at the beginning of the next block.

Before bi-directional channel estimations, none of the nodes have the prior channel state

information (CSI). However, the distributions of CSI are available at each node. For sim-

plicity, the distribution coefficients of channel gains defined in [1, 2, 11] are applied in this

work and the developed scheme can be easily extended to other coefficients. Please note

that the above assumptions have been widely used in existing works.
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2.2 Physical Layer Group Key Generation

2.2.1 Concept and challenges

Physical layer group key generation aims to generate the shared secret at each node in the

network based on the random channel measurements. The group size or the node numbers

in the network can be varied but most of time the group size must be greater than three.

This problem can be a challenging because of the following factors:

1. The reciprocity of wireless channels which are contaminated by the noise at the channel

estimation stage, can be weakened or even doesn’t hold well due to the accumulated

noise as the group size increasing. The appropriate group key generation protocols is

highly desired to prevent the noise accumulation in the channel measurements.

2. Most importantly, physical layer key generation must rely on the reciprocial wireless

channels to establish the shared secret key and nodes in the group have to operate

on the same frequency in a TDD mode. To collect the channel measurement samples

from all of nodes, channel probing is usually conducted in a sequential manner. As the

network size expanding, the channel probing overhead will increase as well. The large

channel probing overhead limits the number of channel measurements observed in a

give time period, which thus limits the group key generation rate. Therefore, how to

decrease the channel probing overhead in group key generation is an interesting topic.

2.2.2 Network Topologies for Group Key Generation

Star topology

The first one is when all wireless devices inside the group under consideration are within

each other’s communication range, which means any two devices are directly connected.

For example, a group of nodes are randomly scattered in a region but locates within the

communication range of each other and they would like to establish the shared secret key

among them. In this scenario, we can randomly choose one device as the virtual central
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node (CN) and the rest of the devices as the edge node (EN). All of CN and ENs in the

group form a network with the star topology. As mentioned above, this type of topology is

common in the practice for instance the cellular communication and the wifi communication

systems. The function of the virtual CN is to facilitate the group key extraction by passing

the broadcasted information of key generation to other nodes so that the key generation can

be performed in a collaborative way.

Figure 2.1: Star Topology

In Fig. 2.1, one node, denoted by, is randomly selected as the CN and the rest of nodes

scatter around the CN. To generate the shared secret key, the common secret is required here

to facilitate the key generation. For instance, all of nodes have to perform the key generation

over the common randomness. However, the problem is that the channel measurements in
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the star topology are the pairwise channels between the CN and any EN. This means each

pairwire channel measurement are unique and couldn’t serve as the common randomness in

this group.

Chain Topology

In a network with the chain topology, nodes locates far off. In this case, not all the wireless

devices in the group are within the communication range of each other. We can image the

nodes to form a chain with nodes connected end to end.

Figure 2.2: Chain Topology

In Fig.2.2, a node chain with 5 nodes are illustrated. In this topology, the head node and

tail node can be labeled with different collor. This type of networks is common to see in the

satellite ground station networks. Due to the fact the nodes locates far off geographically,

it is challenging to extract the shared common randomness in this case. For instance, the

channel observations extracted from the network with a chain topology are the end to end

channels connecting two nodes. Apparently, such channels are not identical and thus cannot

serve as the common randomness for the physical layer key generation directly.
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2.3 Channel Probing

Link Establishment

According to our design, there is a fast link establishment process between CN and EN for

the purpose of angle of arrival (AoA) and angle of departure (AoD) estimation. Here, we

only consider the None-line-of-sight (NLOS) paths.

Due to the power constraint at EN, according to [2], we consider the analog precoding

scheme which could provide the sufficient antenna gain. Analog combiners utilize the phase

shifter at ENs for the purpose of beamforming and has a predefined codebook W. Supposing

that EN u equips with the codebook WEN and tries to establish a link with CN c. EN u and

CN c need to search over the codebook W and find the combining vectors wu ∈ WEN and

wc ∈ WCN [1, 2, 11]. The entries in WEN and WCN are normalized to satisfy |WEN
i,j |2 =

N−1
EN and |WCN

i,j |2 = N−1
CN with a finite set of possible values, i.e., WCN

i,j = 1√
NCN

ejψi,j .

Similar to [2,12], we assume the number of ENs meets the condition that 1 ≤ Nr ≤ NRF .

For every EN associated with CN c, the CN c serves every EN using a single RF chain. In

Fig. 2.3, the beam sweeping has been illustrated. In this process, the beamformers wu and

wc try to maximize the received signal by solving the following problem:

max
wu,wc

|wH
u Hucwc|2,

subject to wu ∈ WEN ,

wc ∈ WCN ,

(2.1)

Here combining vectors wu and wc provide the high antenna gain, which involves the

antenna patterns at EN u and CN c. For mathematical tractability and similar to [13], the
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antenna pattern is approximated as a sectored antenna model:

Gb(θ) =


Ms if |θ| ≤ θb

ms otherwise,
(2.2)

where θb is the beam width of the main lobe, Ms and ms are array gains of the main lobe

and side lobe, respectively.

