
AN EVOLUTIONARY APPROACH
FOR SYSTEM TESTING OF ANDROID APPLICATIONS

by

Riyadh Mahmood
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of

the Requirements for the Degree
of

Doctor of Philosophy
Information Technology

Committee:

Dr. Sam Malek, Dissertation Director

Dr. Songqing Chen, Committee Member

Dr. Kris Gaj, Committee Member

Dr. Angelos Stavrou, Committee Member

Dr. Stephen G. Nash, Senior Associate Dean

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Date: Summer Semester 2015
George Mason University
Fairfax, VA

An Evolutionary Approach for System Testing of Android Applications

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Riyadh Mahmood
Master of Science

Virginia Tech, 2004
Bachelor of Science
Virginia Tech, 2000

Director: Sam Malek, Associate Professor
Department of Computer Science

Summer Semester 2015
George Mason University

Fairfax, VA

Copyright c© 2015 by Riyadh Mahmood
All Rights Reserved

ii

Dedication

This is dedicated to my parents.

iii

Acknowledgments

This dissertation would not have been possible without the endless support from my family.

I would like to thank my adviser Dr. Sam Malek for his kind support, guidance, patience
and for not giving up on me. Sam’s encouragement and direction gave me the confidence
to go the last mile.

I thank Dr. Songqing Chen, Dr. Kris Gaj, and Dr. Angelos Stavrou for serving on my
committee and providing me with insightful feedback. I really appreciate their flexibility in
scheduling my exams.

I thank Nariman Mirzaei, Naeem Esfahani, and Thabet Kacem for their help. Finally,
I thank my friends for their moral support and my colleagues for their understanding.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . ix

Abstract . xi

1 Introduction . 1

2 Background . 7

2.1 Evolutionary Algorithms Background . 7

2.2 Android Background . 8

2.3 Android Emulator . 11

3 Related Work . 13

3.1 Evolutionary Testing . 13

3.2 Mobile Apps Testing . 14

3.3 Android Testing Tools . 16

3.3.1 Android Monkey . 16

3.3.2 MonkeyRunner . 17

3.3.3 Dynodroid . 18

3.4 Mobile Apps Vulnerability Testing . 18

4 Research Problem . 21

4.1 Motivating Example . 21

4.2 Problem Statement . 22

4.3 Research Hypotheses . 25

5 Approach Overview . 27

5.1 App Models . 29

5.2 Representation . 30

5.3 Crossover . 30

5.4 Mutation . 33

5.5 Fitness . 33

5.6 Design Considerations . 34

6 EvoDroid Static Approach . 36

v

6.1 Approach Overview . 36

6.2 Apps Models Extraction . 38

6.2.1 Interface Model . 40

6.2.2 Behavior Model . 40

6.3 Algorithm . 43

6.3.1 Fitness . 45

7 EvoDroid Dynamic Approach . 47

7.1 Approach Overview . 47

7.2 Apps Models Extraction . 50

7.2.1 Interface Model . 50

7.2.2 Behavior Model . 52

7.3 Algorithm . 53

7.3.1 Fitness . 55

8 Cloud Testing Framework . 57

8.1 Test Case Generation . 57

8.2 Amazon Web Services . 59

8.3 Cloud Test Manager . 59

9 Evaluation Subject Generation . 62

9.1 Empirical Study . 63

9.2 DroidGen . 66

10 Evaluation Results . 69

10.1 Experiment Environment . 69

10.2 Experiment Setup . 70

10.3 Open Source Apps . 71

10.4 Synthetic Benchmark Apps . 73

10.4.1 Impact of Complexity . 74

10.4.2 Impact of Constraints . 76

10.4.3 Impact of Sequences . 77

11 Applications of EvoDroid . 79

11.1 Security Vulnerability Testing . 79

11.2 Incremental Regression Testing . 80

11.3 Field Failure Replication Testing . 81

11.4 Limitations . 82

12 Reasoning About Input Values . 83

12.1 SIG-Droid . 83

12.2 Symbolic Execution . 84

vi

12.3 Illustrative Example . 86

12.4 Overview of SIG-Droid . 88

12.5 Model Generation . 90

12.5.1 Behavior Model . 90

12.5.2 Interface Model . 93

12.6 Symbolic Execution for Android . 94

12.6.1 Event-Driven Challenge . 94

12.6.2 Path-Divergence and Davlik Byte-Code Challenges 95

12.7 Test Case Generation . 98

12.8 Limitations . 100

13 Conclusion . 101

13.1 Contributions . 102

13.2 Threats to Validity . 103

13.3 Future Work . 103

Bibliography . 105

vii

List of Tables

Table Page

9.1 Object-Oriented Complexity Metrics 65

10.1 Execution time for testing apps from different complexity classes

(in minutes). 76

viii

List of Figures

Figure Page

2.1 Evolutionary Process. 8

2.2 Android Activity Lifecycle [4]. 9

2.3 Android Service Lifecycle [12]. 10

2.4 Android Emulator Screenshot. 12

4.1 Expense Report System (ERS). 22

4.2 (a) An example app with three GUI components (b) a representa-

tion where the individual represents a test case, and (b) a repre-

sentation where the individual represents a test suite 23

5.1 Segmented evolutionary testing: (a) segment 1 (b) segment 2, and

(c) segment N. Each segment is searched independently with the

previous segment used to reach the next. 28

5.2 Segmented evolutionary testing: (a) representation of individual,

(b) ideal individuals from segment 2, (c) crossover steps for creating

an individual in the 3rd segment, and (d) mutation. 31

6.1 EvoDroid Static Approach Framework. 36

6.2 (a) Parts of the layout file for an Activity, (b) Example Interface

Model. 39

6.3 Example Call Graph Model. 42

6.4 Fitness evaluation. 46

7.1 EvoDroid Dynamic Approach Framework. 47

7.2 EvoDroid’s (a) Interface Model extraction mechanism, (b) sample

XML representation of a partial Interface Model, (c) sample partial

Interface Model. 51

7.3 Partial Transition Graph Model example. 52

7.4 Fitness evaluation. Discovery of other Activities is implicitly en-

coded in maximizing code coverage in current Activity. 56

ix

8.1 (a) An individual for the Quick Report use case in the ERS, and

(b) sample Robotium test case corresponding to the individual. . 58

8.2 Test execution cloud infrastructure. Cloud Test Manager applica-

tion is deployed on each node as a coordinator or a processor. . . . 61

9.1 Breakdown of Android Components 64

9.2 Android complexity metrics distribution from a random sample of

100 apps. 66

9.3 Overview of DroidGen . 67

10.1 Line coverage results for testing apps from different complexity

classes. 72

10.2 Line coverage results for testing apps from different complexity

classes. 75

10.3 Impact of constraints on line coverage. 77

10.4 Impact of sequences of events on line coverage. 78

11.1 Targeted Security Testing . 80

11.2 Targeted Incremental Testing . 81

11.3 Field Failure Testing . 82

12.1 Symbolic execution: (a) sample code, and (b) the corresponding

symbolic execution tree, where X and Y are the symbolic repre-

sentations of variables x and y . 86

12.2 Banking App: (a) Screenshots, (b) code snippet from TransferAc-

tivity, and (c) snippet from Transfer.xml layout. 87

12.3 High level overview of SIG-Droid. 89

12.4 (a) Examples of two sub-call graphs automatically inferred for the

banking app; augmented red lines represent implicit calls used to

connect sub-graphs; (b) the BM for the banking app automatically

generated after pruning sub-graphs. 91

13.1 Segmented Evolutionary Testing With Constraint Solver. 104

x

Abstract

AN EVOLUTIONARY APPROACH FOR SYSTEM TESTING OF ANDROID APPLI-
CATIONS

Riyadh Mahmood, PhD

George Mason University, 2015

Dissertation Director: Dr. Sam Malek

Mobile app markets have created a fundamental shift in the way software is delivered to

the consumers. The benefits of this software supply model are plenty, including the ability

to rapidly and effectively deploy, maintain, and enhance software used by the consumers.

This paradigm, however, has given rise to a new set of concerns. Small organizations do

not have the resources to sufficiently test their products, thereby defective apps are made

available to the consumers of these markets. The situation is likely to exacerbate given that

mobile apps are poised to become more complex and ubiquitous.

Automated testing of Android apps is impeded by the fact that they are built using

an application development framework (ADF). ADF allows the programmers to extend the

base functionality of the platform using a well-defined API. ADF also provides a container

to manage the lifecycle of components comprising an app and facilitates the communication

among them. As a result, unlike a traditional monolithic software system, an Android app

consists of code snippets that engage one another using the ADF’s sophisticated event

delivery facilities. This hinders automated testing, as the app’s control flow frequently

interleaves with the ADF. At the same time, reliance on a common ADF provides a level of

consistency in the implementation logic of apps that can be exploited for automating the

test activities, as illustrated in this research.

Evolutionary testing technique has shown to be particularly effective for event driven

software. In this research, I present the first evolutionary testing framework targeted at

Android, called EvoDroid. Evolutionary testing is a form of search-based testing, where an

individual corresponds to a test case, and a population comprised of many individuals is

evolved according to certain heuristics to maximize the code coverage.

The most notable contribution of EvoDroid is its ability to overcome the common short-

coming of using evolutionary techniques for system testing. Evolutionary testing techniques

are typically limited to local or unit level testing, as for system testing, they generate many

invalid test cases. This occurs when the individuals (test cases) are crossed over to create

new ones. The crossover does not consider which input and event genes are coupled to

which part of the app, hence, it is not able to preserve the genetic makeup of parents in

any meaningful way. I overcame this challenge by leveraging the knowledge of how Android

specifies and constrains the way apps can be built. I devised a technique to analyze apps

and infer models of their interface and behavior. Using these models my technique generates

test cases reaching deep into the code in segments, i.e., sections of code that are amenable

to evolutionary testing without the possibility of generating invalid test cases. Since a key

concern in search-based testing is the execution time of the algorithm, I built EvoDroid to

run the test cases in parallel on Android emulators deployed on the cloud, thus achieving

several orders of magnitude improvement in execution time.

Chapter 1: Introduction

Mobile app markets have created a fundamental shift in the way software is delivered to the

consumers. The benefits of this software supply model are plenty, including the ability to

rapidly and effectively deploy, maintain, and enhance software used by the consumers. By

providing a medium for reaching a large consumer market at a nominal cost, this paradigm

has leveled the playing field, allowing small entrepreneurs to compete head-to-head with

prominent software development companies.

Platforms, such as Android, that have embraced this model of provisioning apps have

seen an explosive growth in popularity. This paradigm, however, has given rise to a new set

of concerns. Small organizations do not have the resources to sufficiently test their products,

thereby defective apps are made available to the consumers of these markets. These defects

are exploited with malicious intent compromising the integrity and availability of the apps

and devices on which they are deployed. The situation is likely to exacerbate given that

mobile apps are poised to become more complex and ubiquitous, as mobile computing is

still in its infancy.

Automated testing of Android apps is impeded by the fact that they are built using

an application development framework (ADF). ADF allows the programmers to extend the

base functionality of the platform using a well-defined API. ADF also provides a container

to manage the lifecycle of components comprising an app and facilitates the communication

among them. As a result, unlike a traditional monolithic software system, an Android app

consists of code snippets that engage one another using the ADF’s sophisticated event

delivery facilities. This hinders automated testing, as the app’s control flow frequently

interleaves with the ADF. At the same time, reliance on a common ADF provides a level of

consistency in the implementation logic of apps that can be exploited for automating the

test activities, as illustrated in this research.

1

The state-of-practice in automated system testing of Android apps is random testing.

Android Monkey [10] is the industry’s de facto standard that generates purely random tests.

It provides a brute-force mechanism that usually achieves shallow code coverage. Several

recent approaches [34,36,39,76,87,113],[42],[55],[69] have aimed to improve Android testing

practices. Most notably and closely related to my work is Dynodroid [87], which employs

certain heuristics to improve the number of inputs and events necessary to reach slightly

better code coverage as that of Monkey.

Since prior research has not employed evolutionary testing and given that it has shown to

be very effective for event driven software [71], [77], I set out to develop the first evolutionary

testing framework targeted at Android, called EvoDroid. Evolutionary testing is a form

of search-based testing, where an individual corresponds to a test case, and a population

comprised of many individuals is evolved according to certain heuristics to maximize the

code coverage. The most notable contribution of EvoDroid is its ability to overcome the

common shortcoming of using evolutionary techniques for system testing. Evolutionary

testing techniques [44, 77, 109, 110] are typically limited to local or unit testing, as for

system testing, they are not able to promote the genetic makeup of good individuals during

the search.

EvoDroid overcomes this challenge by leveraging the knowledge of how Android ADF

specifies and constrains the way apps can be built. It uses this platform-specific knowledge to

analyze the app and infer a model of its behavior. The model captures (1) the dependencies

among the code snippets comprising the app, and (2) the entry points of the app (i.e.,

places in the code that the app receives external inputs). The inferred model allows the

evolutionary search to determine how the individuals should be crossed over to pass on their

genetic makeup to future generations. The search for test cases reaching deep into the code

occurs in segments, i.e., sections of the code that can be searched independently. Since a key

concern in search-based testing is the execution time of the algorithm, EvoDroid is built to

run the tests in parallel on Android emulators deployed on the cloud, thus achieving several

orders of magnitude improvement in execution time.

2

There are two models that support segmented evolutionary testing, the Interface Model

(IM) and the Behavior Model (BM). The efficacy of EvoDroid depends on the quality of

these models; and the quality of these models depend on the technique used to generate

them. A particular technique may be fruitful in some instance, but not be suitable for

other instances. For example, using static analysis to generate the models faces two issues,

(1) it requires the source code to be available, and (2) using static analysis may generate

incomplete models due to Android version fragmentation and variability of programming

styles. Therefore, I provide an alternate models generation technique that extracts these

models at runtime. The two alternate methods of models generation complement each other

as each approach is susceptible to certain shortcomings. The static approach is largely a

white box approach whereas the dynamic approach is mostly a black box approach.

I developed a prototype of EvoDroid that is able to operate in the static and dynamic

configuration. I evaluated it by selecting a set of apps from the open source market F-

Droid [19] and comparing the line coverage between EvoDroid, Monkey [10], and Dyn-

odroid [87]. On average EvoDroid achieves 46% and 26% higher coverage than Monkey [10]

and Dynodroid [87], respectively. EvoDroid static and dynamic approaches comparatively

achieve similar code coverage depending on the quality of the models as fundamentally both

algorithms apply a segmented evolutionary approach.

EvoDroid uncovered several defects during the experiments. For instance, EvoDroid

found several cases of unhandled number format exception in Tipster, TippyTipper, and

Bites that were due to either leaving the input fields empty, clicking a button that clears

the input field followed by clicking a button that would operate on the inputs, or simply

putting a string that could not be converted to a number. As another example, it found a

defect in Bites, an app for finding and sharing food recipes, in which an unhandled index

out of bounds exception would be raised when editing recipes without adding the ingredients

list first.

Even though EvoDroid performs much better than existing tools, it does not achieve

complete code coverage. Some of the reasons for not achieving complete coverage are

3

unsupported emulator functions, such as camera, as well as spawning asynchronous tasks

that may fail, not finish by the time the test finishes, and thus not get included in the

coverage results. Other reasons include code for handling external events, such as receiving

a text message, dependence on other apps, such as calendars and contacts lists, and custom

exception classes that are not encountered or thrown. Additionally, some of the applications

contained dead code or test code that was not reachable, thus the generated static EvoDroid

models would not be fully connected or the dynamic approach would not be able to reach

a particular segment at run-time. Indeed, in many of these apps achieving 100% coverage

is not possible, regardless of the technique.

It was not clear whether the observed accuracy and performance was due to the afore-

mentioned issues, and thus an orthogonal concern, or due to the fundamental limitations

in EvoDroid’s approach to test generation. I, therefore, complemented the evaluation on

real apps with a benchmark using synthetic apps. To ensure the synthetic apps are repre-

sentative of the complexity of real apps, I identified properties pertinent to the complexity

of Android apps and conducted an empirical study, by analyzing approximately 100 apps

from an open source app market called F-Droid [19], and collected data on these property

metrics. The data gathered from these complexity metrics are used by DroidGen, a syn-

thetic app generator developed by me, to generate desirable test apps that exhibit one or

more of these properties at varying degrees.

Using the synthetic apps, I benchmarked EvoDroid with Monkey [10] and Dynodroid [87]

in terms of code coverage and execution time as the number of segments increase. I also

compared EvoDroid against Monkey and Dynodroid in terms of complexity as it pertains

to orchestrating sequences of events as well as input constraint satisfiability. EvoDroid

outperforms both the Monkey and Dynodroid in terms of code coverage. For execution time,

EvoDroid on a single instance runs slower. To mitigate this I developed a parallel testing

framework where EvoDroid executes test cases on multiple Android emulators running

simultaneously. In a parallel configuration, EvoDroid execution time is comparable to the

Monkey, and much faster than Dynodroid.

4

I observed that the strength of EvoDroid is in reasoning about events. This is expected

as evolutionary-based testing techniques excel in this arena. However, EvoDroid does not

lend itself well when reasoning about input values and constraints. Especially when the

constraint satisfiability drops to near zero. I explored an input generation solution, called

SIG-Droid, that can be used to mitigate this weakness using symbolic execution. SIG-

Droid combines program analysis techniques with symbolic execution [83] to systematically

generate inputs for Android apps. To prune the domain of data inputs, SIG-Droid employs

symbolic execution, a promising automated testing technique that can effectively deal with

constraints. Symbolic execution uses symbolic values, rather than actual values, as program

inputs. It gathers the constraints on input values along each path of a program execution,

and with the help of a constraint solver generates actual inputs for all reachable paths.

This dissertation also presents possible applications of EvoDroid in terms of targeted

testing. EvoDroid can be used to target specific areas of an app to obtain a predefined

objective such as exploit generation, continuous integration test generation, as well as field

failure replication. It is a mechanism to generate test cases to reach specific locations in

code.

The main contributions of this dissertation are an automated Android testing frame-

work, a method of applying evolutionary algorithms for generation of systems tests, a static

analysis method for generating connected call graphs in event based systems, combining

segmented evolutionary search and GUI crawling to generate dynamic models, and laying

a foundation for subsequent research on targeted testing.

The rest of this dissertation is organized as following. I first provide background infor-

mation on evolutionary algorithms and the Android platform in Chapter 2. I enumerate

the related work in Chapter 3. In Chapter 4, I describe the problem and specify the scope

of this thesis. Then I provide the overview of my approach in Chapter 5 and discuss the im-

plementation choices of a static and a dynamic approach to segmented evolutionary testing.

The details of the static approach are provided in Chapter 6 while the details of the dynamic

approach are provided in Chapter 7. I describe the test execution environment on the cloud

5

and the cloud test manager application in Chapter 8. The details of a tool I developed

on Android app evaluation subject generation are provided in Chapter 9. In Chapter 10,

I describe the results of the evaluation of the static and dynamic segmented evolutionary

testing as well as comparisons to other Android testing tools. Potential applications of this

research are presented in Chapter 11. Chapter 12 provides details of an input generation

tool for Android to aid in these applications. Finally, I conclude this dissertation with a

summary of contributions and future work in Chapter 13.

6

Chapter 2: Background

In this chapter I provide an overview of evolutionary algorithms, the Android framework,

as well as the Android emulator to help the reader follow the discussions that ensue.

2.1 Evolutionary Algorithms Background

Evolutionary algorithms are meta-heuristic optimization techniques that are inspired by

biological evolution [43]. In my research, I use genetic algorithm, one of the most popular

types of evolutionary algorithm. It is particularly shown to be useful for finding solutions in

a large search space. Candidate solutions to the problem are called individuals. A solution is

found by evolving population of individuals. Individuals are made up of genes representing

the different elements of a solution.

As shown in Figure 2.1, evolutionary search entails three steps: (1) for each individual

comprising the next generation of population, two individuals are selected from the current

population with a likelihood that is proportional to their fitness values, indicating the

quality of individuals. A fitness function is used to calculate the fitness value of individuals.

