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Abstract

An important form of inductive learning is inventing a meaningful classifica-
tion of given objects or events. This chapter extends the authors’ previous work on
this problem that was based on conceptual clustering, that is, grouping objects into
conceptually simple classes. In contrast to the past work, the new method deals with
classifying objects represented by structural descriptions rather than by sequences of ~
attribute values. These descriptions are expressed in Annotated Predicate Calculus
(APC), which is a typed predicate logic calculus with additional operators.

It is shown that in order to create a meaningful classification, a system must be
equipped with background knowledge, which includes goals of classification, classi-
fication evaluation criteria, and deductive and inductive inference rules. The goals
and goal-relevant descriptive concepts are organized into a Goal Dependency Net-
work (GDN). Inference rules permit the system to derive high-level descriptive con-
cepts such as functional and causal attributes from lower-level descriptive concepts
provided initially. Example classifications created by the program CLUSTER/S and
by people are presented.

*On leave of absence from the University of Illinois at Urbana-Champaign.
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472 CHAPTER 17: CONCEPTUAL CLUSTERING

17.1 INTRODUCTION

Creating a classification' is typically the firststep in developing a theory about
a collection of observations or phenomena. This process is a form of learning from
observation (learning without a teacher), and its goal is to structure given observa-
tions into a hierarchy of meaningful categories. The problem of automatically cre-
ating such a hierarchy has so far received little attention in Al Yet creating classifica-
tions is a very basic and widely practiced intellectual process.

Past work on this problem was done mostly outside Al under the headings of
numerical taxonomy and cluster analysis (Anderberg, 1973). Those methods are
based on the application of a mathematical measure of similarity between objects,
defined over a finite, a priori given set of object attributes. Classes of objects are
taken as collections of objects with high intraclass and low interclass similarity. The
methods assume that objects are characterized by sequences of attribute/value pairs
and that this information is sufficient for creating a classification. The methods do
not take into consideration any background knowledge about the semantic relation-
ships among object attributes or global concepts that could be used for characterizing
object configurations. Nor do they take into consideration possible goals of classifi-
cation that might be indicated by background knowledge.

Asa result, classifications obtained by traditional methods are often difficult to
interpret conceptually. The problem of interpreting the results has remained a chal-
lenging task for the data analyst. In addition, traditional classification-building
methods describe objects by attribute value sequences and therefore are inadequate
for creating classifications of structured objects, The description of such objects
must involve not only attributes of objects as a whole but also attributes of object
components and relationships among these components.

This chapter describes a method for automated generation of classifications of
structured objects through a process of conceptual clustering. This process generates
classes (clusters of objects) by first generating conceptual descriptions of the classes
and then classifying the objects according to these descriptions. The method is illus-
trated by a sample problem, and classifications produced by machine are compared
to those produced by people.

17.2 THE GOAL OF THIS RESEARCH

The idea of conceptual clustering leads to an entirely new approach to the
problem of creating classifications (Michalski, 1980a; Michalski and Stepp, 1983a,
1983b; Stepp, 1984). This idea states that objects should be arranged into classes that

ICreating or building a classification involves two subprocesses: (1) generating an appropriate set of cate-
gories and (2) classifying all given entities according to the generated categories.
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represent simple concepts rather than classes defined solely by a predefined measure
of similarity among their members.

In the earlier work on conceptual clustering, objects or events were described
by attribute-value sequences. The method arranged the objects into a hierarchy of
classes described by conjunctive concepts. These concepts are expressed as logical
products of relations on selected object attributes. The generated sibling classes of
any node in the hierarchy represented the most preferred (sub)classification from this
node according to a given preference criterion. The background knowledge included
the definitions of the attributes used in object descriptions, their domains and types,
and the classification preference criterion.

This research extends the previous work in three ways:

* Objects and classes are described by structural descriptions, which are expressed
in Annotated Predicate Calculus (APC), a typed predicate calculus with addi-
tional operators.

* The background knowledge includes inference rules for deriving high-level
descriptive concepts from the Jow-level concepts initially provided.?

e The system is supplied with a general goal of the classification, which provides
the means for identifying relevant descriptors and inference rules for deriving
new descriptors. This avoids the necessity of defining them explicitly, as in the
previous method.

An important aspect of this approach is the emphasis placed on the role of back-
ground knowledge for constructing meaningful and useful classifications. In this
method the background knowledge consists of a network of goals of the classifica-
tion, inference rules and heuristics for deriving new descriptors, definitions of
attribute domains and types, and the classification preference criterion. The network
of goals, called the Goal Dependency Nerwork (GDN), is used for guiding the search
for relevant descriptors and inference rules.

The necessity of using background knowledge in any form of inductive
learning is indicated in the theory of inductive learning (Michalski, 1983). Important
work involving background knowledge has been done by Winston (see chap. 3 of this
volume), who describes an incremental learning process in which the background
knowledge contains relevant precedents, exercises, and unless conditions. In chapter
19 DeJong presents a method of using background knowledge to acquire explanatory
schemata that describe sequences of events presented as stories. Background knowl-
edge has also been used by Mitchell and Keller (1983) to guide an inductive learning
program for acquiring a problem-solving heuristics in integral calculus. In learning

*The descriptive concepts are called descriptors and include attributes, n-ary functions, and relations used
to characterize objects or events.
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by analogy, described by Burstein in chapter 13, a large body of causal knowledge is
used to ““fill out” incomplete descriptions and guide analogical inference. Carbonell
(1983, and chap. 14 of this volume) developed a method for acquiring problem-
solving strategies by analogy to solutions to similar problems. Rendell’s Probabilistic
Learning System demonstrated the usefulness of clustering points in the solution
space for reducing the search required in problem solving (Rendell, 1983). As for the
problem of learning structural descriptions from examples, various aspects of this
problem are discussed in Winston (1984) and Dietterich and Michalski (1983).