Figure 2.3: Beam sweeping in the Link Initialization

Uplink Channel Estimation

After the link initialization stage, the appropriate beamformers have been selected. In the

next stage, the uplink channel probing from every EN u to CN c is conducted. Every EN
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u ∈ M \ c sends channel probing signals sequentially to CN, which can be expressed as:

y1cu = wH
c Hcuwusu +wH

c ncu, (2.3)

where ncu ∈ CNc×1 is the noise, which satisfies the circular-symmetry complex Gaussian dis-

tribution. Hcu is the narrow-band mmWave channel matrix. The definition of beamformers

wc and wu will be given later.

After obtaining the uplink channel probing y1cu, CN c would like to estimate the effective

channel wH
c Hcuwu, which can be performed by the estimators like least squares (LS) or

MLE.

Downlink Channel Probing

In the downlink channel probing, for every EN u, beamformer wu developed in the link

establishment stage is applied to receive the signal. Due to the large path loss and high

directionality of mmWave signal, it is possible to increase the probing efficiency by sending

the downlink channel probing signals concurrently. That is, for every single round of channel

probings, CN only needs to perform the channel probing once. For instance, for the CN c,

the downlink probing signals are concurrently sent using a beamformer fcu to M − 1 ENs,

which means the downlink channel probing is performed in a multiplexing manner. Here,

fcu is the hybrid beamformer and it incorporates the analog beamformer and a baseband

precoder. The design of the hybrid precoder will be given in section 4.1.

For every EN u, if the interference from other ENs is denoted as I1, the corrupted

downlink channel probing signals, received at EN u, can be represented as:

y2cu = wH
u Hcufcusu +

∑
j∈M\{u,c}

wH
u Hcufcjsj︸ ︷︷ ︸

I1

+wH
u ncu, (2.4)
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In the next section, we will give more details about the design of multiplexing beam-

former, which can mitigate the interference I1. The design of every beamformer fcu will be

given in the next section.
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Chapter 3: Existing Schemes for Physical Group Key

Generation

Existing group key generation methods can be broadly classified into two mechanisms. In

the first mechanism, every node tries to generate pairwise keys among users using physical

layer key generation first, and then generate a group key based on the pairwise keys (e.g.,

broadcast one of the keys (shortest one) xor’ed with the key associated with each user).

In this way, each user can reconstruct the shortest key) [5–7]. In the second mechanism,

every node tries to conduct channel probing for each pair of users first. In the next step,

a user’s reference channel information is selected and shared with other users by sending

the channel state difference to other users or broadcast linear combinations of the collected

channel information at each node. Finally, every node generates a group key based on a

reference channel or all the channel information [14,15].

For the first category, a classical strategy for group key generation using the pairwise

keys is to utilize tree-based algorithms related to graphs [6,7]. The basic idea is to treat the

group key generation model as a multigraph, in which each pairwise key rate can be viewed

as the weight of the edge associated with the corresponding two nodes. Then, a spanning

tree can be found in this multigraph, and the group key information can be propagated

over this spanning tree by dividing each pairwise key into multiple one-bit segments and

transmitting one-time pads of these segments. Simple multi-segment algorithms are further

developed to achieve or approach the group key rate upper bound in [5]. The time allocation

problem in the channel estimation steps to maximize the group key rates is proposed.

For the second category, in [4], a secret group key generation scheme was proposed for

star topology using the received signal strength (RSS). Specifically, the channel between an

edge node (EN) and a central node (CN) is selected as the reference channel and estimated
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first. Then, for each other EN, the CN forwards the difference of two RSSs of the reference

channel and the channel linked to that EN. As that EN has the estimation of channel linked

to the CN, it can also estimate the reference channel using the received RSS difference.

Finally, all nodes can have the reference channel information, and use it to generate the

group key.
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Chapter 4: Efficient Group Key Generation for the Star

Networks

In this chapter, we discuss the design of spatial-multiplexing beamformer at first, where

the hybrid precoding is adopted. Based on the developed multiplexing beamformer, the

group key generation protocols are proposed in section 4.2. In section 4.2.1, we will give the

analytical expression for the group key rates. To further improve the group key rates at the

downlink channel probing stage, the power allocation is reformulated into a multi-objective

optimization problem in Eq. 4.20. Finally, in section 4.2.2, we propose an MLE-based group

key rates estimator, which can efficiently estimate the group key rates based on the probing

samples.
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4.1 Probing Efficiency Improvement with Hybrid Precoding

Figure 4.1: Hybrid Precoder

As specified in the previous section, CN c has NRF RF chains. Due to the hardware limita-

tions of Massive MIMO, the analog beamformer combined with the baseband beamformer is

usually adopted at mmWave band, which is illustrated in Fig. 4.1. The analog beamformer

can be regrouped into a single RF precoder FRF = [fc1, ..., fcM ]. If we add an extra base-

band precoder FBB at the front end of CN c [1, 2], the combined beamformer and training

sequences can be expressed as:

x = FRFFBBs (4.1)
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where vector s = [s1, s2, ..., sM ]T is the training sequence for channel probing and needs to

meet E[sHs] ≤ P . In this way, the received signal at each EN u can be expressed as:

y2cu =
∑
u

wH
u Hbux+wH

u ncu, (4.2)

Due to the sparsity of channel H, the solution in Eq. 2.1 can be satisfied with the matched

beamformer [2]. Consequently, the EN u sets wu = aEN (θu) and CN c takes vcu = aCN (ϕcu).