This is the primary mechanism through which individuals with good genes are promoted

in the evolutionary process. (2) Crossover between the two selected individual parents is

performed to breed a new individual. A crossover is often realized by combining a subset

of each parent’s genetic makeup. The initial generation of individuals is made up of gene

values selected at random, since no parents exist. (3) Finally, the new individual is mutated,

meaning that a small part of its genetic makeup is modified in a random fashion. The

evolutionary search is continued over generations until an end criterion is met (e.g., time

limit, certain level of optimality, etc.).

7

2.2 Android Background

The Google Android framework includes a full Linux operating system based on the ARM

processor, system libraries, middleware, and a suite of pre-installed applications. It is based

on the Dalvik Virtual Machine (DVM) [16] for executing programs written in Java. Android

also comes with an application development framework (ADF), which provides an API for

application development and includes services for building GUI applications, data access,

and other component types. The framework is designed to simplify the reuse and integration

of components. Apps publish their capabilities and others can use them subject to certain

security constraints.

Android apps are built using a mandatory XML manifest file. The manifest file values

are bound to the application at compile time. This file provides essential information to

an Android platform for managing the life cycle of an application. Examples of the kinds

of information included in a manifest file are descriptions of the app’s components among

other architectural and configuration properties. Components can be one of the following

types: Activities, Services, Broadcast Receivers, and Content Providers.

Figure 2.1: Evolutionary Process.

8

All major components, including Activity and Service, follow pre-specified lifecycles

[6] managed by the ADF. For instance, Figure 2.2 shows the events in the lifecycle of

an Activity: onCreate(), onStart(), onResume(), onPause(), onStop(), onRestart(), and

onDestroy(). The lifecycle of the Service components is shown in Figure 2.3. The lifecycle

event handlers are called by the ADF and play an important role in my research as explained

Figure 2.2: Android Activity Lifecycle [4].

9

later.

An Activity is a screen that is presented to the user and contains a set of layouts (e.g.,

LinearLayout that organizes items within the screen horizontally or vertically). The layouts

contain GUI controls, known as view widgets (e.g., TextView for viewing text and EditText

for text inputs). The layouts and its controls are typically described in a configuration XML

file with each layout and control having a unique identifier. A Service is a component that

runs in the background and performs long running tasks, such as playing music. Unlike

Figure 2.3: Android Service Lifecycle [12].

10

an Activity, a Service does not present the user with a screen for interaction. A Content

Provider manages structured data stored on the file system or database, such as contact

information. A Broadcast Receiver responds to system wide announcement messages, such

as the screen has turned off or the battery is low.

Activities, Services, and Broadcast Receivers are activated via Intent messages. An

Intent message is an event for an action to be performed along with the data that supports

that action. Intent messaging allows for late run-time binding between components, where

the calls are not explicit in the code, rather made possible through Android’s messaging

service.

2.3 Android Emulator

Emulators are programs that allow one to simulate and imitate devices when they are not

available and when it is necessary to create different variations and models of the devices

without having access to the physical devices.

The Android SDK includes an emulator [7] to imitate various mobile devices as well the

different distributions of Android. As seen in the screenshot in Figure 2.4, it mimics a real

Android device and allows the user to perform most of the possible tasks on a real device.

I have used the Android emulator extensively in this research to install the application

under test as well as the test application that executes and instruments the application

under test. The Android Debug Bridge (ADB) [5] tool is used to communicate with the

emulators using a command line interface on the host machine.

11

Figure 2.4: Android Emulator Screenshot.

12

Chapter 3: Related Work

Over the past decades, researchers and practitioners have developed a variety of methodolo-

gies, frameworks, and technologies intended to support the construction and the automation

of software testing [37].

I provide an overview of the most notable research in this area and describe the seminal

and closely related work.

3.1 Evolutionary Testing

Evolutionary testing falls under search based testing techniques and has typically been

used to optimize test suites [71] [33] [102] [72] or has been applied at the class unit level

[77]. Evolutionary testing approaches such as [71] [33] [102] [72] attempt to optimize a

test suite for coverage. These are all blackbox approaches that build their GUI models

at run time by executing and crawling or by recording user behavior, and therefore the

generated models may not be complete. Since my approach uses program analysis and

dynamically instruments the app, I obtain a more complete model of the apps behavior.

They also differ from my research in that they represent test cases as genes. Two unit level

evolutionary testing approaches are presented in [109] [110]. A combination of approaches

are also presented in [77], and [44].

Evolutionary algorithm and symbolic execution techqniques are combined in [77], while

evolutionary algorithm and hill climbing algorithm are used together in [44]. These tech-

niques are all geared to unit testing. An ant colony optimization search is used in [45]

along with a call graph similar to this research. However, their call graph is generated by

executing the system and connecting overlapping call nodes to attempt to form the entire

call graph. This suffers from the same issue as the GUI crawling methods, meaning that

13

the call graph model may be incomplete. Berndt et al. presents [46] a comparison of the

performance of genetic algorithm-based test case generation.

3.2 Mobile Apps Testing

The Android development environment ships with a powerful testing framework [13] that

is built on top of JUnit. Robolectric [28] is another framework that separates the test cases

from the device or emulator and provides the ability to run them directly by referencing

their library files. While these frameworks automate the execution of the tests, the test

cases themselves still have to be written by the engineers. Many existing unit testing

and system testing tools support automated test execution, but do not generate test cases

automatically, such as MonkeyTalk [27], and Calabash [14].

Amalfitano et al. propose a crawling-based approach in [34] that leverages completely

random inputs to generate unique test cases. Hu and Neamtiu in [76] present a random

approach for generating GUI tests that uses the Android Monkey to execute. An automated

Android GUI ripping approach is described in [36], where task lists are used to fire events

on the interface to discover and exercise the GUI model. I use program analysis and instru-

mentation to derive the models. This sets this research apart from these works that employ

manually created task lists for event generation. Moreover, these approaches have not con-

sidered the scalability implications of their solutions. Other similar GUI testing approaches

are presented in [93] [73]. Automated black-box testing of smartphones are presented in

[49] [116] and suffer similar setbacks as GUI testing. A grey-box model creation technique

is presented in [113]; similar to my work, this approach is concerned with deriving models

for testing of Android app and can potentially be substitued for my models. However, their

model may be incomplete because they only focus on the GUI. A system level approach that

combines symbolic execution with sequence generation is presented in [79], they attempt to

find valid sequences and inputs to target locations. Their approach does not use a search

based technique like mine, and they also work backwards from the targets. An approach

14

based on concolic testing of a particular Android library to identify the valid GUI events

based on the pixel coordinates is presented in [38]. Dynodriod [87] is an input generation

system for Android that is used extensively in my experiments.

Several prior approaches build on random testing techniques. Amalfitano et al. [36]

described a crawling-based approach that leverages completely random inputs to generate

unique test cases. MobiGUITAR [35] built on the top of the GUITAR [97] framework uses

GUI ripping to build a model of an app. The model then is traversed by a depth-first search

technique to generate test cases.

Other prior approaches have focused on the extraction of models for Android testing.

ORBIT [113] is a grey-box model creation technique that creates a GUI model of the app for

testing. A3E [42] is a static taint analysis technique for building an app model for automated

exploration of an app’s Activities. SwiftHand [55] uses machine learning to learn a model

of the app under test. There have also been efforts to extract graph models automatically

by crawling the GUI [34,93] and using those graphs to generate test sequences.

MonkeyRecorder [11] and RERAN [69] implement record and replay techniques for An-

droid apps. MonkeyRecorder allows testers to record a script for GUI events, while RERAN

logs the Android system commands events and turns them into runnable scripts. Mon-

keyRecorder allows testers to record a script for GUI events of an application on the device

and run it. MonkeyRecorder only collects click, swipe, and text-input events. RERAN logs

the event system commands of the Android operating system to generate low-level event

traces. These scripts are analyzed and turned into runnable scripts.

Jensen et al. [79] presented an approach that combines symbolic execution with sequence

generation. The goal of their work is to find valid sequences and inputs to reach pre-specified

target locations. Barad [64] symbolicaly executes a sequence of events to infer inputs for

data components of the GUI. In my own research, I have developed techniques based on

evolutionary search [88,89], as well as symbolic execution [96] for testing Android apps.

Lin et al. [86] benchmark Dalvik Java code and Native code on real Android devices,

whereas Kim et al. [82] present a storage benchmarking tool for Android based devices.

15

These approaches are not geared towards benchmarking of Android app testing tools. Li

et al. [85] conducted an empirical study to discover quantitative and objective information

about the energy behavior of apps that can be used by developers. To interact with an app,

the authors utilize Monkey for test generation to estimate the energy cost of an app.

Combinatorial testing has shown to be an effective approach in GUI-based testing [114].

Approaches such as [61] propose using greedy or heuristic algorithms to generate minimal

sets of tests for a given combinatorial criteria. Nguyen et al. [98] proposed an approach that

leverages manually constructed behavioral models of app in pairwise testing of GUI-based

applications. Kim et al. [81] introduced the idea of using static analysis to filter irrelevant

features when testing software product lines.

A large body of research [90, 93, 94, 112, 115] has focused on testing traditional event-

based systems. These approaches rely on techniques, such as ripping and crawling, to

automatically extract directed graph models. Those models are then used to generate test

sequences. However, data widgets are often abstracted away in such models. As such,

system behaviors dependent on data values have not been adequately considered.

There has been a recent interest in using cloud to validate and verify software. TaaS

is an automated testing framework that automates software testing as a service on the

cloud [52]. Cloud9 provides a cloud-based symbolic execution engine [56]. Similarly, my

framework is leveraging the computational power of cloud to scale evolutionary testing.

3.3 Android Testing Tools

This section provides further details on existing Android testing tools that are most closely

related to my research. I provide an overview of these tools in the following subsections.

3.3.1 Android Monkey

Android Monkey [10] is a testing tool that generates random clicks, touches, or gestures, as

well as a number of system-level events using the Android Debug Bridge [5] command line

16

tool. It is primarily used as a fuzz testing tool to stress test applications. The Monkey tool

works with the Android emulator as well as real devices. It provides the options to specify

the number of events to send the application, the type and frequency of those events, as

well as any delay between events. The Monkey tool also also allows a set of debugging flags

and specific package to target during testing.

The Monkey tool instruments and monitors the app under test as it fires off events.

By default it stops on all unhandled exceptions and if the application under test stops

responding. However, it is possible to configure the Monkey to continue sending events

even after a crash. Although the state of the application may potentially be corrupt at this

point. Additionally, it is possible to run the Monkey tool so it ignores security exceptions

(e.g. permission errors).

This tool has wide adoption among academia and industry and is the de-facto standard

in automated testing of Android apps in practice. It is simple to run and very fast.

3.3.2 MonkeyRunner

MonkeyRunner [26] is an unrelated tool from the Android Monkey that provides an API

to control an emulator or device from outside of the Android code instead of relying on the

ADB to shell into the emulator or device. With MonkeyRunner, it’s possible to install an

Android application or test package, run it, sends keystrokes to it, takes screenshots of its

user interface, and stores screenshots on the workstation [26]. It is meant for functional and

unit level testing, and the tests have to be written manually.

The MonkeyRunner tool is able to interact with multiple devices or emulators simul-

taneously and install apps, run user provided tests, and capture screenshots as results. It

is suitable for running regression test suites and designed with extensible features. Mon-

keyRunner is uses Jython [23], an implementation of the Python programming language for

Java, and provides three primary API abstractions: MonkeyRunner, MonkeyDevice, and

MonkeyImage.

MonkeyRunner provides the functionality to connect to a device and and create user

17

interfaces. MonkeyDevice provides the functionality to install packages, start Activities,

send events to an application, as well as run test packages. MonkeyImage provides the

functionality to capture screenshots, convert images to various formats, as well as compare

images as a form of comparing test results.

3.3.3 Dynodroid

Dynodroid [87] is an Android testing tool from researchers at Georgia Tech. It instruments

the Android framework during testing and changes the distribution of events that are sent

to the application under test. It uses less number of events than the Android Monkey tool

but achieves higher code coverage. It uses three main components to test the applications:

Executor, Observer, and Selector.

The executor component uses the ADB to send events to an emulator based on the event

type. For GUI events it uses MonkeyRunner to send the events and for system events, it

uses the Activity Manager tool [1] via Intent messages.

The observer component uses the Hierarchy Viewer tool [21] to instrument the GUI

controls that are on the current screen. These serve as the GUI events. It also instruments

the SDK to find what broadcast receiver and system services the app has registered for.

These serve as the system events.

The selector component takes the information from the observer component and uses

the executor component to execute the events. It uses deterministic as well as randomized

events to test the application. For the random events it uses a uniform random and a biased

random algorithm to choose events.

3.4 Mobile Apps Vulnerability Testing

There has been an increasing focus on vulnerability detection and testing. Static analysis

techniques detect vulnerabilities by analyzing code or configuration without executing ap-

plications. Enck et al. [58] have developed a comprehensive catalogue of application-level

security vulnerabilities in Android. ComDroid [54] statically analyzes inter-application

18

communication (IAC) to detect hijacking or injection vulnerabilities that are caused from

incorrect use of IAC. SCanDroid [63] statically analyzes data flows to detect permission

inconsistencies between apps that could possibly allow malicious access to sensitive informa-

tion. AndroidLeak [65] statically analyzes information leak on Android. Other traditional

open source or commercial static analysis tools such as FindBugs [20] and [75], Coverity [15],

and Klockwork [24] could also be used to detect vulnerabilities in smartphone apps. While

static analysis tools could be used to detect vulnerabilities during software development,

they suffer from a high rate of false positives because of aliasing and context sensitivity

[101] and [84].

Dynamic analysis techniques detect vulnerabilities at runtime. TaintDroid [57] detects

information leak vulnerabilities using dynamic taint flow analysis at the system level. Kirin

[59] and Saint [100] analyze configuration and runtime behavior of Android apps to enforce

security policy and to allow only legitimate permissions. IPC Inspection [60] prevents

privilege escalation at OS level. While static analysis can be performed on the whole code

base, dynamic analysis can detect vulnerabilities that exist only on the executed path.

Additionally, dynamic analysis can detect vulnerabilities only after software deployment.

In an effort to generate test inputs automatically, traditionally fuzz testing has been

used. In fuzz testing, test input is generated either randomly or through modification of

well-formed inputs. The idea of fuzz testing is to generate unexpected inputs to make the

applications expose their vulnerabilities [108] [95] [99]. Naive fuzzing that randomly gener-

ates test input does not guarantee that the test input will penetrate all the execution paths,

but variations of well-formed inputs could provide better code coverage [48] [62]. Fuzzing

tools generate various types of input including file, user input, and network packets [107].

Monkey Runner [26] and IntentFuzzer [8] are GUI events fuzzers for Android. Still these

are black-box approaches that do not utilize the code structure to generate test input. To

further improve code coverage, white-box fuzzers generate test inputs based on information

obtained from code analysis [103] [66] [68] [67] [51]. Most of these advanced approaches

have been applied to only traditional desktop software, not smartphone applications. The

19

approach presented in [80] uses a black box approach that fuzzes Android GUI events as

well as Hardware events by bypassing the Android runtime and accessing the underlying

Linux kernel directly. Applying exhaustive approaches are typically not feasible due to the

path explosion problem. AEG [41] generates test exploits using a combination of static and

dynamic analysis techniques, but does so only for buffer overflow vulnerability. In addition,

AEG is targeted for C programs, and not applicable to either Java or Android.

A fundamental difference between these fuzz testing approaches and this research is

that while the traditional fuzz testing focuses random input and sequence generation to

gain code coverage, my approach uses a systematic approach to generate tests to gain deep

code coverage based on static analyses and dynamic instrumentation.

While above approaches detect vulnerabilities or prevent security attacks by analyzing

and monitoring victim apps, a large body of studies [53] [50] [78] [105] [47] [111] [70] have

been conducted to detect malware, including viruses and spywares, based on the observation

of malicious behavior or code patterns. Shabtai et al. [104] extensively investigate existing

mobile security approaches and suggest applicable approaches for Android, including intru-

sion detection, access control, and permission management techniques. SmartSiren [53] and

Crowdroid [50] detect viruses by collectively analyzing communication activity information

that was sent by agents in mobile devices to the central server for Windows Phone and

Android, respectively. Andersson [40] presents a architecture for security testing.

20

Chapter 4: Research Problem

In this chapter, I present the problem that is the focus of this research. In the following

sections, after describing the problem statement, I enumerate my research hypotheses.

4.1 Motivating Example

I use a simple Android app, called Expense Reporting System (ERS), to illustrate my

research. The ERS app allows users to submit expense report from their Android devices.

As shown in Figure 4.1, ERS provides two use cases that allow the user to create two types

of report: quick report and itemized report.

When quick report is chosen, the user enters the expense item name and the amount,

and subsequently presented with the summary screen. The user can choose to submit or

quit the application on the summary screen.

The itemized report option presents the user with the option to enter the number of

line items by tapping the plus and minus buttons. When next is tapped, the application

prompts the user to enter the expense name and amount. This screen is repeated until

all line items have been entered. Once all items are entered, the user is presented with a

summary screen with the line items, their amount, and the total amount. The user can

again choose to submit or quit the application at this time.

An interesting observation about the ERS is the Line Item Count screen. Here, we see

that the plus button must be clicked more than the minus button followed by the Next

button. This is an example of sequence of events that are necessary for automated search

techniques to increase code coverage. While this is internal to a single screen, these types of

event sequences are increasingly common when transitioning between screens. For example,

there is a sequence involved when clicking the Quick Report then entering the Expense Name

21

and Expense Amount followed by the Next button. Without orchestrating these sequences

properly, the automated technique will not be able to gain broad code coverage.

4.2 Problem Statement

Achieving high code coverage in GUI apps, such as the ERS, requires trying out a large

number of sequences of events such as user interactions. My research is inspired by prior

work [77] that has shown evolutionary testing to be effective when sequences of method

invocation are important for obtaining high code coverage. However, application of evolu-

tionary testing has been mostly limited to the unit level [44, 77, 109, 110], as when applied

at the system level, it cannot effectively promote the genetic makeup of good individuals in

the search.

Figure 4.2 illustrates the shortcoming of applying an evolutionary approach for system

Figure 4.1: Expense Report System (ERS).

22

testing of a GUI application. In Figure 4.2b, we have two individuals in iteration 1 of the

search. In this representation, an individual is comprised of two types of genes: input genes

(e.g., values entered in text fields) and event genes (e.g., clicked buttons). The test case

Figure 4.2: (a) An example app with three GUI components (b) a represen-
tation where the individual represents a test case, and (b) a representation
where the individual represents a test suite

23

specified in an individual is executed from the left most gene to the right most gene. In

essence, each individual is a test script.

Using the screens in Figure 4.2a, we can see that the two individuals in iteration 1 of

Figure 4.2b represent reasonable tests, as each covers a different part of the app. For system

testing, we would need to build on these tests to reach deeper into the code. The problem

with this representation, however, is that there is no effective approach to pass on the genetic

make up of these individuals to the next generations. For instance, from Figure 4.2b, we

can see that the result of a crossover between the two individuals in iteration 1 is a new

individual in iteration 2 that does not preserve the genetic makeup of either parents in any

meaningful way. In fact, using the screens in Figure 4.2a, we can see that the tests cannot

even be executed. There are two issues that contribute to this: (1) The crossover strategy

does not consider which input and event genes are coupled to one another. For instance,

the genes Field1, Field2, and Button1 are all coupled with one another, as only together

they can exercise the Screen1 screen. Mixing genes from the other screens would be invalid

to execute on Screen1. (2) The crossover strategy mixes genes from two different execution

paths in the system, e.g. after clicking Button1 on Screen1, the Field4 and Button4 are

invalid as they are part of another execution path. Thus, it produces a test that is likely to

be either not executable or inferior to both its parents. In evolutionary search, the inability

to promote and pass on the genetic makeup of good individuals to the next generations is

highly detrimental to its effectiveness.

To overcome the issues with this representation, prior approaches [33, 71, 72, 102] use

evolutionary algorithm in conjunction with GUI exercising techniques. One such approach,

called EXSYST [71], represents test suites as individuals and tests as genes, as depicted in

Figure 4.2c. This approach generates tests that correspond to random walks on the GUI

model. An individual is comprised of many random tests, i.e., each gene of the individual

corresponds to a system test. EXSYST evolves the suites of tests to minimize the number

of tests and maximize coverage. However, the probability of a single gene (test) achieving

deep coverage remains the same as in the case of random testing. The overall coverage is no

24

better than the initial population (randomly generated tests), as the evolutionary algorithm

is mainly used to minimize the number of tests.

