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adaptation………….. (in the integrated model) change in the tactical plan intended to 

enable a successful resolution to a current state of dissonance (see 

Section 2.1.6.3) 

access………………. (in the integrated model) action undertaken by the subject to 

approach and engage with the target.  In the case of a dominant 

action, access also includes control. (see Section 2.1.6.2) 

accountable time…… temporal constraints on a subject that shape spatial offending 

patterns (see Section 2.1.7.3) 

acquisitional goal…... (in the integrated model) a goal that results from the subject’s 

needs accumulation breaching the inhibitory threshold.  The 

acquisitional goal drives action toward satisfying the need (Ward, 

Hudson, & Keenan, 1998; Polaschek, Hudson, Ward, & Siegert, 

2001). (see Section2.1.5) 

activity-space………. geospatial bounds of an individual’s normal activity (Cohen & 

Felson, 1979) (see Section2.1.7) 

anchor-point……….. geospatial locations that tether an individual to his/her activity-

space.  Anchor-points generally include an individual’s home, 

work and free-time locations (Rossmo, 1995a). (see Section 2.1.7) 

burn-in……………… (in the integrated model) a pre-designated period of time to run the 

simulation prior to collecting data.  This allows the integrated 

model to create a more realistic representation of a subject by pre-

loading him with experience. (see Section 2.2.8) 

centroid…………….. a calculation to determine the spatial “center-of-gravity” of a 

group of locations.  Within crime analysis, a centroid gives the 

“center-of-gravity” of series event-sites (Elnekave, Last, & 

Maimon, 2007; Buscema, Breda, Grossi, Catzola, & Sacco, 2013).  

centroid-path……….. (in the integrated model) a path of triangle centroids (of sequential 

event-sites) used to create a dynamic measure of series 

“movement.” (see Section 2.4.2.2) 

cognitive landscape… (in the integrated model) the overall endogenous backdrop in 

which the subject utilizes his bounded perception of reality in the 
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perception landscape and simulates actions to overcome and adapt 

to inhibitors in the simulation landscape. (see Section 2.1.6.2) 

cognitive resources… (in the integrated model) resources utilized by the subject to 

navigate his simulation landscape.  His cognitive resources are 

density, paths, depth, and focus. (see Section 2.2.7.2) 

comfort…………….. (in the integrated model) the subject’s spatial awareness (see 

Section 2.2.4) 

days-between-hits….. the number of days between events in a series. 

dbh…………………. days-between-hits 

density……………… (in the integrated model) one of the subject’s cognitive resources.  

Density determines what percent of the inhibitors in the perception 

landscape the subject will represent in his simulation landscape.  

(see Section 2.2.7.2) 

depth……………..… (in the integrated model) one of the subject’s cognitive resources.  

Depth determines how many rows deep the panels in the cognitive 

landscapes will be.  (see Section 2.2.7.2) 

dissonance…………. (in the integrated model) a condition that occurs when the subject 

encounters an inhibitor in his perception landscape that he has not 

tactically planned for.  Generally, encountering dissonance will 

require the subject to adapt. (see Section 2.1.6.3) 

egress………………. (in the integrated model) action undertaken by the subject to 

extricate himself from offending circumstances. (see Section 

2.1.6.2) 

event-chain…………. (in the integrated model) a sequence of states that provide a 

cohesive view of the subject’s progression through the violent 

offending process from acquisitional goal development to an 

output or end state. 

event-site…………… (in the integrated model) geospatial location at which the subject 

has changed states.  Event-sites include development of an 

acquisitional goal, tactical plan, access, extraction, collaboration, 

egress, failure and retreat.  The interpretation of event sites 

produces contextual labels.  For instance, an access site for a 

subject using a dominant strategy can be interpreted as an 

abduction site, or an extraction site can be interpreted as a kill-

site. 

extract……………… (in the integrated model) action undertaken by the subject to 

directly satisfy his acquisitional goal.  If he is pursuing a 

collaborative strategy, this would entail a collaboration.  If he is 
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pursuing a dominant strategy, this would entail the intended 

offense (i.e., the actual murder). (see Section 2.1.6.2) 

focus……………….. (in the integrated model) one of the subject’s cognitive resources.  

Focus determines what percent of time the subject will re-orient 

toward the acquisitional goal when searching for a path through 

the simulation landscape.  (see Section 2.2.7.2) 

homicide…………… killing of one person by another.  Homicide may include criminal 

and non-criminal circumstances, as well as, manslaughter, 

justifiable homicide or killing during times of war.  

in silico……………... in a computational setting or via a computer simulation 

inhibitory goal……… (in the integrated model) a goal that keeps an individual from 

pursuing a need (Ward, Hudson, & Keenan, 1998; Polaschek, 

Hudson, Ward, & Siegert, 2001).(see Section 2.1.5) 

inhibitory threshold... (in the integrated model) defines the accumulated needs value 

below which the subject will not seek to satisfy the need and above 

which the subject will pursue the need via an acquisitional goal. 

(see Section 2.1.5) 

inhibitor……………. (in the integrated model) a feature of the environment that the 

subject perceives to be an obstacle to achieving his acquisitional 

goal.  Inhibitors are experienced in the subject’s perception 

landscape. 

maze-running………. (in the integrated model) the process of utilizing the cognitive 

landscapes to detect inhibitors, simulate a navigation path through 

the inhibitors, and adapt to unforeseen inhibitors.  Maze-running 

represents tactical planning and adaptation as a problem solved in 

navigable space. (see Section 2.2.7) 

minutes-per-tick……. (in the integrated model) the number of minutes represented by one 

time-step in the integrated model. (see Section 2.2.3.1) 

mpt…………………. (in the integrated model) minutes-per-tick 

murder……………… killing of one person by another in violation of an established 

criminal code.  Generally, murder requires criminal intent to 

harm. 

needs-accumulator..... (in the integrated model) a variable that changes over-time and is 

constantly compared to a corresponding inhibitory threshold 

value.  This is a key component of the integrated model’s driven 

threshold system because when the needs value breaches the 

threshold suppressing the need, the subject’s state changes to one 

in which he now pursues the need. (see Section 2.1.5) 
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panel………………... (in the integrated model) navigable sub-spaces, or contiguous sets 

of rows, within the subject’s cognitive landscapes.  A panel is used 

to depict the subject’s access, extraction, or egress problem space.  

Panels are defined by a start position and an end position that 

connects to other panels. (see Section 2.2.3) 

paths………..……… (in the integrated model) one of the subject’s cognitive resources.  

Paths determines how many probes the subject will use to navigate 

the simulation landscape.  (see Section 2.2.7.2) 

perception landscape.. (in the integrated model) one of the two cognitive landscapes.  The 

perception landscape is where the subject experiences inhibitors to 

his acquisitional goal. (see Section 2.1.6.2) 

politogenesis……….. the process by which a unit of organized social cohesion comes 

into being and evolves (Cioffi-Revilla, 2005).  (see Section 2.1.1) 

polity……………….. a unit of organized social cohesion (Cioffi-Revilla, 2005).  (see 

Section 2.1.1) 

primed……………… (in the integrated model) a condition in which the subject has 

overcome inhibitory goals and developed an acquisitional goal.  

Primed generally refers to a continuum from building interest to 

active engagement in an activity.  (see Section 2.1.2) 

privacy………………(in the integrated model) varying degrees of isolation from public 

scrutiny (see Section 2.2.4) 

problem space……… (in the integrated model) a cognitive construct where the subject’s 

reality is created and where he anticipates inhibitors that must be 

overcome to successfully achieve the acquisitional goal (see 

Section 2.1.6.2) 

referent system……... a real-world system that is abstracted and represented in a model 

satisficing…………... the tendency to select the first solution perceived to be adequate as 

opposed to continuing to search for the optimal solution 

scheduling………….. (in the integrated model) a method of defining when agents have 

accountable time and where they should be during the simulation 

when not actively pursuing an acquisitional goal (see Section 

2.2.6.1). 

series……………….. an accumulation of events (usually of the same type) that are 

attributed to one individual or group of individuals working in 

apparent consort 

simulation landscape.. (in the integrated model) an accumulation of the inhibitors that the 

individual can (or thinks he can) predict.  The simulation 

landscape is where the subject develops a tactical plan and 

adaptations. (see Section 2.1.6.2) 
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spatial awareness…… knowledge of an environment (see Section 2.1.7.2) 

stimuli……………… (in the integrated model) environmental features that affect the 

subject’s needs 

subject……………… (in the integrated model) focus of the modeling effort, a potential 

offender 

tactical planning……. (in the integrated model) developing a set of expectations for how 

to initiate an interaction (access), how this interaction will achieve 

a goal (extraction), and how to leave the interaction (egress) (see 

Section 2.1.6) 

target……………….. (in the integrated model) an object with which the subject wishes 

to interact  

vector………………. represents an ordered set such that the position in the order has 

meaning 

victim………………. (in the integrated model) an object that the subject wishes to 

dominate 

violent offending…… actions taken by an individual to commit a violent crime 
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 There are limitations to traditional methods of capturing the dynamics of violent 

interactions.  These limitations are due to outcome driven approaches, data sampling 

issues, and inadequate means to capture, express, and explore the complexity of 

behavioral processes.  To address these challenges, it is proposed that “violent offending” 

be re-framed as an emergent feature of a complex adaptive social system.  This 

dissertation abstracts and computationally implements a theoretical framework that forms 

the basis of a complex social simulation of the violent offending process.  The primary 

outcome of this effort is a viable synthetic offender that emerges from simulated 

interactions between potential offenders (subjects) and potential victims (targets) within 

an environment.  The results of calibrating this model to a real-world murder series are 

discussed, as well as, the comparison metrics used to assess goodness-of-fit of simulated 

and real-world event-sites.  A synthetic offender promises valuable insights into 
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individual offending trajectories, offender tactical processes, and the emergence of 

geospatial and temporal behaviors.  Furthermore, this approach is capable of reproducing 

the violent offending process with sufficient detail to contribute new scientific 

understanding and insights to criminology and the social sciences. 
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CHAPTER 1: INTRODUCTION 

 

 

 

1.1 Motivation 

The sociological community has been engaged for centuries in comprehending violent 

behavior in its many forms (Reiss & Roth, 1993).  More specifically, many 

criminological research efforts have focused on a variety of different theories and efforts 

to explain, understand, and (attempt) to predict violent offending.1   

Yet, the following questions have been significant and enduring puzzles in the 

study of violent behavior: Can “offenders” be identified prior to an attack? Is it possible 

to discover and/or predict violent offending trajectories? How does offending depend on 

micro-level cognitive features of offenders? How can hidden attributes and features of 

violent offenders be effectively examined?  

A fundamental problem in addressing these questions is that they have high 

dimensionality, because they involve many more variables than can be managed by 

traditional statistical and criminological approaches.  This research addresses these 

problems by exploring violent offending behavior using a computational modeling 

approach capable of reproducing the violent offending process with sufficient detail to 

                                                           
1 Violent offending refers to actions taken by an individual to commit a violent crime.  “Violent crime is composed of 

four offenses: murder and nonnegligent manslaughter, forcible rape, robbery, and aggravated assault.  Violent crimes 

are defined in the UCR Program as those offenses which involve force or threat of force.” (Uniform Crime Reports, 

2014). 
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contribute new scientific understanding and insights to the criminological and 

sociological community. 

There are several practical outcomes to the academic study of violent offending.  

Some research seeks to generate insights that can inform investigative efforts to identify 

and capture violent offenders.  By studying the behavioral attributes of crime scene and 

post-event offender behaviors, some have assumed that the “why” of the offense can be 

inferred and will lead to “who” committed the act (Douglas & Munn, 1992; Knight, 

Warren, Reboussin, & Soley, 1998; Petee & Jarvis, 2000).  A central goal of these efforts 

is the development of relatively implicit classification systems and taxonomies of the 

“types” of offenders who display certain “behaviors” that can serve as operational 

heuristics during an investigation (Alison, Bennell, Mokros, & Ormerod, 2002).  

Essentially, the assumption is that “the offender’s personality will be reflected in the way 

he carries out his crime” (Godwin, 2002, p. 9).  This approach has been generally referred 

to as “offender profiling,” “criminal investigative analysis,” “investigative psychology,” 

or “behavioral assessment” within the law enforcement community and social sciences 

(Douglas & Burgess, 1986; Pinizzotto & Finkel, 1990; Canter, 2004; Ainsworth, 2009).  

While there has been a significant amount of experiential and empirical research 

to explore the relationship between crime scene attributes and offender characteristics  

(Ressler, Burgess, Douglas, Hartman, & D'Agostino, 1986; Davies & Dale, 1995; Kocsis, 

Cooksey, & Irwin, 2002; Dahbur & Muscarello, 2003; Woodhams, Grant, & Price, 2007; 

Canter & Youngs, 2009; Douglas J. E., Burgess, Burgess, & Ressler, 2013) there still 

remain questions about the applicability of “offender profiling” as a general practice 
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(Scherer & Jarvis, 2014a; 2014b; 2014c; 2014d).  Specifically, Godwin (2002) points out 

that the assumption that crime scene behaviors are a reflection of offender personality 

“sees motivation and personality as the same process, and neglects that emphasis that 

each explanation may have for different individuals.” (p. 9).  Furthermore, he challenges 

the processes used to generate statements about offender personality and characteristics, 

and the forensic applicability of “profiling” methods due to implicit biases and a general 

lack of methods to address significant corollary relationships.  Godwin is not alone in his 

critique and his assertions are reflected by a number other researchers (Alison, Bennell, 

Mokros, & Ormerod, 2002; Alison, Smith, Eastman, & Rainbow, 2003; Snook, Cullen, 

Bennell, Taylor, & Gendreau, 2008).   

Other violent offending research seeks to provide meaningful insights about 

cognitive and social attributes that are most likely to lead to violence.  For instance, 

Davies & Dale (2013) have explored the use of behavioral indicators as a means to detect 

or anticipate violent acts, especially those involving terroristic motivation.  The goal of 

this type of research is to determine offender attributes and pathways that provide law 

enforcement and other community resources with implicit models that can presumably 

lead to intervention and/or preventative measures.  These research efforts can include 

large aggregated cross-sectional or longitudinal studies of specific offense types like 

homicide (Block, 1976; Block, 1979), theoretical treatises on biological, psychological, 

and environmental causes of violence in general (Reiss & Roth, 1993), or research 

directed toward building relatively implicit pathway trajectory models of specific 

offending outcomes (Meloy, Hoffmann, Guldimann, & James, 2011).  All of these “trip-
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wire” or policy-directed efforts tend to focus on implications of various conditions and 

are inexorably tied to threat assessment of an individual or group of “potential” offenders. 