Here (θu) and (ϕc) are quantized in the angular space and meet the specifications of the

analog beamformers. After gathering the beamforming vectors for the M − 1 ENs, the RF

beamformer of CN c can be represented as FRF = [vc1, ...,vcM ].

Due to the design freedom provided by baseband precoder fBB and high directionality of

mmWave communication, the effective channel of any EN u ∈ M\{c} can be viewed as the

combination of antenna gains. Based on the uplink channel estimation, the effective antenna

gain vector can accordingly be collected and expressed as Ĥa = [ĥ1/gc,1; ...; ĥM/gc,M ]T ,

where ĥM ∈ C1×M can be expressed as ĥu = wH
u HcuFRF . Derived from the zero-forcing

techniques, the baseband precoder can be adopted here to achieve downlink channel probings

concurrently instead of sequentially. We give the definition of the baseband precoder as

below:

FBB = ĤH
a (ĤaĤ

H
a )

−1, (4.3)

We defined the downlink probing symbols as s = [
√
ρ
1
, ...,

√
ρ
M
] , where √

ρ
u

is the power

loaded on the baseband beamformer of EN u. If the effect of the channel estimation is

considered, the designed baseband precoder f jBB of EN j is orthogonal to the other effective

channels hu, u ̸= j and such an effect can be represented as:

wH
u HcuFRF f

j
BB ≈ 0, j ̸= u, j, u ∈ M \ {c} (4.4)
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If we adopt the sparse multi-path mmWave channel model [1, 2, 11], for EN u, the uplink

and downlink signal can be further simplified into:

y1cu ≈ √
ρucgcu + fHcuncu, (4.5)

y2cu ≈ √
ρcugcu +wH

cuncu, (4.6)

(a) (b)

Figure 4.2: Improving Channel Probing Efficiency

ρcu is the allocated power at the RF chain and ρuc is the power for uplink probing signals.

gcu is the equivalent channel gain. Eq. 4.6 indicates that the strongest multipath has been

selected in the link initialization stage and the effect of other multipath is filtered by the

beamformer. The total power constraint is
∑M

u=1 ρcu ⩽ P and P is the total power budget.

gcu is the fading coefficient. If the MLE is applied at both sides, accordingly, the measured

channel gain of uplink and downlink can be represented as h1cu and h2cu, respectively, as
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below:

hc,u =
1

√
ρuc

y1cu,

= gcu +Gucf
H
cuncu, (4.7)

hu,c =
1

√
ρcu

y2cu,

= gcu +Gcuw
H
u ncu, (4.8)

Based on Eq. 4.8, the equivalent channel gain gcu can be estimated.

4.2 Group Key Generation Protocols for Star-topolog Net-

works

In section 4.1, the multiplexing of downlink probing signals has been given. The group key

generation protocol for mmWave star networks, which consists of 5 steps, will be specified

in Fig. 4.3.
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Figure 4.3: The mmWave Group Key Generation Protocol

Step 1. RF Precoder Design Right before the uplink channel probing, CN and every

EN need to find the RF precoder that can provide the largest effective gain according to [2].

This problem can be viewed in Eq. 2.1. This procedure is usually named as beam sweepings.

Step 2. Uplink Channel Probing and Effective Channel Estimation Based on

the designed RF beamformer FRF , every EN u sends channel probings sequentially. In the

uplink, CN c estimates the effective channels of every ENs in set M/{c}. The collection of

effective antenna gain at CN c can be represented as Ĥa. Based on the effective antenna

gain matrix Ĥa, the baseband precoder FBB is specified.
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Step 3. Downlink Channel Probing and Basedband Precoder Design After the

precoder design in the last step, at the CN c, analog precoder FRF = [v1, ...,vM ] and

baseband precoder FBB have been constructed. In this step, CN c needs to perform the

downlink channel probing, which results in the received signal at every EN u as Eq. 4.6.

Step 4. Reference Channel Selection and Broadcasting In this step, CN c randomly

picks up EN j from M\{c} and the effective channel hj is selected as the reference channel.

CN c gets the difference between the reference channel hj and effective channel matrix as

∆ = {hc,j − hc,1, ..., hc,j − hc,Nr}.

Step 5. Group Channel Reconstruction As claimed in [?], in the process of group

key generation, current works usually assume there is a noiseless public channel with infinite

capacity to exchange messages among group members. Apparently, such a public channel can

be completely accessed by the eavesdropper. Based on the channel difference ∆ broadcasted

to every EN u over the public channel, each EN u can retrieve the reference channel hc,j

based on the estimation of downlink effective channel hu,c by solving hc,u − hc,j , where we

assume the reciprocity holds and hc,u ≈ hu,c.

4.2.1 Group Key Rates and Power Allocation

The efficiency of group key generation can be further improved by appropriate power allo-

cation on the baseband beamformer. That is, we are trying to tune the power of baseband

beamformer at CN to increase the group key rates.