To provide the necessary background, section 17.3 presents a brief overview of
the authors' earlier method of attribute-based conjunctive conceptual clustering.
Section 174 focuses on the role of background knowledge and goals in building clas-
sifications. Following that, section 17.5 presents a sample problem involving
building a classification of structured objects. Finally, section 17.6 presents two
methods for constructing classifications of structured objects that employ back-
ground knowledge.

17.3 ATTRIBUTE-BASED CONJUNCTIVE CONCEPTUAL CLUSTERING
(PREVIOUS WORK)

This section briefly describes the authors’ previous work on classifications
using the method of attribute-based conjunctive conceptual clustering (AC), which
is the sorting basis of the method presented here. The main idea behind AC? is that a
configuration of objects forms a class only if it can be described by a conjunctive con-
cept involving relations on object attributes. AC? is a special case of general concep-
tual clustering that generates a network of concepts to characterize a collection of
objects. The problem posed in the framework of AC? is defined as follows:

Given: A set of objects (physical or abstract),
A set of attributes to be used to characterize the objects, and
A body of background knowledge, which includes the problem con-
straints, properties of attributes, inference rules for generating new
attributes, and a criterion for evaluating the quality of candidate
classifications;

Find: A hierarchy of object classes, and their descriptions in the form of
conjunctive statements. Subclasses that are descendants of any parent
class should have logically disjoint descriptions and maximize a clus-
tering preference criterion.

As mentioned before, in conventional data analysis classes of objects are for-
mulated solely on the basis of a measure of object similarity. The similarity between
any two objects is characterized by a single number: the value of a similarity function
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applied to symbolic descriptions of objects. These symbolic descriptions are vectors,
whose components are scores on selected object attributes. Such measures of simi-
larity are context free; that is, the similarity between any two objects A and B depends
solely on the properties of the objects and is not influenced by any context (the envi-
ronment surrounding the objects). Consequently, methods that use such measures are
fundamentally unable to capture the gestalt properties of object clusters, that is,
properties that characterize a cluster as a whole and are not derivable from properties
of individual entities. In order to detect such properties, the system must be equipped
with the ability to recognize configurations of objects representing certain global
concepts.

This idea is the basis of conceptual clustering. Instead of similarity between
objects, say, 4 and B, the method uses conceptual cohesiveness of A and B, which
depends not only on those objects and surrounding objects £ (the environment) but
also on a set of concepts Cthat are available for describing 4 and B together. Thus, the
conceptual cohesiveness between two objects 4 and B is a four-argument function
f(A,B,E,C) in contrast to an ordinary two-argument similarity function f(4,B).

The conjunctive conceptual clustering method consists of two phases: a clus-
tering phase and a hierarchy-building phase. The clustering phase arranges objects
into classes using conceptual cohesiveness, so that the obtained clustering maximizes
the given context-based clustering preference criterion. The hierarchy-building
phase starts with building first-level conceptual classifications of all objects (at the
root of the hierarchy). Then it recursively builds a classification for each sibling
group of objects from the previous classification until the stop growrh criterion
is met.

The clustering phase algorithm works by alternately selecting a set of seed
objects (one per class) and using the seeds to guide inductive inference over positive-
only events to produce generalized, but mutually disjoint, descriptions of object
classes. This process insures that each seed object is placed into a separate class.
Each cluster description is as general as possible (various generalization transforma-
tions are exhaustively applied) so that it covers the given seed but no other seeds. Dif-
ferent seeds are used over several iterations while the clustering preference criterion
is monitored. The algorithm halts when the clustering preference criterion does not
improve for a dynamically determined number of iterations. The algorithm is
described in detail in Michalski and Stepp (1983b).

17.4 THE USE OF BACKGROUND KNOWLEDGE AND GOALS

Suppose that we are observing a typical restaurant table on which there are
such objects as food on a plate, a salad, utensils, salt and pepper, napkins, a vase with
flowers, a coffee cup, and so on, as illustrated in figure 17-1. Suppose a person is
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Figure 17-1: A typical restaurant table.

asked to build a meaningful classification of objects on the table. One way to create a
classification is to perform the following chain of inferences:

¢ Salt and pepper are seasonings
Secasonings are used to add zest to food
Seasoned food is something to be eaten
Things that are to be eaten are edible
Salt and pepper are edible

¢ Salad is a vegetable
Vegetables are food
Food is something to be eaten
Things that are to be eaten are edible
Salad is edible