A significant amount of violence research (regardless of whether focused on 

prevention or capture) concentrates on endogenous features of the offender specifically in 

terms of psychology (Cornell, et al., 1996; Ainsworth, 2009; Canter & Youngs, 2009), 

speculation about motivation (National Center for the Analysis of Violent Crime, 1990; 

1993; 2007; Douglas J. E., Burgess, Burgess, & Ressler, 2013), and factors of criminal 

repetition (Ressler, Burgess, Douglas, Hartman, & D'Agostino, 1986; Hazelwood & 

Warren, 2004; Bateman & Salfati, 2007; Salfati & Bateman, 2005).  Other avenues of 

research emphasize criminal and environmental opportunity with minimal consideration 

of the offender’s explicit internal drivers.  For instance, Brantingham & Brantingham 

(1993) focus on the relationship between crime and environment from a situational 

routine perspective while Eck et al, (2005) focus on identification and exploitation of 

spatial and temporal patterns in crime data.    

Still other violence research is informed by both internal (to the offender) and 

external features (of the environment) and emphasizes the interactional components of 

the violent event.  These research veins tend to focus on relevant features of a crime 

scene as the cross-section between the victim and the offender (Warren, et al., 1999; 

Santtila, Canter, Elfgreen, & Häkkänen, 2001), regard violent activity as a result of 

conflict-driven social interaction (Black, 2010; Felson & Steadman, 1983), or as a 

situational transaction  (Luckenbill, 1977; Miethe & Drass, 1999; Labuschagne, 2000b). 
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While it is widely acknowledged among researchers that violent interactions can 

be viewed to varying degrees as complex and dynamic events (Wolfgang, 1957; 

Luckenbill, 1977; Felson & Steadman, 1983; Salfati & Taylor, 2006; Beauregard, Proulx, 

Rossmo, Leclerc, & Allaire, 2007; Woodhams, Grant, & Price, 2007), there are 

limitations to traditional methods of capturing the complexity of these events.  These 

limitations are due, in part, to outcome-driven approaches to research, sampling issues 

within data collection efforts, and inadequate methodological solutions to capturing, 

expressing, and exploring the complexity of behavioral processes that culminate in 

offending (Johnson & Groff, 2014). 

Violence research relies on three primary categories of source materials:  

interviews, official files, and other secondary materials like newspaper reports (Eck & 

LaVigne, 1994; Blackman, Leggett, Olson, & Jarvis, 2000; Maxfield & Babbie, 2009).  

Most criminological research does not involve direct observation of violent criminal 

offending by the researcher.  Instead, each of these sources tend to involve secondary 

collection of data (often, as is the case with an investigative file, based on second- or 

even third-hand information) (Maxfield & Babbie, 2009).  In addition, these data tend to 

be collected predicated on the expression of specific offenses (i.e., “murder,” or “rape”).   

Yet, the tendency to focus on an outcome is problematic because it is “largely 

nonsituationist in its belief that behavior is thought to remain stable in the face of 

different environmental influences” (Alison, Bennell, Mokros, & Ormerod, 2002, p. 117).  

For instance, focusing on the outcome of “rape” as a specific expression of violence does 

not necessarily take into account that under different circumstances the same underlying 
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process that led to rape may result in very different outcomes like murder or assault.  A 

significant drawback to relying on outcome as a unit of analysis is that outcomes are 

socially and legally defined and require evidence and documentation of behavior.   

Focusing on the outcome, and not the process behind the outcome, limits the ability of 

researchers to fully understand the build up to, and result of, violence in explicit terms 

(Pinizzotto & Finkel, 1990; Alison, Bennell, Mokros, & Ormerod, 2002; Dover, 2010).  

This ultimately restricts the exploratory and explanatory value of traditional methods and 

reduces the overall predictive significance of research findings. 

Furthermore, to produce viable research on violent offenders, there must be a 

large enough (and representative enough) sample to generalize findings to the population 

of violent offenders.  Yet the low base-rate of violence and relative inaccessibility of data 

about violent offenders (and even less accessible data on “potential” offenders) means 

that researchers are generally relying on smaller study samples (Ressler, Burgess, & 

Douglas, 1988).  Thus, research that is aimed at understanding violent offending  

(especially murder), often lacks the ability to provide viable conclusions about 

probability of violent outcomes (Johnson & Groff, 2014).  This also means that a study 

population of, for instance “murder offenders,” is limited to individuals who have been 

identified as such and excludes those who have not been identified.  This is a source of 

biased sampling and (potentially biased) extrapolation when trying to apply findings to 

unknown offenders or speculate about causative factors of violence.  This is especially 

problematic considering that current crime data tends to be unrepresentative of the true 

levels of crime (Birks, Donkin, & Wellsmith, 2008). 
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Yet, from an investigative standpoint, it is the offenders who have not been 

identified that are often the most relevant, and the least understood.2   While a significant 

amount of violence research is descriptive, without a baseline understanding of the 

offender attributes in unknown offender and non-offender populations, there is limited 

diagnostic value to the results (Alison, Smith, Eastman, & Rainbow, 2003; Johnson & 

Groff, 2014).  Additionally, researchers do not understand the scope or nature of 

populations that come close to offending but never actually do (Malamuth, 1981; 

Polaschek, Hudson, Ward, & Siegert, 2001).  While this “primed” but non-offending 

population is less relevant to prosecutorial elements of the legal system, it is extremely 

important in understanding issues of offense prediction and prevention (Reiss & Roth, 

1993; Eck & Liu, 2008).  Both unknown offenders and “primed” but non-offenders 

constitute hidden populations that are under-explored and clearly pose significant gaps in 

criminological insight. 

A comprehensive and pervasive way to understand individual criminal offending 

is through interviews and case studies (Polaschek, Hudson, Ward, & Siegert, 2001).  As a 

result, a significant amount of research on violent offending is based on these two data 

collection strategies which can produce detailed retrospective evaluations of offender 

personal, social, and psychological attributes within the backdrop of the criminal event 

(Ressler, Burgess, & Douglas, 1988; Hickey, 1991; Cornell, et al., 1996; Hazelwood & 

Warren, 2004; Kraemer, Lord, & Heilbrun, 2004).  However, even though this type of 

research can produce non-trivial case-based findings, it is limited in generalizability 

                                                           
2 For example, the most recent national figure indicates that in 2014, 35.5% of murders in the United States were 

unsolved (Uniform Crime Reports, 2014). 
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precisely because it relies on small and/or non-probability samples of outcome-driven 

events (Johnson & Groff, 2014).   

It is often costly and time consuming to interview violent offenders, victims, or 

witnesses.  Furthermore, interviews are comprised of subjects who volunteer for 

treatment or are willing to participate in research (Godwin, 2002).  For instance, the 

development of fantasy (a relatively hidden and internal concept) and its role in targeting 

a victim is highly dependent on disclosures during an offender interview (Ressler, 

Burgess, & Douglas, 1988).  This can be complicated by self-report bias (Babbie, 2006) 

and the propensity of some subjects to lie, be evasive, or lack introspection.  It is 

precisely because of these issues that “there remain formidable obstacles to conducting 

research, in particular, prospective research into the covert elements of offending 

behavior.” (Polaschek, Hudson, Ward, & Siegert, 2001, p. 541).   

There is no shortage of implicit3 theory about violence in the behavioral sciences.  

However, challenges in violent offender research have led to a dearth of explicit4 models 

to test theoretical assumptions.  This is exacerbated by significant deficits in the 

availability of data to test theory, and the underlying difficulties of exploring non-linear 

complex adaptive systems with traditional statistical methods (Johnson & Groff, 2014).   

Some criminological research on violent offending does use inferential statistical 

methods to better understand relationships within the data.  For instance, Salfati & Taylor 

(2005) utilized smallest space analysis to derive classifications of expressive and 

                                                           
3 Abstract and/or relatively unspecified 

4 Specified and clearly expressed 
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instrumental homicide scene behaviors and Kocsis et al (2002) utilize Facet Theory in 

their empirical examination of sexual murder.  However, criminological research within 

an operational context5 tends to be focused on strictly descriptive studies of violent 

outcomes.  For instance, a number of research studies used to drive investigative 

decisions about “offender profiles” (McNamara & Morton, 2004; Morton, Tillman, & 

Gaines, Serial Murder: Pathways for Investigation, 2014; National Center for the 

Analysis of Violent Crime, 1990; 1993; 2007) focus almost entirely on generating 

frequencies of offender attributes and behaviors.  This strain of research and analysis 

tends to rely heavily on experience-based assumptions about corollary complexities 

(Arkes & Kajdasz, 2011).  

To address these methodological challenges, it is suggested that violent offending 

be re-framed not as the product of offender, victim, or environmental attributes, but rather 

as the results of conflict-driven social interactions (Black, 2010) and dynamic adaptations 

within those interactions (Dover, 2010).  Furthermore, it is important to “view a violent 

event as the outcome of a long chain of preceding events” (Roth, 1994, p. 6).  From this 

perspective, violence is regarded as an emergent feature of a complex adaptive social 

system.  Unfortunately, exploring these types of high dimensional, non-linear systems 

can become unmanageable with traditional statistical methods (Johnson & Groff, 2014).   

One way to address this complexity is through the use of computational modeling 

and simulation as a means to augment criminological research.  In this type of approach 

“models are primarily seen as surrogate systems that facilitate the examination of real-

                                                           
5 “Criminological research within an operational context” is used here to denote research outputs immediately utilized 

in investigative activities. 
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world situations and phenomenology that are too complex or uncontrollable to study and 

control directly.”  (Frank A. B., 2012, p. 18)  This is accomplished by abstracting the 

referent system, developing these abstractions into concepts and then implementing 

those concepts into an explicit formalization (Cioffi-Revilla, 2014a). 

Computational models can take on many arrangements and vary in scale and 

formalization.6  However, regardless of the implementation, “the traditional role of a 

model in the social sciences is a translation of theory into a form whereby it can be tested 

and refined” (Crooks, Castle, & Batty, 2008, p. 418).  This can be further underscored by 

the notion that “if a theory is valid, then a formal implementation of it should be able to 

‘‘grow’’ the outcomes the theory was developed to explain” (Johnson & Groff, 2014, p. 

4). 

The use of computational algorithms has produced a significant opportunity for 

researchers in a variety of fields to represent complex systems as abstracted and more 

accessible assortments of interacting and dynamic objects.  Within the scientific 

community “this has facilitated interdisciplinary research that crosses multiple problem 

domains, linking micro and macro levels of systems where emergent properties, phase 

transitions, path dependencies, feedback, hysteresis, and other dynamics occur.” (Frank 

A. B., 2012, p. 2) 

Within the criminological and computational communities, significant modeling 

and simulation efforts have been used to not only test criminological theory (Johnson & 

Groff, 2014), but to also address the complexities of geospatial offending patterns 

                                                           
6 For a discussion of computational models see Cioffi-Revilla’s (2014a) comprehensive review of computational social 

science methodologies. 



 

11 

(Brantingham, Glasser, Kinney, Singh, & Vajihollahi, 2005; Liu & Eck, 2008; Malleson, 

2012; Malleson, Heppenstall, See, & Evans, 2013), focus on event clustering and 

hotspots (Barnes, 2003; Groff, 2007; Bosse & Gerritsen, 2008), and explore issues of 

series7 tempo (Simkin & Roychowdhury, 2014).  In addition, computational methods 

have begun to shed light on criminal connectivity especially in terms of social networks 

of terrorist activity (Ressler S. , 2006; Tsvetovat & Latek, 2009; Perlinger & Pedahzur, 

2011) and gang rivalries (Radii, Flint, & Tita, 2010; Hegemann, et al., 2012).  

Furthermore, recent efforts in insider threat research have looked to combine disparate 

modeling approaches as a comprehensive and multi-faceted glimpse of insider threat 

activity (Moore, Kennedy, & Dover, 2016).  The models highlighted above have started 

to effectively define the field of computational criminology (Berk, 2008; Brantingham, 

2011) and provide researchers with a set of new methodological tools to better 

understand how and why actors interact in the “big picture.”   

Many computational criminology efforts tend to focus on macro-level 

understanding of complex systems (Frank A. B., 2012).  However, when representations 

of individual actors are implemented, for example in an agent-based model (ABM) 8, 

there is a general tendency to represent entities with relatively simple rule sets that 

imitate behavior and regard specific social developmental characteristics of the individual 

as secondary (or untenable) (Epstein J. , 2014).  Yet, there has been interesting research 

in other computational fields (non-offending context) that looks more specifically at how 

                                                           
7 A “series” is generally defined as an accumulation of events (usually of the same type) that are attributed to one 

individual or group of individuals working in apparent consort. 

8 Agent-based models will be discussed in greater detail in the Implementation Section 2.2 
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computational methods can also shed light on an endogenous features of decision-making 

(Sun, 2009), the use and application of heuristics (Kennedy, 2012), and even a holistic 

approach toward the development of a generative cognitive agent (Epstein J. , 2014).   

From a criminological perspective, if one is to identify emerging offenders prior 

to observable violent behavior, or understand possible trajectories prior to offending, then 

it is important to devise a means to conceptually understand the micro-level structures of 

an offender’s internal complexities.  To focus on a simulated violent offender, therefore, 

it is necessary to address how the offender’s internal micro-system is reinforced by 

external factors of the environmentally-based macro-system in which he interacts and 

further explore how these interactions may (or may not) culminate in an outcome of 

violent action. 

 

1.2 Goal and Objectives 

It is important to note that this dissertation is exploratory, not predictive.9  It will focus on 

exploring the violent offending process from a computational criminology perspective to 

generate a more complete understanding of the emergence of violent criminal behavior.  

The overall goal for this dissertation is to explore if implementation of the violent 

offending process as a computationally expressed complex social simulation provides 

meaningful insights10 into the internal and external drivers of offending.  This requires 

                                                           
9 For a comprehensive discussion of non-prediction applications of modeling see Epstein’s (2008) discourse on the 

matter. 

10 For instance, a deeper understanding of offender-targeting decisions or opportunity-driven dependencies. 



 

13 

incremental steps toward building and implementing a series of computational models to 

conceptually represent and test various aspects of the offending process. 

Achieving this goal necessitates the abstraction and implementation of a 

theoretical framework as the basis of a complex and dynamic social simulation.  

“Offending behavior” will be framed as one of many manifestations of boundedly 

rational (Simon, 1955) decision-making that emerges from an individual’s interpretation 

of needs, goals and targets.  Furthermore, from a computational perspective, “behavior” 

(including criminal behavior) will be viewed as the outcome of multiple complex and 

adaptive processes in which the individual participates as a social actor, and in which 

the individual is, as well, the manifestation of a complex adaptive system of competing 

needs goals and resources (Slade, 1994).   