4.3 Research Hypotheses

This research has investigated the following hypotheses [89]:

We can test the overall robustness of applications by exercising large portions of the

application and maximizing code coverage. Evolutionary algorithms are sometimes used in

automation of software testing. One of the issues faced by these approaches is representation

of individuals. This is because it is difficult to capture all inputs and actions an application

receives in a single individual. Performing cross-over on such an individual representation

is problematic. Thus, to address this challenge, individuals are typically represented as

test case suites, where each gene is a test case. This makes it difficult to automatically

test entire applications; and it seems unachievable due to the unbounded inputs and large

sequences of events that are necessary to gain coverage. I believe an approach to tackle this

problem is to logically divide the app where external inputs and action events are supplied

(e.g. for Android GUI activities these would be the onCreate() root nodes). I define each

of these divisions to be a segment and evolve the test cases to maximize coverage for each

segment independently. This overcomes the representation issue and allows us to maximize

code coverage in Android apps.

Hypothesis 1: An evolutionary testing approach for system testing of Android

apps can be devised.

The efficacy of automated testing tools is often directly correlated of with the quality of

the models that support them. There are two models that support segmented evolutionary

testing: Interface Model (IM) and Behavior Model (BM). The quality of these models

depend on the techniques used to generate them. A particular technique may be fruitful in

some instance, but not suitable for other instances. For example, using static analysis to

generate the models faces two issues, (1) it requires the source code to be available, and (2)

25

using static analysis may generate incomplete models due to Android version fragmentation

and variability of programming styles. Therefore, alternate models generation techniques

must be considered as static analysis may not always be applicable.

Hypothesis 2: Segmented evolutionary testing can be applied for system testing

of Android apps regardless of the availability of source code.

Evolutionary testing requires a large number of test cases to be executed. For segmented

evolutionary testing, the number of test cases that need to be executed is multiplied by the

number of segments as the evolutionary process is repeated in each segment. The search

space for proper coverage is quite large in both of these instances. To add to this, Android

test cases are executed within a supplied emulator that is known to be slow. Executing

large number of test cases would seemingly be infeasible due to performance issues.

Hypothesis 3: Evolutionary testing for system testing of Android apps can be

parallel processed to achieve scalability.

26

Chapter 5: Approach Overview

Evolutionary testing is a form of search-based testing where an individual corresponds to

a test case, and a population comprised of many individuals is evolved according to certain

heuristics to maximize the code coverage. As described in Chapter 4, typically evolutionary

testing is applied at the unit level [44,77,109,110] as there is no effective approach to pass

on the genetic make up of these individuals to the next generations at the system/app level.

To overcome the challenges with applying evolutionary testing at the system level, two

aspects must be considered with respect to crossover. First, crossover cannot be allowed to

span different components (e.g. GUI screens), and second, crossover cannot span different

paths (i.e. sequence of GUI screen transitions). As shown in Figure 5.1, I identify sections

of the app that can be searched independently (e.g. GUI screens), called segments, then the

execution of the segments are arranged in the context of a path. An evolutionary algorithm

is executed on each segment by using a model that aids us to form the representation of

individuals for the segment as well as a model that aids us form the arrangement along the

context of an execution path. Effectively, the process outlined in Figure 2.1 is repeated for

each segment.1 The goal of the algorithm is to maximize code coverage.

In Figure 5.1a, we see the first segment of the example app from Figure 4.2a. Here, an

individual represents a test case and is formed by using the controls on the GUI screen. An

evolutionary search is executed on this screen to generate test cases that maximize code

coverage within the screen and potentially transitions to other screens or segments. Since the

crossover is local to the screen we avoid mixing genes with other screens altogether. During

the evolutionary search on this screen, a pool of ideal individuals are saved, shown as the

α pool in Figure 5.1a. An ideal individual is defined to be a test case that, when executed,

reaches the beginning of the next segment. Figure 5.1b shows the second segment where

1For the purposes of this dissertation I use the terms screen, segment, and Activity interchangeably.

27

Figure 5.1: Segmented evolutionary testing: (a) segment 1 (b) segment 2, and
(c) segment N. Each segment is searched independently with the previous
segment used to reach the next.

28

another evolutionary search is executed in a manner similar to the first segment. However,

an ideal individual from the α pool is pre-pended to the individuals in this segment. This

ensures that we are able to reach the second segment. It should be noted that any of the

ideal individuals from the α pool can be substituted to reach the second segment. Similar to

the first segment, a pool of ideal of individuals are saved for the second segment, shown as

the β pool in 5.1b. These ideal individuals combine genes from the first and second segment

and reach the next segment when executed. The search continues in this manner deep into

the app as shown in Figure 5.1c, essentially building up to a system level test case.

It should be noted that in segmented evolutionary testing, the test cases in each segment

are fully executable test cases up to that point. In the case the search is abandoned before

reaching the final segments, or if the final segments are not reachable, these test cases serve

as the output of the algorithm.

The focus of this research is on generating test cases, not on whether the test cases have

passed or failed. I acknowledge that automatically generating test oracles is a significant

challenge that has been and continues to be the focus of many research efforts. However, I

collect two types of results from the execution of tests that could help in the construction

of oracles: any exceptions that may indicate certain software faults as well as code coverage

information.

Even though this research is targeted towards testing GUI based applications such as

Android apps, the techniques outlined here can be applied to any application that can be

broken into segments and the necessary app models can be generated in each segment.

The remainder of this chapter describes the components used in the evolutionary process

as well as the models that support them.

5.1 App Models

Segmented evolutionary testing requires two types of models to execute: Interface Model

(IM), and Behavior Model (BM). The IM captures all of the inputs (e.g. GUI widgets) for

each segment. It is used to form the representation of individuals in the evolutionary search.

29

The BM is used to guide the evolutionary search. It is used to identify and orchestrate

segments in apps, measure fitness of individuals, and aid in reaching a particular segment.

The specific type of BM depends largely on the implementation, and in this research two

types of BM are described later.

5.2 Representation

As seen in Figure 2.1, the first step in the evolutionary process is to formulate the repre-

sentation of individuals and their initialization. The models from Section 5.1 are used to

determine the structure of genes for the individuals in each segment. The Interface Model

(IM) tells us the inputs, their data type (such as integer, double etc.), the number of GUI

elements (such as buttons), and/or system events relevant to the current segment.

An individual is represented as a vector shown in Figure 5.2a. Here, previous segment

corresponds to the genes of an ideal individual from the previous segment, Input [1..n]

corresponds to specific input values from the current segment, and Event [1..m] corresponds

to the sequence of possible user actions or system events from the current segment. Each

index in the vector contains a gene. The previous segment is a recursive relationship.

Both the number of input genes and the number of event genes are of variable length to

handle the situations in which unexplored parts of the application require a certain sequence

of events (e.g. a certain number of button clicks) to be executed.

The test case specified in an individual is executed from the left most gene to the right

most gene including all previous segment genes, essentially traversing a path in the Behavior

Model (BM).

5.3 Crossover

The first step in creating a new individual for the next generation is crossover. This process

selects two individuals from the current population and creates a new individual by mixing

their genetic makeup. I use a multi-point probabilistic crossover strategy. There is at least

30

one, and potentially multiple, crossover points between the two selected individuals.

The segment crossover probability is calculated as follows:

p(c) =
1

e(s−c) (5.1)

where e is a configurable constant to achieve a decay factor, s is the index of the current

segment being searched, and c is the index of a prior segment between 1 and s. The

probability is 1.0 for the current segment, that is to say when c = s. This exponential

decay function ensures that the earlier genetic makeup is not changed frequently, while

Figure 5.2: Segmented evolutionary testing: (a) representation of individual,
(b) ideal individuals from segment 2, (c) crossover steps for creating an indi-
vidual in the 3rd segment, and (d) mutation.

31

leaving the possibility open to find individuals that may explore new areas of the search

space.

The crossover point for the current segment can be at any gene index and at most the

length of the smaller of the two individuals. I only allow one crossover for the current

segment, as this is sufficient to create variability in the new individual. Figure 5.2c shows

the crossover steps for a pair of parent individuals in segment 3 of an app. The newly

created individual inherits part of the genetic makeup of the parents.

The previous segments are treated separately from the current segment and the proba-

bility function p(c) dictates the chance of crossover in each segment. There can potentially

be a crossover at each of the previous segments, but I only allow swapping of the entire

ideal individual for each segment, not in the middle of a previous ideal individual. Fig-

ures 5.2b and c show how ideal individuals found in prior segments are used to arrive at the

parent individuals in Figure 5.2c. Here the new individual in Figure 5.2c inherits the pre-

vious segment individual from the left parent. If the probability function p(c) had dictated

otherwise, it would have been inherited from the parent on the right.

This crossover strategy aims to preserve the genetic makeup of the solutions found for

earlier segments, as I only allow the crossover to use the complete ideal individual for a

given segment. Any ideal individual from that segment can be substituted, as they are all

solutions for that segment. The previous segments for the new individual in Figure 5.2c

share the same path (as the evolutionary process is applied within the context of a path in

the BM), thus the structure of the individuals at each previous segment line up properly.

Note that this crossover strategy does not provide any guarantees that the input values

and events satisfying an earlier segment in a path will be able to satisfy later segments

in that path. For example, solving a particular constraint in segment 3 may require a

specific value to have been entered in segment 1. Indeed, the objective of the search is

to find such combinations. The evolutionary search, guided by heuristics embedded in the

fitness function, naturally weeds out sub-optimal tests. In addition, since I save many ideal

individuals for each segment, each with different input/event genes, the algorithm is quite

32

effective at eventually discovering individuals that solve the entire path.

5.4 Mutation

Mutation changes parts of the genetic makeup of the newly created individual. Only the cur-

rent segment genes are mutated with a probability threshold that is configurable. I mutate

both input and event genes with several creation, transformation and remove operations.

The first type of mutation is done to the input genes of an individual. The creation of

a numerical input includes boundary values, random, special/interesting values such as the

number zero. For a string input, I generate purely random, uniformly distributed characters

from the alphabet of a certain length, or null. Transformation operations for inputs include

random value of same primitive data type, bit-flipping, arithmetic operations, and binary

space reduction between boundary values. Removal operation for inputs is not applicable;

they are included as null instead.

The second type of mutation is done to the event genes. The creation operator simply

creates an event from the list of valid events specified in the IM. The number of added events

is random with a minimum of one and a configurable upper threshold. Transformation

operations for events include swapping event gene indexes, changing one event to another,

and inserting a new event at a random index. Removal operation for events removes one or

more event genes. The length of the overall individual can change as a result. Figure 5.2d

show the mutation of a single gene to create a final unique individual that is different from

both parents.

5.5 Fitness

A key aspect of evolutionary algorithms is the notion of fitness. In each generation, individ-

uals are assessed for their fitness with respect to the search objective to be selected to pass

on their genes. Fitness is assessed by applying a fitness function where the output value

ranges from 0 to 1. It is a gradient from the least fit to the most fit.

33

In segmented evolutionary testing, the fitness is judged primarily by reaching the next

segment, the uniqueness of the path traversed to reach the next segment compared to

other individuals in the same generation, as well as the code coverage attained in the

current segment. The exact fitness function formulation depends on the implementation as

described later.

In both the static and dynamic implementations, a configurable number of test cases

with the highest scores are directly copied to the future generations without any changes.

This ensures the individuals with the best genetic makeup remain in the population.

5.6 Design Considerations

As stated earlier, I implemented EvoDroid to perform in two different modes of operation. In

the first approach the models are generated via static analysis and in the second the models

are discovered dynamically during runtime. Chapter 6 shows the implementation details of

EvoDroid where the models are generated statically using program analysis, while Chapter 7

shows the implementation details of EvoDroid where the models are reflectively discovered

dynamically at runtime. The two alternate methods of models generation complement each

other as there are shortcoming to both approaches. The static approach is largely a white

box approach, whereas the dynamic approach is mostly a black box approach.

It is not always feasible to generate static models due to various limitations. For example,

using static analysis to generate the Interface Model (IM) relies on parsing XML files that

define the GUI; but not all apps provide such XML files and instead define the GUI elements

dynamically in code.. Similarly, the static Behavior Model used to identify the segments

and run a segmented evolutionary algorithm along the context of paths is limited due to

Android version fragmentation, variability of programming styles, third party libraries, code

generation via reflection, and anonymous class declarations among other reasons. Often

times the models generated statically are an over approximation and not all segments are

reachable.

Dynamic generation of these models is subject to under approximation. Instead of

34

parsing XML files, this approach reflectively discovers the contents of the GUI. If parts

of the GUI are not reached, a model for those parts would not be generated. Similar to

the static approach, the dynamic method of discovering the model is also limited due to

Android version fragmentation, variability of programming styles, third party libraries, code

generation via reflection, and anonymous class declarations. The mechanism to reflectively

identify GUI controls depends on the Android specifications. Furthermore, it may not

always be feasible to instrument an application to extract the interface model as the controls

may become active or inactive as a result of satisfying constraints. For example, a GUI

screen may prompt the user to select a country from a drop-down menu. Based on the user’s

selection, the GUI may then activate an option for a zip code field if United States is selected

in the first drop-down. Depending on the instrumentation mechanism, only the active

controls may be extracted, missing the inactive controls (e.g. zip code) or alternatively

extraneous controls (e.g. zip code) may be extracted.

35

Chapter 6: EvoDroid Static Approach

This chapter provides the implementation details of EvoDroid using static program analysis

to generate models that support the segmented evolutionary testing process.

6.1 Approach Overview

The overall framework using statically extracted models is shown in Figure 6.1. The algo-

rithm describing the process is shown in Algorithm 1. The input is an Android app’s source

code. From the source code, EvoDroid extracts two types of models, representing the app’s

external interfaces and internal behaviors, to automatically generate the tests: Interface

Model (IM) and Call Graph Model (CGM). The CGM represents the Behavior Model in

the static approach. The models are automatically extracted by analyzing the app’s code.

IM provides a representation of the app’s external interfaces and in particular ways in

which an app can be exercised, e.g., the inputs and events available on various screens to

Figure 6.1: EvoDroid Static Approach Framework.

36

Algorithm 1: static algorithm
Input: app← AppUnderTest
Output: FinalTests ⊂ T estCases

1 FinalTests ← ∅;

2 IM ← ∅;

3 CGM ← ∅;

4 foreach screen ∈ app.screens do

5 foreach viewControl ∈ screen do

6 IM .add(screen, viewControl);

7 CGM ← app.methodCalls;

8 foreach eSourceNode ∈ CGM .nodes do

9 foreach eHandlerNode ∈ CGM .nodes do

10 if eHandlerNode.isFor(eSourceNode) then

11 CGM .connect(eSourceNode, eHandlerNode);

12 idealTests ← empty;

13 foreach path ∈ CGM .primePaths do

14 foreach screen ∈ path.screens do

15 foreach generation do

16 individual ← idealTests(prevScreen).append(IM.controls(screen));

17 population ← [individual0..individualN];

18 foreach ind ∈ population do

19 testCase ← generateTest(ind);

20 coverage ← executeTest(testCase);

21 fitness ← evaluate(coverage);

22 if (fitness == 1) then

23 idealTests.add(screen, testCase);

24 FinalTests.add(testCase);

25 if stoppingCriteriaMet then

26 break;

37

generate tests that are valid for those screens. An example representation of an IM is shown

in Figure 6.2b. EvoDroid uses the IM to determine the structure of individuals (tests), i.e.,

the input and event genes that are coupled together.

CGM is an extended representation of the app’s call graph and represents the Behavior

Model (BM) in the static approach. A typical call graph shows the explicit method call

relationships. I augment that with information about the implicit call relationships caused

by events (messages). An example of a CGM is shown in Figure 6.3. In a given application,

all execution traces follow a certain path through the CGM. EvoDroid uses CGM to (1)

determine the parts of the code that can be searched independently, i.e., segments, and (2)

evaluate the fitness (quality) of different test cases, based on the paths they cover through

the CGM, thus guiding the search.

Using these two models, EvoDroid employs a segmented evolutionary testing algorithm

to automatically generate test cases. It aims to find test cases covering as many unique

CGM paths from the starting node of an app to all its leaf nodes. In doing so, it logically

breaks up each path into segments. It uses heuristics to search for a set of inputs and

sequence of events to incrementally cover the segments. By carefully composing the test

cases covering each segment into system test cases covering an entire path in the CGM,

EvoDroid is able to promote the genetic makeup of good individuals in the search.

EvoDroid executes the automatically generated test cases in parallel, possibly on the

cloud, to address scalability issues. The test cases are evaluated based on a fitness function

that rewards code coverage and uniqueness of the covered path.

6.2 Apps Models Extraction

EvoDroid needs three types of information about the app under test for automatically

generating test cases: (1) the genes comprising a valid individual, e.g., determining the

input fields and GUI controls that should be paired up to have a valid test case for a

GUI screen, (2) the app’s segments, i.e., parts of the app that can be searched separately

38

to avoid the crossovers issues described earlier, and (3) the fitness value of different test

cases. I developed Android-specific program analysis techniques to infer two models that

can provide EvoDroid with this information. Algorithm 1 uses white-box static analysis to

generate two necessary models: the Interface Model (IM) (lines 4–6 of Algorithm 1) and

the Call Graph Model (CGM) (lines 7–11 of Algorithm 1).

<LinearLayout xmlns:android="http://schemas.

android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

...

<EditText

android:id="@+id/fieldOneId"

android:layout_width="match_parent"

android:layout_height="wrap_content">

<requestFocus />

</EditText>

<EditText

android:id="@+id/fieldTwoId"

android:layout_width="match_parent"

android:layout_height="wrap_content">

<requestFocus />

</EditText>

<Button

android:id="@+id/buttonOneId"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="One" />

...

</LinearLayout>

Figure 6.2: (a) Parts of the layout file for an Activity, (b) Example Interface
Model.

39

6.2.1 Interface Model

The Interface Model (IM) provides information about all of the input interfaces of an app,

such as the widgets and input fields belonging to an Activity. It also includes information

about the application and system-level messages handled by each Activity. The IM is

obtained by combining and correlating the information contained in the configuration files

and meta-data included in Android APK (such as Android Manifest and layout XML files).

To generate the IM, I list all the Android Activities comprising an app with the help

of information found in the Manifest file. Afterwards, for each Activity I parse the corre-

sponding layout file. An example of such layout file is shown in Figure 6.2a. It is quite

straightforward to obtain all information on each screen, such as widget type, name, and

identifier from this XML document to generate the IM. Figure 6.2b depicts the IM for the

Activities in Figure 6.2a. I use the information captured in IM to determine the structure

(genes) of individuals for testing each component of the app.

6.2.2 Behavior Model

Android apps primarily communicate through the exchange of messages, called Intents,

which contain information about actions to execute, associated data, and other meta-data

of an event. Common types of Intents are system events (e.g., a device completes booting)

and GUI events (e.g., indicating that an email should be sent). As mentioned, the Activity

components have a pre-defined lifecycle, shown in Figure 2.2, corresponding to callbacks

and events that a developer can leverage to enable different functionality at different points

in the lifecycle. Each lifecycle callback acts as a different entry point for an Android app.

As a result, each app has a set of disconnected call graphs, where each call graph represents

a different context. Activities are activated via Intent messages. Intent messaging allows

for late run-time binding between components, where the calls are not explicit in the code,

rather made possible through Android’s messaging service.

The Call Graph Model (CGM) is the Behavior Model in the static approach and contains

a set of connected call graphs capturing the different possible invocation sequences within

40

a given application. I use MoDisco [25], an open source program analysis tool, to extract

the app’s call graph. However, since Android is an event driven environment, MoDisco

generates disconnected call graphs for each app. Figure 6.3 shows an example CGM. As

described later, I have extended MoDisco to infer the dashed lines to create a fully connected

graph.

The root node of each call graph snippet is a method that no other part of the application

explicitly invokes. There are two types of root nodes:

1. Inter-component root nodes: these root nodes represent methods in a component that

handle events generated by other components or Android framework itself, e.g., an

Activity generating a StartActivity event that results in another Activity’s onCreate()

method to be called, or the Android framework sending a Resume event that results

in an Activity’s onResume() method to be invoked.

