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Abstract 

 

Optimizing the refrigerant circuitry for a finned-tube evaporator is a daunting task for traditional 
exhaustive search techniques due to the extremely large number of circuitry possibilities.  For this 
reason, more intelligent search techniques are needed.  This paper presents and evaluates a novel 
optimization system, called ISHED1 (Intelligent System for Heat Exchanger Design).  This system 
uses a recently developed non-Darwinian evolutionary computation method to seek evaporator circuit 
designs that  maximize the capacity of the evaporator under given technical and environmental 
constraints.  Circuitries were developed for an evaporator with three depth rows of 12 tubes each, 
based on optimizing the performance with uniform and non-uniform airflow profiles.  ISHED1 
demonstrated the capability to design an optimized circuitry for a non-uniform air distribution so the 
capacity showed no degradation over the traditional balanced circuitry design working with a uniform 
airflow. 

 

Keywords:  machine learning, evolutionary computation, engineering design, learnable 
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1 INTRODUCTION 

Performance of a finned-tube air-to-refrigerant heat exchanger is affected by a multitude of 
factors related to its design and operation.  These factors include the overall heat exchanger 
dimensions, the type of refrigerant-side and air-side heat transfer surfaces, fin spacing, tube 
pitch, depth row pitch, refrigerant circuitry design, and air velocity distribution over the 
frontal heat exchanger surface.  Typically during coil design, the outside dimensions are 
dictated by the available installation space, and most of the remaining parameters are 
imposed on the design engineer by established manufacturing practices, e.g., heat transfer 
surfaces or tube spacing.  Hence, in many cases the heat exchanger optimization process 
focuses on identifying refrigerant circuitry that provides the maximum heat transfer rate for 
given environmental constraints.  In fact, refrigerant circuitry may have a significant effect 
on the evaporator capacity (Chwalowski et al. (1989), Liang et al. (2001)). 

Designing an optimized refrigerant circuitry is particularly difficult if the airflow is not 
uniformly distributed over the coil surface.  Also, optimizing refrigerant circuitry for a new 
refrigerant may prove to be difficult since the design experience gained from work with 
conventional refrigerants may not extend itself to a new refrigerant with different 
thermophysical properties.  If left only to laboratory experiments, heat exchanger 
optimization is very expensive due to compounding costs of engineering analysis, 
manufacturing of coils with different circuitry designs (architectures), and their testing.   

One way to aid the design effort is to use a detailed heat exchanger simulation model that 
accounts for the refrigerant circuitry layout; such as the evaporator model EVAP, contained 
in the EVAP-COND simulation package (NIST, 2003). Figure 1 shows EVAP’s 
representation of a heat exchanger’s refrigerant circuitry. In this representation, the return 
bends are represented by the lines, solid lines are return bends on the near side of the 
evaporator and the broken lines represent the return bends on the far side.  In addition, to aid 
in the visualization, each tube is given a tube number. 

The model allows the user to specify refrigerant flow through the heat exchanger on a tube-
by-tube basis.  The user may perform a series of simulations for the best-guessed circuitry 
architectures.  EVAP provides detailed simulation results for individual tubes, e.g. refrigerant 
temperature, pressure and quality.  These results can guide the user to the optimal design, 
which can be validated later in a laboratory test.  

The coil optimization process can be further upgraded if the optimization program replaces 
the design engineer in preparing candidate circuitry architectures.  This paper describes a 
concept of such an automated scheme as implemented by an experimental program ISHED1 
(Kaufman and Michalski, 2000), and presents examples of ISHED1’s results.  

2 OVERVIEW OF ISHED1 

Figure 2 presents a general diagram of the ISHED1 system. It includes the Control Module, 
the evaporator model EVAP, and two modules: the Knowledge-based Evolutionary 
Computation Module and the Symbolic Learning-based Evolutionary Computation Module. 
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These two modules guide the evolutionary process according to the concept referred to as the 
Learnable Evolution Model, or LEM (Michalski, 2000).  

 

Figure 1.  EVAP’s representation of an evaporator   

The novelty of LEM methodology is that it combines a conventional evolution program 
(Michalewicz, 1994) with a non-Darwinian evolutionary computation employing symbolic 
learning.  An evolution program uses Darwinian-type operators, mutations and/or 
recombinations to generate new individuals (Goldberg 1989). In the ISHED1 knowledge-
based module, these operators are not random, as in conventional genetic algorithms, but 
domain knowledge-based, i.e., they only perform changes that are deemed suitable according 
to the domain-knowledge. The symbolic learning method generates new individuals 
(designs) in an entirely different way, by hypothesis formation and instantiation (Michalski, 
2000). These two distinct methods of generating new individuals are integrated in ISHED1. 