A similar chain of inferences applied to meat on a plate and cake on a desseri plate
will also lead to the concept is edible. On the other hand, a napkin is not food and is
therefore not edible. A vase containing flowers is not food and is therefore not edible.
Consequently, one meaningful classification of objects on the table is simply edible
versus inedible.
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One may observe that when the background knowledge contains many such
rules of inference, a large number of different but equally meaningful classifications
can be created. The problem is then how to decide which of the classifications is best
or most appropriate. For example, if inference rules about food types, suppliers, pro-
cessing, and packaging were contained in the knowledge base, they could be used for
generating other classifications. Some new classifications might produce categories
such as domestic versus imported or perishable versus nonperishable. The problem
of which classification to select can be resolved by assuming a general goal or pur-
pose to be served by the classification. Assume, for example, that the classification is
1o be useful to an agent who wants to survive. Such a behavioral goal to survive dic-
tates that a person has to ingest food and liquids, and be safe. Furthermore, the sub-
goal ingest can be linked to the two modes of ingestion, that is, consuming food and
drinking liquids. In the context of the subordinate goals reached by links from the
most general goal node, the relevant attributes are, for example, is_edible, and
is_potable, tastes_good. The attribute fastes_good is linked by the implication rela-
tion to is_edible or is_potable (if something tastes good then it is either edible or
potable).

Thus there is a general goal leading to subgoals and then to one or more attrib-
utes that are relevant in the context of the goal. Such relationships are captured in the
Goal Dependency Network (GDN) mentioned earlier. This network links goals, sub-
goals, and relevant attributes together. Partof a hypothetical GDN headed by the sur-
vive goal is shown in figure 17-2. In the illustration, main goals are denoted by double

------

> A general goal

O A subordinate goal
) Arclevantattribute or predicate 1 . Lt
—» A goal subordination relation

-+ Anattribute relevancy relation
- An implication relation between aitributes

Figure 17-2: A GDN headed by the goal survive.
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ellipses, and subgoals and relevant descriptors are denoted by regular ellipses and
rectangles, respectively. The solid arcs between nodes are directed from goal nodes
towards subordinate goal nodes. The dashed arcs between nodes and attributes are
directed from goal nodes to relevant attribute nodes, and the dotted arcs link an
attribute with an implied attribute.

Suppose that the goals of the agent include not only survive but also be healthy
and beautiful. When both goals are involved. a GDN such as the one in figure 17-3 is
used. Here, the links from the two top-level goals converge at the consume dietary
food subgoal which links to the subordinate goals consume lean foods and consume
balanced diet. Attached to these latter nodes are the relevant descriptors far content

‘ is_potable

consume
food

Y

is_cdible

fat content is_lean

consume
lean
foods

consume
dictary
foods

be healthy
and beautiful

consume

balanced vepetabl
@ A general goal diet getables
O A subordinate goal H i
3 A relevant attribute or predicate Y \
—+ A goal subordination refation nutrient :
’ X content is_vegetable
--+ An attribute relevancy relation

Figure 17-3: A GDN for the goals survive and be healthy and beawtiful.
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and is_lean, and mutrient content, respectively. The two subgoal nodes mentioned
above have subordinate goal nodes of their own. These include eat lean meat and eat
vegetables. The relevant descriptors attached to these nodes include the predicates

is_lean, is_meat, and is_vegetable. Thus, by the addition of the top-level goal be
healthy and beautiful, five additional relevant attributes are proposed by the GDN.

Adding a top-level goal may reduce the number of attributes thought to be rele-
vant. Suppose we add a vegetarian life-style goal. Link paths from the three top-level
goals converge at the subordinate goal eat vegetables. This increases the relevancy of
the is_vegetable predicate which now dominates in relevancy over the other attrib-
utes. The GDN for this last situation is illustrated in figure 17-4,

Let us now consider a specific problem: the system is given symbolic descrip-
tions of objects on the table in terms of their physical attributes (including structure)
along with survive as a general goal of classification, and we want it to create the clas-
sification into edible versus inedible objects. Notice first that creating such a classifi-
cation solely on the basis of original attributes is practically impossible, because
objects that are in the same functional class (edible or inedible) can be vastly different
in terms of their physical properties (see Winston, 1984, for a discussion of this
problem). A program that could classify objects on a table as edible or inedible would
have to be equipped with background knowledge consisting of the previously
described inference rules and with the ability to use them in a goal-directed way.

Background knowledge built into the program can be divided into general pur-
pose and domain specific. General-purpose knowledge consists of fundamental con-
straints and criteria specifying general properties of classifications. This includes a
specification of the domain of each descriptor, the type of the domain (unordered,
linearly ordered, or tree-structure ordered), and a sequence of elementary criteria to
be applied lexicographically with tolerances to evaluate classifications. The Lexico-
graphical Evaluation Functional with 1olerances, or LEF (see section 17.6.2), is used
to select from among candidate classification schemes the one that is the most pre-
ferred viewpoint of the given goal.

Domain-specific background knowledge consists of inference rules for
deriving values for new descriptors and GDN to infer which descriptors (attributes,
functions, or predicates) are relevant to the goal of classification.