2. Intra-component root nodes: these root nodes correspond to events that are internal

to a component. For example, a Button on an Activity has a Click event associated

with it. This event is handled by a class within the same Activity that implements

the OnClickListener interface and overrides the onClick() method. These sorts of

callback handlers are also root nodes, as they are called by the Android framework.

The inter-component root nodes are the logical break points for segments, and the inputs

received at these nodes form the structure of individuals for the corresponding segments.

We can determine the structure of this input using the IM. On the other hand, the intra-

component root nodes do not mark a new segment, as they do not result in the execution to

move to a different component (e.g., different Activity screen), and thus are not susceptible

to the crossover problem.

Finally, for EvoDroid to generate tests and to determine their fitness, it needs the CGM

to be fully connected. To that end, I have extended MoDisco with an Android-specific

program analysis capability to infer the relationships among the disconnected nodes of the

call graph. As depicted in Figure 6.3, I start with the onCreate() root node of the main

41

Figure 6.3: Example Call Graph Model.

42

Activity, which we know from Android’s ADF specification to be the starting point of all

apps. I then identify the Intent events and their recipients, as well as GUI controls and their

event handlers, to link the different parts of the call graph and arrive at the final CGM. We

know that the links would have to be to other root nodes, and achieved through sending

of Intent events. The links formed as a result of this inference tell us the implied control

flow as depicted with the dashed lines in Figure 6.3. In the case of inter-component events,

the sender of Intent identifies its handler as one of the Intent’s parameters. In the case of

intra-component events, the root node responsible for handling that event is registered as

a callback method with the sender.

As the call graph snippets are linked and connected, they are traversed in a similar

fashion to arrive at the final connected CGM for the app.

6.3 Algorithm

The goal of EvoDroid is to find a set of test cases that maximize code coverage as shown

in Algorithm 1. This is encoded as covering as many unique paths from the starting node

of the CGM to its leaf nodes. For example, as depicted in Figure 6.3, it is to find test

cases from node A to leaf nodes n1, n2, and n3. Two possible paths in this graph are

A→ B → C → n1 and A→ B → E → F → n3. The former involves two segments, while

the latter involves four segments.

For each such path in Figure 6.3, EvoDroid starts from the beginning node and searches

for test cases that can reach the leaf nodes (lines 12–26 of Algorithm 1). Each test case is

represented as an individual in EvoDroid and its genes are the app inputs and the sequence

of events. Unlike any prior approach, EvoDroid takes each path in the CGM, breaks it into

segments, and runs the evolutionary search for each segment separately. Accordingly, the

evolutionary process described here is repeated for each segment along each path in the

CGM.

For each segment in each path, a population with a configurable number of individuals is

generated. The evolutionary process is continued until all of the paths and their segments are

43

covered or a configurable threshold (e.g., time limit, certain level of code coverage, number

of total test cases, etc.) is reached. The search is abandoned for a segment, and potentially

a path, if the coverage is not improved after a configurable number of generations. This

ensures the search does not waste resources on genes that cannot be further improved; it also

prevents the search from getting stuck in infinite loops when there are cycles in the path.

Fitness is measured based on how close an individual gets to reach the next segment as well

the uniqueness of the covered path. With each iteration, EvoDroid breeds new individuals

by crossing over current individuals selected with likelihood proportional to their fitness

value, and then mutates them (e.g., changes some of the input values or events).

The ideal individuals from each segment are saved. An ideal individual is a test that

covers the entire segment and reaches the root node of another segment. An ideal individual

from the previous segment is prepended to the genes of a new individual for the next

generation, as described in Figure 5.2. Essentially the test cases gradually build on the

solutions found for the prior segments to build up to a system test case. A segment may

also optionally be skipped if it was covered while attempting to cover another segment.

For example, in Figure 6.3, since the segment E → F is shared in the following two paths

A → B → E → F → n3 and A → E → F → n3, it would only need to be evolved once

(assuming ideal individuals were found the first time). Similarly, if while evolving A→ B,

the algorithm inadvertently reaches A→ E, those ideal individuals are saved and EvoDroid

may optionally skip solving A→ E.

The maximum number of individuals or test cases executed in the search process can

be calculated as follows:

T =

|path|∑
i=1

Segi × gensegi × popgensegi
(6.1)

where |path| is the number of unique paths (from the starting node to the leaf nodes) in

CGM, seg is the number of segments for each path, gen is the number of generations per

44

segment, and pop is the population or the number of individuals per generation.

6.3.1 Fitness

EvoDroid considers two factors when assessing the fitness of individuals. The first is the

distance traveled (number of nodes covered between segments) to reach the next segment,

and the second is the uniqueness of the path covered compared to the other individuals in

the same generation. The fitness of an individual i is determined as follows:

f(i) =
(x
n

)
+ u(i) (6.2)

where x is the number of covered nodes in the path to the destination segment, n is the

total number of nodes in the path to the destination segment, and u(i) is the uniqueness

function of the individual as follows:

u(i) =

(
1−

(x
n

))
×

l∑
k=1

(unique(rk)

l + k

)
(6.3)

where rk is the covered node at index k in the path covered by the individual, and unique(rk)

is 1 if the covered node at index k is unique compared to other individuals’ coverage at the

same index, and 0 otherwise, and l is the length of the path that this individual has covered.

When an individual for a given segment covers the entire segment path, I identify it as

an ideal individual for that segment with a fitness score of 1. Of course, this means that

there can be multiple individuals per generation that are ideal for a segment.

For illustration of how fitness is calculated, consider the hypothetical example depicted

in Figure 6.4. It shows that the total distance (number of nodes) to reach Activity1 from

Activity2 is 5. When the first individual executes, the shaded nodes are marked as covered

by that individual. It covers 3 out of the 5 nodes along the path to segment root node, so

it gets a distance score of x/n = 3/5 = 0.6, a uniqueness score of u(i) = 0.4× 1/(4 + 1) +

1/(4 + 2) + 1/(4 + 3) + 1/(4 + 4) = 0.25 as the entire path is unique at this time, for a total

45

Figure 6.4: Fitness evaluation.

fitness score of f(i) = 0.85.

If another individual test case is executed but covers the path with nodes Activity1

→ n1 → n2 → n3, it would get a distance score of x/n = 1/5 = 0.2, and additionally

a uniqueness score. The length of the path this individual covered is 4 and all but the

first node are unique (i.e., n1, n2, n3), so the uniqueness score is u(i) = .8 × (1/(4 +

2) + 1/(4 + 3) + 1/(4 + 4)) = 0.34. The total fitness score for this individual would be

f(i) = 0.2 + 0.34 = 0.54. Although the individual did not cover much of the path to the

destination segment node, it is awarded a fractional score as it may discover a new area of

uncovered code.

Note that the formulation of eq. 6.2 and 6.3 ensures that the uniqueness score alone

never makes the value of fitness function to be 1 without reaching the destination. This

prevents an individual to be labeled ideal without first reaching the destination.

46

Chapter 7: EvoDroid Dynamic Approach

This chapter provides the implementation details of EvoDroid using dynamic analysis to

generate models that support the segmented evolutionary testing process.

7.1 Approach Overview

The approach overview for EvoDroid using dynamic models is shown in Figure 7.1. The

algorithm describing the process is shown in Algorithm 2. The input is an Android app.

EvoDroid dynamically builds two types of models from the app: Interface Model (IM) and

Transition Graph Model (TGM). The TGM represents the Behavior Model in the dynamic

approach. These models represent the app’s GUI interfaces and GUI connectivity, and are

used to automatically generate the tests in the evolutionary algorithm.

The Interface Model (IM) provides a representation of the app’s GUI controls, e.g., the

Figure 7.1: EvoDroid Dynamic Approach Framework.

47

Algorithm 2: dynamic algorithm
Input: app← AppUnderTest
Output: FinalTests ⊂ T estCases

1 FinalTests ← ∅;

2 IM ← ∅;

3 TGM ← app.firstScreen;

4 tranTests ← ∅;

5 foreach screen ∈ TGM .screens do

6 viewControls ← screen.getV iewControls;

7 foreach viewControl ∈ viewControls do

8 IM .add(screen, viewControl);

9 foreach generation do

10 individual ← tranTests(screen).append(IM.controls(screen));

11 population ← [individual0..individualN];

12 foreach ind ∈ population do

13 testCase ← generateTest(ind);

14 coverage ← executeTest(testCase);

15 fitness ← evaluate(coverage);

16 if (fitness == 1) then

17 idealTests.add(screen, testCase);

18 screenId ← currentScreen.getId;

19 if (screenId ! = screen.screenId) then

20 TGM .add(currentScreen);

21 tranTests.add(currentScreen, testCase);

22 FinalTests.add(testCase);

23 if stoppingCriteriaMet then

24 break;

48

inputs and events available on various screens to generate tests that are valid for those

screens. An XML representation of IM is shown in Figure 7.2b and the model is shown in

7.2c. EvoDroid uses the IM to determine the structure of individuals (tests), i.e., the input

and event genes that are coupled together. The IM for each Activity is extracted dynam-

ically by executing a special model generation test case on the Activity, called Discovery

Test Case (DTC). The sole purpose of this test case is to extract the model.

The Transition Graph Model (TGM) provides a representation of how the app’s GUI

screens (i.e. Activities) are connected to one another. An example of a partial TGM is

shown in Figure 7.3. All use cases in a given app follow a certain Activity transition path

through the TGM. EvoDroid uses TGM to reach new Activities based on the paths the use

cases traverse through the TGM.

Using these two models, EvoDroid employs a combination of evolutionary testing and

GUI crawling technique. It aims to generate test cases that find and cover as many of

the Activities as possible by dynamically crawling the application. In doing so, it logically

executes an evolutionary algorithm on each Activity to discover other connected Activities.

EvoDroid starts with the first Activity in the app and adds it to the TGM. The TGM

contains a set of nodes made up of Activities and edges that connect them. Initially it

only contains the starting Activity, and subsequently, additional nodes are added as they

are discovered. Then the DTC is used on the Activity to extract its IM. Using the IM, an

evolutionary search is performed on the Activity in an attempt to maximize code coverage

for that Activity. EvoDroid uses heuristics to search for a set of inputs and sequence of

events to incrementally cover the Activity. In doing such a search, new Activities are

discovered and added to the TGM. If complete coverage is attained for a given Activity,

then we know for certain that all possible connected Activities have been discovered. The

search continues in this manner until an evolutionary search has been run on all Activities

in the TGM.

49

7.2 Apps Models Extraction

The dynamic version of EvoDroid needs two types of information about the app under test

for automatically generating test cases: (1) the genes comprising a valid individual, e.g.,

determining the input fields and GUI controls that should be paired up to have a valid test

case for an Activity, and (2) previous Activities that must be traversed to reach the current

Activity. EvoDroid automatically generates the models that capture this information at

run-time as described below. Thus, unlike the static version of EvoDroid that requires

access to source code to extract a call graph model of the app, the dynamic approach is

able to generate tests without requiring access to source code. Algorithm 2 discovers the

Interface Model (IM) (lines 6–8 of Algorithm 2) and the Transition Graph Model (TGM)

(lines 19–21 of Algorithm 2) reflectively at run time.

7.2.1 Interface Model

The Interface Model (IM) provides information about all of the input interfaces of an app,

such as the widgets and input fields belonging to an Activity. The IM is obtained by

executing a special test case (not part of the test cases that are executed in the evolutionary

algorithm) which I call Discovery Test Case (DTC). This test case is executed once per

Activity prior to running the evolutionary testing algorithm on it.

Figure 7.2a shows the IM extraction mechanism on Android using the DTC. The DTC is

a Robotium [29] test case that reflectively identifies what is on the current screen. The test

case logs the IM in an XML format in LogCat [9], the logging facility provided by Android.

The XML representation of the IM is then extracted via the Android Debug Bridge (ADB).

This mechanism is employed as EvoDroid runs outside of the Android emulator or device

and does not have any permissions, visibility, or dependencies to read from the emulator or

device storage.

The DTC recursively combs the current screen for GUI controls such as input boxes,

buttons, radio buttons, image buttons, check boxes, lists, dialogs, context menu, action

50

Figure 7.2: EvoDroid’s (a) Interface Model extraction mechanism, (b) sample
XML representation of a partial Interface Model, (c) sample partial Interface
Model.

menu, physical button menu, tabs, seek bars etc. As these controls are encountered infor-

mation about them are captured in an XML representation of the Interface Model. Some

widgets are marked private by the core Android libraries, in such instances, I use reflection

to access the desired information.

It is quite straightforward to obtain all information on each screen, such as widget type,

name, and identifier to generate the IM. Figure 7.2b depicts an example IM in XML format

as extracted by executing the DTC. This XML has a custom schema developed by me, and

is not the same as the XML that is used to define Activity controls. I use the information

captured in IM, shown in Figure 7.2c, to determine the structure (genes) of individuals for

running the evolutionary search on each Activity.

51

7.2.2 Behavior Model

The Transition Graph Model (TGM) contains a set of Activities capturing the different

possible GUI screen transitions within a given application. As mentioned before, TGM

represents the Behavior Model in the dynamic approach. Figure 7.3 shows a partial TGM

example.

Figure 7.3: Partial Transition Graph Model example.

52

The TGM is constructed dynamically as new Activities are discovered during test exe-

cution. The evolutionary algorithm is executed on an Activity using its IM with the goal to

attain full coverage of the Activity. During this process EvoDroid discovers new Activities

as the transitions are made. This is different from Chapter 6 where I statically generate the

transition paths and the transitions are known prior to applying the evolutionary search.

The TGM contains a set of connected Activity nodes. Each node is made up of the

name of the Activity, the names of the previous transition Activities, as well as the inputs

and sequence of actions and events (the path) that were executed to reach and transition to

the current Activity. A node also has a flag to identify whether the evolutionary algorithm

has been executed on it.

7.3 Algorithm

The goal of EvoDroid is to find a set of test cases that maximize code coverage (lines

9–24 of Algorithm 2). This is encoded as discovering and gaining code coverage of as

many Activities as possible starting from the main Activity. In the context of the example

depicted in Figure 7.3, it is to start crawling from node A and find test cases to cover nodes

B, C, and D. These are the Activities that need to be crawled and covered.

For each Activity in Figure 7.3, EvoDroid executes and searches for test cases that

cover as much of the Activity as possible. Each test case is represented as an individual in

EvoDroid and its genes are the app inputs and the sequence of events (from the IM). Unlike

any prior crawling approach, EvoDroid takes each Activity, extracts its Interface Model

(IM) reflectively, and runs an evolutionary search. Accordingly, the evolutionary process

described here is repeated for each Activity in the TGM.

A population with a configurable number of individuals is generated per Activity. The

evolutionary process is continued until the all the known Activities are covered or a config-

urable threshold (e.g., time limit, certain level of code coverage, number of total test cases,

etc.) is reached. The search is abandoned for an Activity, if the coverage is not improved

53

after a configurable number of generations. This ensures the search does not waste resources

on genes that cannot be further improved. Fitness is measured based on how much of the

Activity has been covered (number of lines has been covered). With each iteration, Evo-

Droid breeds new individuals by crossing over current individuals selected with likelihood

proportional to their fitness value, and then mutates them (e.g., changes some of the input

values or events).

An individual that discovers a subsequent Activity is saved as part of that new Activity

as the transition Activity. When the evolutionary process is applied to the newly discovered

Activity, this individual will be used to reach the new Activity. An individual can discover

a new Activity without covering the entire Activity it is being executed on; in such cases

only part of the individual’s genes will be used to reach the newly discovered Activity.

Since individuals attempt to cover the entire Activity, discovering transitions to other

Activities are implicitly encoded in the search. That is to say, if an individual is able to

cover the entire Activity, then it has discovered all possible transition from the Activity.

This is the primary crawling mechanism in EvoDroid. As these transitions occur, EvoDroid

detects the new Activity and adds it to the Transition Graph Model (TGM) as a new

Activity node. The new node contains the names of the transition Activities (including the

Activity that is currently being searched and made the transition), the name of the new

Activity, and the individual (inputs, events/actions genes) hat was executed to reach this

new Activity.

Transition Activity genes are prepended to the genes of a new individual for the next

Activity (as a transition genes), as described in Figure 5.2. Essentially the test cases

gradually build on the solutions found for the prior Activities to crawl to new areas in

the app. An Activity may optionally be skipped if it was discovered and covered through

another execution path. For example, in Figure 7.3, since Activity C is shared in the

following two Activity transition paths A→ B → C → D and A→ C → D, it would only

need to be evolved once (assuming the entire Activity was covered the first time).

54

7.3.1 Fitness

The dynamic version of EvoDroid uses the number of source lines of code covered for the

Activity when assessing fitness of individuals for the next generation. The fitness of an

individual i is determined as follows:

f(i) =
(x
n

)
(7.1)

where x is the number of covered lines covered in the Activity, n is the total number of lines

in the Activity.

It should be noted that the individuals that discover other Activities are independent of

the fitness function for code coverage. These individuals automatically become the previous

Activity transition genes for the new Activity they discover, meanwhile the code coverage

fitness function ensures that the objective of maximizing code coverage. As previously

mentioned, the discovery of all possible transitions to other Activities from an Activity is

encoded in gaining maximal code coverage for that Activity as shown in Figure 7.4.

Unlike Chapter 6, where the transition paths are statically generated, the fitness function

here does not consider the number of nodes covered to the next segment or the uniqueness

of the traversed path. Attaining full code coverage of the current Activity ensures that all

subsequent segments are discovered.

55

Figure 7.4: Fitness evaluation. Discovery of other Activities is implicitly en-
coded in maximizing code coverage in current Activity.

56

Chapter 8: Cloud Testing Framework

The unprecedented power of cloud computing is widely used in both academia and industry.

Since evolutionary testing requires a large number of test cases to be executed, there are

often performance concerns. I use the computational power of cloud computing to mitigate

the performance and scalability issues.

8.1 Test Case Generation

Both approaches from Chapter 6 and Chapter 7 generate test cases in the Robotium [29]

format. Robotium is an Android test framework that automates the user interactions with

apps via the Solo abstraction. It behaves as the user and supports test cases that span

multiple Android Activities making it ideal for segmented evolutionary testing. Figure 8.1

shows a sample test case for the ERS application from Chapter 4.1.

The sample test case shows the quick report use case which has three segments. We can

see that the genes from each segment are composed together to form the entire use case.

The genes from an individual are directly mapped to Robotium actions and are executed

from the left most gene to the right most gene. However, the test case is fully executable

at the end of each segment. In each segment, the evolutionary process finds the sequence

of events and inputs to reach the next segment.

The format for the test cases are identical in both the static and dynamic approaches.

The tests are also executed the same way and the coverage and crash information is collected

the same way. In each generation of both of the algorithms, all individuals are used to

generate test cases similar to Figure 8.1, and assessed for fitness based on the coverage and

transition information. Since the evolutionary process is repeated per segment, I use cloud

computing to alleviate the scalability concerns.

57

Figure 8.1: (a) An individual for the Quick Report use case in the ERS, and
(b) sample Robotium test case corresponding to the individual.

58

8.2 Amazon Web Services

Amazon Web Services (AWS) [3] is a cloud computing services provider with various of-

ferings. It provides virtual servers on demand, storage on demand, databases, networking,

identify management, analytics, as well as deployment services. These services are primar-

ily categorized into Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and

Software as a Service (SaaS).

These service resources are elastic and can be scaled up or down in real time. These

services are managed by using an interactive web interface. Amazon also provides a Com-

mand Line Interface (CLI) [2] to provision new servers, storage and services. By using the

CLI, it is possible to automate the same functionality provided by the web interface.

8.3 Cloud Test Manager

Traditional evolutionary testing requires a large number of individuals or test cases to

be evaluated for fitness. In the case of segmented evolutionary testing, the number of

individuals that need to be evaluated increases by the number of segments due to repeating

the evolutionary process in each segment.

Typically test cases are executed using an emulator or real device for Android. The

Android emulator is known to be slow, thus evaluating test cases for fitness in sequence is

not feasible when executing large number of test cases.