To attend to this goal, this dissertation will address four objectives; (1) the phased 

creation of a prototype integrated model of the violent offending process, (2) a viable 

means to establish internal validation of the model, (3) application of the integrated 

model to a real-world series11 of violent offenses, and (4) the development of a method to 

determine the model’s efficacy in producing qualitatively realistic temporal and spatial 

outcomes.12,13 

 

                                                           
11 A series of real-world events will provide an opportunity to calibrate the model using temporal and spatial outcomes.  

For further discussion on the calibration of the integrated model, see the Calibration Procedures Section 2.4.1. 

12 For further discussion on the relevance of temporal and spatial elements of offending see the Spatial and Temporal 

Factors Section 2.1.7.  

13 For further discussion of the temporal and spatial metrics used, see the Comparison Metrics Section 2.4.2. 
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1.3 Research Contribution 

This dissertation makes four main scientific contributions.  First, it demonstrates the 

value of computational social science in the domain of criminology (this is among the 

earliest computational criminology investigations, with more advanced features than 

earlier models); second, it provides a new simulation model of violent offending 

behavior, basing it on a model of cognitive foundations that assumes bounded rationality; 

third, it uses a specific real-world case to demonstrate how the model can generate 

insights beyond those available through traditional criminological methods; finally, the 

compound event approach to offending is demonstrably effective and opens new and 

powerful directions for further investigation.  

Growing and studying an offender in silico14 will allow researchers to move away 

from outcome-driven research, explore offending as a process-driven compound event 

(Cioffi-Revilla, 2014a, pp. 147-152, 174-184), and provide unique insights regarding 

internal and external factors that contribute to the emergence of violent behavior.  

Viewing violent offending as a compound event opens new and powerful analytical 

possibilities that add value to assessments.  Additionally, the explicit implementation of 

cognition and goal-setting can provide valuable conceptual insights into individual 

offending trajectories, variability of offender adaptations, responses to stimuli, and 

offender strategic and tactical processes.  The emergence of geospatial and temporal 

behaviors can be used to inform investigative efforts to understand violent offenders (i.e., 

victim selection or possible triggers for violent interactions) in the real-world and craft 

                                                           
14 In a computational setting or via a computer simulation 
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practices directed toward prevention and interdiction (Groff & Mazerolle, 2008; Johnson 

& Groff, 2014).  

The computational implementation of a synthetic offender does not replace the 

necessity for collecting criminological data via traditional methods (i.e., police records, 

case files, or interviews), but instead complements it.  This is analogous to the use of lab 

work in conjunction with epidemiological studies in virology.  Criminological research 

will benefit from the ability to computationally “grow” offenders to supplement and 

understand empirical offending data.  In some cases, the cultivation of a synthetic 

offender will provide researchers with the ability to quickly and inexpensively test and 

proto-type theory and/or explore large populations of agent-based synthetic offenders.  

This can be done without the necessity of large resource expenditures or traditional 

concerns regarding health and safety of human subjects usually under the purview of 

Internal Review Board (IRB) approvals.  Additionally, model outcomes and relevant 

process features can be quickly and efficiently documented and collected as data, thereby 

eliminating significant resource expenditures (and potential error) on multiple data 

collection and data entry trials. 

 

1.4 Dissertation Overview 

This dissertation follows the Computational Social Science (CSS) methodology based on 

Motivation-Design-Implementation-Verification-Validation-Analysis (MDIVVA) 

(Cioffi-Revilla, 2014a, pp. 232-238).  Accordingly, Chapter 1 addresses research 
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motivation, Chapter 2 addresses design, implementation, verification and validation, and 

Chapter 3 addresses analysis. 

In Chapter 1, Section 1.1, the current state of traditional violent offending 

research is discussed and a number of limitations are highlighted.  It is suggested that 

computational methodologies offer a significant opportunity to address these challenges 

and several examples are given.  Next, in Section 1.2 the overall goal of this dissertation 

is conveyed as the implementation of the violent offending process as a computationally 

expressed complex social simulation.  Four objectives toward this goal, (1) phased 

creation of a prototype integrated model of the violent offending process, (2) internal 

validation of the model, (3) application of the integrated model to a real-world series, and 

(4), evaluating the model’s ability to produce realistic temporal and spatial outcomes are 

introduced.  In Section 1.3, the advantages and projected research contributions of this 

dissertation are discussed. 

Chapter 2, Section 2.1 addresses this dissertation’s first objective and presents 

theoretical and structural design elements used for scientific understanding of the violent 

offending process.  Next, in Section 2.2, a specification of an integrated model is 

provided with a focus on the implementation of an offender’s endogenous tactical and 

adaptive features, representation of exogenous environmental stimuli, and the interactions 

between the offender and environment that result in outcome behaviors and feedback.   

Section 2.3 addresses the second objective of this dissertation by discussing 

verification in significant detail and focusing on internal validation of model 

specifications and parameters.  Chapter 2 ends with a discussion of theoretical and 
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structural validation in Section 2.4 and proposes a process by which the integrated model 

can be calibrated to a real-world series to further strengthen behavioral validation of 

model outputs. 

The third objective of this dissertation is addressed in the first part of Chapter 3 

which focuses on the analysis and results of calibration to a real-world series of murders.  

The first part of this chapter, Section 3.1, describes the series scenario.  Section 3.2 

highlights specific details of the series that can be used to configure parameters during 

calibration.   

The second part of Chapter 3 addresses the fourth objective of this dissertation.  

Section 3.3 reports the findings of a comparison between the real-world series and 

simulated outputs generated by the integrated model.  Chapter 4 continues to address the 

fourth objective by discussing the findings from Chapter 3.  Section 4.1 focuses on spatial 

and temporal methods for generating comparisons, the specific value of those findings, 

and broader implications of the integrated model as a whole.  In Section 4.2 model 

limitations and methods to overcome these limitations, as well as, ways to further extend 

the model and implications for future research are discussed. 

Chapter 5 summarizes and discusses the objectives of the dissertation and 

assesses implementation success and insights into the internal and external drivers of 

offending.  This chapter also lays the foundations for further work in computational 

social science and computational criminology.  

Several Appendices are used to provide supplemental documentation of 

significant processes and results without detracting from the prose of this dissertation.  
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Appendix A provides a screen-capture of the integrated model interface and lists interface 

parameters and their specific uses.  Due to the size of the interface, close-up views of 

functional areas are provided as additional screen captures (A1, A2, A3, and A4).  

Appendix A is referred to throughout this dissertation when discussing parameters on the 

interface.  Appendix B provides a diagram of the variables (and their mathematical 

expressions) that are contained within the integrated model.  Appendix B is referred to 

with some regularity in Chapter 2, Section 2.2, during the discussion of model 

implementation.  Appendix C contains ten diagrams that show subject15 event-chain 

outcomes of the violent offending process, the causal-path of the event-chain expressed 

as a compound event, and constructed event-chain narratives as described in the 

discussion on model output narrative in Chapter 2, Section 2.2.9.  Appendix D contains 

aggregated code profiles that were used during verification of the integrated model to 

monitor procedure calls (as described in Chapter 2, Section 2.3.7).  Appendix E presents 

examples of spatial markers captured during integrated model configuration runs (as 

described in Chapter 3, Section 3.3.3).  Appendix F contains the defense presentation 

slides for this dissertation. 

  

                                                           
15 Within the remainder of this dissertation the primary focus of the modeling effort will be on a “potential offender” 

who will be referred to as a subject.  Additionally, for ease of use and because in 2014 79.8% of offenders arrested for a 

violent crime and 88.6% of offenders arrested for murder and non-negligent manslaughter were male (Uniform Crime 

Reports, 2014), the pronoun “he” will also be used in reference to the subject. 
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CHAPTER 2: METHODOLOGY 

 

 

 

This chapter begins by discussing the conceptual design elements that contribute to 

understanding and abstracting the violent offending process16.  In Section 2.1 these 

design elements are abstracted and formalized as compound events and associated causal 

processes generated by offender agents in a given environment and then implemented as 

an explicit integrated model in Section 2.2.  Once the formal model is specified, Section 

2.3 addresses verification of the model and initial parameter tests provide significant 

internal validity.  Finally, in Section 2.4 issues of validation are discussed in terms of 

calibrating the model to a specific case scenario and comparing simulated action 

outcomes to real-world results. 

In this chapter, a number of different but related figures are discussed in detail.  In 

Section 2.1, several figures are used to abstract the overall offending process.  Figures in 

Sections 2.1.5 through 2.1.9 focus on conceptualization of the violent offending process 

and culminate in a fully realized diagram of necessary components.  This diagram is 

further used to breakdown the conceptual underpinnings of each implementation stage.  

Additionally, Section 2.1.8 includes supplemental figures to illustrate key points about 

offending and non-offending path-dependent outcomes. 

                                                           
16 This discussion will follow the MDIVVA methodology referenced in Chapter 1 
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Throughout Section 2.2 a number of figures are used to illustrate key features of 

implementation.  However, Figure 35, Figure 36, Figure 39 and Figure 42 are used to 

show gradual, stage-based implementation of the violent offending process as a cohesive 

computational model.  In addition, throughout Section 2.2 there are a number of 

equations that describe internal and external interactions and endogenous subject 

features.  These equations and their structural placement in the integrated model are, for 

clarification, further depicted in Appendix B. 

 

2.1 Design 

Given that organisms exist in a constantly changing environment, exposures to stimuli 

induce a necessity to adapt.  Therefore, at the core of the current modeling effort is the 

notion that “behavior” is the manifestation of boundedly rational decision-making that 

emerges from the interpretation of stimuli and internal necessity to adapt (Simon, 1996; 

Miller & Page, 2007).  This requires significant focus not only on endogenous features of 

a potential offender or subject, but also on how that subject reacts to, and interacts with, 

the environment.  To encapsulate this dynamic process in the dissertation, computational 

implementation of the violent offending process requires a theoretical framework that can 

be used to represent the changing components of problem-solving and social interaction.   

 

2.1.1 Problem-solving 

While there are a number of ways to approach problem-solving (Perlman, 1957; Boyd, 

1976; Salvucci & Anderson, 2001), a particularly useful way to address problem-solving 
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through adaptation is found in the literature on politogenesis and the emergence of social 

complexity.  In particular, the so-called fast process of the Canonical Theory (Cioffi-

Revilla, 2005)17 describes necessary conditions for the emergence of collective 

adaptation in a polity.  According to the theory, complexity (within a society) is based on 

a series of sequential phases that must occur to address new challenges (both threats and 

opportunities).    

First and foremost, the polity must not only experience significant change, but 

also perceive that the change poses a threat that is persistent and can be addressed 

through action.  Second, there must be a desire to address the challenge, as well as the 

means to do so.  Ultimately, action must be undertaken and this action may or may not be 

successful.  If there is a failure at any one of the steps outlined in the fast process, the 

polity will fail to meet the challenge and fail to engage in effective adaptation.  

Importantly, the outcome space of the fast process consists of compound events 

generated by various alternative causal paths containing probabilistic contingencies.  

Similar to the fast process, but focused on an individual offender-based model, the 

Offender Interaction Process Model (OIPM) (Dover, 2010) has been developed as a 

means to explore dynamic problem-solving elements in a (potential) murder offender.  

The OIPM proposes structuring offender-victim interactions as a task-oriented process 

and outlines the conceptual steps that an offender passes through to reach the outcome of 

murder or other end-states.  The OIPM consists of four primary phases: strategic, 

tactical, execution, and evaluation (Dover, 2010).  These phases can be summarized as 

                                                           
17 A similar process is also used to explore individual radicalization or terrorists (Cioffi-Revilla, 2012a).  However, as a 

model of “problem-solving” the fast process from the Canonical Theory is more appropriate. 
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the development of a need (strategic), the method for satisfying the need (tactical), the 

actual action toward satisfying the need (execution), and determining what happens next 

(evaluation). 

 The phases of the OIPM are isomorphic with those of the fast process in the 

Canonical Theory, as per the following mapping of corresponding events: a need for 

taking action arises and must be recognized, as a result of some public issue causing 

societal stress (equivalent to the strategic phase in the OIPM); a course of action is 

chosen (tactical phase); the action is undertaken (execution phase); and the action either 

works or fails, depending on factors and contingencies pertinent to the society and issues 

involved (evaluation phase).  Accordingly, the offender cycle of the OIPM is akin to the 

fast process of the Canonical Theory.  The OIPM offers a relatively simple but 

sufficiently precise and rigorous model with which to structure the subject’s interactions 

with his environment.  Importantly, like the fast process, it can be formalized using 

causal logic and probability to develop theory and implement a computational model that 

can be demonstrated below. 

Borrowing similar visualization from the fast process (Cioffi-Revilla, 2005, pp. 

138-140), Figure 1 portrays the OIPM re-formulated as a forward branching model with a 

sample-space of process outcomes (Ω) and serves as an initial means to abstract the 

violent offending process.   
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Figure 1: OIPM formalized as a forward-branching model. 

 

 

 

Presenting the violent offending process in this way provides a more explicit 

conceptualization of the main events in the process as denoted by strategic (B), tactical 

(T), execution (C), and evaluation (E), and corresponding failures18 (¬T) and (¬C).  The 

general path-dependent outcomes of the OIPM can then be illustrated in the sample-space 

(Ω) as success (S), attempt but failure (F), and no attempt (N).  Importantly, (1) each 

event in the offender cycle of the OIPM results from contingencies; (2) each of the three 

outcomes is a compound event as an end-state of a prior process, not a simple “out-of-

the-blue” occurrence without priors (Cioffi-Revilla, 2012a).  These features have 

analytical significance. 

The highest level causal-path of success (S in Ω) is expressed as: 

 

𝑆 ⟸ 〈(𝐵) ∧ (𝑇|𝐵) ∧ (𝐶|𝑇)〉    (1) 

                                                           
18 The importance of integrating “failure” states into the offending process is further discussed in the Outcomes Section 

2.1.8 and Model Outputs Section 2.2.9 
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where the letters denote events in the offender cyclical process of the OIPM and the 

brackets show a sequential (i.e., ordinal) conjunction of these conditional events.  

Clearly, S is a compound event (along with F and N in Ω), so this formulation for 

creating a simulation model also provides a mathematical object that can be analyzed 

using logic and probability, including formal analysis through multivariate calculus.19  

Also, note that evaluation (E) is excluded from equation 1 as it does not have a first-order 

role in the occurrence of S.  Instead, evaluation is a reflective aspect of the model that 

feeds forward the results from the sample-space to the next cycle of the OIPM.   