Event descriptors can be divided into initial descriptors and derived descrip-
tors. Both kinds of descriptors can appear attached (o goal nodes in the GDN. The
initial descriptors can be divided into those that are relevant with respect to the goals
and those that are irrelevant. In some problems, the relevant descriptors are unknown
and not necessarily provided as initial descriptors. A solution can still be obtained in
such cases if background knowledge can be used to derive relevant descriptors from
those that are initially given. Inference rules in the knowledge base are used to infer
the values of the derived descriptors. Domain-specific knowledge in the GDN is used
to guide the application of inference rules toward descriptors that are likely to be rele-
vant and thus worth the computational cost of their derivation.
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Figure 17-4: A GDN for the goals survive, be healthy and beautiful, and vegetarian life-style.
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Derived descriptors can be divided into two categories:

e Descriptors derived by logical inference. These descriptors are predicates and
functions obtained by the application of general and problem-specific infer-
ence rules to the initial descriptions of the objects. In this work, inference rules
consist of a condition part and a consequence part. Wheneveran object descrip-
tion matches the condition portion of a rule, the consequence portion is applied
to the object description. The consequence may be composed either of new
predicates and functions to be asserted or of arithmetic expressions that are
evaluated. In either case, the new descriptors (unless already present) are
appended to the object description and become available as attributes that are
potentially relevant for building classifications of the objects.

Descriptors derived by special computations, experiments, or devices. These
descriptors are obtained from the initial descriptors by the application of spe-
cialized descriptor generation procedures, by running experiments, or by acti-
vating some external device, that is, any procedure other than the application of
condition-consequence rules. Examples of such descriptors generated by the
INDUCE/2 program (Hoff, Michalski, and Stepp, 1983) are *“the number of
object subparts,” ““the number of subparts with some specific property,” *“the
number of different values observed for an attribute,” and *“properties common
toall subparts.”” The program can also automatically generate multiplace predi-
cates to assert ‘“‘same function value" for several parts—for example,
samecolor(p1,p2)—and single-place predicates to assert head and tail positions
in a chain of properties—for example, to assert most-ontop(p!) and least-
ontop(p1) when given ontop(p1,p2) and ontop(p2,p3).

17.5 BUILDING CLASSIFICATIONS OF STRUCTURED OBJECTS

Let us turn now to the problem of classifying structured objects. Consider,
for example, the problem of classifying trains, shown in figure 17-5. The trains are
structured objects, each consisting of a sequence of cars of different shapes and sizes.
The individual cars carry a variable number of items of different shapes. The problem
presented is in a class of learning problems known as learning from observation,
or concept formation. It is interesting to both Al researchers and cognitive
psychologists.

*This example is a reformulation of a problem known as *“East- and Westbound Trains™ (Michalski and
Larson, 1977). Inthe original formulation, two collections of trains were given, those that werc eastbound
(A 10 E) and those that were westbound (F to J); the problem was to learn a simple rule for distinguishing
between the eastbound and the westbound trains. Thus the original problem was that of learning from
examples, or concept acquisition.
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Figure 17-S:  How would you classify these trains?

Human classifications of the trains shown in figure 17-5 have been investigated
by Medin, Wattenmaker, and Michalski (1985). The ten trains were placed on sepa-
rate index cards so they could be arranged into groups by the subjects in the experi-
ment. Each subject was instructed to partition the trains according to three methods
and to state the rationale used:

1. Arrange the trains into any number of groups.
2. Arrange the trains into two equal groups.

3. Arrange the trains into any number of groups of conceptually similar objects
plus an “‘other” group to hold any unusual or hard-to-classify trains.

The experiment was completed by thirty-one subjects who made a total of ninety-
three classification schemes for partitioning the objects. The most popular basis for
classification (seventeen repetitions) was the number of cars in the trains (a simple
attribute that characterizes each train as a whole). The three clusters formed were the

(LY

following: *‘trains containing two cars,” “trains containing three cars,” and “trains



STEPP AND MICHALSKI 483

containing four cars.” The second most frequent classification (seven repetitions)
was based on the engine wheel color. These two classifications are shown in figure
17-6. Of the ninety-three classifications produced, forty of them were unique. Thus,
although there was no explicit goal for classification given, there was a pattern of uni-
formity among the subjects. The pattern was not a very strong one, however, as wit-
nessed by a wide spectrum of singleton solutions.

This problem is an example of a class of problems for which the implicit classi-
fication goal is to generate classes that are conceptually simple and based on easy-to-
determine visual attributes. When people are asked to build such classifications, they
typically form classes with disjoint descriptions, as in the study by Medin. People
typically do not suggest intersecting classifications, and it is for this reason that we
focus on methods that produce disjoint descriptions.

Classification problems such as this one occur when one wants to organize and
classify observations that require structural descriptions—for example, when one
wants to classify physical or chemical structures, analyze genetic sequences, build
taxonomies of plants or animals, characterize visual scenes, or split a sequence of
temporal events into episodes with simple meanings. As an example of the latter
problem, consider splitting a kidnapping story into episodes such as kidnapping, bar-
gaining, and exchange (DeJong, 1981).

One problem of concern here is to develop a general method that when applied
to the collection of structured objects, such as trains, could potentially generate the
conjunctive concepts occurring in human classifications or invent new concepts
having similar appeal. We first assume that there is only a very general goal for a
classification, such as simplicity of descriptions of categories or good fit of the cate-
gories 1o the examples. The method should be able 1o generate conceptual categories
that can be described by a conjunction of predicates. These conjunctions should rep-
resent a minimal overgeneralization of observed events in the class so as to insure a
good “fit” between each class description and the events.