Utilizing the slepian-wolf coding as specified in [4], let Ru
sec represent the secure key rates

at the EN u. It can be represented as:
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Rstar ≜ min
i∈A\j

lim
T→∞

I([hc,1, ...,hc,M ]; [∆,hc,j ]) (4.9)

Re ≜ lim
T→∞

I([hc,1, ...,hc,M ]; [∆,Ye]) (4.10)

Ru
sec = Rstar −Re (4.11)

where hc,j is the uplink reference channel between the CN c and the EN j. Considering the

channel difference ∆, the secure key rates Ru
sec can be expressed as:

Ru
sec = Rstar −Re

= I(hc,j ;hu,c|∆)

= H(hc,j |∆)−H(hc,j |hu,c,∆)

= H(∆|hc,j) +H(hc,j)−H(∆)−
(
H(hu,c,∆|hc,j) +H(hc,j)−H(hu,c,∆)

)
= H({−hc,1, ...,−hc,M} \ {−hc,j})−H(−hc,u, hu,c)

−H({−hc,1, ...,−hc,M} \ {hc,u, hc,j})−H(∆)

+H(∆, hu,c) (4.12)

which is the modified group key rates based on [14]. From Eq. 4.12, we can observe

that secure group key rates Ru
sec for EN u can be decoupled into the combination of joint

entropy H({−hc,1, ...,−hc,M} \ {−hc,j}), H({−hc,1, ...,−hc,M} \ {hc,u, hc,j}), H(−hc,u, hu,c)

and H(∆, hu,c). If we take a term H(−hc,u, hu,c), the joint entropy is defined by the joint

distribution of the vector {−hc,u, hu,c}. Such a vector is the linear combination of estimated

effective channel gains and its distribution needs to be derived. The joint distribution of

terms in Eq. 4.12 will be given as follows.

At first, according to [1], we assume the fading coefficient gcu ∈ C follows a circular-

symmetric complex gaussian gcu ∼ CN (0, σ2
gu). Noise n ∈ CNEN×1 for every EN has a

circular-symmetric complex gaussian distribution n ∼ CN (0, σ2
nIN). We list the distribution
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of terms in Eq. 4.12 in the next few paragraphs. The derivation in detail is omitted due to

the page limit.

For every single downlink effective channel gain hc,u and uplink effective channel gain hu,c,

based on the distribution of gcu and n, we can easily find the derived distributions as:

hc,u ∼ CN (0, (σ2
g,u + |Gu,c|2||fcu||2σ2

n))

hu,c ∼ CN (0, (σ2
g,u + |Gc,u|2||wu||2σ2

n)) (4.13)

The vector {−hc,1, ...,−hc,M} \ {−hc,j} contains the negative of uplink channel gains,

except for the reference channel gain. The corresponding distribution can be expressed as:

{−hc,1, ...,−hc,M} \ {−hc,j}

∼ CN (0, diag(σ2
g,1 + |G1,c|2||f(·)||2σ2

n, σ
2
g,2

+|G2,c|2||f(·)||2σ2
n, ..., σ

2
g,M + |GM,c|2||f(·)||2σ2

n)) (4.14)

Vector ∆ = {..., hc,i−hc,j , ...}, u ̸= j has the effective channel difference between the effec-

tive channel gain of any EN u and the reference effective channel gain hc,j . The distribution

of vector ∆ can be represented as:

∆ ∼ CN (0, diag(..., σ2
g,u + |Gu,c|2||f(·)||2σ2

n, ...)

+(1(M−1)×(M−1))(σ
2
g,i + |Gi,c|2||f(·)||2σ2

n)), u ̸= j (4.15)

The distribution of {−hc,1, ...,−hc,M} \ {−hc,u,−hc,j} can be derived as:

{−hc,1, ...,−hc,M} \ {−hc,u,−hc,j} ∼ CN (0,

diag(σ2
g,1 + |G1,c|2||f(·)||2σ2

n, ...)) (4.16)
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Finally, the distribution of {−hc,u, hu,c} and {∆, hu,c} can be expressed in Eq. A.1 and

Eq. A.2, in which c ∈ CM−1×1, whose elements are zeros except for the uth element.

Based on the derivations above, the secure key rates can be expressed as:

Ru
sec = Rstar −Re

= log((πe)M−1
∣∣Cov({−hc,1, ...,−hc,M} \ {−hc,j})

∣∣)
− log((πe)M−2

∣∣Cov({−hc,1, ...,−hc,M} \ {hc,u, hc,j})
∣∣)

− log((πe)M−1
∣∣Cov(∆)

∣∣) + log((πe)M
∣∣Cov({∆, hu,c})

∣∣)
− log((πe)2

∣∣Cov({−hc,u, hu,c})
∣∣) (4.17)

In order to compute
∣∣Cov({∆,hu,c})

∣∣, the Sylvester’s determinant theorem is adopted,

which represents the determinant of covariance matrix in a block-wise form as specified below

in Eq. 4.18. When D is invertible, let B = c, C = cT , and D = σ2
g,u + |Gc,u|2||w(·)||2σ2

n.

det

A B

C D

 = det(A) det
(
D−CA−1B

)
(4.18)

To further simplify and get the analytical expression of Eq. 4.18, the matrix can be

reformulated as:

det
(
D−CA−1B

)
= log(σ2

g,u + |Gc,u|2||w(·)||2σ2
n

− 1

σ2
g,u + σ2

g,j + 2|Gu,c|2||f(·)||2σ2
n

)