 

2.1.2 “Primed” Behavior 

A significant feature of Figure 1 is the designation of outcomes in terms of offending 

behaviors.  Figure 2 further abstracts this notion and shows that outcome S (an executed 

tactical plan, i.e., completed murder) and outcome F (failed attempt to execute a tactical 

plan, i.e., attempted murder) both result in “offending” behavior by the subject.  Thus, it 

is the attempt to execute a tactical plan that defines the boundary between a subject who 

does and does not commit to offending. 

The notion of offending is socially defined (Biderman & Reiss, 1967; Reiss & 

Roth, 1993; Black, 2010) and thereby requires observation of the offending behavior.  

However, in Figure 2, the subject’s commitment to executing an offense can, in fact, be 

observed as the transition from tactical to execution.  This dissertation does not focus on 

offending solely as an outcome behavior, but rather as a process (regardless of successful 

                                                           
19 The goal here is a computational model, so mathematical aspects are reserved for the discussion in Chapter 4 in 

terms of broader theoretical implications. 
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execution).  Therefore, the subject’s commitment to offending, or the attempt to offend 

(whether socially observed or not), is regarded as the first step of offending. 

 

 

 

 

Figure 2: OIPM forward-branching model with offending and 
non-offending outcomes. 

 

 

 

The notion of a “primed” state can be seen as the transitory zone of culminating 

interest that exists between a state of no interest and state of acting on the interest.  In an 

offending context, a subject in a “primed, non-offending” state has an interest in 

“offending” action.  However, he has not committed to that action (outcome N or 

perpetual state T). 20   

A “primed” state can represent transitory interest which may or may not be 

sustained.  If sustained, lack of opportunity for a subject in a “primed” state may result in 

eventual offending when an opportunity does occur.  Conversely, if the accumulated 
                                                           
20 Perpetual existence in a tactical state without action is similar to the notion of persistence in the fast process as 

described by Cioffi-Revilla (2005). 
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interest that is instrumental to the “primed” state dissipates over time, reversion to a 

“non-primed” state can result.  This means that when a subject is in a “primed” state, 

there are no assurances that this state will always lead to “offending.”   This also means 

that, because the “primed, non-offending” state is endogenous to the subject, its 

observation requires either self-report by a “primed” subject or significant evidence of 

preparatory, but non-criminal activity.  Thus, the “primed, non-offender” state defines a 

relatively hidden population of potential (but not certain) offenders.   

Malamuth (1981) discussed the concept of primed behavior as “relative 

propensity.”  He attempted to understand its prevalence in terms of rape through a series 

of studies that surveyed male college students.  While the results of each study varied, 

Malamuth found with surprising consistency that approximately 35% of the subjects self-

reported some likelihood21 to commit rape22 given absolute certainty of not getting 

caught.  While this number is uncomfortably high, it is even more problematic when one 

considers that there is likely a self-report bias in the subject responses.  The number 

reported by Malamuth (1981) only represents those individuals in the studies who were 

willing to admit interest in carrying out what is essentially a socially abhorrent act.23  Yet, 

there is no evidence reported by Malamuth (1981) to suggest that any of the subjects ever 

committed a rape before or after the surveys. 

                                                           
21 Respondents were asked to indicate interest in committing rape on a five point Likert scale ranging from (1) “not at 

all likely” to (5) “very likely”.  The 35% of respondents who indicated some likelihood of committing rape responded 

with a value of 2 or above (Malamuth, 1981). 

22 These studies did not differentiate between rape typologies or circumstances (i.e., “stranger” versus “acquaintance”).   

23 Malamuth (1981) offers two alternative explanations for the reported levels of rape proclivity.  1) Some of his 

subjects may assume that they have a proclivity to commit rape because they have an interest in violent pornography.  

However, he argues, this may be evidence of the subjects over-estimating their own potential to turn fantasy into 

action.  2) The reported rape proclivity among college males may actually reflect confusion about “rape” due to 

evolving social definitions and attitudes. 
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Malamuth’s findings lend credence to the notion that, at least in terms of rape, 

there is a significant population of “primed” non-offenders who are relatively undetected 

because they never actually offend.24 Consequently, given the “dark figure” of crime 

(Biderman & Reiss, 1967) it is reasonable to suspect there are similar “primed, non-

offenders” for other types of criminality.  For example, this may be true for murder given 

the variety of documented murder “motivations” that arise from relatively common 

human interactions (Dover, 2010; Douglas J. E., Burgess, Burgess, & Ressler, 2013).  

This provides a compelling argument that to create a convincing implementation of the 

violent offending process, the specified model should be able to not only produce the 

emergence of violent offending behavior, but also track escalating and de-escalating 

transitions between “primed, non-offending” and “primed, offending” states.25   

The notion of a “primed, non-offending” state also helps establish a clarification 

of terms.  Thus, for the purpose of this dissertation, the operational definition of 

“offending” will be the commitment to an action (regardless of the success of that action) 

that is socially defined as violent criminality.  Under this definition the “primed, non-

offending” subject, while he may be contemplating a violent criminal act, is still 

considered a non-offender because his interest and planning have not been translated into 

action.  The subject has not effectively turned the “criminal corner.”  In the same respect, 

once the “primed” subject has attempted to put a plan for violent offending into action 

(regardless of the success of that action) he enters an active “offending” state. 

                                                           
24 Some of these primed non-offenders may have actually offended, but were either never identified or, given the 

circumstance of the rape, the offense may never have been reported to the authorities.  

25 This will be formalized in a detailed forward branching model in the Outcomes Section 2.1.8 
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2.1.3 Conceptualizing the Violent Offending Process 

The previous two sections have focused on using a framework to abstract problem-

solving and generate considerations of “primed” behavior in violent offending.  However, 

devising a more formalized conceptualization of decision-making in the violent offending 

process necessitates focusing on two different domains: (1) the internal decision-making 

process of the subject independent (but not ignorant) of social outcomes, and (2) the 

social interpretation, ecological effects, and feedback that result from the subject’s 

decision-making process (Dover, 2010).  Figure 3 illustrates that the subject affects the 

environment by generating behavior, and in turn, is stimulated by environmental 

feedback.  This serves as a conceptual starting point for discussing internal and external 

interactions of the violent offending process.   

Thus, fully understanding and capturing the violent offending process requires not 

only understanding the boundary between emergent “offending” and “non-offending” 

behaviors, but also decision-making within the context of interaction.  This necessitates 

abstracting the drivers of decision-making, focusing on the spatial and temporal contexts 

in which decisions take place, and using a fully conceptualized framework to create an 

integrated model.   
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Figure 3: Class diagram of the abstracted role of behavior in subject-
environment interaction that frames the violent offending process. 

 

 

 

2.1.4 Decision-making 

All organisms must make “decisions” in order to effectively leverage resources and 

exploit the environment in which they exist.  Yet, these decisions are based on a limited 

and boundedly rational understanding of the environment (Simon, 1972).  For this reason, 

implementing the violent offending process is an exercise in applying strategies to 

reproduce human decision-making within a bounded context.   

Prospect theory (Kahneman & Tversky, 1979) posits that human decision-making 

does not seek optimized utility of outcomes, but rather involves evaluating potential loss 

and gain when compared to a baseline.  The baseline is highly dependent not only on the 

current perceptions of the subject, but also the prior experience and reality the subject 

brings to the problem.  Flawed decision-making, according to Prospect theory, exists 

because of innate human susceptibility to framing effects and errors in probability 

assessment.  From this perspective, a subject not only perceives and internalizes 

exogenous stimuli, but also does so in ways that will shape endogenous drivers of 

behavior (see Figure 3).  In modeling the violent offending process, Prospect theory 
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offers significant conceptual guidance in the assessment of utility associated with action, 

and lays a foundation for behavior as a mechanism of feedback to ecologically relevant 

conditions. 

 

2.1.5 Needs and Goals 

In my theory, the internal drivers that motivate a subject to make-decisions are 

characterized as shifting drive states or needs (Schank & Abelson, 1975; 1977; Slade, 

1994; Sun, 2009).  Furthermore, motivation is generalized as the needs-driven balancing 

of internal states through external problem-solving (Abelson, 1959; Rouly, 2015).  

Specifically, a change in the subject’s internal state creates an endogenous imbalance. If 

the change is significant enough or enough imbalances have accumulated to necessitate 

action, then the individual sets goals that are anticipated to satisfy the emerging need and 

re-balance the individual (Slade, 1994; Ward, Hudson, & Keenan, 1998; Polaschek, 

Hudson, Ward, & Siegert, 2001).  Note that a key word here is “anticipated” which does 

not guarantee re-balancing nor does it guarantee that an optimal solution is pursued.  

Establishing a stimuli-driven need for re-balancing (or drive state) is tied to the 

perception (not realities) of the stimuli and subsequent goals. 

   

“(explicit) goals (such as “finding food”) of an agent may be 

generated based on (past and current) internal drive states (for 

example, “being hungry”) of the agent…This explicit 
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representation of goals derives from, and hinges upon, (implicit) 

drive states.” (Sun, 2009, p. 6)   

 

Generating a goal, while an important part of problem-solving, is not an end-state, but 

rather instrumental, as a mechanism toward an end-state.   

This implies that as an individual accumulates specific needs; goals are generated 

by significant breaches of equilibrium.  As further discussed by Sun (2009), there are 

important differences between goals and needs (which he refers to as “drives”).  First, 

multiple needs can exist at any one time (a parallel structure), but these needs are being 

pursued, generally, one goal at a time (a serial structure).  Second, needs are much less 

focused than goals because goals are the explicit means to address implicit needs.  Third, 

needs are bounded by “hard-wired” drives (Maslow, 1943), whereas, goals represent 

means to achieve needs externally, and as such, necessitate adaptive and flexible 

methodology.  

Schank and Abelson (1975; 1977) address the notion of goals as motivational 

factors within a script, or a frequently recurring “sequence of actions.”  Their conception 

of goals is embodied as various specialized, although not entirely discrete, classifications.  

Each of these goal types: Satisfaction, Enjoyment, Achievement, Preservation, Crisis, 

Instrumental, and Delta have a nuanced part to play in changing the current state of an 

individual to a desired state.  A notable part of this process is the Delta goal which serves 

as a specialized Instrumental goal that is not tied to a script per se, but serves in a much 

more generalized capacity to affect a plan for change.  For this reason, Delta goals tend 
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to deal with novelty and produce adaptation26 both of which require reformulation of 

current understanding about a circumstance and intentionality. 

According to Slade (1994), a goal is “a state of the world which an agent 

explicitly desires to achieve, preserve, avoid or destroy” (p. 49).  It is further posited by 

Slade that, in terms of choosing between multiple options, it is not goals that are in a state 

of conflict, but rather the limited amount of viable resources that are available to the 

decision-maker.  Thus, it is not goals that cause variations in behavior, but it is the means 

by which they are achieved.  This argument can be made in an offending context as well.  

For example, it is not the goal of “control” that is problematic; it is the ensuing rape that 

is meant to achieve that goal that becomes violent and criminal behavior. 

Figure 4 shows a class diagram outlining the relationship between needs and 

goals.  In this dissertation, as a way to simplify the concept, goals are further 

conceptualized as underlying intentions that provide a foundation for action (Polaschek, 

Hudson, Ward, & Siegert, 2001) and can be divided into two categories: goals that keep 

an individual from doing something are considered inhibitory27, and goals that emphasize 

satisfying a need are considered acquisitional (Ward, Hudson, & Keenan, 1998).  

Acquisitional goals focus on the attainment of a physical object (i.e., money or a 

weapon) or an abstract feeling or state (i.e., sexual satisfaction, power, or control).  From 

this perspective, to successfully “pursue” inhibitory goals, the individual must essentially 

do nothing (or restrain himself from doing something), and to achieve an acquisitional 

goal, the individual must dynamically pursue action.   
                                                           
26 The need to adapt will be further explored in the Adaptation Section 2.1.6.3 

27 For additional discussion on inhibitions in killing as they relate to radicalization, see Cioffi-Revilla (2012a) 
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Figure 4: Class diagram showing the relationship between a need, 
goal (class), and acquisitional and inhibitory goals (objects). 

 

 

 

Figure 4 further shows the interactions of inhibitory and acquisitional goals.  An 

individual’s inhibitory goals often take the form of a sense of morality, compassion, or 

fear of penalty (deterrence) and act as a means to deter or suppress abhorrent behavior.  

For example, acquisitional goals that lead to sex offending, then, are pursued by an 

individual who has overcome (or lacks) these inhibitory goals (Ward, Hudson, & 

Keenan, 1998; Cioffi-Revilla, 2012a).  

Thus, in the context of the offending process, the assumption is that goals that 

lead to criminal behavior are primarily acquisitional (Ward, Hudson, & Keenan, 1998).  

From this perspective, inhibitory goals present a threshold to the individual’s interest in 

pursuing an acquisitional goal.  If the subject’s interest remains below the threshold, then 

the subject is guided by the inhibitory goal.  Figure 5 illustrates the process of 

transitioning toward a state in which an acquisitional goal guides subject behavior.  The 
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subject begins in a state in which inhibitory goals guide behavior.  The subject 

experiences external stimuli which contribute to (or detract from) needs accumulation.  If 

needs remain below the inhibitory threshold, then inhibitory goals continue to guide 

behavior.  If the accumulated needs exceed the current inhibitory goal, the inhibitory 

threshold is “breached,” and the acquisitional goal, that was suppressed by the inhibitory 

goal, guides behavior.  Effectively, the individual’s interest in a goal has overcome the 

prohibitions against it. 

 

 

 

 

Figure 5: State diagram illustrating the process by which an acquisitional goal is 
generated through external stimuli. 

 

 

 

In this dissertation, the process of overcoming inhibitory goals to pursue 

acquisitional goals is represented through an accumulator that relies on threshold-based 

rules.  This notion of an accumulator acts as a driven threshold system (Rundle, et al., 

2012) and is inspired by work in affect accumulation in marital processes (Gottman, et 

al., 1976; Gottman, 1998) and cognitive models of stimulus onset (Van Maanen & Van 

Rijn, 2007).  In this dissertation, the emergence of an acquisitional goal α is expressed in 

terms of an accumulating need η that exceeds an inhibitory goal φ at any time t: 
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𝛼𝑡 = {
𝜂𝑡 − 𝜑𝑡, 𝜂𝑡 − 𝜑𝑡 > 0

0, 𝜂𝑡 − 𝜑𝑡 ≤ 0
    (2) 

 

Figure 6 conceptually illustrates a needs-accumulator that represents changing 

need η over time t.  In the figure, at t1, the subject’s need accumulator has not breached 

the threshold created by the inhibitory goal φ.  Once the need does “breach” the 

threshold, at t2, the subject develops an acquisitional goal α.  The acquisitional goal is 

actively pursued at t3 and is focused on satisfying (reducing) the need.  Eventually at t4, 

the acquisitional goal successfully satisfies the emergent need and pushes the needs-

accumulated back below the inhibitory goal.   