Figure 17-7 shows a hypothetical GDN for a classification for which the general
goal is to find simple visual patterns. A subordinate goal is to look for simple geomet-
rical regularities in object descriptions. For the trains problem, this goal node leads
to the relevant variables such as number of cars, color of wheels, number of wheels,
number of items carried, and so on. The simple geometrical regularities goal links to
the two subordinate goals shape of components and similarity of components. The
first of these subgoals leads to relevant attributes involving shape (cargo shape,
engine shape, car shape). The second subgoal leads to a varicty of relevant attributes
relating one component of a train to other components. The number of different
shapes attribute gives the count of the different car shapes in a train. A count of the
number of different cargo shapes in a car would be another attribute of this same type.
The same car shape or same color of wheels attributes are predicates of two or more
variables that denote the equality of feature values across several components in
the train. If all components have the same value for some attribute, then a forall
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Figure 1771 A GDN for the goal of finding simple visual patterns.

predicate, such as all wheels in the train are black, is a relevant atiribute for
describing the situation.

As examples of solutions obtained by the program CLUSTER/S implementing
the method, figure 17-8 shows two classifications created for the trains problem. For
this problem, the structured descriptions of each train involve the descriptors con-
tains, infront, car shape, number of wheels, wheel color, cargo shape, and number of
items carried, The program determined several new descriptors that were not in the
initial descriptions, such as number of different shapes, same-shape predicates,
same-color-of-wheels predicates and so on.

The generated attribute vectors were processed using a classification evalua-
tion criterion that attempts to minimize the number of attributes used in a descrip-
tion, maximize the number of attributes that singly discriminate among all classes,
and maximize the number of attributes that take different values in different classes.
Minimizing the number of attributes used tends 1o conflict with the other two ele-
mentary criteria. This was handled by specifying a high tolerance (90 percent) for the
first elementary criterion and zero tolerances for the second and third elementary cri-
teria in the LEF evaluation criterion described in section 17.6.2.



Class 1: “There are two different car shapes Class 1: “Wheels on ali cars have the same color.”
in the train.”

Class 2: “There are three or more different Class 2: “Wheels on all cars do not have the
car shapes in the train.” same color.”

Figure 17-8:  Two simple classifications found by the program CLUSTER/S.
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Classification A in figure 17-8 was generated by the program withtwo different
sets of class descriptions. The top class (" There are two different car shapes in the
train’) was also described as “The third car from the engine (if it exists) has black
wheels”” The bottom class (“There are three or more different car shapes in the
train™) was also described as “The third car from the engine exists and has white
wheels.” Classification B in figure 17-8 is based on the derived predicate samecolor.
Both classifications received the same evaluation criterion score and were considered
10 be alternative classifications. Solutions of the kind shown in figure 17-8 are
appealing because the differences between classes is striking yet not obvious from
casual inspection.

17.6 TWO METHODS FOR BUILDING CLASSIFICATIONS

This section describes two methods for solving problems of the kind posed in
the preceding section, that is, building a classification of a collection of structured
objects. One method is called RD, which stands for repeated discrimination, and the
other is called CA, which stands for classifying attributes. The RD method is based
on the authors' previous work and reduces the problem of building a classification
into a sequence of concept acquisition problems, specifically, problems of deter-
mining discriminant descriptions of objects with given class labels (Michalski and
Stepp, 1983b). The CA method is based on generating candidate classifying aftrib-
utes either from the initially given pootl of attributes or from derived attributes gener-
ated with the aid of inference rules and the Goal Dependency Network.

The two methods are similar in that they both use the same representation lan-
guage (APC) for describing objects, classes of objects, and general and problem-
specific background knowledge. Both methods use the LEF as the general-purpose
criterion for measuring the qualiry of generated candidate solutions. The APC and
LEF are described in the next two sections, respectively.

17.61 The Description Language: Annotated Predicate Calculus

The Annotated Predicate Calculus (APC) is an extension of predicate calculus
that uses several novel forms and attaches an annotation to each predicate, variable,
and function (Michalski, 1983). The annotation is a store of information about the
given predicate or atomic function, such as the type and structure of its legal value
set, related (more general or more specific) descriptors in descriptor hierarchy, and
other information. In addition to all the forms found in predicate calculus, the lan-
guage also uses a special kind of predicate called aselector. A simple selector is in the
form

{atomic-function REL value-of-atomic-function]
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where REL (relation) stands for one of the symbols = # < > = =. Anexample of
such a selector is

[weight(box) > 2kg]

which means “the weight of the box is greater than 2 kg." A more complex selector
may involve internal disjunction or internal conjunction. These two operators ap-
ply to terms rather than to predicates and are illustrated by the two corresponding
examples:

[color(box) = red & purple] *The color of the box is cither red or
purple.”
[color(box] & box2) = red] “The color of box 1 and box 2 is red.”

The meaning of the internal disjunction operator is defined by
(f(x) = a & b] = [fx) = a] & [f(x) = ]
and the meaning of the internal conjunction operator is defined by

(fx & y) = a] = [f(x) = a] & [f(y) = a).