Finally, gathering all of derived expressions above, the simplified secure group key rates
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can be expressed as:

Ru
sec = log(σ2

g,u + |Gu,c|2||f(·)||2σ2
n)− xu − log(|Gu,c|2σ2

n) + log(σ2
g,u + |Gc,u|2||w(·)||2σ2

n

− 1

σ2
g,u + σ2

g,j + 2|Gu,c|2||f(·)||2σ2
n

) (4.19)

where xu = log(|Gu,c|2||f(·)||2||w||2σ2
n). The assignment of transmission power ρ = {ρc,1, ..., ρc,M},

for the downlink channel probing, can be performed by adjusting the power on M RF chains

under the total power budget constraint at CN c, where vector ρ needs to meet the constraint∑M
u=1 ρcu ⩽ P . Due to the fact that, for every EN u, the distribution of each equivalent

channel gain gcu is affected by the antenna pattern and the number of multipath, the co-

efficients of group key rates Ru
sec are not the same between different nodes. According to

the definition in Eq. 4.11, the objective function of group key rates can be reformulated

into a multi-objective function with the constraints on the power allocation, whose maxi-

mum can be obtained by properly tuning the ρ. The objective function is represented as:

min
{
max[R1

sec(ρ), ..., R
M
sec((ρ))]

}
. While maximizing the group key rates, the CN c can solve

the following problem:

max
ρ

[R1
sec(ρ), R

2
sec(ρ), ..., R

M
sec(ρ)]

subject to
M∑
u=1

ρcu ⩽ P

(4.20)

We can observe that the objective function in Eq. 4.20 is a multi-objective function,

which usually has a set of solutions and we need to achieve a tradeoff among objectives and

constraints. In section 5.1, a GA-based algorithm will be developed for problem 4.20.
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4.2.2 MLE-based Entropy Estimation

In this section, we propose a lightweight entropy estimation scheme based on Maximum

Likelihood Estimation (MLE), in which the joint entropy in Eq. 4.19 is derived based on

the parameter of joint gaussian distribution, estimated from MLE.

From the distribution derived in Eq. 4.8, we can observe that if we collect the mea-

surements of effective channels for the EN u in a single vector hc,u, the real/image part

for hc,u which has a circular-symmetric gaussian distribution, is a normal distribution

N (Re(hc,u),Re(µ),Re(Σ)) or N (Im(hc,u), Im(µ), Im(Σ)). For instance, for the ease of pre-

sentation, we omitted the constant terms in the likelihood logN (Re(hc,u),Re(µ),Re(Σ))

and terms involving unknowns can be represented as:

log(·) ≜ −1

2
log|Σ|+ −1

2
(hc,u − Re(µ))TΣ(hc,u − Re(µ)), (4.21)

Here we take the MLE for real part as an example. By setting derivative w.r.t. Re(µ)

to zero, we can derive the estimated real part of mean µ as:

Re(µ̂)ML =
1

|hc,u|

∑
Re(hc,u)i (4.22)

Re(Σ̂)ML =
1

|hc,u|

∑
(hc,u − Re(µ̂)ML)

i (4.23)

where |hc,u| indicates the number of elements in vector hc,u. Based on the two estimators

above, the joint gaussain distribution of the joint entropy terms listed in Eq. 4.19 can be

estimated accordingly. The numerical results in section ?? show that the theoretical group

key rates are closely in agreement with the estimation of group key rates.
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Chapter 5: Power Allocation in the Group Key Generation

5.1 Group Key Rates Optimization Using Genetic Algorithm

A genetic algorithm is a search heuristic that is inspired by Charles Darwin’s theory of

natural evolution. This algorithm reflects the process of natural selection where the fittest

individuals are selected for reproduction in order to produce offspring of the next generation.

A typical genetic algorithm requires: (a) a genetic representation of the solution domain;

(b) a fitness function to evaluate the solution domain. That means to apply the GA we have

to define the genetic representation and the fitness function, respectively.

Here genetic representation is required to represent the solutions/individuals of the GA.

For instance, various attributes can be collected to represent the individuals uniquely. A

fitness function is the objective function which is used to quantify the evolutionary directions.

It can be viewd as as a single figure of merit and it represents how close a given design solution

is to achieve the target.

A GA proceeds to initialize a population of solutions and then to improve it through

repetitive application of the mutation, crossover, inversion and selection operators. The

detailed explanation for these process can be found below.

Initialization

Population Initialization is the first step in the Genetic Algorithm Process, where population

is a subset of solutions in the current generation. Population P can also be defined as a

set of chromosomes. The initial population P (0), which is the first generation is usually

created randomly. In an iterative process, populations P (t) at generation t, t = 1, 2, . . .

are constituted. Initialization is critical in the GA because it determines the diversity of
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the population at the beginning stage of GA. Starting from a population with low diversity

might lead to a condition known as premature convergence.

5.1.1 Selection

During each successive generation, a portion of the existing population is selected to breed

a new generation. Selection usually includes: (a) selection from the current generation to

take part in reproducing(Parent Selection); (b) selection from parents + offspring to go into

the next generation (Survivor Selection). For parent slection, an individual is to be chosen

as a parent for the next generation of the population, based on its fitness. The Survivor

Selection determines which individuals are to be kicked out and which are to be kept in the

next generation, which is also known as replacement.