Change in the accumulation of needs is driven by environmental stimuli (i.e., 

social interactions).  Inhibitory thresholds are also driven by environmental stimuli (i.e., 

location type or privacy).  Thus, for example, if a subject gets into an argument with 

someone in a restaurant, the argument (social interaction) effects the subject’s need 

accumulator and the environment (public restaurant) contributes to the inhibitory 

threshold.  Given enough of a need, the subject may be less (or more28 ) inclined to act 

violently in a public location.  

 

 

 

                                                           
28 Luckenbill (1977) found that public arguments may increase likelihood for violence if the subject is afraid of losing 

“face” in front of peers.  For further discussion on social controls of conflict and violence, see Black (1990). 
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Figure 6: Conceptual representation of a needs-accumulator. 

 

 

 

Figure 7 shows the initial consideration of a developing acquisitional goal in the 

larger conceptual context of the violent offending process.  In this figure, and subsequent 

figures in following sections that build upon it, gray boxes indicate the elements 

described in the corresponding text.  Environmental stimuli generate change in the 

subject’s endogenous needs accumulation and inhibitory threshold.  Regardless of the 

environmental circumstance, a threshold “breach" leads to an acquisitional goal. 
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Figure 7: Environmental stimuli generate change in the subject’s endogenous needs 
accumulation and inhibitory threshold, generating a threshold breach, and development 
of an acquisitional goal (elements discussed in the text are highlighted gray).  This figure 

is extended in Figure 8. 

 

 

 

2.1.6 Preferred Methods 

To successfully achieve an acquisitional goal, the subject must (1) establish a target, and 

(2) devise a means to extract the acquisitional goal from (or with) the target.  For this 

reason, the subject maintains a set of preferred methods that is comprised of previously 

successful methods used to achieve previous goals.  As illustrated in Figure 8, once an 

acquisitional goal has emerged, the subject selects from a set of preferred methods to 

inform his understanding of available targets (targeting strategies) and create a tactical 

plan to address similar goals.   

 

 

 



 

38 

 

Figure 8: Once an acquisitional goal emerges, similar acquisitional goals and previously 
utilized methods are used to address those goals (elements discussed in the text are 

highlighted gray).  This figure is extended from Figure 7 and further extended in Figure 11. 

 

 

 

It is important to point out that both a target, and the means of using that target to 

achieve an acquisitional goal are conceptually entangled.  Not only does the subject need 

to understand where to find available targets, but also how his method of extracting the 

acquisitional goal will affect the availability of those targets.  As Figure 9 illustrates, the 

target is the vehicle through which the subject interacts (via a method) exogenously, 

creates a tactical plan, and achieves (or attempts to achieve) the acquisitional goal.   
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Figure 9: Class diagram showing interactions between the preferred 
methods, target, and tactical plan in achieving the acquisitional goal. 

 

 

 

This is analogous to recognizing that a pothole in the road threatens the need for 

safety (need), perceiving that a viable way to address the problem is to fix the pothole 

(goal), and using gravel (target) to fill it (method).  Table 1 shows this pothole example 

(in terms of need, goal, target, and method) and poses two other examples in the context 

of “esteem.”29  In both of these examples the subject lacks esteem (need), and in both 

cases the subject wishes to increase confidence (goal) by interacting with a person 

(target).  Yet the method of interacting is very different.  In one case he collaborates 

(dates the person), and the other method he dominates (rapes the person). 

 

 

 

                                                           
29 For further discussion on different needs see Maslow (1943). 
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Table 1: Needs, goals, target, and method. 

Need Goal Target Method 

safety fix pothole use gravel fill pothole 

esteem 
increase 

confidence 
person collaborate (date person) 

esteem 
increase 

confidence 
person dominate (rape person) 

 

 

 

Behavior is not determined by needs and subsequent goals, but rather by the 

methods by which those needs are satisfied (Slade, 1994).  Therefore, variations in 

behavior emerge from the subject’s tendency to engages in satisficing.30  This is to say, 

preferred methods chosen by the subject may not be the optimal methods, but they are 

adequate methods that have succeeded in the past (as drawn from memory).31 

 

2.1.6.1 Targeting  

While an explicit acquisitional goal may be, for example, to get food to satisfy hunger, or 

rape a victim to feel control (Salfati & Taylor, 2006), there is still the matter of what food 

and what victim will be ultimately used as a means to meet the goal and fulfill the need.  

For this reason, targeting is an important part of the violent offending process 

(Beauregard, Proulx, Rossmo, Leclerc, & Allaire, 2007; Salfati & Taylor, 2006).  

Targeting provides a subject with something (or someone) that he perceives will, through 

his preferred method, satisfy his acquisitional goal and provides a bridge between goal-

                                                           
30 For further discussion of satisficing, see Simon (1972) and Schwartz, et al (2002). 

31 For discussion of further discussion on the implementation of method memory, see the Method Memory Section 

2.2.8.2. 
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setting and tactical planning (Beauregard, Proulx, Rossmo, Leclerc, & Allaire, 2007).  

Without an identified target, there is no specific way to achieve the acquisitional goal.  

Thus, targeting also provides a direct and explicit link between the individual’s internal 

goals and the external world in which the target exists.   

It is important to note that a significant number of subject interactions with other 

individuals in the environment (objects), while responsive to emerging acquisitional 

goals, do not necessarily manifest as criminal behavior.  Thus, for clarification of terms 

in this dissertation, Figure 10 shows that if the subject identifies an object that he wishes 

to interact with, this object becomes the target of the interaction.  If the subject interacts 

with the target collaboratively (not as an offender), the target remains a target.  If, 

however, the subject attempts to dominate the target (thereby offending against the 

target), then the target becomes a victim.  If the subject, however, fails to either 

collaborate with or dominate the target or victim, the target or victim will revert back to 

an object (unless further engaged by the subject in subsequent attempts to interact). 
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Figure 10: State diagram illustrating the transition of an object 
to target and/or victim given the subject’s intentions. 

 

 

 

Figure 11 shows that after an acquisitional goal emerges, the subject’s preferred 

methods include targeting strategies for finding available targets.  The subject may, for 

example, have access to available targets in his day-to-day routine, or he may have a 

specific “type” of target in mind and seek areas where those targets congregate (i.e., 

children at a school or prostitutes at a prostitute “stroll”).  Suitability of a specific target 

is a factor of a subject’s assumptions that the target will satisfy the acquisitional goal.  

Thus, the acquisitional goal defines the target attributes that drive the subject’s search 

for available targets. 
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Figure 11: The subject’s preferred methods include targeting strategies for finding 
available targets (elements discussed in the text are highlighted gray).  This figure is 

extended from Figure 8 and further extended in Figure 12. 

 

 

 

The correlation of target attributes (heterogeneous features or cues encapsulated 

in the target and perceived by the subject) with previous successful goal achievement 

involves framing future expectations of success based on past experience.  Thus, while 

the subject may not have experience with a specific target, his previous experience with 

similar targets will frame expectations of successful strategies for achieving the current 

acquisitional goal.  To return to the previous “pothole” analogy, using gravel may not 

objectively be the best way to fill a pothole (concrete or road-tar may be more viable).  

However, the selection of gravel as the means to achieve the goal may reflect what is 

currently available, or what has “worked” in the past.   
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2.1.6.2 Tactical Planning  

Tactical planning is conditional on identifying a specific target.  The subject must 

determine how to effectively (in his own estimation) access the target, extract the 

acquisitional goal from the target, and egress given a specific target (Willis, 2006; 

Beauregard, Proulx, Rossmo, Leclerc, & Allaire, 2007; Leclerc & Wortley, 2013).  To 

understand why, consider how a Special Weapons and Tactics (SWAT) team operates.  

The SWAT team strategically plans for action by pursuing and maintaining skill sets 

associated with dangerous police actions (i.e., shooting and breaching techniques).  Yet, 

tactical planning for a specific operation cannot take place until the target has been 

identified.  Only then can significant (and unique) circumstances associated with the 

specific target (i.e., building layout, time-schedule, possible blind corners, potential for 

armed resistance, etc.) be understood and addressed.   

Tactical planning involves (1) developing a set of expectations for how 

interaction with a specific target will occur and (2) how this interaction will achieve a 

goal (Dover, 2010).  For this reason, in tactical planning, internally representing the 

environment is a necessary condition.  This is especially true in a social context where the 

subject must (cognitively) model and simulate other individuals to generate expectations 

of successful interaction (Kennedy, 2012).  Therefore, creating a tactical plan also 

depends a great deal on the subject’s ability to perceive the target and (3) environment, 

(4) understand his own abilities, and (5) combine them into an abstract problem space 

(Osinga, 2013) within an endogenous cognitive representation (Rouly, 2015).   

Alternatively, success of the tactical plan (a different matter than creating a tactical plan) 
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depends on how accurately the subject’s cognitive representation depicts actual 

circumstances and his ability to adapt to differences.   

In this dissertation, the problem space is a cognitive construct of the subject.  This 

is where the subject’s reality is created and where, once he identifies the target, the 

subject anticipates inhibitors or obstacles that must be overcome to create a successful 

(from his perspective) interaction that meets the acquisitional goal.32  Furthermore, this 

problem space, because it involves inhibitors that must be navigated, is considered a 

traversable cognitive landscape.  As shown in Figure 12, this cognitive landscape can be 

conceptually divided into two primary areas: a perception landscape and simulation 

landscape.   

 

 

 

 

Figure 12: The cognitive landscape is divided into two regions, the simulated landscape 
and the perception landscape (elements discussed in the text are highlighted gray).  This 

figure is extended from Figure 11 and further extended in Figure 13. 

 

 

                                                           
32 This is similar to Boyd’s (1976) concept of “orientation” and is further discussed by Osinga (2013). 
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While a perception landscape and simulation landscape are both cognitive 

constructs of the subject’s understanding of the world33, they have very different 

purposes.  The perception landscape encompasses the subject’s interpretation of the 

world as he experiences it.  This is to say, the perception landscape is constructed out of 

direct observation and experience with the environment.  This is the closest thing to an 

objective reality within the subject’s cognitive landscapes.  On the other hand, the 

simulated landscape is constructed out of the subject’s understanding of key aspects of 

the perception landscape.  This is the landscape in which the subject plans for 

interactions and simulates solutions to known inhibitors.34 

As illustrated in Figure 13 the subject first constructs the perception landscape in 

which he identifies and represents inhibitors to the acquisitional goal.  This is to say, a 

subject who intends to rape a victim inside her home must overcome a lock on the door 

(inhibitor), or a subject who intends to assault a victim must account for the victim’s 

ability to fight back (inhibitor).  While the problem space is generally bounded by the 

subject’s understanding of reality, inhibitors are elements within that reality that have an 

instrumental role in challenging the subject’s ability to accomplish the acquisitional goal.  

Inhibitors change with each new target for which the subject devises a tactical plan.   

 

 

 

                                                           
33 Interpretation of the problem space and constituent relationships within draws, in part, on the concept of belief 

systems as discussed by Abelson (1979) to construct the cognitive landscapes.  However, the overall significance of the 

subject’s interpretation is in understanding the necessary conditions (and challenges to overcome) to achieve the 

acquisitional goal.  

34 This process is formalized as maze-running and discussed in greater detail in the Stage 2: Tactical Planning and 

Adaptation Section 2.2.7. 
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Figure 13: The subject understands the environment through the perception landscape 
where he identifies and represents inhibitors to the acquisitional goal (elements 

discussed in the text are highlighted gray).  This figure is extended from Figure 12 and 
further extended in Figure 14. 

 

 

 

The simulation landscape is an accumulation of the inhibitors that the individual 

can (or thinks he can) predict.  However, it is an incomplete reproduction of the 

perception landscape which is itself an imperfect representation of reality.  As shown in 

Figure 14, tactical planning takes place in the simulation landscape. 
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Figure 14: Tactical planning takes place in the simulation landscape where the subject 
utilizes preferred methods of navigating identified obstacles (elements discussed in the text 

are highlighted gray).  This figure is extended from Figure 14 and extended in Figure 15. 

 

 

 

In order to create a viable tactical plan, the subject must determine (1) how to 

access the target, (2) how to extract the acquisitional goal from the target, and (if a 

criminal event) (3) how to egress from the target.35  Figure 15 illustrates a more detailed 

conceptual view of this tactical planning process.  The subject starts by developing an 

extraction plan for how interacting with the target will meet the acquisitional goal in the 

first place.   Next, the subject devises an access plan determining how to approach and 

control the target.  Finally, the subject creates an egress plan to determine how, once the 

acquisitional goal has been extracted, the subject will determine he is free and clear of 

the offense.   

                                                           
35 Egress is interpreted as the ability of the subject to extricate himself from the event, thus even in the case of a suicide 

accompanying a successful attack, the subject has successfully negotiated an egress (although further action is no 

longer possible).  This type of event, further highlights that the problem space depends on the subject’s own boundedly 

rational interpretation of reality and ability to assign meaning (and consequence) to his own actions.  
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If the subject is able to produce each of these sub-plans, then the tactical plan is 

determined by the subject to be viable – a “plan-of-plans” and significant compound 

event, by any measure.  The subject then attempts action predicated on the success of the 

sub-plans.  Thus, the subject attempts to access the target first, extract the acquisitional 

goal from the target next, and then egress from the interaction.  These steps can be 

exemplified as: abducting a victim (access), raping and killing the victim (extraction), 

and then dumping the victim’s body (egress). 

 

 

 

 

Figure 15: Detailed view of the tactical planning process 
(elements discussed in the text are highlighted gray).  This figure 

is extended from Figure 14 and further extended in Figure 16. 
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As shown in Figure 16, a viable tactical plan leads to action so long as the acquisitional 

goal persists and the subject finds an environmentally viable opportunity to put the 

tactical plan into action.   

 

 

 

 

Figure 16: A viable tactical plan will, given viable environmental opportunity, ultimately 
lead to action (elements discussed in the text are highlighted gray).  This figure is 

extended from Figure 15 and further extended in Figure 17. 

 

 

 

2.1.6.3 Adaptation 

There are often too many actual inhibitors for the subject’s simplified cognitive 

landscapes to have accounted for them all.  Thus, there is an inherent uncertainty 

associated with the problem space.  For this reason, the perception landscape is an 

important part of identifying dissonance (unexpected inhibitors) during action.  