Consistent with a conventional evolutionary computation approach, ISHED1 operates on one 
generation (population) of designs at a time.  A population consists of a given number 
(determined by the user) of circuitry designs.  Each member of the population is evaluated by 
EVAP, which simulates their performance and provides their cooling capacity as a single 
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numerical fitness value.  The designs and their fitness values are returned to the Control 
Module as an input for deriving the next generation of circuitry designs.  Hence, the 
implemented process is a loop, and it is repeated for the number of generations specified by 
the user at the outset of the optimization run. 

 

Figure 2.  A functional architecture of ISHED1.   

The Control Module determines which of the two modules, the Knowledge-based 
Evolutionary Computation Module or the Symbolic Learning Module, is utilized to produce 
the next population.  At the outset of an optimization run, the Control Module applies 
Darwinian evolution until the population no longer improves (both in terms of the best 
individual and the population overall).  It then switches to symbolic learning until the 
performance under that module ceases to improve.  The Control Module alternates between 
the two models until a specified number of iterations have been completed. 

2.1 Knowledge-based Evolutionary Computation Module 

The optimization process using a Knowledge-based Evolutionary Learning Module follows 
the three-step pattern that is implemented by a conventional evolution program 
(Michalewicz, 1994): 1) a selection of individual designs for the next generation, with 
selection probability proportional to their evaluated fitness values (evaporator capacities in 
our case); 2) modification of the selected designs by structure modifying operators; and 3) 
evaluation of the new population, member by member, to acquire their fitness values 
(simulations using the evaporator model to obtain the capacity of the proposed designs).   
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Because of the constraints on feasible refrigerant circuitry, traditional genetic operators 
(replication, crossover, and mutation) would be, for the most part, unworkable for the 
problem at hand; therefore eight domain knowledge-based structure modifying operators 
were developed and implemented.  They are: (1) SPLIT, creating a split point and two 
refrigerant paths starting at a given split point, (2) BREAK, creating, from one refrigerant 
path, two full paths from the input to the output, (3) COMBINE, taking two paths and 
creating one branch splitting into two, (4) INSERT, taking two paths and inserting one into 
the other at some break point, (5) MOVE-SPLIT, moving the existing split point an even 
number of tubes upstream or downstream,  (6) SWAP, reversing the order of two adjacent 
tubes in a flow structure, (7) INTERCROSS, swapping two consecutive tubes between two 
individual circuits that are not upstream of one another; and (8) NEW-SOURCE, assign a 
new feeding tube for a randomly selected tube (to avoid loops, the new feeding tube can not 
be downstream of the breaking point).  The system probabilistically selects an operator to 
apply based on the topology of the heat exchanger.  If it seems that the operator will not lead 
to a feasible change in the circuitry, another operator is tried. 

2.2 Symbolic Learning-based Evolutionary Module 

When applied, the Symbolic Learning Module divides the members of the current population 
into three classes based on their fitness values (cooling capacity); “good”  class, “bad”  class, 
and “ indifferent”  class.  The “good” and “bad”  classes contain members of the population 
whose fitnesses are in the top and bottom 25 % of the current generation’s fitness range, 
respectively.  Then, the module examines the characteristics of both well- and poorly 
performing designs, and creates hypotheses in the form of attributional rules that characterize 
the better-performing architectures.  These rules are applied to generate a subsequent 
population of designs. During consecutive generations, rules are used in the context of their 
predecessors, so as to further focus the concept of design optimality. 

2.3 Evaporator Simulation Model 

The evaporator simulation model used in this study, EVAP, is a component of the simulation 
package EVAP-COND developed to facilitate preparing optimized designs of finned-tube 
evaporators and condensers (NIST, 2003).  EVAP uses a tube-by-tube modeling scheme.  
That is, the program recognizes each tube as a separate entity for which it calculates heat 
transfer.  These calculations are based on inlet refrigerant and air parameters, properties, and 
mass flow rates.  The simulation begins with the inlet refrigerant tubes and proceeds to 
successive tubes along the refrigerant path.  At the outset of the simulation, the air 
temperature is only known for the tubes in the first row and has to be estimated for the 
remaining tubes.  A successful run requires several passes (iterations) through the refrigerant 
circuitry, each time updating inlet air and refrigerant parameters for each tube. 