Figure 5.1: Crossover
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5.1.2 Genetic operator

The next step is to generate a second generation population of solutions from those selected,

through a combination of genetic operators: crossover, and mutation.

Crossover is the process of taking more than one parent solutions to produce a child

solution from them. For instance, recombining portions of good solutions is usually con-

sidered in the genetic algorithm and this operation is named as crossover. It is more likely

to create a better solution. The mutation operator encourages genetic diversity amongst

solutions in order to prevent the genetic algorithm converging to a local minimum by having

the solutions becoming too close to one another. For instance, mutating the current pool of

solutions reproduces a given solution, which may change entirely from the previous solution.

A genetic algorithm can reach an improved solution solely through the mutation operator.

Figure 5.2: Mutation
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5.1.3 Termination

The aforementioned generational process is repeated until a termination condition has been

reached. Therefore, termination is the sign of the algorithm converges. Common terminating

conditions that are considered in the existing works are: (a) a solution is found that satisfies

minimum criteria; (b) the fixed number of generations is reached; (c) allocated budget

(computation time/money) for the evolutionary computation is reached and so on.

5.1.4 Multi-objective Optimization

In Eq. 4.20, the power allocation problem for downlink probing is a multi-objective opti-

mization problem, which involves more than one objective function to be optimized. As

we all know, the answer for such a problem is a set of solutions, where the goodness of a

solution for the multi-objective problem is determined by the dominance. Let’s define the

notion of dominance as below: For two feasible solutions x1 and x2, x1 dominates x2 iff,

solution x1 is no worse than x2 in all objectives, and solution x1 is strictly better than x2

in at least one objective.

One way to find good solutions to multi-objective problems is according to Pareto opti-

mality, named after economist Vilfredo Pareto.

Pareto Front

For the multi-objective problem, maxmizing or minimizing a single objective function may

be harmful to other objective functions. We are interested in finding solutions that upgrade

some objective functions without downgrading anyone else. The movement (upgrading) from

the previous solutions to a set of better solutions is called "Pareto improvements". If the

current solutions are restricted to a solution set and cannot make Pareto improvements in

the next solution updates, the Pareto optimality is achieved. Many existing multi-objective

optimization algorithms involve the concept of Pareto optimality [10]. Any point belonging

to this set is said to be on a front called Pareto front, which can be illustrated in Fig. 5.3(a).
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(a) (b)

Figure 5.3: Pareto Front and Pareto Improvement

Existing algorithms

For multi-objective optimization, classical optimization methods tend to convert the multi-

objective optimization problem to a single-objective optimization problem, i.e., averaged

weighting, which can only emphasize one particular Pareto-optimal solution at a time. In

this case, the genetic algorithm is very popular in solving the multi-objective optimization

which aims to achieve the pareto optimality.

5.2 Non-dominant Sorting Genetic Algorithm for Constrained

Optimization

In this paper, to solve the multi-objective defined in Eq. 4.20, we customize a Genetic Al-

gorithm called Non-dominant Sorting Genetic Algorithm (NSGA II) and modify constraints

handling process for NSGA II. In the next few paragraphs, we will give more details about

the group key generation scheme based on NSGA II. Right before giving the scheme and

the NSGA II in detail, we list several common notions in GA, non-dominant set sorting,
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crowding distance assignment and reproduction.

Non-dominant Set Sorting

NSGA II is based on an operation by sorting the population into several Non-dominated

solution sets. According to [10], the Non-dominated solution set can be defined as:

Given a set of solutions, the non-dominated solution set is a set of all the solutions that

are not dominated by any member of the solution set.

The non-dominated set of the entire feasible decision space is called the Pareto-optimal

set. The boundary defined by the set of all points mapped from the Pareto optimal set is

called the Pareto optimal front. In order to approach to Pareto optimality front, the overall

population, in each round of algorithm, is divided into several fronts F = ∪Fi.

To sort the non-dominated set, for every solution p in the population, two quantities are

specified: 1) domination count np and 2) Sp, a set containing the solutions dominated by p.

In Fig. 5.4, non-dominated sorting can be viewed.

Figure 5.4: Non Dominated Sorting
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Crowding Distance Assignment

As mentioned earlier, it is desired that the obtained solution sets spread widely in the feasible

region, along with convergence to the Pareto-optimal set. In NSGA II, crowding distance for

every element in the front indicates its distance to near neighbors and guides the selection

process toward the uniformly sampled Pareto-optimal front.

• Density Estimation: To get an estimate of the density of solutions surrounding a

particular solution in the population, crowding distance serves as an estimate of the

perimeter of the cuboid formed by using the nearest neighbors as the vertices. To

compute the crowding-distance, the population, at first, needs to be sorted in ascending

order of magnitude according to the value of each objective function. Secondly, the

boundary solutions for each objective function are assigned an infinite distance value.

The rest intermediate solutions are assigned a distance value equal to the absolute

normalized difference in the function values of two adjacent solutions.