Therefore, once action ensues, the perception landscape is re-activated so that the subject 

can get feedback from the environment.  The presence of dissonance between reality (as 
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experienced in the perception landscape) and the initial tactical plan often necessitates an 

adjustment in action through adaptation.36 

Each sub-action (access, extraction, and egress) has its own set of inhibitors that 

produce dissonance and require adaptation by the subject.  For instance, the victim may 

unexpectedly refuse to get into the subject’s vehicle (access dissonance), the subject may 

not be physically able to strangle the victim (extraction dissonance), or the location where 

the subject was planning to dump the victim has unexpected visitors (egress dissonance).  

Figure 17 illustrates conceptually that as the subject translates his tactical plan into 

action, each of the sub-plans can produce dissonance that require returning to the 

simulation landscape to devise adaptive sub-plans. 

 

 

 

                                                           
36 For a discussion on modes of resolving dissonance, see Abelson (1959). 
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Figure 17: Detailed view of the adaptation process (elements 
discussed in the text are highlighted gray).  This figure is 

extended from Figure 16 and extended in Figure 18.  

 

 

 

Figure 18 places this process of adaptation in the larger context of the conceptual 

model.  To adapt, the subject essentially creates a new tactical plan.  This new tactical 

plan, if viable, is then used to define new action.  The subject repeats this cycle of 

adaptation until either successfully achieving the goal, or reaching a point where he can 

no longer adapt.  

The subject’s ability to derive adaptive solutions is dependent on the cognitive 

resources that he can invest in the simulation landscape.  Cognitive load under some 

circumstances (i.e., divided attention, or duress) may far outweigh the capacity for the 
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individual to create a viable adaptive tactical plan.  In other circumstances, if enough 

cognitive resources are available for adaptation, the individual’s reliance on adaptive 

tactical plans (essentially “flying by the seat of his pants” rather than careful planning) 

might become a successful and flexible strategy for achieving acquisitional goals in a 

highly uncertain environment.37 

 

 

 

 

Figure 18: The process of adaptation is based on dissonance found in the perception landscape 
after the tactical plan has been applied as action (elements discussed in the text are 

highlighted gray).  This figure is extended from Figure 17 and further extended in Figure 22. 

 

 

 

2.1.7 Spatial and Temporal Factors 

Implementing a complex adaptive social simulation of the violent offending process 

requires not only a well-abstracted representation of human decision-making, but also a 

viable representation of related spatial and temporal factors.  Specifically, these factors 

                                                           
37 This process of adaptation is implemented as maze-running and discussed in more detail in the Stage 2: Tactical 

Planning and Adaptation Section 2.2.7. 
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include the subject’s activity-space in which he encounters stimuli, the presence of 

available targets, and spatially relevant action outcomes (Cohen & Felson, 1979).   

 

2.1.7.1 Activity-Space 

Endogenous cognitive landscapes used by the subject form mental mazes of abstracted 

inhibitors38 (perception landscape) and are utilized to create plans and adaptations 

(simulation landscape).  However, the subject’s cognitive landscapes run parallel to (and 

are informed by) what the subject spatially and temporally knows (or thinks he knows) 

about his physical surroundings which constitutes a mental map of the environment.  

Within this context, spatial factors related to violent offending rely heavily on the 

subject’s activity-space (Cohen & Felson, 1979; Brantingham & Brantingham, 1993; 

Beauregard, Proulx, Rossmo, Leclerc, & Allaire, 2007).  Activity-space refers to the area 

that defines an individual’s geographic reach39.  Within the violent offending process, the 

subject’s activity-space provides a stimuli-rich environment that affects the subject’s 

needs, inhibitory thresholds, and opportunities for targeting (Ratcliffe, 2006).   

 The boundaries of a subject’s activity-space are defined by locations that are 

spatially relevant to the subject.  These boundaries are comprised of anchor-points 

(Rossmo, 1995b) or significant locations that spatially tether an individual’s activities, 

and the travel routes that connect them.  Within this dissertation, the subject’s home 

location(s), work location(s), and area(s) where he spends free time (i.e., a specific bar or 

nightclub) are all considered anchor-points for his unique activity-space (Cohen & 
                                                           
38 These inhibitors can include, but are not limited to, spatial or temporal factors. 

39 This is similar to the space-time prism concept explored by H. J. Miller (2007). 
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Felson, 1979).  This activity-space defines the subject’s routine mobility.  Any additional 

exploration outside of this area provides a subject with an opportunity to increase his 

activity-space (Beauregard, Proulx, Rossmo, Leclerc, & Allaire, 2007). 

The abstraction, conceptualization, and design of the model’s environment must 

facilitate subject travel and interaction with environmental features.  This is because 

when a subject pursues an acquisitional goal, spatial decisions are driven by intersections 

between the subject and other objects, or locations that he considers viable mediums in 

achieving his goal.  This sentiment relies heavily on interactional theories of crime like 

Situated Transaction (Luckenbill, 1977) and the more spatially developed Routine 

Activities (Cohen & Felson, 1979) both of which recognize criminal activity as the spatial 

and temporal intersection of offenders and victims within a context.  Ideally, this context 

involves additional aggravating factors like high-energy crowds during a fight 

(Luckenbill, 1977) or mitigating factors like visible security cameras or police to provide 

capable guardianship (Cohen & Felson, 1979).   

Focusing on the spatial and temporal realizations of a subject emphasizes 

Hägerstrand’s (1967) notion of disaggregating time and space (Pred, 1977; Corbett, 

2015) as a way to better understand individualized human movement and boundaries.  

Thus, in order to understand human mobility, the purposes and bounds of that mobility 

must be considered as individualized choices.  This approach leads to understanding and 

defining the offender’s spatial choices as a “journey” to crime (Brantingham & 

Brantingham, 1984; 1993) that is augmented by context and rational script construction 

in criminal targeting and hunting patterns (Beauregard, Proulx, Rossmo, Leclerc, & 
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Allaire, 2007).  Therefore, the reason why the offender and victim happen to be in the 

same place at the same time is regarded as a function of repetitive cycles of human 

movement. 

 

2.1.7.2 Spatial Awareness 

“Awareness” is a concept that relies on a subject’s cognitive realization or understanding 

(Rhodes, 2000).  Spatial awareness depends upon travel and movement to increase 

comfort and spatial understanding (Hägerstrand, 1967; Brantingham & Brantingham, 

Patterns in Crime, 1984; Rossmo, 1995b; Felson M. , 2002).  Knowledge of an 

environment, when coupled with temporal features, lays a foundation of possible travel 

within a specific spatial environment during a given time frame (Pred, 1977; Kwan, 

1998; Miller H. J., 2007).  Thus, in a spatial model it is imperative to represent the 

subject’s temporal awareness to effectively bound his activity-space.   

 

2.1.7.3 Time 

Time acts as a bounding factor that defines the extent of the subject’s reach, as well as, 

spatially relevant commitments (Pred, 1977; Miller H. J., 2007).  As such, temporal 

periods for the subject can be seen as times during which he is either accountable or non-

accountable to daily obligations.  Thus, accountable time is used in this dissertation to 

refer to Ratcliffe’s (2006) notion that there are temporal constraints on a subject that 

shape spatial offending patterns.  For instance, if a subject has a job, he is expected to 

spend time working.  This means that the subject must be at a specific location during a 
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specific time (or he will likely lose the job) and, unless offending at work, the subject is 

not available to offend elsewhere.  

The pursuit of needs-based spatial and temporal activities relies on the subject’s 

ability to navigate an incompletely understood landscape.  While the subject may have a 

sense of the temporal and spatial environment, it is ultimately the nature and outcome of 

the interactions within the environment that creates behavior (Brantingham & 

Brantingham, 1984; Simon, 1996; Ratcliffe, 2006).  Thus, introducing needs and goals as 

the drivers of spatial decisions is an important part of creating a subject’s environmental 

interactions.  In terms of a subject’s spatial and temporal constraints, inhibitory goals 

(Polaschek, Hudson, Ward, & Siegert, 2001) are reinforced by accountable time.  The 

pursuit of emerging acquisitional goals, then, is due to the absence or the supersession of 

accountable time. 

 

2.1.7.4 Spatial Targeting 

Once an acquisitional goal has emerged, the search for a target to achieve the goal is 

bounded by the subject’s activity-space.  For instance, if the subject is hungry, the need 

will be satisfied by acquiring food which the subject must locate somewhere within his 

activity-space.  If he cannot locate a desired “food” target within his activity-space, then 

the subject must expand his spatial awareness to encompass less familiar areas or expand 

his temporal awareness to encompass less familiar times (if the need can be temporarily 
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deferred).  The act of changing or evolving his own spatial and temporal awareness to 

accommodate emerging needs is a significant form of adaptation. 40 

Once the subject begins to target, he seeks available targets in the environment.  

The subject (through previous experience) associates favorable target attributes with a 

specific location (i.e., he can find prostitutes in a “red-light” district) or identifies a 

specific target (through other non-targeting interactions) that he wishes to interact with.  

In either case, targeting involves not only anticipating targets that will satisfy an 

acquisitional goal, but also where and when the target can be exploited.  Through 

exploration of the subject’s activity-space, he begins to understand not only spatial 

information, but also information about potential targets (Ratcliffe, 2006).   

Furthermore, independent of the subject’s influence, potential targets also have 

activity-spaces (Ratcliffe, 2006).  These areas of spatial awareness overlap with and 

diverge from the subject’s activity-space.  Thus, the subject must not only identify a 

target, but once he creates a viable tactical plan, create an opportunity to put that plan in 

motion.  This involves spatially and temporally synchronizing (at least temporarily) his 

activity-space to the target’s activity-space in order to situate himself within reach of the 

target.  

Behaviorally driven factors behind the subject’s activity-space increase 

understanding of not only how a subject offends, but also how he is spatially and 

temporally engaged when not offending.  While behavior can be framed as the 

manifestation of boundedly rational decision-making that emerges from an individual’s 

                                                           
40 Tactical planning and adaptation in the subject’s cognitive landscapes inform (and are informed by) the subject’s 

targeting decisions. 
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interpretation of needs, goals and targets, a significant part of how behavior emerges is 

spatially and temporally defined (Brantingham & Brantingham, 1993).   

 

2.1.8 Outcomes 

Thus far, the discussion of conceptually designing the violent offending process has 

focused on the way that a subject develops an acquisitional goal from an accumulated 

need, identifies the means to achieve this goal through a target, and tactically plans and 

adapts to reach the acquisitional goal.  In less esoteric terms, this implies a subject 

develops a motive, identifies a victim, plans to kill the victim, and adapts his methods to 

achieve the murder.   

The path-dependent outcome of successful violent offending (S) is expressed in 

Figure 19. 41,42  An acquisitional goal is created when the accumulating needs of a subject 

without an acquisitional goal (¬α) breaches the inhibitory threshold thereby creating an 

acquisitional goal (α).43  Creation of a viable tactical plan (T) to exploit a target is put 

into action in terms of access (A), extraction (K), and egress (D).  The causal-path of 

success (S in Ω) is expressed as: 

 

𝑆 ⟸ 〈(𝛼|¬𝛼) ∧ (𝑇|𝛼) ∧ (𝐴|𝑇) ∧ (𝐾|𝐴) ∧ (𝐷|𝐾)〉   (3) 

                                                           
41 This figure is similar to, and has several elements in common with, the formalized forward-branching model of the 

OIPM Figure 1 in the Problem-solving Section 2.1.1.  However, for continuity, execution (C) is now broken down into 

access (A), extraction (K) and egress (D). 

42 This figure provides further basis for understanding the outcomes discussed in the Model Outputs Section 2.2.9. 

43 Equation 2 in the Needs and Goals Section 2.1.5 establishes the breach of an inhibitory goal by the needs-

accumulator as an acquisitional goal α.  Therefore, the absence of an acquisitional goal is represented as ¬α.  This 

representation is carried forward for consistency. 
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Figure 19: Path-dependent outcome of successful violent 
offending (extended in Figure 20). 

 

 

 

Figure 20 extends Figure 19 to include failure states (¬α, ¬T, ¬A, ¬K, and ¬D) 

and their respective outcomes (N, P1, P2, F1, F2).  This figure also provides the possibility 

of a persistent failure to produce an acquisitional goal(¬α),44 thereby producing outcome 

N.  This outcome constitutes a subject who has no interest in offending.  Outcome P1 

represents a subject that has breached the inhibitory threshold and developed an 

acquisitional goal but cannot formulate a viable tactical plan.   Outcome P2 represents a 

subject who has formulated a viable tactical plan, but has not yet had the opportunity to 

put that plan into action.  Finally, F1 and F2 represent the subject’s inability to 

successfully access a target or extract the acquisitional goal from the target, 

respectively, once a tactical plan is put into motion.   

 

 

 

                                                           
44 While it seems counter-intuitive to refer to lack of interest in offending (¬α) as a failure, it could also be regarded as 

a “complementary event.”  Within a social and preventative perspective, this is the most coveted of successes.  

However, in the context of this dissertation, lack of interest in offending (¬α) constitutes a “failure” to initiate the 

violent offending process. 
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Figure 20: Path-dependent outcomes of the violent offending process including 
failure states and their respective outcomes (extended from Figure 19 and 

further extended in Figure 21). 

 

 

 

 “Offending” action begins when the subject attempts to access (A) the target.  

Inability to successfully transition from access (A) to extraction (K) constitutes failure to 

access and control the target (¬K).  It also represents a failed attempt to offend that must 

now be actively adapted into a successful retreat by the subject.  To conceptualize this 

process, failures identified as F1 and F2 in Figure 20 are actually failures to successfully 

retreat and are consolidated and represented as F in Figure 21.  Furthermore, Figure 21 

shows that a new outcome, retreat (R), emerges if the subject fails to address the 

acquisitional goal, but succeeds in egressing from that failed attempt. 
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Figure 21: First-order path-dependencies in the violent offending process define 
significant emergent outcomes of the process (extended from Figure 20). 

 

 

 

Figure 21 offers a way to conceptualize “non-primed, non-offending” subjects as 

those who do not have an interest in offending (N) and “primed, non-offending” subjects 

as those who have varying degrees of interest in offending but have not/cannot formulate 

a viable tactical plan or have not encountered an opportunity to put the tactical plan in 

motion (P1 & P2).  Thus, “primed, non-offending”, although defining a hidden 

population, can be conceptualized and formalized as a compound event.  Furthermore, 
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Figure 21 also illustrates that once a tactical plan is put into action, regardless of 

outcome, the subject is “primed” and engaged in “offending.” 