As depicted in Figure 8.2, I developed a Cloud Test Manager (CTM) framework that uses

the AWS API to provision virtual servers and execute test cases in parallel. The framework

is designed to naturally work with EvoDroid, but also for general purpose parallel execution

of test cases.

Either EvoDroid or other applications submit an app along with a set of test cases to

the CTM. Execution parameters, that specify the number of parallel processors, are also

supplied. The app binary along with the test cases are stored in the Test Case Repository

(TCR). A manually configured virtual machine, pre-configured with the Java, Android

59

emulator etc., is created and the CTM application is installed on it. This CTM application

on the server is marked as the coordinator.

The coordinator monitors the TCR for any new apps and/or test cases that is marked

ready for execution. The CTR application launches instances using the AWS API and

replicates itself based on parameters provided by EvoDroid or other callers. The number of

instances for each app forms a sub cloud cluster as shown in Figure 8.2. The newly replicated

launched instances also contain the CTM application, but with a processor configuration.

Upon initialization, the coordinators register themselves with the TCR and begin processing

tests that are marked ready for execution. The application under test is initially copied

into a local temporary location. If the application has been flagged as updated, the local

copy is destroyed and the latest is retrieved from the TCR.

As each processor virtual machine executes the tests on the application under test, it

collects coverage information as well as failure information. These outputs are saved back

into the TCR. Each processor virtual machine periodically checks the TCR until all test

cases have been executed. The coordinator virtual machine monitors if all tests for a given

application has been run and shuts down the processor virtual machines as needed.

60

Figure 8.2: Test execution cloud infrastructure. Cloud Test Manager applica-
tion is deployed on each node as a coordinator or a processor.

61

Chapter 9: Evaluation Subject Generation

The research community has responded with an array of testing tools and techniques to

tackle the burgeoning app testing challenge [35, 36, 42, 55, 76, 87]. Many of the techniques

provide tools that use full or partial automation in an attempt to tackle the scale of the

problem.

One of the challenges faced by the research community is not being able to locate

consistent and comparable evaluation subjects and not being able to run experiments on

such subjects in a controlled setting. Just as no testing tools are identical, no two apps are

identical in terms of complexity or suitability as test subjects. There is a lack of consensus

on the complexity of apps as complexity is extremely difficult to assess in general. Source

lines of code (SLOC) is a popular metric that is typically used in experiments due to its

simplicity. However, it is rarely an accurate representation of the complexity of an app.

This is especially true in the case of Android as the apps are built on top of an Application

Development Framework (ADF) that provides rich out of the box capabilities. As such, it

is possible to write very complex apps in Android with just a few lines of code. There is a

need to identify the properties that contribute to complexity of apps; and a way to control

these properties to allow researchers to quickly assess and compare their techniques with

varying degrees of complexity.

In my research, I developed DroidGen, a test subject generation tool that aids in bench-

marking and evaluating the strengths and weaknesses of the various app testing tools for

Android. DroidGen is capable of generating fully functioning synthetic Android apps in a

controlled manner.1 To ensure the synthetic apps are representative of the complexity of

real apps, I identified properties pertinent to the complexity of Android apps and conducted

1For the purposes of this research, I use the terms synthetic app, generated app, test app and test subject
interchangeably.

62

an empirical study, by analyzing approximately 100 apps from an open source app market

called F-Droid [19], and collected data on these property metrics. The data gathered from

these complexity metrics are used by DroidGen to generate desirable test apps that exhibit

one or more of these properties at varying degrees. It should be noted that I am not ad-

vocating substituting real apps for synthetic apps when performing evaluations. Rather, I

am providing a supplementary tool that is able to create test applications that represent

different levels of complexity without having to consider application-specific features. This

allows the research community to quickly assess their testing techniques to stay a step ahead

in ensuring their tools can handle different aspects of the growing complexity of Android

apps.

9.1 Empirical Study

I conducted an empirical study to gather data on properties that pertain to complexity of

Android apps. The data collected here is used by DroidGen to generate synthetic apps that

are representative of the complexity of real apps on one or more of these properties. The

data is meant to serve as a means of potentially benchmarking Android app testing tools

by standardizing test subjects.

Setup. The empirical study informs us of interesting information regarding Android

apps and provides us with characteristics that can impact the complexity of apps to deter-

mine their suitability as test subjects. I used approximately 100 apps from the open-source

market F-Droid [19]. Each app was chosen at random in various categories (e.g. Internet,

Office, etc.). I ensured that each selected app was compilable and executable.

To analyze apps, I built a custom static analysis tool that leverages MoDisco [25],

an open-source program analysis tool, and Metrics [30], an Eclipse plug-in for calculating

software metrics (e.g., McCabe Cyclomatic Complexity [92]). My custom static analysis

processes the Android manifest file and extracts information about the app’s components

from it.

63

Figure 9.1: Breakdown of Android Components

Recall from Chapter 2 that Android apps have multiple entry points corresponding to

different callbacks and events in an Android component lifecycle. Each one of these entry

points is the root node of a call graph representing a different execution context to be tested.

To capture insights into complexity of these different execution contexts, I used MoDisco

[25] to count the Number of Root Nodes (NRN) and the longest Method Call Length (MCL)

in the apps.

The Eclipse Metrics [30] plug-in uses object-oriented complexity metrics [74,91] to ana-

lyze general Java source code. The metrics collected by this Eclipse plug-in, listed in Table

9.1, contribute to the complexity of Android apps as they are inherently object-oriented.

Findings. I focus on findings regarding the frequency of component usage, the distri-

bution of key complexity metrics, and the statistics of complexity metrics.

My custom static analysis counts the number of major components in Android apps.

Figure 9.1 shows the breakdown of the major components. We can see that Android apps

heavily use Activities (4.65 on average). Broadcast Receivers and Services are used but not

as commonly (.6 and .65 on average). Content providers are used the least often (.17 on

64

average). The numbers indicate the average occurrence of these components in Android

apps.

MoDisco provides us with information regarding the call graphs of apps. Figure 9.2

depicts the distribution of the number of root nodes, i.e., the entry point methods in the

call graphs of an app, and the distribution of the length of the longest method-call sequence.

These two distributions showcase the effect of the event-driven nature of the Android frame-

work and component lifecycle. We can see that any testing tools and techniques for Android

apps need to account for the event-driven nature of Android. This is also due to the fact

that most Android apps are inherently GUI-based, corroborated by the number of Activity

components shown in Figure 9.1. Therefore, test subjects should, in most scenarios, be

GUI-based and contain many disparate call trees to handle the component lifecycle events

and GUI events.

The data collected from executing the Metrics plug-in in each of the apps can be seen in

Table 9.1. For example, we can see that the average McCabe Cyclomatic Complexity, i.e.,

Table 9.1: Object-Oriented Complexity Metrics

Complexity Metric Average Value Standard Deviation
McCabe Cyclomatic Complexity (VG) 2.34 0.67
Number of Parameters (PAR) 1.03 0.32
Nested Block Depth (NBD) 1.62 0.29
Afferent Coupling (CA) 2.54 3.78
Efferent Coupling (CE) 3.50 2.35
Instability (RMI) 0.71 0.24
Abstractness (RMA) 0.05 0.08
Normalized Distance (RMD) 0.26 0.22
Depth of Inheritance Tree (DIT) 1.94 0.38
Weighted Methods per Class (WMC) 7.64 4.67
Number of Children (NSC) 0.11 0.14
Number of Overridden Methods (NORM) 0.25 0.19
Lack of Cohesion Methods (LCOM) 0.13 0.08
Number of Attributes (NOF) 1.72 1.10
Number of Static Attributes (NSF) 5.42 5.55
Number of Methods (NOM) 2.98 1.69
Number of Static Methods (NSM) 0.33 0.39
Specialization Index (SIX) 0.18 0.17
Number of Classes (NOC) 9.52 4.83
Number of Interfaces (NOI) 0.27 0.56
Number of Packages (NOP) 5.27 5.17
Method Lines of Code (MLOC) 9.87 3.80

65

Figure 9.2: Android complexity metrics distribution from a random sample of
100 apps.

the number of control-flow branches per method, in Android apps is 2.34, and on average

the Nested Blocked Depth, i.e., the average number of nested condition statements per

method, is 1.62. Figure 9.2 depicts the distribution of the McCabe Cyclomatic Complexity,

as well as Nested Block Depth. These types of values along with the standard deviation are

used by DroidGen when generating constraints in an application.

9.2 DroidGen

DroidGen is a tool that generates fully functional Android apps for the purposes of evaluat-

ing, benchmarking, and comparing Android app testing tools. To ensure the generated apps

are representative of real world apps, the synthetic test subjects from DroidGen are based

on the data collected from the empirical study in Sections 9.1 that represent complexity of

the real apps.

As shown in Figure 9.3, DroidGen has three major components that are used to generate

66

the apps. The Input Parser component parses the input parameters file including the

desired complexity settings; then the App Generator component uses the data from the

empirical study, a template skeleton app, and Android specifications to generate an app;

and finally the Instrumentation component configures the app so it can be instrumented at

the class, method, and branch levels. By default, DroidGen executes in a multi-threaded

configuration since many apps may be generated. The number of threads to execute along

with a temporary working location must be provided.

The Input Parser component takes an XML input parameters file and parses it for the

App Generator component. The XML parameter file specifies the list of metrics from Ta-

ble 9.1 and the desired value range of each metric in the generated test subjects. Each

complexity metric is also given a priority with respect to the others for DroidGen to sat-

isfy. Similarly, if some of the metrics are not important to the evaluation at hand, they

can optionally be ignored by setting a flag alongside the metric in the parameter file. The

parameter file also contains the output location, Android target version, name of the pack-

age for the apps, component naming patterns (e.g. appending an incremental number),

number of input constraints and ordered event sequence constraints to include, types of

instrumentation to include, as well as the number of apps to generate.

The App Generator component uses the data from Section 9.1, different versions of

Figure 9.3: Overview of DroidGen

67

Android specifications to maximize compatibility, and a template skeleton app to generate

an Android application on the fly. The template app is manually developed and tested

to ensure that it runs properly. The App Generator component supports generating apps

that constrain access to a subset of its components based on ordered event sequences of

specified lengths, the maximum number of input constraints, maximum number of nested

constraints, and the probability of satisfiabilty for the constraints. There are times when

the App Generator is not able satisfy all of the parameters. In such instances, it satisfies as

many of the metric values as possible based on the priority provided in the input file. The

App Generator component starts with the average values from Section 9.1 and tweaks and

adjusts the app iteratively until the specified ranges are met. It analyzes the generated app

using the tools described in Section 9.1. These are the tools used to do the empirical study

and they are used by this component at run-time to check the properties of the generated

apps. All major Android components are included with respect to the distribution seen in

Figure 9.1. Additional components are added based on input preference and Figure 9.2 to

increase or decrease the number of root nodes. Finally, the data from Table 9.1 is used to

organize packages, components, classes, and methods and add constraints within the app.

The Instrumentation component statically injects code in the generated apps at the

class, method, and branch levels to monitor the coverage achieved by each test. Depending

on the configuration options, the generated app can log to a file, database, or simply output

to the screen if the instrumentation location is executed. This component gives an easy

mechanism for reachability, coverage, and performance instrumentation. It also provides

the mechanism for high level data flow instrumentation such as observing input values

from the GUI at various execution locations. Once the test subjects are generated and

instrumentation is completed, they are deployed to a Test Subject Repository on the local

drive, network share, or on the cloud depending on the user preference.

68

Chapter 10: Evaluation Results

I evaluated EvoDroid on a large number of apps with varying characteristics. The goal

of my evaluation was twofold: (1) compare the EvoDroid code coverage against the prior

solutions, and (2) characterize its benefits and shortcomings.

10.1 Experiment Environment

Evolutionary testing requires the execution of a large number of tests. This is especially

challenging in the case of the Android emulator [7], as it is known to be slow even when

running on workstations with the latest processors and abundant memory. To mitigate this

issue, I have developed a novel technique to execute the tests in parallel, possibly on the

cloud, which makes it suitable for use by small as well as large organizations. The details

of this infrastructure is provided in Chapter 8.

I set up an instance of Amazon EC2 virtual server running Windows Server 2012, and

configured it with Java SDK, Android SDK, Android Virtual Device, and a custom Cloud

Test Manager application as described in Chapter 8. For each test, the test execution

manager launches the emulator, installs the app, sets up and executes the test. It is also

responsible for persisting all of the results, along with the log and monitored data, to an

output repository. A virtual machine image was created from the above instance to be

replicated on demand. With this, I was able to scale in near-linear time and cut down on

the execution time. I report the results for both extremes: when the test cases are executed

in sequence using a single processor, and when they execute completely in parallel.

I have implemented EvoDroid using ECJ [17], a prominent evolutionary computing

framework. In the experiments, I used EMMA [18] to monitor for code coverage, and all of

the test cases were in Robotium [29] format.

69

10.2 Experiment Setup

I compare EvoDroid with Android Monkey [10] and Dynodroid [87] in terms of code coverage

and execution time. Android Monkey is developed by Google and represents the state-of-

the-practice in automated testing of Android apps. It sends random inputs and events

to the app under test. Dynodroid [87] is a recently published work from researchers at

Georgia Tech that uses a smaller number of inputs and events than Monkey for reaching

similar coverage. I am not able to compare directly with EXSYST [71] and EvoSuite

[72], as they are not targeted for Android. I do not compare against [113] as that is for

model generation only, while EvoDroid creates models and performs a step-wise segmented

evolutionary search.

In the evaluation of any stochastic search algorithms, such as EvoDroid, it is desirable

to compare the results of the algorithm against the unbiased random sample of the solution

space. I believe the comparison against Monkey and Dynodroid helps us in that vein. It

should be noted that unlike EvoDroid, Monkey and Dynodroid are not designed to run in a

distributed manner, and neither tools are configurable to run for a specific amount of time.

To achieve a fair comparison with Android Monkey and Dynodroid, however, I had

to allot each approach similar number of events. The events for Android Monkey and

Dynodroid are similar to the genes in EvoDroid. Since there is no one-to-one mapping,

I ran EvoDroid first. I then mapped the total number of generated tests in EvoDroid to

Monkey and Dynodroid events. Thus, the number of events allotted for running Monkey

and Dynodroid varied as a function of the number of test cases executed for EvoDroid as

follows: max(g) × t, where g is the maximum number of genes allowed for test cases in

EvoDroid and t is the number of test cases executed for a given app.

In all experiment scenarios, for each segment in each path, I used a maximum of 10

generations of 10 individuals with a maximum of 10 genes. The number of maximum

generations along with the coverage of all segments served as the terminating conditions.

Euler’s constant (e = 2.718) was used as the crossover decay number in eq. 5.1, and during

70

the mutation phase each gene had a 20% chance of mutation in EvoDroid.

To evaluate EvoDroid, two sets of experiments were performed. The first on apps devel-

oped by independent parties from an open source repository, and the second on synthetic

apps. The synthetic apps helped us benchmark EvoDroid’s characteristics in a controlled

setting.

10.3 Open Source Apps

I selected 10 open source apps to evaluate the line coverage between EvoDroid, Monkey, and

Dynodroid. I was not able to run Dynodroid on two of the subject apps, and thus I am not

able to report on those. As shown in Figure 10.1, EvoDroid consistently achieve significantly

higher coverage than both Monkey and Dynodroid. On average statically extracting the

models in EvoDroid achieves 47% and 27% higher coverage than Monkey and Dynodroid,

respectively. On average dynamically extracting the models achieves 45% and 25% higher

code coverage than Monkey and Dynodroid, respectively. EvoDroid static and dynamic

approaches comparatively achieve similar code coverage depending on the quality of the

models as fundamentally both algorithms apply a segmented evolutionary approach.

The generation of test oracles is outside the scope of my work, nevertheless I collected

information about unhandled exceptions, which allowed us to detect several defects in these

apps. For instance, I found several cases of unhandled number format exception in Tipster,

TippyTipper, and Bites that were due to either leaving the input fields empty, clicking a

button that clears the input field followed by clicking a button that would operate on the

inputs, or simply putting a string that could not be converted to a number. As another

example, I found a defect in Bites, an app for finding and sharing food recipes, in which

an unhandled index out of bounds exception would be raised when editing recipes without

adding the ingredients list first.

Some of the reasons for not achieving complete coverage are unsupported emulator

functions, such as camera, as well as spawning asynchronous tasks that may fail, not finish

by the time the test finishes, and thus not get included in the coverage results. Other reasons

71

include code for handling external events, such as receiving a text message, dependence on

other apps, such as calendars and contacts lists, and custom exception classes that are not

encountered or thrown. Additionally, some of the applications contained dead code or test

code that was not reachable, thus the generated static EvoDroid models would not be fully

connected or the dynamic approach would not be able to reach a particular segment at

run-time. Indeed, in many of these apps achieving 100% coverage is not possible, regardless

of the technique.

The limitations of emulators, peculiarities in the third-party apps, and incomplete mod-

els made it very difficult to assess the characteristics of EvoDroid independently. The static

models generated by EvoDroid are sometimes incomplete due to Android version fragmenta-

tion, variability of programming styles, third party libraries, code generation via reflection,

and anonymous class declarations among other reasons. While the dynamic approach does

Figure 10.1: Line coverage results for testing apps from different complexity
classes.

72

not suffer from the same limitations because it does not use static analysis, its models are

also sometimes not complete. This is partially due to not being able to discover and crawl

to other nodes as constraint values need to be solved to reach those nodes.

In other words, it was not clear whether the observed accuracy and performance was

due to the aforementioned issues, and thus an orthogonal concern, or due to the fundamen-

tal limitations in EvoDroid’s approach to test generation. I, therefore, complemented the

evaluation on real apps with a benchmark using synthetic apps, as discussed next.

10.4 Synthetic Benchmark Apps

To control the characteristics of the subjects (i.e., apps under test), I developed an Android

app generator that synthesizes apps with different levels of complexity for the experiments

as described in Chapter 9. Since I needed a way of ensuring the synthetic apps were

representative of real apps, I first conducted an empirical study involving 100 real world

apps chosen randomly from an open source repository, called F-Droid [19]. The selected

apps were in various categories, such as education, Internet, games, etc. I analyzed these

apps according to four complexity metrics that could impact EvoDroid:

• Root Nodes per App — the number of disconnected call graphs in the app; these are

the methods called by ADF, and potentially the break points for segments.

• Method Call Sequence Depth — the longest method call sequence in the app.

• McCabe Cyclomatic Complexity — the average number of control flow branches per

method.

• Block Depth per Method — the average number of nested condition statements per

method.

Figure 9.2 shows the distribution of these metrics among the 100 Android apps from F-

Droid. My app generator is able to synthesize apps with varying values in these four

metrics. Since I wanted to evaluate the accuracy and performance of EvoDroid on subjects

73

with different levels of complexity, I had to derive some complexity classes from this data.

For that, I aggregated the data collected through the empirical study, as shown in Figure 9.2,

and divided it into 9 equal complexity classes, ranging from 1 to 9. For instance, the 1st

complexity class corresponds to the 10th percentile in all of the four metrics shown in

Figure 9.2. Essentially an app belonging to a lower class is less complex with respect to all

four metrics than an app from a higher class.

10.4.1 Impact of Complexity

To benchmark the impact of complexity on EvoDroid, I generated two apps for each com-

plexity class. Apps were set up such that exactly 1 path contained no input constraints,

while other paths contained nested conditional input constraints. These constraints were

generated to simulate the Block Depth per Method dimension, and would have to be satis-

fied in order for the search to progress further and attain deeper coverage. The generated

conditional statements had a 50% satisfiability probability given a random input value. Of

course, some of the conditional statements were nested in the synthetic apps, resulting in a

lower probability of satisfying certain paths.

The line coverage results are summarized in Figure 10.2. As the complexity class of

apps increases, the coverage for Monkey and Dynodroid drops significantly. Since EvoDroid

logically divides an app into segments, the complexity stays relatively the same, i.e., it is not

compounded per segment. In all experiments, EvoDroid achieved over 98% line coverage.

The cases where 100% coverage is not reached is due to the algorithms abandoning the search

when reaching the maximum number of allowable generations. Increasing the number of

generations is likely to resolve those situations.