The tube-by-tube modeling approach used by EVAP makes it suitable for use within the 
ISHED1 scheme.  This modeling approach is important for both heat transfer and refrigerant 
pressure drop calculations. Consequently, it is also essential for simulations of refrigerant 
distribution in different circuitry architectures because refrigerant distribution is affected by 
pressure drops in individual refrigerant tubes and circuitry branches. When calculating the 
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total pressure drop, EVAP includes the pressure drop in return bends, whose lengths are 
determined based on the relative location of the connected tubes. 

EVAP can account for one-dimensional air maldistribution, as it is conceptually shown in 
Figure 1.  This feature allows optimizing refrigerant circuitries for installations with 
complicated air velocity profiles.  Additional information on EVAP is available at the EVAP-
COND website (NIST, 2003). Validation of EVAP is presented in Domanski and Payne 
(2002) and Payne and Domanski (2003).   

2.4 ISHED1 System Operation 

An optimization run starts by reading a file with the control parameters for the run.  This file 
contains the basic geometric characteristics of the heat exchanger and the heat exchanger 
operating condition information.  The read control parameters, which override defaults when 
read, are as follows: 

• Parameters defining the characteristics of the initial population: its size and any user-
defined first population individual design 

• Parameters defining the length of the evolutionary process 

• Parameters controlling the optimization run, including the persistence of the 
knowledge-based and symbolic modes, and the level of detail to be presented in the 
output file. 

• Parameters defining the general dimensions of the heat exchanger 

• Parameters defining the airflow distribution over the front face of the heat exchanger 

ISHED1 allows the user to define individual architectures in the first population; or if the 
user does not define them, the system will generate the initial set randomly.  It is also 
possible for the user to define only a portion of the initial population, in which case the 
system randomly generates the remaining designs. 

During preparation of new architectures, ISHED1 applies experience-based knowledge to 
constrain the search to plausible architectures.  These constraints are ranked from 
“suggested”  to “essential” .  The program rejects structures that violate a required constraint, 
and only under special circumstances (namely when designing a more compliant architecture 
is very difficult) will accept structures that violate the most lenient constraints. The 
constraints include a user-defined parameter (or its default value) which imposes limitations 
on the length of return bend directing the refrigerant to the subsequent tube. Another 
constraint states that exit tubes should not have inlet tubes as their neighbors, but rather they 
should be located next to the tubes that feed them with refrigerant. The intent of this 
constraint is to limit internal tube-to-tube heat transfer which occurs via heat transfer through 
common fins between neighboring tubes if they are at different temperatures. Since the exit 
tubes typically have superheated refrigerant and are warmer than the tubes with two-phase 
refrigerant, it is preferable to have them surrounded in the coil assembly by tubes with 
somewhat superheated refrigerant as well.  A similar constraint suggests that the exit tube 
should be in the first depth row.  This constraint reflects the recognition that the overall heat 
transfer is most effective if semi-counterflow configuration is established between the 
temperature profiles of refrigerant and incoming air.   
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To summarize, for a given set of operating conditions, general evaporator geometry 
information, and user-specified run control parameters, ISHED1 performs an optimization 
process involving two distinct modes: the knowledge-based evolutionary mode and the 
symbolic learning mode.  The Control Module decides which mode to apply at any decision 
time during the run.  The optimization process involves evaluating sequential design 
populations whose size and number are predefined by the user.  When the run is completed, 
ISHED1 produces a report with the best architectures and their capacities, as determined by 
the evaporator model.  It should be stressed that except for the pre-coded experience-based 
design constraints and the evaporator model itself, no other components of ISHED1 have any 
recognition of the physical processes taking place in a heat exchanger.  Simply, the system is 
concerned with a single numerical fitness value (cooling capacity) obtained by each 
architecture, and manipulates strings representing the refrigerant flow path through the 
evaporator with the goal of maximizing the coil capacity. 

3 COIL DESIGN EXPERIMENTS  

We confronted ISHED1 with the task of designing refrigerant circuitry for a 36 tube R-22 
evaporator consisting of three-depth rows with 12 tubes located in each depth row.  Figure 3 
shows the evaporator’s detailed design information as it is displayed by the EVAP-COND 
graphical user interface.  The design operating point was defined by the condenser 
subcooling and evaporator superheat of 5.0 °C, and the condenser bubble point and 
evaporator exit saturation temperature of 40 °C and 7.2 °C respectively.  The inlet air was at 
101.325 kPa pressure and 26.7 ºC dry-bulb temperature with 50 % relative humidity.  The 
volumetric flow of air was 15.0 m3 per minute.  