Yet Figure 21 illustrates only one cycle of path-dependencies in what is truly an 

iterative and cumulative process (Dover, 2010).   Given the subject’s success in achieving 

an acquisitional goal (violent offending), the resulting outcomes defined in the sample 

space must still be integrated into the offending process to inform future activity through 

feedback.  This constitutes the integration of an evaluation phase in the violent offending 

process (Dover, 2010).   

Figure 22 illustrates that the utility of a successful action outcome hinges on the 

sufficiency of using the target to reduce the needs accumulation.45   

 

 

 

 

Figure 22: Utility of the target must be assessed in terms of reducing the needs-accumulation 
(elements discussed in the text are highlighted gray).  This figure is extended from Figure 18 

and further extended in Figure 23. 

 

                                                           
45 This is further conceptualized by re-examining Figure 6 (see the Needs and Goals Section 2.1.5.  The action outcome 

is illustrated at t4, when the acquisitional goal (through the target’s utility) drives the emergent needs below the 

inhibitory goal and restores balance.   
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Figure 23 highlights that a successful outcome is added to the subject’s preferred-

methods of goal-seeking strategies that are stored as method-memory and can be 

leveraged given future acquisitional goals.   

 

 

 

 

Figure 23: A successful outcome increases the subject’s method memory of effective 
targeting, planning, and adaptation strategies so that those strategies can be considered 
when the subject encounters a similar acquisitional goal (elements discussed in the text 
are highlighted gray).  This figure is extended from Figure 22 and extended in Figure 24. 

 

 

 

This notion draws conceptually from Simon (1996) with regard to how a subject learns 

from the environment, 

 

“The information associated with familiar patterns may include 

knowledge about what to do when the pattern is encountered.  

Thus, the experienced chess player who recognizes the feature 

called an open file thinks immediately of the possibility of moving 
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a rook to that file.  The move may or may not be the best one, but 

it is one that should be considered whenever an open file is 

present.”  (p. 89) 

 

Within the context of planning action, learning relies on a combination of 

boundedly rational behavior and satisficing — if it has worked in the past, then without 

an obvious better solution, it should work again.  For this reason, successful methods 

contribute to future preferred methods. 

As shown in Figure 24, a third product of interaction in general (this time 

regardless of success or failure) is augmentation of the subject’s activity-space.  This has 

a significant influence on the subject’s spatial awareness and impacts encounters with 

future stimuli, need accumulation, and inhibitory thresholds. 
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Figure 24: Any action outcome (regardless of success) augments the subject’s activity-space 
and increases the subject’s spatial awareness (elements discussed in the text are highlighted 

gray).  This figure is extended from Figure 23. 

 

 

 

Additionally, the subject’s action outcomes are manifested spatially as physically 

located sites.  Thus, where the subject successfully accesses a target constitutes an 

access-site or abduction-site, where the subject successfully extracts the acquisitional 

goal from the target is an extraction-site or kill-site, and where the subject successfully 

egresses from the target is an egress-site or dump-site.   

These action outcome sites are an important part of understanding the subject’s 

spatial awareness and constitute theoretically observable sites created by, but thereafter 

independent of, the subject.46 Each of these action outcome sites also can be temporally 

placed within the environment.   They are discrete moments in time that provide a 

significant amount of understanding of the subject’s temporal awareness, accountable 

time, and offending intervals (Simkin & Roychowdhury, 2014). 

                                                           
46 Most notably, if the subject has offended, as crime scenes. 
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2.1.9 The Integrated Model 

The complexity of human behavior can be found not only in the endogenous rule-sets that 

govern interaction and reaction to stimuli, but also the inherent path-dependencies that 

follow from interacting exogenously.  For this reason, the implementation of an 

integrated model of violent offending must involve implementing both internal and 

external factors that reasonably approximate a series of interdependent systems.  Figure 

25 illustrates the overall conceptual design of the violent offending process, as previously 

discussed, and serves to guide further implementation.   

 

 

 

 

Figure 25: Integration of the violent offending process.  The drivers of decision-
making are expressed in terms of needs, goals, targeting, tactical planning, 

adaptation, and action outcomes. 

 

 

 

To create a complex social simulation, a multi-stage process “must be carefully 

designed in order to provide cumulative insights as work proceeds toward the final 

model” (Cioffi-Revilla, 2014a, p. 245).  The conceptual model from Figure 25 represents 
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the integration of three primary stages; (1) interactions between the subject and his 

environment, (2) features of tactical planning and adaptation, and (3) re-incorporating 

process outcomes to inform future processes.  Implementing these stages provide a basis 

for not only logically constructing an explicit representation of the offending process, but 

also conveniently identifies overlaps between each stage.  These overlaps highlight 

conceptual bridges between stages and emphasize inter-stage feedback.    

Figure 26 illustrates the first integrative stage (Stage 1, outlined in red), and 

shows that inputs are generated from environmental stimuli, accumulated needs, and 

preferred problem-solving methods.  Consequently, given internal processes, the overall 

output of this first stage is an identified target. 47  

 

 

 

 

Figure 26: Stage 1 of the integrated model focuses on interactions between the 
subject and the environment (Stage 1 is outlined in red and elements discussed 

in the text are highlighted gray). 

 

 

                                                           
47 For a detailed discussion on Stage 1, see the Stage 1: Interactions Section 2.2.6. 
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Figure 27 illustrates the next stage of the conceptual design with a focus on 

tactical planning and adaptation (Stage 2, outlined in red).  In this stage, primary input 

comes from the features and attributes of the identified target, the preferred planning 

methods/capabilities of the subject, and feedback from the environment during action.  

The primary output of this stage is the final action outcomes that results from the string of 

actions pursued by the subject. 48. 

 

 

 

 

Figure 27: Stage 2 of the integrated model focuses on the subject’s processes of 
tactical planning and adaption (Stage 2 is outlined in red and elements discussed 

in the text are highlighted gray). 

 

 

 

Figure 28 illustrates the third stage of the design (Stage 3, outlined in red) in 

which the final action outcomes are fed back into the model via, a simple method 

memory, outcome utility (in terms of needs reduction), and a refined activity-space.49 

                                                           
48 For a detailed discussion on Stage 2, see the Stage 2: Tactical Planning and Adaptation Section 2.2.7. 

49 For a detailed discussion on Stage 2, see the Stage 2: Tactical Planning and Adaptation Section 2.2.7. 
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Figure 28: Stage 3 of the integrated model focuses on action outcomes and 
process feedback (Stage 3 is outlined in red and elements discussed in the text 

are highlighted gray). 

 

 

 

2.2 Implementation 

The conceptual design highlighted in Figures Figure 25 through Figure 28 is useful to 

visualize the overall integrated model.  However, it is not explicit nor does it provide 

clear terms of realization.  The practical implementation of the model, therefore, requires 

further specification.   

There are a variety of modeling approaches that make up the current pantheon of 

simulation models from both a variable-oriented perspective (i.e., system dynamics and 

queuing models) and an object-oriented perspective (i.e., cellular automata, agent-based, 

and social network models)50.  Each of these modeling approaches has significant 

advantages and disadvantages.  For instance, a variable-oriented approach facilitates the 

                                                           
50 For a comprehensive review of simulation models and their applications see Cioffi-Revilla (2014a). 
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study of system-wide attributes over-time (Cioffi-Revilla, 2014a; Moore, Kennedy, & 

Dover, 2016), whereas object-oriented approaches focus on emergent phenomena of 

interacting entities (Axtell & Epstein, 1994; Crooks & Heppenstall, 2012; Cioffi-Revilla, 

2014a).  Within a criminological context, this object-oriented approach also provides an 

opportunity to study “crime at the event level, and consider the necessary ecological 

conditions for a crime to occur at a particular place and time.”  (Johnson & Groff, 2014, 

p. 10)  

As previously stated, this dissertation necessitates focusing on two different 

domains: (1) the social interpretation, ecological effects, and feedback that result from the 

subject’s decision-making process, and (2) the internal decision-making process of the 

subject independent (but not ignorant) of social outcomes.51  Thus, this dissertation takes 

a hybrid perspective52 and utilizes both an object-oriented approach (to satisfy the first 

domain and a portion of the second domain) and a variable-oriented approach (to express 

the other portion of the second domain).  Figure 29 illustrates the hybrid approach as 

discussed below. 

The first domain focuses on the subject as an entity that interacts with other 

entities and requires an object-oriented approach; an agent-based model (ABM) is used to 

“simulate the individual actions of diverse agents, and to measure the resulting system 

behavior and outcomes over time” (Crooks & Heppenstall, 2012, p. 86).  This is achieved 

                                                           
51 Previously discussed in Conceptualizing the Violent Offending Process, Section 2.1.3. 

52 This is a hybrid methodology utilized by a number of modeling efforts.  For example, Epstein (2014) and Moore, 

Kennedy, and Dover (2016). 
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by regarding the subject and environment as part of a larger referent system and focusing 

on incorporating interactions via a subject-environment ABM53 (see Figure 29).   

In the second domain, the subject utilizes an object-oriented approach via an 

embedded maze-running54 ABM to treat his internally expressed problem space as a 

referent system and produce tactical planning and adaptation. 55  Additionally, in the 

second domain, the integrated model focuses on the endogenous accumulation of needs 

as a driver of behavior.56  Specifically, the integrated model uses a system dynamics (SD) 

approach to represent the subject (as a referent system unto himself) with internal 

feedforward and feedback dependencies.  These dependencies rely on exogenous 

stimulation and constitute a needs accumulation SD model  

 

 

 

 

Figure 29: The violent offending process as an ABM of subject-environment 
interactions with ABM and SD models embedded in the subject. 

 

 

 

                                                           
53 See the discussion of targeting and spatial and temporal factors in Sections 2.1.6.1 and 2.1.7. 

54 Maze-running is discussed in detail in Section 2.2.7. 

55 See the discussion of tactical planning and adaptation in Sections 2.1.6.2 and 2.1.6.3. 

56 See the discussion of needs and goals in Section 2.1.5 
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The integrated model is implemented in NetLogo 5.2.0 (Wilensky, 1999).  Screen 

captures of the interface and a list of the parameters on the interface and their specific 

uses are found in Appendix A.   

 

2.2.1 Parameters 

Throughout this dissertation, when literature supports assumptions about values or scale 

during parameterization, it will be so noted.  However, where there is no clear evidence 

for particular parameter values or scales, due to either “the fact that assumptions and 

processes tend to outweigh the data available for complete assessment of their goodness 

of fit” (Crooks, Castle, & Batty, 2008, p. 419) or they are not adequately addressed in the 

literature, defaults will be imposed.  Of course, simulation results could potentially be 

impacted by the default settings which is seen as an opportunity for further testing and 

validation in future applications of the model.  Limitations to parameter values are further 

discussed in Chapter 4, Section 4.2.1 of this dissertation. 

 

2.2.2 Agents 

The integrated model focuses on two primary types of agents: subject and object.  There 

is only one subject and it is the primary focus of the model.   Objects represent items 

within the environment that the subject interacts with.  In the current implementation, 

objects represent people.  In the real-world, offenders must interact in non-offending 

ways to integrate (to some extent) with, and function in, society (Biderman & Reiss, 

1967; Brantingham & Brantingham, 1993; Ratcliffe, 2006).     
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Aside from the subject and objects, the model also includes several other agents 

that are used for various navigation and visualization purposes.  These include: 

 location agents (used to mark the subject’s anchor-points),  

 site agents (used to mark significant event-sites),  

 probe agents, TP-agents, and A-agents (used to develop navigation paths 

throughout the subject’s cognitive tactical planning and adaptation processes), 

and 

 comp-site agents (used to represent event-sites from real-world incidents for 

comparison to simulated event-sites) 

 

2.2.3 Model View 

The integrated model “view” from the interface (see Appendix A) is shown in Figure 30.  

It is comprised of two regions that represent (1) the subject’s internal cognitive 

landscapes and (2) external environmental perspective.  The subject’s cognitive 

landscapes are comprised of a perception landscape and a simulation landscape.57  Each 

of these landscapes are further divided into three different panels;58 an access panel, an 

extract panel, and an egress panel.  These panels are used by the subject to tactically plan 

action and adapt to dissonance.     

                                                           
57 Perception landscape and simulation landscape are first introduced in this dissertation as the two cognitive 

landscapes that comprise the subject’s problem space during tactical planning (see the Tactical Planning Section 

2.1.6.2. 

58 Panels are navigable sub-spaces, or contiguous sets of rows, within the subject’s cognitive landscapes.  A panel is 

used to depict the subject’s access, extraction, or egress problem space.  Panels are defined by a start position and an 

end position that connects to other panels. 
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The subject navigates his external surroundings using the environmental 

perspective where he interacts with locations (cells) and objects on the same cell or 

within the Moore neighborhood (the eight surrounding cells).  The environmental 

perspective also provides a means to depict spatially relevant features such as the 

subject’s activity-space and anchor-points.59   

 

 

 

 

Figure 30: Integrated Model view showing the cognitive landscapes (simulation 
and perception), their respective panels, and the environmental perspective in 

which the subject’s activity-space is displayed. 

 

 

 

 

 

                                                           
59 As previously discussed in the Spatial and Temporal Factors Section 2.1.7. 
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2.2.3.1 Scale 

The subject interacts within the environmental perspective at each discrete time-step of 

the model.  For this reason, environmental interactions are sensitive to representations of 

spatial and temporal scale.   For example, in Figure 31 the time scale for subject A is set 

to 5 minutes-per-tick (mpt), or one time-step for every five minutes.  Over the course of 

ten minutes, subject A has three points at which he interacts exogenously (indicated with 

a red box): 0 minutes, 5 minutes, and 10 minutes.  Alternatively, the time scale for 

subject B is set to 1 mpt, or one time-step for every minute.  Over the course of ten 

minutes, subject B has eleven different discrete points of interaction.   

 

 

 

 

Figure 31: Comparison of interactions at two different time scales; one time-step 
every five minutes (subject A) versus one time-step every minute (subject B).  
Each red box denotes an interaction as the subject moves from left to right. 

 

 

 

Given the same scale of environmental stimuli effecting both subjects, subject A 

does not have the same potential to develop emerging acquisitional goals as quickly as 

subject B simply because his needs will not accumulate and breach the same inhibitory 

threshold at the same rate.  This provides an opportunity to explore magnitudes of effect 

experienced by the subject and adjust the model during calibration procedures when 
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dealing with fixed spatial and temporal parameters.  To facilitate this, the integrated 

model has adjustable spatial, temporal, inhibitory threshold, and environmental stimuli 

scaling via the model interface (see Appendix A).  Specifically, the min-per-tick slider 

adjusts the time scale, view-width adjusts the spatial scale, the base-threshold slider60 

adjusts the base magnitude of the inhibitory thresholds, and the object-effect slider 

adjusts the scale of stimulus experienced by the subject when interacting with objects.61  

 

2.2.4 Environmental Layers 

Figure 32 illustrates the three primary layers for the environmental perspective which 

resembles a geographic information system (GIS).  The navigation layer is where 

subject’s anchor-points are defined, subjects and objects navigate the environment, and 

event-sites are marked by the subject.  The comfort layer defines the subject’s spatial 

awareness and the privacy layer provides the subject with expectations of varying 

degrees of isolation.   