Once Monkey traverses a path, it does not backtrack or use any other systematic way to

test the app. Therefore, Monkey’s test coverage is shallow as others have confirmed in [87].

Dynodroid periodically restarts from the beginning of the app, and is able to outperform

Monkey. Note that for very complex apps, Dynodroid would crash, and thus I was not able

74

Figure 10.2: Line coverage results for testing apps from different complexity
classes.

to obtain results.1

Table 10.1 summarizes the execution time for EvoDroid, Monkey, and Dynodroid. Even

though the execution time for EvoDroid significantly increases as the apps become more

complex, it could be alleviated by running them in parallel, possibly on the cloud. The

parallel times presented are roughly equivalent to the worst path execution time for both

algorithms. The numbers presented assume as many parallel instances running as there

are test cases. In practice, we expect EvoDroid to be executed on several machines, but

perhaps not hundreds, producing an execution time in between the worst case and best case

reported in Table 10.1. We can see that as the depth of the segments increases, the time to

execute EvoDroid increases. The results also show that Monkey runs fairly quickly, while

Dynodroid takes longer, as one would expect due to its backtracking feature.

1This is because above 10,000 events Dynodroid needs more than 3.4GB memory, which is more than the
maximum memory size the 32-bit virtual machine, that the Georgia Tech researchers provided me for the
experimentation, could support.

75

Table 10.1: Execution time for testing apps from different complexity classes
(in minutes).

of Monkey/ EvoDroid EvoDroid EvoDroid EvoDroid
Complexity # of Test DynoDroid Dynamic Dynamic Static Static Android DynoDroid

Class Segments Cases Events Single CPU Parallel Single CPU Parallel Monkey
1 4 30 300 38.06 1.59 41.55 1.65 1.52 235.57
1 6 40 400 43.23 1.68 44.10 1.75 1.55 273.27
2 8 50 500 65.60 1.96 52.00 2.01 1.52 309.43
2 9 60 600 76.54 2.10 88.31 2.20 1.53 325.78
3 17 130 300 280.47 2.53 258.77 2.40 1.65 458.90
3 19 140 140 274.80 2.39 293.38 2.53 1.58 407.60
4 25 210 2100 465.87 3.11 686.47 3.31 1.97 1091.00
4 33 220 2200 430.50 3.41 388.30 3.11 1.72 1073.40
5 36 260 2600 656.33 3.89 796.23 4.13 1.88 592.27
5 48 290 2900 702.43 4.12 692.77 3.92 2.23 823.57
6 49 280 2800 899.86 4.79 1107.79 4.90 2.02 623.57
6 47 520 5200 1297.32 5.39 957.97 4.43 2.13 1100.70
7 109 750 7500 2455.01 5.01 2725.27 5.11 2.50 1233.90
7 110 1110 11100 3288.67 5.67 2999.87 5.53 2.82 -
8 233 1800 18000 7547.19 6.58 7645.32 6.20 4.03 -
8 282 1960 19600 7815.30 6.46 8035.17 6.53 4.17 -
9 345 3640 36400 17543.75 6.99 13713.25 6.81 5.43 -
9 487 3680 36800 19465.10 7.20 21395.50 7.59 6.00 -

10.4.2 Impact of Constraints

Input constraint satisfaction is a known weakness of search based testing techniques. A

set of experiments was conducted to assess the efficacy of my approach as the satisfiability

probability of conditional statements was lowered below 50%. I took the second app from

the 3rd complexity class (shown in Figure 10.2) and lowered the satisfiability probability

of its conditional statements to 25%, 10%, and 1%. As shown in Figure 10.3, when the

probability of constraint satisfiability decreases, the line coverage drops significantly for

EvoDroid. Android Monkey coverage stays the same as it takes the one path with no

constraints and does not backtrack. The coverage for Dynodroid drops also, but remains

better than Monkey, as it restarts from the beginning several times during execution.

The results demonstrate that EvoDroid (as well as any other evolutionary testing ap-

proach) performs poorly in cases where the apps are highly constrained (e.g., the probability

of satisfying many conditional constraints with random inputs is close to zero, such as an

if condition that specifies an input value to be equal to a specific value). Fully addressing

76

this limitation requires an effective approach for solving the constraints, such as symbolic

execution, as described further in Chapter 12. Fortunately, from Figure 9.2 we see that for

a typical Android app, the average cyclomatic complexity is approximately 2.2 and block

depth is approximately 1.75. These numbers are encouraging, as they show that on average

most Android apps are not very constrained.

10.4.3 Impact of Sequences

Given the event driven nature of Android apps, there are situations when certain sequences

of events must precede others or certain number of events must occur to execute a part

of the code. I evaluated EvoDroid for these types of situations by generating apps from

the 3rd complexity class with ordered sequence lengths ranging from 1 to 5. Sequences of

events with these lengths would have to be satisfied, per segment in all paths, in order to

proceed with the search (e.g. certain buttons on an Activity must be clicked in a certain

Figure 10.3: Impact of constraints on line coverage.

77

sequence of length 1 to 5).

Figure 10.4 summarizes the results from these experiments. While EvoDroid’s coverage

decreases, it does so at a much slower pace than Monkey or Dynodroid. We observe that

EvoDroid is effective in generating system tests for Android apps involving complex sequence

of events. This is indeed one of the strengths of both evolutionary approaches that is quite

important for Android apps as they are innately event driven.

Figure 10.4: Impact of sequences of events on line coverage.

78

Chapter 11: Applications of EvoDroid

By overcoming the crossover issue in traditional evolutionary testing, EvoDroid fundamen-

tally attempts to address the reachability issue. It is often desirable to reach and execute

specific locations in applications. EvoDroid’s current objective subsumes this problem as

it targets and attempts to gain coverage of the entire application. By changing the fitness

function in EvoDroid, it is possible to target areas of interest in applications. This chapter

outlines some of these use cases.

11.1 Security Vulnerability Testing

EvoDroid can be used for targeted security vulnerability testing as shown in Figure 11.1.

We can statically analyze the code looking for well-known vulnerability patterns in the app

and label the vulnerabilities found in this way as targets, i.e., locations in the code that are

likely to be vulnerable. Afterwards, we can generate candidate exploits (test cases) that

consist of inputs and sequence of actions to reach the targets. There are many different

types of static analysis techniques for finding vulnerabilities, including Control Flow, Data

Flow, and Content analysis. The rule set for these techniques are available from prior

research [58] and commercial tools such as Fortify SCA.

EvoDroid is able to complement the results of static analysis with targeted dynamic

analysis to produce exploits. Targeted dynamic analysis allows us to verify whether a given

vulnerability is exploitable by executing the code. Consider that by simply executing a line

of code, we are able to determine unequivocally whether the vulnerability is exploitable or

not. The key challenge, however, is finding a test case that would execute a given target.

Code-rewriting techniques can be used instrument the application software under test

based on the vulnerability information. For this purpose, code needs to be inserted to

79

Figure 11.1: Targeted Security Testing

monitor the program status and test results. The process of inserting monitoring code

in existing code is called instrumentation. Instrumentation for exploitation monitoring

is essentially the same as inserting test oracles in an application. Automated creation

of a precise oracle is challenging [106] when the test results should be checked against

certain expected output values, rather than the more easily observable phenomena, such

as a crash. Additionally, for precise detection of exploits, instrumentation code may have

to be customized depending on the vulnerability patterns that are being tested. Each

vulnerability pattern has to be monitored and detected in a different way, as each may

manifest itself in a different way. EvoDroid can simply focus on the coverage or crash based

instrumentation. Specific vulnerability semantic based test oracle generation is not within

the scope EvoDroid.

11.2 Incremental Regression Testing

Software apps are typically built by a team of engineers following a predefined software

development process or methodology. Most modern approaches and methodologies include

test automation and continuous integration testing.

EvoDroid can complement the typical unit tests, that are manually written by engineers,

by running during continuous integration testing on a periodic basis. By identifying the

80

locations of the all of the changed source files using the API from the code repository (e.g.

Subversion [31]). Once the added or modified locations have been identified, they serve as

the target locations. The approach is shown in Figure 11.2.

This adds significant value to the development team, as the defects that are inadver-

tently added to newly developed or updated components can be automatically discovered

by EvoDroid.

11.3 Field Failure Replication Testing

Manually creating tests to replicate faults submitted from the field is very costly. EvoDroid

is able to automatically create test cases for faults that are found in the field as shown in

Figure 11.3.

The reports are automatically collected into a crash or fault repository. EvoDroid pulls

from this repository on a periodic basis and automatically generate tests cases to reach the

locations of the faults.

Figure 11.2: Targeted Incremental Testing

81

Figure 11.3: Field Failure Testing

For example, if a null memory reference fault takes place in the field, the data can be

collected with the location of the fault. A test case can automatically be generated to reach

the location as a target. This saves a tremendous amounts of debugging time especially as

the number of field failures increase.

11.4 Limitations

Using EvoDroid for targeting testing is hindered by the need to solve input constraints. One

of the weaknesses of search based testing techniques, such as EvoDroid, is its inability to

systematically reason about input constraints. This is especially true as the probability of

constraints satisfaction reaches near zero. Symbolic execution has been used by the research

community to address this issue. I employ a similar approach in solving input constraints

for Android apps as described in Chapter 12.

82

Chapter 12: Reasoning About Input Values

As seen from the evaluations in Chapter 10, the strength of search based testing techniques,

such as evolutionary testing, is reasoning about events. It does not lend itself well when

reasoning about input values and constraints. In my research, I explored an input genera-

tion solution, called SIG-Droid, that can be used to mitigate this weakness using symbolic

execution. This chapter provides implementation details about SIG-Droid.

12.1 SIG-Droid

System Input Generation for Android apps (SIG-Droid) [96] is an input generation and

constraint solver tool for Android. It generates proper values for GUI data widgets that

take user inputs. The input domain can be quite large, for example, in a numeric textbox

that accepts 5 unsigned digits and involves a conditional statement satisfied when the input

value equals a certain integer, random input generation has only 1
105

chance to reach the

state satisfying that condition.

SIG-Droid combines program analysis techniques with symbolic execution [83] to system-

atically generate inputs for Android apps. To prune the domain of data inputs, SIG-Droid

employs symbolic execution, a promising automated testing technique that can effectively

deal with constraints. Symbolic execution uses symbolic values, rather than actual values,

as program inputs. It gathers the constraints on input values along each path of a program

execution, and with the help of a constraint solver generates actual inputs for all reachable

paths. While symbolic execution has proven to be effective for unit level testing, there are

some unique challenges when testing Android apps.

Android apps are built using a common application development framework (ADF) that

ensures apps developed by a wide variety of suppliers can interoperate and coexist together

83

in a single system (e.g., a phone) as long as they conform to the rules and constraints

imposed by the framework. An ADF exposes well-defined extension points for building

the application-specific logic, setting it apart from traditional desktop software that is often

implemented as a monolithic independent piece of code. Android also provides a container to

manage the lifecycle of components comprising an app and facilitates the communication

among them. As a result, unlike a traditional monolithic software system, an Android

app consists of code snippets that engage one another using the ADFs sophisticated event

delivery facilities. This poses a challenge to test automation, as the app’s control flow

frequently interleaves with the ADF causing problems such as path-divergence that occurs

when a symbolic value flows outside the context of the program to the context of the

underlying ADF [38]. Furthermore, although Android apps are developed in Java, they

run on Dalvik Virtual Machine (DVM) [16], instead of the traditional Java Virtual Machine

(JVM). This is problematic, as current symbolic execution engines that are targeted at Java

cannot be used for Android apps.

SIG-Droid uses extracted models to exhaustively pinpoint possible ways an app can

receive inputs. It exchanges all concrete inputs with symbolic values, and gathers the con-

straints around those inputs. To determine the execution paths that should be symbolically

analyzed, it automatically generates sequences of event handler methods from the inferred

Behavior Model called Drivers. Furthermore, to enable symbolic execution engine to run

the apps in the JVM, and to resolve any possible external method calls resulting in path-

divergence, models of Android library classes are created. After symbolically executing the

app using the drivers, the solved values are used along with the corresponding events to

create test inputs.

12.2 Symbolic Execution

Symbolic Execution [83] is a program analysis technique that uses symbolic values, rather

than actual values as program inputs. Consequently, the outputs of the program are trans-

formed to a function of the symbolic inputs. The path condition is a Boolean formula over

84

the symbolic values representing the constraints which must be satisfied in order for an

execution to follow a specific path. Using the path conditions around symbolic values, a

decision tree, called symbolic execution tree, is created.

For illustration of this technique, a simple Java program is depicted in Figure 12.1b,

where S0, S1, S2, and S3 denote statements that can be invoked in different paths of the

program. Clearly, random testing is not likely to result in good coverage for this program.

Consider that the input value for y has to be exactly three times the value of variable x to

cover statement S0. This is precisely where the symbolic execution is shown to be fruitful.

Figure 12.1b shows the symbolic execution tree for this program. With the help of an off-

the-shelf SAT solver, actual input values that result in paths shown in Figure 12.1b can be

generated. These inputs can be used to generate test cases that cover different paths.

As an example, let X and Y be the symbolic representation of variables x and y, respec-

tively. By solving the following constraint “X > 0 & X ≤ 3 & Y = X × 3”, the following

two values are obtained “X = 3” and “Y = 9”, which result in taking the bold path in

Figure 12.1b and executing S0 and S2. Similarly, using symbolic execution, it’s possible to

generate all inputs for test methods in such a way that all feasible paths in the program are

explored. Moreover, symbolic execution can determine infeasible or unreachable paths and

report an assertion violation (path 3).

Symbolic Pathfinder (SPF) [32] is a symbolic execution engine for Java programs. It is

built on top of Java Pathfinder (JPF) [22], an open source general-purpose model checker

for Java programs. Unlike other symbolic execution engines, SPF does not work with

code instrumentation. It works with a non-standard interpretation of Java byte-code using

a modied JVM [22]. SPF analyzes Java byte-code and handles mixed integer and real

constraints, as well as complex mathematical constraints through heuristic solving. SPF

can be used for test input generation and finding counterexamples to safety properties [32].

SIG-Droid extends SPF to support Android apps. By addressing SPF limitations in dealing

with event driven nature of Android, it is able to generate inputs and test cases for Android

programs.

85

12.3 Illustrative Example

For illustrating the approach, I use a mobile banking app as a running example. Figure 12.2a

shows two of the screens comprising this app: MainActivity and TransferActivity. The

MainActivity is the first screen that the user sees when the app is launched. It allows

the user to work with her checking or savings account (e.g., see the details of transactions

occurring in each account). The TransferActivity screen allows the user to transfer money

between the checking and savings accounts.

Figure 12.2b shows code snippets realizing one of the functionality provided by this app.

Figure 12.1: Symbolic execution: (a) sample code, and (b) the corresponding
symbolic execution tree, where X and Y are the symbolic representations of
variables x and y

86

When the Transfer button (see Figure 12.2a) is clicked, the onClick method is called by

the ADF. Subsequently, if the transfer amount is less than $5,000, an Intent is sent to the

Figure 12.2: Banking App: (a) Screenshots, (b) code snippet from Transfer-
Activity, and (c) snippet from Transfer.xml layout.

87

MainActivity including as payload the transfer amount, source and destination accounts.

Finally, MainActivity updates the balance in each account to reflect the transfer amount,

and displays the updated result to the user.

As previously mentioned, the widgets on each activity are defined in an XML layout

file. Figure 12.2c presents a snippet of the layout file for TransferActivity.

One conceivable test case generated using one of the existing techniques is clicking on the

Transfers tab (thus bringing up the screen corresponding to TransferActivity), entering

a random value as the amount to be transferred, and clicking on Transfer button. But

considering the constraint in the code that the transfer amount cannot be more than $5,000,

there is no systematic way of generating tests that cover both possible paths following the

constraint. SIG-Droid symbolically executes the parts of the code corresponding to the

sequences of events and generates test cases that cover both paths.

12.4 Overview of SIG-Droid

Figure 12.3 depicts a high level overview of SIG-Droid, which is comprised of three major

components. The first component is the Model Generator that takes an app’s source code

and outputs two models:

• The Behavior Model (BM) represents the event-driven behavior of the app, including

the relationships among the event generators and handlers. SIG-Droid uses the BM

to generate possible use cases of the system (sequence of events), known as Drivers

in the symbolic execution literature [32].

• The Interface Model (IM) provides a representation of an app’s external interfaces and

in particular ways in which it can be exercised, e.g., the inputs and events that are

available on various screens to generate test cases that are valid for those screens. SIG-

Droid uses the IM to determine the candidate input values that should be exchanged

with symbolic values.

88

The second component of SIG-Droid is the Symbolic Execution Engine. As mentioned

in Section 12.2, SIG-Droid is built on top of JPF, which uses the byte-code interpretation of

the program under test. Hence, the app’s source code has to be compiled with Java compiler,

instead of Android’s Software Development Kit. This task is achieved by replacing platform-

specific parts of the Android libraries that are needed for each app with stubs. These stubs

are created in a way that each component’s composition and callback behavior is preserved.

This allows SIG-Droid to execute an Android app on JPF virtual machine without modifying

the app’s implementation.

The symbolic execution engine heavily utilizes the two generated models. The BM is

used to generate the app Drivers (i.e., use cases), while the IM is used to mark the input

values that have to be exchanged with symbolic values. Furthermore, prior to running the

symbolic analysis, the code is instrumented in order to track the sequence of events that

occur in each path. The results are stored in the symbolic execution report that is used

later in generating test cases.

Finally, the third component of SIG-Droid is the Test Case Generator. It takes the IM

along with the symbolic execution report as inputs and generates test cases that can be

Figure 12.3: High level overview of SIG-Droid.

89

executed on top of Robotium [29], which is an Android test bed.

The next three sections describe the three components of SIG-Droid in more detail.

12.5 Model Generation

Model Generator extracts two models for each app: Behavior Model (BM) and Interface

Model (IM).

12.5.1 Behavior Model

The BM represents a high-level behavior of the app in terms of the interactions among the

event generators and handlers. This model is obtained in three steps: (1) reverse engineering

of the app’s call graph, which only contains the explicit method calls, (2) using knowledge of

the ADF specification to augment the call graph with implicit calls (i.e., event exchange),

and (3) pruning the call graph from nodes irrelevant to understanding the event-driven

behavior of the app.

The first step of SIG-Droid entails using MoDisco [25], an open source program analysis

tool, to extract the app’s call graph. Unlike traditional Java programs, Android apps

do not contain a main class that becomes the root node of the call graph, where the

program is always initiated. Android apps are event driven, meaning that the thread of

execution constantly changes context between the application logic, ADF, and user interface.

Therefore, instead of a connected call graph that represents the connected set of possible

method calls, an Android app is composed of a set of disconnected sub-call graphs that

collectively represent the app’s logic. These sub-call graphs correspond to all the ways in

which an app can be initiated and accessed by the user or the Android platform.

Figure 12.4a shows a subset of the Banking app’s call graph obtained from its source

code (as described later in this section, the red dashed lines are inferred to create a fully

connected graph by extending MoDisco). Boxes in Figure 12.4a represent the methods, and

the lines represent the sequence of invocations.

90

The second step of SIG-Droid is to relate the reverse engineered sub-call graphs to one

another, and thus discover the dotted red arrows shown Figure 12.4a. Note that the links

between the subcall graphs are implicit (i.e., these calls are initiated by the Android ADF

itself) and not recoverable through simple source code analysis tools, such as MoDisco.

We observe that the root node of each sub-call graph is a method call never explicitly

invoked from other parts of the application. There are two types of root nodes:

1. Inter-component root nodes represent methods in a component that handle events

Figure 12.4: (a) Examples of two sub-call graphs automatically inferred for
the banking app; augmented red lines represent implicit calls used to connect
sub-graphs; (b) the BM for the banking app automatically generated after
pruning sub-graphs.

91

generated by other components or Android framework itself. For instance, in the example

of Figure 12.4b, TransferActivity component sends a startActivity event that results

in MainActivity’s onCreate() method to be called.

2. Intra-component root nodes correspond to events that are internal to a component.

For instance, in the example of Figure 12.4b, when a Button belonging to TransferActivity

is clicked, the event is handled by the Transfer class within the same activity that imple-

ments the OnClickListener interface and overrides the onClick() method.