• Crowded-Comparison Operation: With the crowding distance defined above, a spread-

out solution set is selected at various stages of the algorithm by using the crowded-

comparison operator (≺), with which we hope the solution set can approach to a

uniformly spread-out Pareto optimal front. After two steps above (non-dominated

sorting and crowding-distance assignment), every entry in the population is assigned

two attributes: nondomination rank (irank) and crowding distance (idistance). The

crowded-Comparison Operator is defined as:

i ≺n j if
(
irank < jrank

or (irank = jrank and idistance > jdistance)
)

(5.1)

By observing operator in Eq. 5.1, we notice that between two solutions with differing

nondomination ranks, the lower (better) rank solution is preferred. Otherwise, if two

solutions locate on the same front, then we prefer the solution that is located in a less
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crowded region.

Algorithm 1 GA-based Group key generation for multi-users mmWave Massive MIMO
systems
Initialization: Establish links between the CN and EN. The distribution of CSI. Power
budget P . SNR for each round. Max generation size NG

Output: Power allocation result ρ

For t ≤ NG

Rt = Pt ∪Qt

F = non-dominated sorting(Rt)
Pt+1 = ∅, and i = 1
until|Pt+1|+ |Fi| ≤ N

crowding-distance assignment(Fi)
Pt+1 = Pt+1 ∪ Fi
i = i+ 1

Sort(Fi,≺n)
Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)]
Qt+1 = Reproduction(Pt+1)
t = t+ 1

Reproduction

The non-dominated sorting above divided the solutions into several fronts. The entries

within the same front can utilize genetic operators like crossover, mutation and selection to

produce a new generation (children).

Here we give a brief introduction for them, which have various roles as the genetic

operators.

• Crossover: For every single solution p, after the non-dominated sorting, several pieces

of solution p are exchanged with other solutions at the same solution representations.

This means the crossover works in a well-searched subspace, and the converged states

will remain.

• Mutation: The operation of Mutation usually changes parts of one solution randomly,

which increases the diversity of the population and provides a mechanism for escaping
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from a local optimum. That is, mutation usually leads to a solution outside the current

solution subspace.

Constraints Handling

If the infeasible solutions violating constraints marginally are placed in the same nondom-

inated level with another solution violating constraints to a large extent, this may cause

an algorithm to wander in the infeasible search region for more generations before reaching

the feasible region through constraint boundaries. In NSGA II, the feasible solutions with

large crowding distance are preferred and the infeasible solutions violating constraints will

be discarded.

5.2.1 GA-based Group Key Generation

We have introduced the key concepts of NSGA II above and gathered all the pieces. In this

section, we give the GA-based Group Key Generation algorithm in Algorithm 1.

In the Algorithm 1, a single algorithm run is listed. Rt contains the parent population

Pt and offspring population Qt. The elements in Rt are classified into several non-dominant

set front after the non-dominant sorting. In order to reach a uniformly spreading solution

set, crowding distance for each element is computed and serves as the input of crowded

comparison. After the crowded comparison sorting, the non-dominant set or the parent set

produces the next generation (offspring). Current research has shown that NSGA II has

a good performance on non-convex problems and can achieve the approximately uniformly

spreading solution set.

5.2.2 Simulation Results

We use numerical results to illustrate the performance of the proposed schemes. We consider

the mmWave Massive MIMO system adopting analog phase-shifter with multiple radio-

frequency (RF) chains, which operates at 28Ghz. Uniform linear array (ULA) is adopted

at CN and EN side with the dimension, 16 × 16. For the NSGA II algorithm, we set the
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population size as 400 and the generation size as 600. The mutation probability is set to

1/M . The initial population is randomly generated within the range (0, P ).
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Figure 5.5: GKRs of proposed GA-based group key generation, M = 6

In Fig. 5.5, we start by evaluating the group key rate for the proposed channel probing

scheme and the following schemes: 1) the scheme with the existing channel probing strategy

and the uniform power allocation strategy, which is denoted by the black lines; 2) the

scheme with the existing channel probing strategy and the optimized power allocation, which

requires M − 1 ENs to have M − 1 rounds of bi-directional channel probings. It is denoted

by the red lines. For all of cases, the solid line represents the theoretical GKRs and the

dotted lines denotes the estimated GKRs using the proposed estimator in (4.23). It can be
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observed that the curves representing the theoretical GKRs, overlaps with the dotted curves

denoting the estimated GKRs nicely. Given SNR 9dB, the mean of MI difference is 0.0125

bits. Comparing with the GKRs at SNR=15dB, which is 0.1 bits/per channel probing,

the mean of MI difference is invisible in this case. Besides, the proposed channel probing

strategy could outperforms the existing probing strategies. For instance, the scheme with

the GA-based power allocation has the higher GKRs compared with the existing channel

probing strategy. In addition, it can be further observed that the performance gap between

the proposed channel probing scheme and the existing scheme becomes wider as the SNR

increases, which is due to the fact that less channel noise can be observed at the analogy

beamformer side in the high SNR regimes and the good orthogonality among downlink

channels thus can be maintained in the digital precoding domain. At the same time, after

increasing the SNRs, the consistency among the channel measurements at two sides could

be improved.
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Figure 5.6: GKRs of the proposed scheme under various group size, SNR = 25dB