 

Figure 3.  Evaporator Design Information.   
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In all simulations, the population size was set to 15 architectures (members) and the number 
of generations was set to 300.  The ISHED1 defaults were used for all of the other 
parameters.  When starting each optimization run, we did not specify any initial circuitry 
architectures; all of the architectures in the initial population were generated by ISHED1.   
We performed simulations for uniform and non-uniform air distributions. Since ISHED1 is 
not equipped with a windows-based interface, we used EVAP-COND user’s interface to 
display ISHED1-generated circuitry designs. 

3.1 Simulations with uniform air distribution 

Figure 4 presents the circuitry developed for a uniform velocity profile of the incoming air.  
The inlet tubes are denoted by partially open circles (1 and 11), and the outlet tubes are 
denoted by closed circles (5 and 9).  It takes only a quick look at the design to notice that the 
proposed circuitry is difficult and expensive to manufacture.  Clearly, ISHED1 does not have 
the intelligence to recognize and avoid manufacturing difficulties.  However, we have to 
realize that the proposed design gives us valuable information which we can use to produce a 
good, manufacturable design.   
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Figure 4.  ISHED1-generated refrigerant circuitry for uniform air distribution:  
Capacity Q = 5.25 kW 

Based on the architecture proposed by ISHED1, we generated two different circuitry designs, 
shown in Figure 5. The first design was a “cleaned” version of the ISHED1 design; we 
eliminated the over-lapping long return bend and made a few minor alterations.  The return 
bends were not modified, and the inlet and outlet tubes remained the same.  In the second 
design, the two inlets and outlets were the only commonality with the ISHED1 design.  
These examples show that the more we depart from the ISHED1-recommended design, the 
lower capacity of the evaporator is, as determined by the evaporator model.  However, we 
may debate in this case that the capacity degradation is not that significant and a 
manufacturer might select the simplest design for production. 

 

 



 

 

8 

 

 

 

 
                  

Capacity Q = 5.18 kW         Capacity Q = 5.12 kW  

Figure 5.  Two modified circuitry designs for uniform air distribution 

3.2 Simulations with non-uniform air distribution 

For the purpose of this experimentation, we devised a simple non-uniform velocity profile for 
the inlet air.  For this profile, the left half of the evaporator was subject to a uniform flow of 
air, while the right half was subject to a linear profile with the maximum velocity being twice 
that of the minimum.  The total volumetric flow of air was 15.0 m3 per minute (the same as 
for the previous examples with uniform air distribution).  Figure 6 shows the non-uniform 
velocity profile and the refrigerant circuitry recommended by ISHED1.  The obtained 
capacity is close, or actually slightly higher, than that obtained with the uniform velocity 
profile by the ISHED1-recommended architecture (5.35 kW vs. 5.25 kW). We should note 
that the design generated by ISHED1 for the uniform air velocity profile (shown in Figure 4) 
had a capacity of only 4.82 kW when simulated with this non-uniform velocity profile.   

It is also interesting to note that ISHED1 has the ability to evolve to a design which is 
principally different from the one proposed for uniform air.  The design based on a uniform 
airflow profile consists of two inlets and two outlets; with each individual circuit primarily 
being located in its own portion of the heat exchanger.  This design would be a poor choice 
for a highly non-uniform air profile because the available airflow would be very different for 
each of the circuits.  The design based on this non-uniform airflow (Figure 6, below), on the 
other hand, consists of one inlet, two outlets, with a single split occurring at tube #33.  Also, 
each branch of the circuitry in this design tends to span across the heat exchanger, making it 
less sensitive to air side maldistributions. 

 

 

 

 

 

 
 

Figure 6. ISHED1-generated refrigerant circuitry for non-uniform air distribution: 
Capacity Q = 5.35 kW 
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Considering that the ISHED1-generated circuitry arrangement is not easy to manufacture, we 
modified it to arrive with a more practical design, by eliminating over-lapping and long 
return bends.  The modified design of this architecture is shown in Figure 7.  The capacity 
loss due to the modification was minimal (5.34 vs. 5.35 for the ISHED1-recommended 
architecture). 
 

 

 

 

 

Capacity Q = 5.34 kW 

Figure 7.  Modified circuitry designs for non-uniform air distribution 

We also simulated performance of the circuitry design shown in Figure 6 with a uniform 
velocity profile.  At this operating condition, the obtained capacity was 5.34 kW.  Hence, the 
circuitry design that was optimized for the non-uniform air distribution showed robust 
performance with both uniform and non-uniform air distributions.  In fact, the architecture 
developed for this case performed slightly better for the uniform air distribution than the one 
shown in Figure 4.  This is interesting and should be noted although no additional 
experiments were performed with other non-uniform velocity profiles to give this 
observation more generality. 