Selectors can be combined by standard logical operators to form more complex
expressions. Background knowledge is expressed as a set of APC implicative rules:

CONDITION = CONSEQUENCE

 where CONDITION and CONSEQUENCE are conjunctions of selectors. Thus a
rule in APC is more general than the Horn clause used in PROLOG. If CONDITION
is satisfied, the CONSEQUENCE is asserted. To understand the implicative state-

~ ment, consider the assertion ‘‘vegetables are food™ from the example in section 174

It can be expressed in APC by the following statement, which says, *'if an object is a
vegetable then it is also a food™:

[is_vegetable(object)] = [is_food(object)]

An alternative way to express this idea in APC is

[object-type(object) = vegeiable] = [object-type(object) = food]

which says, “if the type category of an object is vegetable than the type catcgory is
also food.” In this latter statement vegetable and food are treated as elements of the
structured domain of the attribute object-rype. This implication expresses a general-
izing inference rule called climbing the generalization tree. Further details on the
APC language are given in Michalski (1983).
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17.6.2 Direcling the Process by Measuring Classification Quality

Creating a classification is a difficult problem because there are usually many
potential solutions with no clearly correct or incorrect answers. This proliferation of
answers was seen in the experiment with human classification building presented in
section 17.5. The decision about which classification to choose can be based on some
perceived set of goals (Medin, Wattenmaker, and Michalski, 1985), a goal-oriented,
statistic-based utility function (Rendell, 1983), or some measure of the quality of the
classification.

One way to measure classification quality that has been successful in both
INDUCE/? and CLUSTER/2 is to define various elementary, easy-to-measure cri-
teria specifying desirable properties of a classification and to assemble them together
into one general criterion, called the Lexicographical Evaluation Functional with tol-
erances (LEF) (Michalski, 1980b). Each elementary criterion measures a certain
aspect of the generated classifications. Examples of elementary criteria are the rele-
vance of descriptors used in the class descriptions to the general goal, the fit between
the classification and the objects, the simplicity of the class descriptions, the number
of attributes that singly discriminate among all classes, and the number of attributes
necessary to classify the objects into the proposed classes (Michalski and Stepp,

1983b). :

The LEF consists of an ordered sequence of elementary criteria along with tol-
erances that control to what extent different solutions are considcred equivalent.
First, all classifications are evaluated according to the first elementary criterion.
Those that score best or within the given tolerance range from the best are retained.
Those retained are then evaluated according to the next elementary criterion, and so
on, until either a single classification remains or the list of elementary criteria in the
LEF is exhausted. In the latter case, all classifications that remain are judged equal |
and the algorithm picks one arbitrarily. To control combinatorial explosion, the LEF
is also applied during the search process that generates classifications. The LEF pro-
vides a powerful heuristic for searching the huge space of hypothetical classifications
to find a classification that optimizes several criteria at once.

17.6.3 Using Background Knowledge

Building a meaningful classification relies on finding good classifying attrib-
utes (high-level attributes used to define classes). For example, the attribute is_edible
discussed in section 174 is such a high-level classifying attribute. The repeated dis-
crimination and classifying attributes methods, described in sections 17.64 and
17.6.5, both use background knowledge in the search for such attributes. The Goal
Dependency Network is traversed to find the interactions between the classification
goal(s) and the potential descriptors. Background knowledge rules enable the system
to perform a chain of inferences to derive values for new descriptors for inclusion in
object descriptions. The new descriptors are tested to determine if they make good
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classifying attributes by applying the LEF to the classification defined by the classi-
fying attribute.

As described in section 174, the background knowledge rules can represent
both the built-in general-purpose knowledge and the domain-specific knowledge
provided by the data analyst. In the latter case, knowledge for generating inferen-
tially derived descriptors is supplied in the form of an inference rule (called a back-
ground rule, or b-rule). Special types of b-rules include expressions of arithmetic
relationships (a-rules), such as

V object, girth(object) = lengfh(object) + width(object)

and implicative rules that specify logical relationships (I-rules), such as:

V p1,p2,p3, [above(p1,p2)][above(p2,p3)] = [above(p;,p3)]
or

Vpl»szPS» [mOKher (Phpz) & ([InOIher(pZIPS)] V [father(pbP})])
<> [grandmother(p,,p3)].

Each rule is associated with a condition defining the situations to which it is
applicable.

17.6.4 Concept Formation by Repeated Discrimination: Method RD

This section explains how a problem of concept formation (here, building a
classification) can be solved via a sequence of controlled steps of concept acquisition
(learning concepts from examples). We start with a brief description of the program
INDUCE/2, which solves concept acquisition tasks involving structured objects.

Givena et of events (by which we mean symbolic descriptions of objects or sit-
uations) arranged into two or more classes, INDUCE/2 induces a general description
of each class in the form of an annotated predicate calculus expression. First, all
events are divided into two sets: set F1 of events belonging to the class currently
being considered and set FO of events belonging to any other class (counterexamples
toset F1). One event at a time is selected from set F1 (the seed event) and a star is built
that covers the seed event againsi all events in set FO. The star is the set of all alterna-
tive most general descriptions that describe the seed event (and possibly other events
from F1) and no events from FO (Michalski, 1983; Michalski and Stepp, 1983b).

To control combinatorial explosion, INDUCE/2 determines bounded stars
rather than complete stars. A bounded star contains only a fixed number of descrip-
tions selected as most promising according to LEF. The highest-rank description in
the bounded star is chosen as a part of the solution. The events covered by the
resulting description are removed from set F1. If any events remain in F1, another
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sced event (from among those not yet covered) is selected and the whaole process is
repeated. When all events in the set F1 have been covered, the solution is complete: it
is the disjunction of the descriptions selected in each iteration.