In order to resolve all of the implicit links in the app, SIG-Droid traverses the call graph

starting with the onCreate() root node of the main activity (the starting point of the app).

To link the different sub-call graphs, it continues down the graph and identify the leaf nodes

where implicit method calls are initiated. These nodes would have to be method calls that

either set an event handler, start other activities, send Intent messages, or handle system

events. System event handlers deal with notification events, such as when a call is received,

network is disconnected, or the battery is running low. Based on Android’s specification,

we know that the links would have to be from leaf nodes to other root nodes. For example,

in Figure 12.2b there is an implicit call from startActivity in TransferActivity to

MainActivity’s onCreate(). Algorithm 3 shows how implicit calls are extracted, given

a set of disconnected call-graphs and the set of caller methods that initiate implicit calls.

These methods are defined by Android’s specification. As new sub-call graphs are linked

and connected, they are traversed in a similar fashion. By doing so, we are able to connect

the entire call graph of the application, from beginning to end. The call graph model is

updated with the newly found information.

Finally, the third step in deriving the BM is to remove all of the non-root nodes from

the call-graph of an app and connecting the remaining nodes. The BM for the Banking app

is depicted in Figure 12.4b. The BM only captures a high level behavior of the app in terms

of the event interactions and does not include unnecessary details about the sequences of

explicit method calls within the Android components.

It must be noted that the obtained call graph and hence the BM only represent the

92

Algorithm 3: Implicit Call Extraction
Input: CG : set of sub-call graphs, ψ : set of implicit callers
Output: Υ : implicit calls

1 foreach c ∈ CG do

2 rootNodes← c.getRoot()

3 foreach c ∈ CG do

4 lNodes← c.getLeafNodes()

5 foreach l ∈ lNodes do

6 if l ∈ ψ then

7 d← l.getDestinationNode()

8 if d ∈ rootNodes then

9 Υ.Add(l, d)

chain of possible method calls regardless of constraints, i.e., the call graph of an app does

not include any information about conditions and the control flow of an app. As will

be explained in detail later, the BM is only used to generate the Drivers for symbolic

execution and not directly to generate the sequences in test cases. In other words, it is used

to navigate within the app to determine all the ways in which it receives user inputs, system

notifications, starts/stops/resumes activities and services, interacts using Intents, etc.

12.5.2 Interface Model

The IM provides information about all of the input interfaces of an app, such as the widgets

and input fields belonging to an Activity. It also includes information about the application-

level and system-level Intent events handled by each Activity. The IM is obtained by

combining and correlating the information contained in the configuration files and meta-

data included in Android APK (such as Android Manifest and layout XML files). For each

activity the corresponding layout file (recall Figure 12.2c) is parsed to obtain all information

on each widget such as name, id, input type and so on. As described in the next section, the

information provided by the IM is used to identify possible symbolic values in the program.

93

12.6 Symbolic Execution for Android

Symbolically executing applications in Android face three major challenges because Android

apps are (1) event-driven, (2) prone to path-divergence, and (3) compiled into Dalvik byte-

code. In this section, I explain how SIG-Droid’s symbolic execution engine addresses these

challenges.

12.6.1 Event-Driven Challenge

As Android is an event driven system, symbolic execution is highly dependent on events

and their sequencing; meaning that the symbolic execution engine has to wait for the user

to interact with the system and tap on a button or initiate some other type of event for

the program to continue the execution of a certain path. Furthermore, the system itself or

another application can initiate an event and cause the app to behave in a certain way.

To address this issue, symbolic execution engines, such as SPF [32], provide a mechanism

to specify a Driver, which in the case of SPF is a Java program with a main method that

contains the sequence of methods (event handlers) that should be used in a single run of

the engine for determining the parts of the code that should be analyzed for gathering

constraints. To generate the Drivers for Android apps, I use the BM as a finite state

machine and traverse all the unique paths that do not contain a loop using a depth first

search algorithm. This results in generating many possible sequences of events that represent

possible use cases for the app.

As an example, using the BM in Figure 12.4b, if we start at MainActivity.onCreate()

and follow through with TransferAtivity.onCreate() and Transfer.onClick(), we ar-

rive at a plausible sequence. Clearly, if the app is comprised of more than one Activity

and many events, the generated Driver would be more complex. Listing 12.1 illustrates a

sample Driver for banking app generated in this way using the sample BM of Figure 12.4b.

It contains two sequence of events, i.e., creates a TransferActivity object by calling its

constructor following by calling the onCreate method that triggers the start of the activ-

ity. Consequently, it simulates the action of user tapping on the Transfer button by calling

94

onClick method.

Note that since the BM does not model the program’s constraints, not all generated

Drivers are necessarily valid sequences of events (i.e., can actually occur when the program

executes). As will be detailed in Section 12.7, the Drivers are not used for the purpose of

generating the test cases, but only for the purpose of guiding the symbolic execution and

solving the constraints on input values.

12.6.2 Path-Divergence and Davlik Byte-Code Challenges

The second challenge is an Android program’s dependence on framework libraries that make

symbolic execution prone to path-divergence, and more so than traditional Java programs.

In general, path-divergence occurs when a symbolic value flows outside the context of the

program that is being symbolically executed and into the bounding framework or any exter-

nal library [38]. Path-divergence leads to two major problems. First, the symbolic execution

engine may not be able to execute the external library, as a result extra effort may be needed

to support those libraries. Second, the external path may contain its own constraints that

Listing 12.1: Sample Driver for banking app.

pub l i c s t a t i c void main (St r ing [] a rgs) {
t ry {

View v = new View (n u l l) ;

Trans f e rAc t i v i t y ta = new Trans f e rAc t i v i ty () ;

Trans fe r t = ta . new Trans fe r () ;

ta . onCreate () ;

t . onCl ick (v) ;

}
catch (Exception e) {

e . pr intStackTrace () ;

}
}

95

result in generating extra test inputs attempting to execute the diverged path rather than

the program itself. This creates a scalability problem, as it entails symbolically executing

parts of the Android operating system every time there is a path-divergence.

Indeed, in Android, path-divergence is the norm, rather than the exception. A typical

Android app is composed of multiple Activities and Services communicating extensively with

one another using Intents. An Intent is used to carry a value to another Activity/Service

and as a result that value leaves the boundaries of the app and is passed through Android

libraries before it is retrieved in the new Activity/Service.

Furthermore, Android apps depend on a proprietary set of libraries that are not available

outside the device or emulator. Android code runs on Dalvik Virtual Machine (DVM) [16]

instead of the traditional Java Virtual Machine (JVM). Thus, Android apps are compiled

into Dalvik byte-code rather than Java byte-code. To symbolically execute an Android

app using SPF , we need to first transform the app into the corresponding Java byte-code

representation.

To tackle the path-divergence problem and compile Android apps to Java byte-code,

SIG-Droid provides its own custom built stub and mock classes. The stub classes are used

to compile Android apps into JVM byte-code, while mock classes are used to deal with

the path-divergence problem. Stubs that return random values within a reasonable range

are used, when the return type of a method is primitive, and return empty instances of

the object, when the return type is a complex data type. Dealing with Android platform,

not only do we need to provide stub classes to resolve the byte-code incompatibility with

JVM, but we also need to address the lack of Android logic outside the phone environment.

Android uses its library classes as nuts and bolts that connect the different pieces of an app

together.

A common instance of path-divergence in Android occurs when one Activity is initiated

from another one and a value is passed from the source to the destination Activity. This

process is performed by utilizing an Intent message (recall from Chapter 2 that in Android

inter-component messaging is achieved through Intents). In the case of banking app, as

96

shown in Figure 12.2b, TransferActivity uses the startActivity method of the Android

library class Activity.java to start the app’s AccountActivity that displays the accounts

and their respective balances. It creates an Intent in which the source and destination

activities along with the values to be carried are specified. In this case, the appropriate

logic is provided for Activity.java mock, such that when its startActivity method is called,

the control flow moves to the onCreate method of the recipient activity.

Moreover, a mock for the Intent.java is created to address the path-divergence prob-

lem in cases where the payload is a symbolic value. As shown in Figure 12.2b, an instance

of Intent is passed to startActivity. If this Intent encapsulates a symbolic value for vari-

able amountValue, it would result in path-divergence. To deal with this issue, a custom

implementation of putExtra and getExtra methods are provided in the mock implementa-

tion of Intent.java, such that the symbolic value of those variables is preserved. Android

uses a hashMap〈String, Object〉 to store and retrieve the payload of an Intent, making

it difficult to reason about a value stored as Object symbolically. To solve this problem, a

custom implementation of a hash map that holds primitive values is used. Consequently,

in SIG-Droid, the implementation of the putExtra and getExtra methods, the customized

hash map implementation is used to enable the symbolic execution engine to reason about

values that are exchanged using the Intent messages.

The last step prior to running symbolic execution of each app is to identify which values

need to be executed symbolically. These are the values that the user can input using the

GUI, e.g., the transfer amount in the banking app. As an example, for each input box in

the IM, the source code of the corresponding activity is explored and the value of that input

box, retrieved by calling inputBox.getText(), is exchanged with a symbolic value. It is

important to keep a mapping between each introduced symbolic value and its corresponding

widget on the screen. At the same time, the code is instrumented to record the sequence

of actions taken. The mapping along with the sequence of actions captured in the Drivers

are used by the test case generator to reproduce the values and actions in each test case.

97

12.7 Test Case Generation

Following the extraction of models and symbolic execution of an app, SIG-Droid automat-

ically generates test inputs that can be executed on an actual phone or emulator device.

Running symbolic execution with each Driver results in a symbolic execution report. Each

report specifies the concrete values that are obtained by solving the gathered symbolic

conditions.

Each Driver representing a single path in the BM may contain several constraints, thus

it may result in multiple execution paths. For instance, if amountValue is a symbolic value

in TransferActivity in Figure 12.2, the Driver in Listing 12.1 would result in two different

execution paths: One where the amountValue is less than $5000, and another where it is

greater. Hence, the report for each Driver may result in several tests.

Moreover, as mentioned in Section 12.5, the call graph of each app only contains in-

formation about the possible chains of method calls regardless of constraints. As a result,

the Drivers that are generated using the BM may be invalid sequences of events, mean-

ing that the constraints may prevent the execution of certain events. To ensure that only

valid sequences of events are generated in each test case, the code is instrumented to track

the actual method execution sequence during the symbolic execution. Thus, the symbolic

execution report contains the sequence of called methods as well. Listing 12.2 shows the

symbolic execution report for the Driver of Listing 12.1.

Since the report contains only the event handlers and not the actual event generators

(e.g., the ID of the buttons on a screen), to generate test cases the IM is used to deter-

mine the event generator corresponding to each event handler in the report. For example,

Transfer.onClick handler method in Listing 12.2 is the handler for the Transfer button

on TransferActivity screen of Figure 12.2.

Listing 12.3 illustrates one of the Robotium test cases generated by SIG-Droid that

corresponds to the report shown in Listing 12.2. Solo is a Java class provided by Robotium

that executes the test (essentially represents the user of the app). This test case inputs

5001 in the amount text box, which has the index of zero, meaning it is the first text box

98

<?xml version="1.0" encoding="utf-8"?>

<Report>

<Path id="1"

<Activity name="TransfersActivity">

<MethodCall name="Transfer.onClick()">

<SoldvedVariable name="amountValue" value="1" />

</MethodCall>

</Activity>

</Path>

<Path id="2"

<Activity name="TransfersActivity"

<MethodCall name="Transfer.onClick()">

<SoldvedVariable name="amountValue" value="5001" />

</MethodCall>

</Activity>

</Path>

</Report>

Listing 12.2: Symbolic Execution report for Driver in Listing 12.1.

Listing 12.3: Code snippet of a Robotium test automatically generated by
SIG-Droid for TransferActivity.

pub l i c c l a s s Trans f e rAc t i v i tyTes t 1 extends

Act iv i tyInstrumentat ionTestCase2<Trans f e rAct iv i ty> {

p r i v a t e Solo s o l o ;

. . .

@smoke

pub l i c void testMethod () throws Exception {
s o l o . enterText (0 , ’ 5 0 0 1 ’) ;

s o l o . cl ickOnButton (’ Transfer ’) ;

}
. . .

}

99

on that activity, and then clicks on Transfer button.

12.8 Limitations

One of the limitations of SIG-Droid is the Driver generation. Currently the sequence of

events is generated through a depth first search on the BM, which does not guarantee

to generate all possible sequence of events. For instance, consider a situation in which

a particular execution path is taken only when the same button is clicked several times.

Covering such sequences requires the depth-first search algorithm to include loops in its

search for all unique sequences of events, the space for which is infinite.

100

Chapter 13: Conclusion

In this dissertation, I provided a detailed description of EvoDroid, an approach for auto-

mated system testing of Android applications. I now conclude my dissertation by enumer-

ating the contributions of EvoDroid, threats to its validity and avenues for future work.

In summary, evolutionary testing is typically applied at the unit level, as there is no

effective approach to pass on the genetic make-up of these individuals to the next generations

at the system/app level. The crossover strategy does not consider which input and event

genes are coupled to which part of the app, hence, it is not able to preserve the genetic

makeup of parents in any meaningful way. It mixes genetic information from different

parts of the app along an execution path or along different execution paths. As a result,

it produces tests that are likely to be either not executable or inferior to both parents.

In evolutionary search, the inability to promote and pass on the genetic makeup of good

individuals to the next generations is highly detrimental to its effectiveness.

EvoDroid is the first evolutionary testing framework targeted at Android. The most

notable contribution of EvoDroid is its ability to overcome the common shortcoming of

using evolutionary techniques for system testing. EvoDroid overcomes the crossover issue

by leveraging the knowledge of how Android specifies and constrains the way apps can be

built. It analyzes apps and infers models of their interface and behavior. Using these models

EvoDroid generates test cases reaching deep into the code in segments, i.e., sections of code

that are amenable to evolutionary testing without the possibility of generating invalid test

cases. Since a key concern in search-based testing is the execution time of the algorithm,

EvoDroid runs the test cases in parallel on multiple Android emulators, thus achieving

several orders of magnitude improvement in execution time.

Using the prototype implementation and evaluation details provided in Chapter 10, I

have validated the approach and its properties.

101

13.1 Contributions

The following is a concrete list of contributions of this research:

• Automated Android testing framework: Fully automated framework to perform

system-wide testing of event driven applications built on ADFs such as Android.

The cloud testing framework serves as the basis for potential commercialization for

automated Testing as a Service.

• Fundamental contribution to evolutionary testing: A unique evolutionary test-

ing algorithm, called segmented evolutionary testing, that eliminates the high level

representation and crossover issues faced by existing evolutionary testing approaches.

• Method for generating connected call graphs in event based systems: Au-

tomated program analysis techniques to extract the models of the applications, and

connect the call-graph model of event-driven applications to form the entire search

graph. By analyzing the specifications of the underlying framework, EvoDroid con-

nects the disconnected call graphs in event driven frameworks such as Android.

• A combination of evolutionary testing and GUI crawling: An approach for

dynamically extracting the application models necessary to support automated sys-

tem testing. EvoDroid combined existing GUI crawling techniques with segmented

evolutionary testing to extract the models without requiring the source code.

• Foundation framework for targeted testing: A foundation to serve use cases

requiring targeted program execution as presented in Chapter 11. EvoDroid provided

a mechanism to mitigate the general reachability problem in software testing.

102

13.2 Threats to Validity

Although my approach has fundamentally contributed to evolutionary testing and shown

to be significantly better than existing tools and techniques for Android apps, in the worst

case scenario it can degrade due to its inability to systematically reason about input condi-

tions. This is a known limitation of search based algorithms, such as evolutionary testing.

To mitigate this issue, I have worked on SIG-Droid, the symbolic input generation tool

described in Chapter 12. SIG-Droid extends Java Pathfinder, which symbolically executes

pure Java code and solves input constraints, to work on Android. The good news, however,

is that based on my empirical study on the complexity of Android apps from Chapter 9, on

average Android apps are event heavy and not very input constrained.

Another weakness of EvoDroid is not being able to automatically generate accurate

models for apps. There is a significant variability in the way the app code is generally writ-

ten as well as Android version fragmentation, code generation via reflection, and anonymous

class declarations among other reasons. As a result, the models may in fact be incomplete.

However, I have mitigated this issue by providing a static and dynamic approach as de-

scribed in Chapter 6 and Chapter 7. Additionally, as mentioned earlier and evaluated in

Chapter 10, EvoDroid is able to work on partial and/or incomplete models.

13.3 Future Work

I plan to integrate SIG-Droid into EvoDroid and use both techniques in tandem to comple-

ment one another. As shown in Figure 13.1, EvoDroid would find the drivers or the correct

sequence of events necessary in SIG-Droid and then SIG-Droid would be applied to solve

the input constraints locally in each segment.

As alluded to earlier, symbolic-based test generation provides a systematic approach

to reason about the input values, but it is no better than random search in finding the

right sequence of user actions or system events. On the contrary, evolutionary-based test

generation is effective in guiding the search to find the right sequence of actions and events,

103

but it is no better than random search in finding the right input values.

I plan use symbolic execution within the evolutionary process of generating populations,

such that within each evolutionary cycle, instead of randomly selecting the input values,

we actually use the values resulting from targeted symbolic execution of the program. This

allows us to bear the benefits of each technique and likely to result in much faster and

significantly less number of iterations to automatically generate system level tests.

Figure 13.1: Segmented Evolutionary Testing With Constraint Solver.

104

Bibliography

105

Bibliography

[1] Activity manager, http://developer.android.com/reference/android/app/ activity-
manager.html.

[2] Amazon Web Services CLI, http://aws.amazon.com/cli/.

[3] Amazon Web Services, http://aws.amazon.com/.

[4] Android Activity, http://developer.android.com/guide/components/activities.html.

[5] Android debug bridge, http://developer.android.com/tools/help/adb.html.

[6] Android developers guide, http://developer.android.com/guide/topics/ fundamen-
tals.html.

[7] Android emulator, http://developer.android.com/tools/help/emulator.html.

[8] Android intent fuzzer, https://www.isecpartners.com/mobile-security-tools/intent-
fuzzer.html.

[9] Android logcat, http://developer.android.com/tools/help/logcat.html.

[10] Android monkey, http://developer.android.com/guide/developing/tools/ mon-
key.html.

[11] Android monkey recorder, http://code.google.com/p/android-monkeyrunner-
enhanced.

[12] Android Service, http://developer.android.com/guide/components/services.html.

[13] Android testing framework, http://developer.android.com/guide/topics/testing/ in-
dex.html.

[14] Calabash, http://www.moncefbelyamani.com/ios-automated-testing-with-calabash-
cucumber-ruby.

[15] Coverity, http://www.coverity.com.

[16] Dalvik, http://code.google.com/p/dalvik/.

[17] Ecj, http://cs.gmu.edu/ eclab/projects/ecj/.

[18] EMMA, http://emma.sourceforge.net/.

[19] F-droid, https://f-droid.org/.

106

[20] Findbugs, http://findbugs.sourceforge.net.

[21] Hierarchy viewer, http://developer.android.com/tools/help/hierarchy-viewer.html.

[22] Java pathfinder, http://babelfish.arc.nasa.gov/trac/jpf/.

[23] Jython, http://www.jython.org/.

[24] Klockwork, http://www.clockwork.com.

[25] MoDisco, http://www.eclipse.org/modisco/.

[26] Monkey runner, http://developer.android.com/tools/help/monkeyrunner
concepts.html.

[27] Monkeytalk, http://www.gorillalogic.com/monkeytalk.

[28] Robolectric, http://pivotal.github.com/robolectric/.

[29] Robotium, http://code.google.com/p/robotium/.

[30] Sourceforge eclipse metrics.

[31] Subversion, https://subversion.apache.org/.

[32] Symbolic pathfinder, http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-
symbc.

[33] Alsmadi, I., Alkhateeb, F., Maghayreh, E., Samarah, S., and Doush, I. A.
Effective generation of test cases using genetic algorithms and optimization theory.
Journal of Communication and Computer 7, 11 (2010), 72–82.

[34] Amalfitano, D., Fasolino, A., and Tramontana, P. A gui crawling-based
technique for android mobile application testing. In Software Testing, Verification
and Validation Workshops (ICSTW), 2011 IEEE Fourth International Conference on
(March 2011), pp. 252–261.