4 GENERAL OBSERVATIONS 

To understand the scope of performed optimization runs, let us reiterate that each of the runs 
involved simulations for 15 circuitry designs (architectures) of each of the 300 populations.  
Hence, a completed optimization run encompassed simulations of 4500 evaporators.  This 
may seem like a large number of test cases, however, it is a very small portion of possible 
circuitry designs.  According to simple calculations based on the number of tubes and 
possible path attributes (splits, multiple paths, etc.), this 36-tube test case has approximately 
2·1045 possible architectures.   

A valid question arises as to what combination of the population size and number of 
populations would make ISHED1 most effective.  There is no simple response to this 
question because the answer will depend on the evaporator size, i.e., number of tubes in the 
evaporator.  Simply, the larger the heat exchanger, the more different circuit arrangements 
can be devised, and more simulations should be performed.  In any case, a practical 
consideration requires that an optimization run is completed within the interest span of the 
design engineer.  This may imply completion of the run in 15 hours; that is to be able to start 
the run before leaving the office for home on one day and having the optimization results 
ready the next morning with a PC computer running overnight.  In our case of an evaporator 
with 36 tubes, an optimization run was typically completed within four hours using a 
computer with a 1.7 GHz microprocessor, which yields an average simulation time for a 
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single architecture of 3.2 seconds. The amount needed to optimize a design for larger 
architectures will be longer and may require an overnight run. 

The number of populations used will also depend on the progress ISHED1 makes during the 
optimization process.  The progress for our example optimizations can be reviewed in Figure 
8, which presents capacity progression of the best architectures in each population for both 
cases studied.  For the uniform air distribution case, the first population already included a 
design with a reasonably high cooling capacity.   ISHED1 improved over this original design 
somehow, but the improvement shown is not dramatic.  For the case with non-uniform air 
distribution, the initial capacity was low, and ISHED1 made gradual improvements.  The 
figure shows that most capacity improvements were obtained in steps, which, in most cases 
indicate the instances when the Control Module switched between the two available 
optimization modes (the evolutionary and symbolic learning modes).  It appears that 
switching to the other mode “shook up”  the population and allowed for improved 
architectures with capacities exceeding those developed for the uniform air velocity profile. 

Progression of Simulated Capacity
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Figure 8.  Capacity progression for optimizations run for uniform and non-uniform air 
distributions 

While discussing the obtained results we should emphasize that the ISHED1 scheme, as well 
as any other evolutionary optimization method, will not repeat optimization results from one 
optimization run to another for the same environmental constraints.  This is due to the 
randomness that is inherently embedded in these schemes. This is in contrast to traditional 
calculus-based methods, which provide the same result, time after time, if the initial 
conditions have not changed. When running ISHED1 several times, we would obtain several 
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different architectures, which, in most cases, would provide similar capacity.  As a real-life 
analogy, we may think about different people who can perform a given task equally well 
although they may use somewhat different methods.  Also, as in real life situations, we have 
no guarantees as to the optimization outcome when using ISHED1 or other genetic 
algorithms-based methods due to the randomized operators employed.  However, we have 
clear evidence that ISHED1 is able to generate optimized designs, which in some cases 
would be difficult to formulate for a design engineer. 

5 CONCLUSIONS 

We described an experimental system, ISHED1, developed to assist a design engineer in 
optimizing finned-tube evaporators. Specifically, given input parameters and technical 
constraints, the system optimizes the refrigerant circuitry in the evaporator.  The novelty of 
this approach is in applying the recently developed Learnable Evolution Model (LEM), 
which integrates  Knowledge-based Evolutionary Computation with Symbolic Learning that 
guides the process of generating new designs. Generated designs are evaluated using the 
EVAP evaporator model, which simulates the designs.  

ISHED1 can be applied to evaporator design for different air-conditioning and refrigeration 
applications as it is not constrained by the refrigerant used or heat transfer surfaces other than 
the simulation limitations of EVAP. 

ISHED1 has only a few experience-based design principles incorporated in its code. It carries 
out the optimization process using randomized operators whose implementation may in 
effect resemble “out of the box”  thinking.  Experimentation with ISHED1 has demonstrated 
that it is capable of generating designs equal or superior to the best human designs, 
particularly in cases of non-uniform airflow.  Circuitry architectures generated by ISHED1 
require some manual adaptation to assure their manufacturability.   

The system is not oriented toward displacing a design engineer, but aims at offering to 
him/her useful guidance, particularly for designing heat exchangers with new overall 
geometries, heat transfer surfaces, and refrigerants. The methodology underlying ISHED1 is 
general and could potentially be used for other engineering design problems. 
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