This algorithm for concept acquisition can be adapted for solving classification
construction problems. Given a set of unclassified objects, k sced objects are selected
randomly and treated as individual representatives of k imaginary classes. The algo-
rithin then generates descriptions of each seed that are maximally general and do not
cover any other seed. These descriptions are then used to determine the most repre-
sentative object in each newly formed class (defined as the set of objects satisfying
the class description). The representative objects arc used as new seeds for the next
iteration. The process stops either when consecutive iterations converge to some
stable solution or when a specific number of iterations pass without improving the
classification (from the viewpoint of the criterion LEF).

This approach requires the selection of a defined number of represcntative
objects (corresponding to the number of classes). Since the best number of classes to
form is usually unknown, two techniques are used: (1) varying the number of classes
and (2) composing the classes hierarchically.

Since the classification to be formed should be simple and easy to understand,
the number of classes that stem from any node of the classification hierarchy was
assumed to be in the range of two to seven. Since this range is small, it is computa-
tionally feasible to repeat the whole process for every number in this range. The solu-
tion that optimizes the score on the LEF (with appropriate adjustment for the effect of
the number of classes on the score) indicates the best number of classes to form at this
level of the hierarchy.

The above idea of repeated discrimination for performing concept acquisition
has been implemented in the program CLUSTER/2 for a subset of annotated predi-
cate calculus involving only attributes (zero-argument functions). Besides its relative
computational simplicity, this approach has other advantages stemming from
descriptions (for both objects and classes) that are quantifier free. Specifically, it
should be noted that classifications normally have the property that they can unam-
biguously classify any object into its corresponding class. To have this property, the
class descriptions must be mutually disjoint.

For conjunctive descriptions involving relations on attribute/value pairs, the
disjointness property is easy to test and easy to maintain. For the larger subset of APC
involving existentially quantified variables, predicates on these variables, and
function/value relationships over quantified variables, the test for mutual disjoint-
ness of descriptions and the maintenance of disjointness are difficult. As a result of
this difficulty, the approach taken for concept acquisition from structured objects
involves two processing steps. The first step, using algorithms of INDUCE/2, finds
an optimized characteristic generalization of the entire collection of events and then
applies it to generate a quantifier-free description of each object (a vector of attribute
values). The second step processes the quantifier-free object descriptions with the
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CLUSTER/2 algorithm to form optimized classifications. These two processes are
combined in the program CLUSTER/S.

A characteristic generalization expresses a common substructure in all struc-
tured objects that facilitates the binding of a subset of the free variables (representing
object parts) to specific parts. That portion of the structure of each object that is
described by the characteristic generalization is called the core of cach object. With
corresponding parts identified in all objects, the cores may be described by a vector
of attribute values. Thus the descriptions of object cores need neither quantified vari-
ables nor multiplace predicates in their descriptions (i.e., such descriptions can be
handled by the CLUSTER/2 program).

Tt is recognized that structural differences between objects would be lost by the
above approach since it focuses on the comion substructure found in all given
objects. To retain some unique structural features of individual objects, an inspection
is made of the connections between object subparts within the core and object sub-
parts outside the core. New predicates are automatically generated and added to
object descriptions to denote the attachment of different kinds of additional struc-
tures to the core of each object.

The descriptions of each substructure connected to the cores of objects are col-
lected and classified by recursive application of the conjunctive conceptual clustering
procedure. The resulting types of substructures are given labels (e.g., a unique class
number) which are used in the generated predicates that show whar kind of additional
structure is attached where to the core structure. The final object descriptions contain
attributes for core parts and predicates denoting the kind of attached substructures, as
well as derived descriptors for both core subparts and the object as a whole. After this
transformation, objects are describable (with reduced detail) by attribute vectors.

The following extension of the trains problem will further illustrate the use of a
GDN and problem-specific background knowledge. Suppose that the knowledge
base includes an inference rule that can identify trains carrying toxic chemicals.
Suppose also that the general goal survive has a subordinate goal to monitor dan-
gerous shipments. The additional background knowledge can be used to help build a
classification.

Inthe itlustrations of the trains a toxic chemical container will be identified as a
single sphere (circle) riding in an open-top car. The logical inference rule (/-rule)
supplied to CLUSTER/S is

[contains(trains,car)][car-shape(car) = opentop)
[cargo-shape(car) = circle]{items-carried(car) = 1]
<> [has_toxic_chemicals(train)}

In the above rule, equivalence is used to indicate that the negation of the condition
part is sufficient 1o assert the negative of the consequence part. After this rule
is applied, all trains will have descriptions containing either the toxic-chemical
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predicate or its negation. The characteristic description gencrated by CLUSTER/S
will now contain the additional predicate has_toxic_chemicals(train) or its negation.

In the GDN we find the main goal survive and a chain of subordinate goals
beginning with be safe and monitor dangerous shipments. Two additional subgoals
are monitor chemicals shipments and monitor toxic chemicals shipments. Attached to
these nodes are relevant attributes such as is_explosive, is_radioactive, is_flam-
mable, is_corrosive, has_toxic_chemicals, and so on. The GDN is illustrated in figure
17.9. The GDN signals the relevancy of these descriptors to the goal survive.
Assuming that this goal takes precedence over the goal find simple visual patterns,
classifications that make use of the has_toxic_chemicals descriptor in formulating
conceptual classes score higher than those that use descriptors. The classification
produced in this case is shown in figure 17-10.