[35] Amalfitano, D., Fasolino, A., Tramontana, P., Ta, B., and Memon, A.
Mobiguitar–a tool for automated model-based testing of mobile apps.

[36] Amalfitano, D., Fasolino, A. R., Tramontana, P., De Carmine, S., and
Memon, A. M. Using gui ripping for automated testing of android applications. In
Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering (2012), ASE 2012, pp. 258–261.

[37] Ammann, P., and Offutt, J. Introduction to Software Testing. Cambridge Uni-
versity Press, Jan. 2008.

[38] Anand, S. Techniques to Facilitate Symbolic Execution of Real-world Programs.
Ph.D., Georgia Institute of Technology, 2012.

107

[39] Anand, S., Naik, M., Harrold, M. J., and Yang, H. Automated concolic
testing of smartphone apps. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering (2012), FSE ’12, pp. 59:1–
59:11.

[40] Andersson, M. Software Security Testing : A Flexible Architecture for Security
Testing. 2008.

[41] Avgerinos, T., Cha, S. K., Rebert, A., Schwartz, E. J., Woo, M., and
Brumley, D. Automatic Exploit Generation. Commun. ACM 57, 2 (Feb. 2014),
74–84.

[42] Azim, T., and Neamtiu, I. Targeted and depth-first exploration for systematic test-
ing of android apps. In Proceedings of the 2013 ACM SIGPLAN International Con-
ference on Object Oriented Programming Systems Languages & Applications (2013),
OOPSLA ’13, pp. 641–660.

[43] Back, T. Evolutionary algorithms in theory and practice. Oxford Univ. Press, 1996.

[44] Baresi, L., Lanzi, P. L., and Miraz, M. Testful: An evolutionary test approach
for java. In Proceedings of the 2010 Third International Conference on Software
Testing, Verification and Validation (2010), ICST ’10, pp. 185–194.

[45] Bauersfeld, S., Wappler, S., and Wegener, J. A metaheuristic approach to
test sequence generation for applications with a gui. In Proceedings of the Third
International Conference on Search Based Software Engineering (2011), SSBSE’11,
pp. 173–187.

[46] Berndt, D., and Watkins, A. Investigating the performance of genetic algorithm-
based software test case generation. In Eighth IEEE International Symposium on
High Assurance Systems Engineering, 2004. Proceedings (Mar. 2004), pp. 261–262.

[47] Bickford, J., Lagar-Cavilla, H. A., Varshavsky, A., Ganapathy, V., and
Iftode, L. Security Versus Energy Tradeoffs in Host-based Mobile Malware Detec-
tion. In Proceedings of the 9th International Conference on Mobile Systems, Applica-
tions, and Services (New York, NY, USA, 2011), MobiSys ’11, ACM, pp. 225–238.

[48] Bird, D., and Munoz, C. Automatic generation of random self-checking test cases.
IBM Systems Journal 22, 3 (1983), 229–245.

[49] Bo, J., Xiang, L., and Xiaopeng, G. MobileTest: A Tool Supporting Automatic
Black Box Test for Software on Smart Mobile Devices. In Proceedings of the Second
International Workshop on Automation of Software Test (Washington, DC, USA,
2007), AST ’07, IEEE Computer Society, pp. 8–.

[50] Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S. Crowdroid: Behavior-
based Malware Detection System for Android. In Proceedings of the 1st ACM Work-
shop on Security and Privacy in Smartphones and Mobile Devices (New York, NY,
USA, 2011), SPSM ’11, ACM, pp. 15–26.

108

[51] Cadar, C., Dunbar, D., and Engler, D. KLEE: Unassisted and Automatic
Generation of High-coverage Tests for Complex Systems Programs. In Proceedings
of the 8th USENIX Conference on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2008), OSDI’08, USENIX Association, pp. 209–224.

[52] Candea, G., Bucur, S., and Zamfir, C. Automated software testing as a service.
In Proceedings of the 1st ACM Symposium on Cloud Computing (2010), SoCC ’10,
pp. 155–160.

[53] Cheng, J., Wong, S. H., Yang, H., and Lu, S. SmartSiren: Virus Detection and
Alert for Smartphones. In Proceedings of the 5th International Conference on Mobile
Systems, Applications and Services (New York, NY, USA, 2007), MobiSys ’07, ACM,
pp. 258–271.

[54] Chin, E., Felt, A. P., Greenwood, K., and Wagner, D. Analyzing inter-
application communication in android. In Proceedings of the 9th International Con-
ference on Mobile Systems, Applications, and Services (2011), MobiSys ’11, pp. 239–
252.

[55] Choi, W., Necula, G., and Sen, K. Guided gui testing of android apps with min-
imal restart and approximate learning. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages & Ap-
plications (2013), OOPSLA ’13, pp. 623–640.

[56] Ciortea, L., Zamfir, C., Bucur, S., Chipounov, V., and Candea, G. Cloud9:
A software testing service. SIGOPS Oper. Syst. Rev. 43, 4 (Jan. 2010), 5–10.

[57] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L. P.,
Jung, J., McDaniel, P., and Sheth, A. N. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones. ACM Trans.
Comput. Syst. 32, 2 (June 2014), 5:1–5:29.

[58] Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S. A study of android
application security. In Proceedings of the 20th USENIX Conference on Security
(2011), SEC’11, pp. 21–21.

[59] Enck, W., Ongtang, M., and McDaniel, P. On Lightweight Mobile Phone
Application Certification. In Proceedings of the 16th ACM Conference on Computer
and Communications Security (New York, NY, USA, 2009), CCS ’09, ACM, pp. 235–
245.

[60] Felt, A. P., Hanna, S., Chin, E., Wang, H. J., and Moshchuk, E. Permission
re-delegation: Attacks and defenses. In In 20th Usenix Security Symposium (2011).

[61] Flores, P., and Cheon, Y. Pwisegen: Generating test cases for pairwise testing
using genetic algorithms. In Computer Science and Automation Engineering (CSAE),
2011 IEEE International Conference on (June 2011), vol. 2, pp. 747–752.

[62] Forrester, J. E., and Miller, B. P. An Empirical Study of the Robustness of
Windows NT Applications Using Random Testing. In Proceedings of the 4th Con-
ference on USENIX Windows Systems Symposium - Volume 4 (Berkeley, CA, USA,
2000), WSS’00, USENIX Association, pp. 6–6.

109

[63] Fuchs, A. P., Chaudhuri, A., and Foster, J. S. SCanDroid: Automated Secu-
rity Certification of Android Applications. Tech. Rep. CS-TR-4991, Department of
Computer Science, University of Maryland, College Park, November 2009.

[64] Ganov, S., Killmar, C., Khurshid, S., and Perry, D. E. Event listener analysis
and symbolic execution for testing gui applications. In Proceedings of the 11th Inter-
national Conference on Formal Engineering Methods: Formal Methods and Software
Engineering (2009), ICFEM ’09, pp. 69–87.

[65] Gibler, C., Crussell, J., Erickson, J., and Chen, H. AndroidLeaks: Automat-
ically Detecting Potential Privacy Leaks in Android Applications on a Large Scale. In
Trust and Trustworthy Computing, S. Katzenbeisser, E. Weippl, L. J. Camp, M. Volka-
mer, M. Reiter, and X. Zhang, Eds., no. 7344 in Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, pp. 291–307.

[66] Godefroid, P., Kiezun, A., and Levin, M. Grammar-based whitebox fuzzing.
In ACM SIGPLAN Notices (2008), vol. 43, pp. 206–215.

[67] Godefroid, P., Klarlund, N., and Sen, K. DART: Directed Automated Random
Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (New York, NY, USA, 2005), PLDI ’05, ACM,
pp. 213–223.

[68] Godefroid, P., Levin, M., Molnar, D., et al. Automated whitebox fuzz testing.
In Proceedings of the Network and Distributed System Security Symposium (2008),
vol. 9.

[69] Gomez, L., Neamtiu, I., Azim, T., and Millstein, T. Reran: Timing-and touch-
sensitive record and replay for android. In Software Engineering (ICSE), 2013 35th
International Conference on (2013), IEEE, pp. 72–81.

[70] Grace, M., Zhou, Y., Zhang, Q., Zou, S., and Jiang, X. RiskRanker: Scal-
able and Accurate Zero-day Android Malware Detection. In Proceedings of the 10th
International Conference on Mobile Systems, Applications, and Services (New York,
NY, USA, 2012), MobiSys ’12, ACM, pp. 281–294.

[71] Gross, F., Fraser, G., and Zeller, A. Exsyst: Search-based gui testing. In
Software Engineering (ICSE), 2012 34th International Conference on (June 2012),
pp. 1423–1426.

[72] Gross, F., Fraser, G., and Zeller, A. Search-based system testing: High cover-
age, no false alarms. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis (2012), ISSTA 2012, pp. 67–77.

[73] Hackner, D. R., and Memon, A. M. Test Case Generator for GUITAR. In
Companion of the 30th International Conference on Software Engineering (New York,
NY, USA, 2008), ICSE Companion ’08, ACM, pp. 959–960.

[74] Henderson-Sellers, B. Object-Oriented Metrics, measures of complexity. Prentice
Hall, 1996.

110

[75] Hovemeyer, D., and Pugh, W. Finding Bugs is Easy. SIGPLAN Not. 39, 12
(Dec. 2004), 92–106.

[76] Hu, C., and Neamtiu, I. Automating gui testing for android applications. In
Proceedings of the 6th International Workshop on Automation of Software Test (2011),
AST ’11, pp. 77–83.

[77] Inkumsah, K., and Xie, T. Improving structural testing of object-oriented pro-
grams via integrating evolutionary testing and symbolic execution. In Proceedings
of the 2008 23rd IEEE/ACM International Conference on Automated Software Engi-
neering (2008), ASE ’08, pp. 297–306.

[78] Isohara, T., Takemori, K., and Kubota, A. Kernel-based Behavior Analysis for
Android Malware Detection. In 2011 Seventh International Conference on Computa-
tional Intelligence and Security (CIS) (Dec. 2011), pp. 1011–1015.

[79] Jensen, C. S., Prasad, M. R., and Møller, A. Automated testing with targeted
event sequence generation. In Proceedings of the 2013 International Symposium on
Software Testing and Analysis (2013), ISSTA 2013, pp. 67–77.

[80] Karami, M., Elsabagh, M., Najafiborazjani, P., and Stavrou, A. Behavioral
Analysis of Android Applications Using Automated Instrumentation. In 2013 IEEE
7th International Conference on Software Security and Reliability-Companion (SERE-
C) (June 2013), pp. 182–187.

[81] Kim, C. H. P., Batory, D. S., and Khurshid, S. Reducing combinatorics
in testing product lines. In Proceedings of the Tenth International Conference on
Aspect-oriented Software Development (New York, NY, USA, 2011), AOSD ’11, ACM,
pp. 57–68.

[82] Kim, J.-M., and Kim, J.-S. Androbench: Benchmarking the storage performance
of android-basex mobile devices. In Frontiers in Computer Education. Springer, 2012,
pp. 667–674.

[83] King, J. C. A new approach to program testing. In Proceedings of the International
Conference on Reliable Software (1975), pp. 228–233.

[84] Landi, W. Undecidability of Static Analysis. ACM Lett. Program. Lang. Syst. 1, 4
(Dec. 1992), 323–337.

[85] Li, D., Hao, S., Gui, J., and Halfond, W. G. An empirical study of the energy
consumption of android applications. In The Intl. Conf. on Software Maintenance
and Evolution (2014).

[86] Lin, C.-M., Lin, J.-H., Dow, C.-R., and Wen, C.-M. Benchmark dalvik and na-
tive code for android system. In Innovations in Bio-inspired Computing and Applica-
tions (IBICA), 2011 Second International Conference on (2011), IEEE, pp. 320–323.

[87] Machiry, A., Tahiliani, R., and Naik, M. Dynodroid: An input generation
system for android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering (2013), ESEC/FSE 2013, pp. 224–234.

111

[88] Mahmood, R., Esfahani, N., Kacem, T., Mirzaei, N., Malek, S., and
Stavrou, A. A whitebox approach for automated security testing of android appli-
cations on the cloud. In 2012 7th International Workshop on Automation of Software
Test (AST) (June 2012), pp. 22 –28.

[89] Mahmood, R., Mirzaei, N., and Malek, S. Evodroid: Segmented evolutionary
testing of android apps. In Proceedings of the 2014 ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Hong Kong, China, November
2014), FSE ’14, ACM.

[90] Mariani, L., Pezze, M., Riganelli, O., and Santoro, M. Autoblacktest: Au-
tomatic black-box testing of interactive applications. In Software Testing, Verification
and Validation (ICST), 2012 IEEE Fifth International Conference on (April 2012),
pp. 81–90.

[91] Martin, R. Oo design quality metrics : an analysis of dependencies. ROAD 1995 2,
3 (1995).

[92] McCabe, T. J. A complexity measure. Software Engineering, IEEE Transactions
on, 4 (1976), 308–320.

[93] Memon, A., Banerjee, I., and Nagarajan, A. Gui ripping: Reverse engineering
of graphical user interfaces for testing. In Proceedings of the 10th Working Conference
on Reverse Engineering (2003), WCRE ’03, pp. 260–.

[94] Memon, A. M., Pollack, M. E., and Soffa, M. L. Automated test oracles for
guis. In Proceedings of the 8th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering: Twenty-first Century Applications (2000), SIGSOFT
’00/FSE-8, pp. 30–39.

[95] Miller, C., and Mulliner, C. Fuzzing the Phone in your Phone. In Black Hat
Technical Security Conference USA (2009).

[96] Mirzaei, N., Malek, S., Păsăreanu, C. S., Esfahani, N., and Mahmood, R.
Testing android apps through symbolic execution. SIGSOFT Softw. Eng. Notes 37,
6 (Nov. 2012), 1–5.

[97] Nguyen, B. N., Robbins, B., Banerjee, I., and Memon, A. Guitar: an innova-
tive tool for automated testing of gui-driven software. Automated Software Engineer-
ing 21, 1 (2014), 65–105.

[98] Nguyen, C. D., Marchetto, A., and Tonella, P. Combining model-based
and combinatorial testing for effective test case generation. In Proceedings of the
2012 International Symposium on Software Testing and Analysis (2012), ISSTA 2012,
pp. 100–110.

[99] Oehlert, P. Violating assumptions with fuzzing. IEEE Security Privacy 3, 2 (Mar.
2005), 58–62.

[100] Ongtang, M., McLaughlin, S., Enck, W., and McDaniel, P. Semantically
rich application-centric security in Android. Security and Communication Networks
5, 6 (June 2012), 658–673.

112

[101] Ramalingam, G. The Undecidability of Aliasing. ACM Trans. Program. Lang. Syst.
16, 5 (Sept. 1994), 1467–1471.

[102] Rauf, A., Jaffar, A., and Shahid, A. A. Fully automated gui testing and cover-
age analysis using genetic algorithms. International Journal of Innovative Computing,
Information and Control (IJICIC) Vol 7 (2011).

[103] Sen, K., Marinov, D., and Agha, G. Cute: A concolic unit testing engine for
c. In Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering (2005), ESEC/FSE-13, pp. 263–272.

[104] Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., and Dolev, S. Google
Android: A State-of-the-Art Review of Security Mechanisms. arXiv:0912.5101 [cs]
(Dec. 2009). arXiv: 0912.5101.

[105] Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., and Weiss, Y. Andro-
maly: a behavioral malware detection framework for android devices. Journal of
Intelligent Information Systems 38, 1 (Jan. 2011), 161–190.

[106] Shahamiri, S. R., Kadir, W. M. N. W., and Mohd-Hashim, S. Z. A compar-
ative study on automated software test oracle methods. In Proceedings of the 2009
Fourth International Conference on Software Engineering Advances (2009), ICSEA
’09, pp. 140–145.

[107] Sutton, M., Greene, A., and Amini, P. Fuzzing: Brute Force Vulnerability
Discovery. Pearson Education, June 2007.

[108] Takanen, A., DeMott, J. D., and Miller, C. Fuzzing for Software Security
Testing and Quality Assurance. Artech House, Jan. 2008.

[109] Tonella, P. Evolutionary testing of classes. In Proceedings of the 2004 ACM
SIGSOFT International Symposium on Software Testing and Analysis (2004), ISSTA
’04, pp. 119–128.

[110] Wappler, S., and Lammermann, F. Using evolutionary algorithms for the unit
testing of object-oriented software. In Proceedings of the 7th Annual Conference on
Genetic and Evolutionary Computation (2005), GECCO ’05, pp. 1053–1060.

[111] Wei, T.-E., Mao, C.-H., Jeng, A., Lee, H.-M., Wang, H.-T., and Wu, D.-
J. Android Malware Detection via a Latent Network Behavior Analysis. In 2012
IEEE 11th International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom) (June 2012), pp. 1251–1258.

[112] White, L., and Almezen, H. Generating test cases for gui responsibilities using
complete interaction sequences. In Software Reliability Engineering, 2000. ISSRE
2000. Proceedings. 11th International Symposium on (2000), pp. 110–121.

[113] Yang, W., Prasad, M. R., and Xie, T. A grey-box approach for automated
gui-model generation of mobile applications. In Proceedings of the 16th International
Conference on Fundamental Approaches to Software Engineering (2013), FASE’13,
pp. 250–265.

113

[114] Yuan, X., Cohen, M., and Memon, A. M. Covering array sampling of input event
sequences for automated gui testing. In Proceedings of the Twenty-second IEEE/ACM
International Conference on Automated Software Engineering (New York, NY, USA,
2007), ASE ’07, ACM, pp. 405–408.

[115] Yuan, X., and Memon, A. M. Generating event sequence-based test cases using
gui runtime state feedback. IEEE Trans. Softw. Eng. 36, 1 (Jan. 2010), 81–95.

[116] Zhifang, L., Bin, L., and Xiaopeng, G. Test Automation on Mobile Device. In
Proceedings of the 5th Workshop on Automation of Software Test (New York, NY,
USA, 2010), AST ’10, ACM, pp. 1–7.

114

BIOGRAPHY

Riyadh Mahmood started his PhD with the Department of Computer Science at George
Mason University (GMU) in 2007. His current research mainly focuses on Android test-
ing, software engineering, mobile/distributed software systems, and autonomic computing.
Riyadh received his MS degree in Information Technology from Virginia Tech in 2004 and
his BS degree in Computer Engineering from Virginia Tech in 2000.

115

	List of Tables
	List of Figures
	Abstract
	 Introduction
	 Background
	Evolutionary Algorithms Background
	Android Background
	Android Emulator

	 Related Work
	Evolutionary Testing
	Mobile Apps Testing
	Android Testing Tools
	Android Monkey
	MonkeyRunner
	Dynodroid

	Mobile Apps Vulnerability Testing

	 Research Problem
	Motivating Example
	Problem Statement
	Research Hypotheses

	 Approach Overview
	App Models
	Representation
	Crossover
	Mutation
	Fitness
	Design Considerations

	 EvoDroid Static Approach
	Approach Overview
	Apps Models Extraction
	Interface Model
	Behavior Model

	Algorithm
	Fitness

	 EvoDroid Dynamic Approach
	Approach Overview
	Apps Models Extraction
	Interface Model
	Behavior Model

	Algorithm
	Fitness

	 Cloud Testing Framework
	Test Case Generation
	Amazon Web Services
	Cloud Test Manager

	 Evaluation Subject Generation
	Empirical Study
	DroidGen

	 Evaluation Results
	Experiment Environment
	Experiment Setup
	Open Source Apps
	Synthetic Benchmark Apps
	Impact of Complexity
	Impact of Constraints
	Impact of Sequences

	 Applications of EvoDroid
	Security Vulnerability Testing
	Incremental Regression Testing
	Field Failure Replication Testing
	Limitations

	 Reasoning About Input Values
	SIG-Droid
	Symbolic Execution
	Illustrative Example
	Overview of SIG-Droid
	Model Generation
	Behavior Model
	Interface Model

	Symbolic Execution for Android
	Event-Driven Challenge
	Path-Divergence and Davlik Byte-Code Challenges

	Test Case Generation
	Limitations

	 Conclusion
	Contributions
	Threats to Validity
	Future Work

	Bibliography