Besides the SNRs, the performance of GKR is determined by the group size as well,

which is comprehensible. For instance, while observing the group key generation protocol,

an enlarged group size can directly lead to a longer channel difference vector ∆ = {hc,j −

hc,1, ..., hc,j −hc,M}, which has to be broadcasted over the public channel. A longer channel

difference, however, can give the eavesdroppers more hints on the reference channel and

thus results in the information leakage of the group channels. A finding in the analytical

group key rate also support this observation. For a large group size M , the term σ̃4
i,ga

−1
i

in the logarithm of the GKR has to be fully extracted, which greatly limits the increasing

of the GKR. To give a better illustration of this phenomenon, we list the GKRs under

various group sizes In Fig. 5.6, where two channel probing strategies are compared. It is

observed that the GKR decreases while expanding the group size by incorporating more
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group members. This observation coincides with the aforementioned analysis. Especially,

we also find that the GKRs of the proposed channel probing scheme will quickly drop to the

same level as the existing channel probing with the optimized power allocation. Such effect

is due to the noise induced by the imperfect channel orthogonality realized in the digital

precoding domain. For instance, imperfect channel orthogonality will introduce noise at the

downlink channel estimation stage. The noise is then accumulated and broadcasted in the

group channels, which will further impair the performance of GKRs.
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Figure 5.7: BDR under various SNRs, M = 6

Fig. 5.7 depicts the numerical results of bits disagreement ratio (BDR) under various

SNRs. The quantization level is set to be 4. From this figure, in the high SNR regime, it can
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be observed that the GA-based power allocation downlink probing outperforms the scheme

that utilizes the uniform power allocation. However, BDR of GA-based power allocation and

the existing probing scheme tend to have the same values in the high SNR regime. Based

on Fig. 5.5 and Fig. 5.7, we can observe that channel probings with the higher energy can

reduce the BDR efficiently. However, in a group, the actual group key rates are influenced

by the power allocation strategy.
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Figure 5.8: BDR under various group size, SNR = 25dB

In Fig. 5.8, if we set the SNR = 25dB, the BDR versus different group size from 3 to

8 are provided. We can observe that the BDR of GA-based algorithm and existing channel

probing scheme, represented by the bars in blue and red, have lower value compared with the
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BDR of uniform power allocation scheme. Besides, for the GA-based algorithm and current

channel probing scheme, the BDR will grow as the increasing of group size. However, for

the uniform power allocation, within a range of the group size between 3 to 5, the BDR is

insensitive to the changing of group size. For the group size larger than 5, the BDR of the

uniform power allcation schemem will increase accordingly.
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Chapter 6: Conclusion and Future Works

6.1 Conclusion

An efficient channel probing strategy for group key generation in mmWave Massive MIMO

networks has been proposed, which is based on the hybrid precoding and the NSGA II

algorithm. Besides, a scheme for the group key rates estimation has been developed based

on MLE. In the proposed group key generation scheme, a baseband precoder has been

applied in the downlink probing, which enables the CN to send downlink channel probing

signals to several ENs concurrently. Besides, to further improve the group key rates, the

NSGA II is modified to optimize the power allocation for the downlink probings, which can

reach a spread-out solution region and achieve the Pareto optimality. The estimated group

key rates match the theoretical key rates.

6.2 Future Works

There are several possible directions for future research:

1. In chapter 3, we only consider the hybrid precoding based group key generation, where

only the ULA antenna array is considered. In the future work, we can extend our design

to the UPA-antennas case where the planar antenna array can be applied at the both

side. For instance, UPA antennas can be applied for the 3-D beamforming, which can

handle angles from the azimuth and elevation perspective. Higher design degree of

freedom can be achieved.

2. In this work, we only consider the design for the networks with the star-topology,

which is the most common network topology. In some scenarios, we have to consider
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the networks with a chain topology, for instance regarding the satellite ground stations

or other networks with nodes locating far off. In this case, the scheme developed for the

star-topology cannot be applied directly in the chain-topology networks. For instance,

each node ENi in this network only connects to its former and latter points and

other nodes are not visible. In this case, the efficient group key protocols have to

be developed to share the common randomness. At the same, the channel probing

efficiency has to be improved as well.

3. In this work, we focus on the channel probing efficiency improvement. In fact, group

key generation rate is also affected by the factors like the quantization level specifi-

cation, randomness extraction, whose effect are not discussed in this thesis. In the

future work, we will develop advanced frameworks after considering these effect.
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Appendix A:

{−hc,u, hu,c} ∼ CN (0,

[
σ2
g,u + |Gu,c|2||f(·)||2σ2

n −σ2
g,u

−σ2
g,u σ2

g,u + |Gc,u|2||wbu||2σ2
n

]
) (A.1)

A =

σ
2
g,1 + |G1,c|2||f(·)||2σ2

n · · · 0
...

. . .
...

0 · · · σ2
g,M−1 + |GM−1,c|2||f(·)||2σ2

n



+(σ2
g,j + |Gj,c|2||f(·)||2σ2

n)

1 · · · 1
...

. . .
...

1 · · · 1


= A1 +A2, (A.2)

{∆, hu,c} ∼ CN (0,

[
A c
cT σ2

g,u + |Gc,u|2||w(·)||2σ2
n

]
) (A.3)

cT =
[
0, ..., (−σ2

g,u), ...0
]

(A.4)
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