17.6.5 Concept Formation by Finding Classifying Attributes:
Method CA

This section describes another approach for building classifications called
classifying attributes (briefly, CA). This approach attemplts to find one or more clas-
sifying attributes whose value sets can be split into ranges that define individual
classes. The important aspect of this approach is that the classifying attribute can be
derived through a goal-directed chain of inferences from the initial attributes. The

is_radioactive is_corrosive
[} t

monitor
dangerous
shipments

monitor
chemicals
shipments

1 0
is—nan\"]ablc

has_toxic__
chemicals

@ A general gaal
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--» An attribute relevancy relation
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Figure 17-9: A hypothetical GDN for dangerous train shipments,
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““These trains are not carrying toxic chemicals.”

Figure 17-10: A classification produced using the roxic chemicals inference rule,

classifying attributes sought are the ones that lead to classes of objects that are best
according to the classification goal.

The promise of a descriptor to serve as a classifying attribute is determined by
consulting the GDN and by considering how many other descriptors it implies. For
example, if the goal of the classification described in section 17.4 is finding food, the
attribute edibiliry might be a classifying attribute. The second way of determining the
promise of an attribute can be illustrated by the problem of classifying birds. The
question of whether color is a more important classifying attribute than is_waterbird
is answered in favor of is_waterbird, because the latter implicatively leads to more
implied attributes than does the attribute color in a given GDN network (e.g.,
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is_waterbird implies can_swim, has_webbed_feet, eats_fish, and so on) (Medin,
1982).

There are two fundamental processes that operate alternately to generate the
classification. The first process SEARCH scarches for the classifying attribute whose
value set can be partitioned to form classes such that the produced classification
scores best according to the LEF. The sccond process GENERATE generates new
descriptors by a chain of inferences using two forms of background knowledge rules:
logical implicative rules (I-rules) and arithmetic rules (a-rules). Descriptors that
can be inferred are ordered by relevancy indicated by the GDN and the goals of the
classification.

SEARCH can be performed in two ways. When the number of classes to form (k)
is known in advance, the process searches for attributes having & or more different
values in the descriptions of the objects to be classified. These values are called the
observed values of the attribute. Attributes with the number of observed values
smaller than & are not considered. For attributes with observed value sets larger than
k, the choice of the mapping of value subsets to classes depends on the resulting LEF
score for the classification produced and the type of the value set. When the number
of classes to form is not known, the above technique is performed for a range of
values of k. The best number of classes is indicated by the classification that is best
according to the LEF.

GENERATE constructs new attributes from combinations of existing attributes.
Certain heuristics of attribute construction are used to guide the process. For
example, two attributes that have linearly ordered value sets can be combined using
arithmetic opcrators. When the atiributes have numerical values (as opposed to sym-
bolic values such as small, medium, and large), a trend analysis can be used to sug-
gest appropriate arithmetic operators, as in the BACON system (see chap. 16). Predi-
cates can be combined by logical operators to form new attributes through I-rules.
For example, a rule that says an animal is a reptile if it is cold-blooded and lays eggs
can be written in APC as

[cold-blooded(a1)}[offspring birth(al)

i

eggl = [animal-type(al)
reptile].

il

The application of this rule to the given animal descriptions yields the new attribute
animal-1ype with the specified value reptile. Using this rule and similar ones, one
might classify some animals into reptiles, mammals, and birds even though the type
of each animal is not stated in the original data.

17.7 SUMMARY

This chapter has discussed the problem of building classifications of structured
objects using goal-directed inferences from background knowledge. Two methods
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for performing this task were described. The first method, RD (repeated discrimina-
tion), transforms concept formation into a sequence of concept acquisition tasks. The
second method, CA (classifying attributes), forms classes by generating new
descriptors using a chain of inferences and testing them as candidate classifying cri-
teria. The criterion selected is the one that partitions the set of events in the way most
preferred according to a Lexicographical Evaluation Functional (LEF).

The classifying attributes are generated with the aid of a Goal Dependency Net-
work, which relates goals to subgoals and to relevant attributes. The ability to incor-
porate domain-specific background knowledge in the form of inference rules and
Goal Dependency Networks adds a new dimension to the process of concept forma-
tion and data analysis.

This work could be further extended through the investigation of alternative rep-
resentations for describing classes in a classification. These could include the use of
logical operators such as implication, equivalence, and exception ina class description.
The exception operator appears to be especially interesting because of its frequent use
by people. Exception clauses in logical rules can be introduced by using unless condi-
tions to handle the cases that are not frequent or ordinary (see chap. 3).

Another extension of this work could be the development of a system capable of
characterizing a collection of observations (facts, events, and so on) not just by a hier-
archy of concepts but by a concept network, in which nodes represent conceptual
classes and links represent various relations among them. In the kind of hierarchy
considered here, any two generated concepts are related by the relation is a general-
ization of or is a specialization of or is a disjoint of. In a concept network (a form of
semantic network) a much larger set of relations would be allowed.
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