 

 

 

                                                           
60 The base-threshold slider determines the value of the subject’s inhibitory threshold at instantiation.  For further 

discussion on the implementation of inhibitory thresholds, see the Inhibitory Thresholds Section 2.2.6.7. 

61 Settings for these parameters will be further discussed in the Verification Section 2.3 and the Calibration Procedures 

Section 2.4.1.  The settings used during the real-world calibration are also discussed in the Configuring the GRK Series 

Section 3.2. 
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Figure 32: The three primary layers of the environmental perspective: navigation, 
comfort and privacy. 

 

 

 

The navigation layer defines the initial anchor-points that tether the subject to his 

activity-space (Cohen & Felson, 1979).  These locations are defined as home, work, and 

play (or free-time) locations and are instantiated at the model setup.  The navigation layer 

is also used to display subject and object movement during the simulation run and display 

event-sites for relevant events.  During calibration to a specific case,62 this layer also 

defines geographic features and comparison event-sites. 

The subject navigates the model “view” by first establishing a navigational target 

based on either scheduling or needs-based activity.  Once he has established the location 

to which he will navigate, the subject determines the distance of the target location from 

his current location.  If the subject is within a specified distance63, he will walk to the 

                                                           
62 Calibration to a specific case is further discussed in the Calibration Procedures Section 2.4.1. 

63 This distance is defaulted to 1 mile, but can be specified (in miles) with the walk-tolerance slider on the model 

interface (see Appendix A: A3).  It is anticipated that most of the jurisdictions the model will be calibrated to use miles 

as a standard unit of distance.   
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location.  It is assumed that the subject will drive to any locations that are further away 

than the specified distance.  The subject then, based on method of navigation, walking or 

driving, establishes the maximum speed that he will travel.64  The same navigation 

procedure is also used for each object (potential target). 

Comfort and privacy have very different functions in the integrated model.  

Comfort defines areas that the subject is most familiar with and where he will go when 

seeking to interact.65  Privacy defines areas in which the subject perceives significant 

degrees of isolation that will allow him to pursue secret activities.66  It can be argued that 

most locations have areas that can provide significant privacy (i.e., public bathrooms).  

However, in the integrated model, areas of the highest privacy offer the subject 

significant opportunity for prolonged activity shielded from public perception or scrutiny.   

The comfort layer is defined by a comfort value assigned to each cell in the 

environmental perspective.  Comfort value defines familiarity of the subject with a cell 

and is used to express locations in which the subject is liable to engage in certain 

activities like searching for a target.  The higher the comfort value, the more comfortable 

the subject is with the specific location.  At instantiation, the comfort value of the cell 

under an anchor-point is set to 10.  All other cells are assigned a comfort value between 0 

                                                           
64 Maximum speed defaults to 5 mph if walking (Kennedy & Trafton, 2011).  If driving, the maximum speed defaults 

to 30 mph to simulate navigating an urban environment with business districts.  However, the speed assigned to the 

subject can be edited in the distance-nav-target procedure.  Actual navigation speed is derived by generating a random 

float value between 0 and the designated speed.  This accounts for stop-and-go traffic in a relatively urban location.   

65 The minimum score necessary for the subject to “feel comfortable” is defined by the comfort-need slider on the 

model interface (see Appendix A: A3).   

66 Significant privacy values are determined by the privacy-need slider on the interface (see Appendix A) and define 

areas the subject is most likely to commit a violent offense or dump a victim following a murder. 
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and 10.67   All cells in the environmental perspective are then randomly activated and the 

comfort value is set to the mean score of the current cell and all cells in the current cell’s 

Moore neighborhood.68   Figure 33 shows an example of initial comfort values at time–

step 0 (t = 0).  Every time the subject interacts with a cell he increases the comfort value 

of the cell by a random value between 0 and 0.20.  This is illustrated in Figure 33 where 

at time-step 28800 (t = 28800), the subject’s navigation throughout the environment has 

generated increases in comfort values especially along travel routes. 

 

 

 

 

Figure 33: Evolving cell comfort values (range: 0-10) from time-step 0 to time-step 28800. 

 

 

 

                                                           
67 Comfort values can be manually set via the scenario builder functionality in the integrated model.  The user selects 

the comfort button and then manually locates the desired areas of highest comfort.  A value of 10 will be assigned to the 

selected cells.   

68 This produces a distribution of comfort values that tend to be highest around the anchor-points, but creates other 

areas in which comfort is also quite high 
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Privacy value for each cell is calculated at instantiation by adding the cell’s initial 

comfort value to a random value.69  Privacy values range between 0 (completely public) 

and 10 (completely isolated).  Figure 34 shows an example of privacy values.  As this 

configuration depends on the underlying comfort values, it is also based in part on 

anchor-site locations.  The notion here is that the subject’s comfort with certain locations 

(including the anchor-points) affords him knowledge of significant private areas in those 

locations.  Privacy for each cell is treated as a static value throughout the simulation and 

does not change. 

 

 

 

 

Figure 34: Cell privacy values (0-10). 

 
                                                           
69 Random value for privacy is generated from a normal distribution with a mean of zero and a standard deviation of 

0.5.  
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2.2.5 Stage Diagrams 

As previously discussed in Section 2.1.9, the integrated model consists of three primary 

stages; (1) interactions between the subject and his environment, (2) features of tactical 

planning and adaptation, and (3) re-incorporating process outcomes to inform future 

processes.  A number of figures are used to illustrate implementation of these stages.  

Stage 1 is described in Figure 35, Stage 2 is described in Figure 36 and Figure 39, and 

Stage 3 is described in Figure 42.  These four figures build on each other and culminate 

in a comprehensive illustration of the violent offending process as an integrated model.  

The portions of the model discussed in the text are highlighted in gray in each diagram. 

 

2.2.6 Stage 1: Interactions 

Figure 35 shows the overall program logic of Stage 1.  This stage focuses on interaction 

between the subject and environmental stimuli, the emergence of acquisitional goals, and 

the subject’s targeting strategies.  This stage culminates in the identification of a viable 

target (as perceived by the subject).  Each of these factors is discussed in greater detail 

below.  
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Figure 35: Stage 1 in the integrated model program logic showing the contribuition of 
environmental stimuli (derived from cell and object interactions) in the emergence of an 

acquisitional goal and subsequent targeting (elements discussed in the text are 
highlighted gray). 

 

 

 

2.2.6.1 Scheduling 

Interactions occur as a function of the subject’s (and objects’) routine activities and 

spatial awareness.70  For this reason, temporal and spatial constraints have a significant 

impact on creating opportunities to interact.  Accountable time is represented through a 

schedule and is controlled via the scheduling? switch on the model interface (see 

Appendix A: A1).  When scheduling is “on,” the subject uses a preset itinerary to 

determine where he should be at certain times of the day (i.e., he must be at work 

                                                           
70 As discussed in the Spatial and Temporal Factors Section 2.1.7.   
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between 8:00 am and 5:00 pm).  Scheduling has a similar effect on 90%71 of the objects 

in the model.  However, each object has its own randomly generated set of anchor-points 

to travel among.72 If scheduling is “off,” instead of following a schedule, the subject and 

objects wander between anchor-points with stochastically generated pauses at each 

destination.  

  

2.2.6.2 Clustering 

The integrated model represents objects’ tendencies to gravitate toward specific locations 

by setting a percent73 of objects to share an anchor-point with the subject and setting a 

percent74 of these objects to also have relatively similar attributes to each other.75  This 

increases the propensity of relatively homogenous objects to cluster around areas that are 

“comfortable” to the subject.   

 

                                                           
71 The US Bureau of Labor Statistics (http://data.bls.gov/timeseries/LNS14000000) shows that from 2005 to 2015 the 

mean January unemployment rate was 6.8%.  It was reasoned, therefore, that this population, in addition to a slight 

margin of people between jobs, truant from school, etc. could be rounded to 10%, leaving approximately 90% of the 

population following some form of a schedule.  

72 Object anchor-points are represented as lists of three to five cells for each object. 

73 The default percent is 20% of the objects following a schedule and the default anchor-point is one of the subject’s 

“play” locations.  This value was selected as a means to create ample opportunity for the subject to encounter potential 

targets in his activity-space.  These values can be manually changed using the target-percent slider and location-

shared chooser, respectively, on the model interface (Appendix A: A3). 

74 The default percent is 80% of the population that shares one of the subject’s anchor-points but can be manually 

changed using the pref-percent slider on the model interface (see Appendix A: A3).  The value of 80% was selected as 

a means to create a tendency for homogeneity of attributes with some slight variation. 

75 Clustering is set with two parameter switches on the interface: obj-share-loc? and object-pref? (see Appendix A: A3) 

http://data.bls.gov/timeseries/LNS14000000
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2.2.6.3 Implementing Needs and Goals 

The subject’s interest in pursuing acquisitional goals is driven by accumulators that track 

his vector of nominal needs c where specific needs c are nominal values that are 

referenced based on their position within the vector of needs:76 

 

𝒄 = (𝑐1, 𝑐2, … , 𝑐𝑛)     (4) 

 

A separate vector of corresponding dynamic need values η is associated with the nominal 

needs c and serve as a way to track needs accumulation.  Thus, the vector of need values 

at time-step t is expressed as: 

 

𝜼𝑡 = (𝜂1, 𝜂2, … , 𝜂𝑛)     (5) 

 

Each specific need value changes independent of the other need values in the vector.   In 

this way, the integrated model can be used to track needs based on need values.  Table 2 

shows how needs and need values differ and Appendix B illustrates how these subject 

attributes interact endogenously and exogenously within the model. 

 

 

 

                                                           
76 This dissertation utilizes vector notation because a vector represents an ordered set such that the position in the order 

has meaning. 



 

86 

Table 2: Needs and need values. 

 
 

Type Example 

Need 
ϲ vector (A, B, C…) 

ϲ string A 

Need Value 
η vector (0.1, -3.5, 26.4…) 

η ratio 0.1 

 

 

 

There is a declining usefulness in data that is over-fit to a dynamic system (Boyd, 

1976).  Thus, it was reasoned, that labeling specific needs77 has the potential to constrain 

the overall process and may not be particularly useful in defining the emerging behavior.  

However, the deconstruction of a need into basic components and subsequent re-

construction of new (albeit abstract) combinations of needs, referred to by Boyd (1976) 

as the process of “destructive deduction” and “constructive induction”, provides a useful 

way to produce adaptable and dynamic representation of diverse and emergent goals.  

Additionally, abstracting needs in this way, leaves open the possibility that different 

combinations of needs, can result in similar behavioral outcomes. 

As the subject interacts with the environment, he experiences stimuli.  These 

stimuli take on two forms: cell effects and object effects.  Both of these stimuli contribute 

to the subject’s dynamic set of need values.  In addition, cells encountered by the subject 

contribute to the subject’s level of privacy and, thereby, affect his current threshold 

values.  Furthermore, cells and objects that the subject encounters contribute to his 

growing understanding of available targets.   

                                                           
77 Per Maslow (1943). 
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2.2.6.4 Cell Effect 

Cells that the subject encounters affect his need values through their cell effect values.  

Cell effect values are instantiated78 for each cell during setup by assigning the cell a 

random value79 that corresponds to specific needs within the vector of nominal needs.  

Cell effect values for each cell are different, but they are not dynamic since the value does 

not change over the course of the simulation run.  Thus, for a specific cell at any time the 

vector of cell effect values υ are expressed as: 

 

𝝊 = (𝜐1, 𝜐2, … , 𝜐𝑛)     (6) 

 

For a visual depiction of how this environmental attribute contributes to interactions 

endogenous and exogenous to the subject, see Appendix B. 

 

2.2.6.5 Object effect 

The attention value determines the probability of the subject noticing an object. 80  If 

there are objects in the Moore neighborhood of the subject, depending on the 

subject’s level of attention, one of the objects may affect the subject’s needs 

accumulation through the its object effect values.  Object effect values are instantiated 

                                                           
78 Set prior to running an instance of the simulation. 

79 From a distribution with a mean of 0 and a standard deviation of 1 

80 The subject’s attention is determined at instantiation and is calculated as a random number between 10 and 90.  

When the subject encounters an object he will pick a number between 0 and 100.  If the number is less than the 

attention value, the subject “pays attention”, if not, the subject ignores the object. 
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for each object during setup by assigning a random value81 that corresponds to each 

need in the vector of nominal needs.  The vector of object effect values o for each 

object are different but not dynamic.  Thus, for a specific object at any time, the 

vector of object effect values is expressed as: 

 

𝝄 = (𝜊1, 𝜊2, … 𝜊𝑛)     (7) 

 

For a visual depiction of how this object attribute contributes to interactions 

endogenous and exogenous to the subject, see Appendix B. 

 

2.2.6.6 Need Accumulation 

At each new time-step t of the model the specific cell effect values υ of the cell on which 

the subject resides and the specific object effect values o of any object that the subject 

pays attention to are added to the subject’s corresponding need values η from the 

previous time-step (t-1):   

 

𝜂𝑡 = 𝜂𝑡−1 + 𝜐 + 𝜊     (8) 

 

Appendix B illustrates the contribution of this exogenous interaction to the subject’s 

endogenous attributes. 

 

                                                           
81 From a distribution with a mean of 0 and a standard deviation of 15.  This parameter setting has been tuned to 

represent the diversity of the measure. 
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2.2.6.7 Inhibitory Thresholds 

As with the subject’s need values, the subject also compiles inhibitory threshold values 

for each need in the vector of needs and stores them as vector of dynamic threshold 

values.  The vector of threshold values φ at time-step t is expressed as: 

 

𝝋𝒕 = (𝜑1, 𝜑2, … , 𝜑𝑛)     (9) 

 

For a visual depiction of how this object attribute contributes to interactions 

endogenous and exogenous to the subject, see Appendix B. 

The subject’s inhibitory thresholds are affected by the privacy of the current 

location (cell).  The privacy value has an effect on the subject’s inhibitory thresholds.  

For instance, when the privacy value of a cell is relatively “high,” the subject is in a 

relatively private location and his inhibitory threshold is relatively “low.” Consequently, 

the cell’s privacy value p is incorporated in the subject’s evolving inhibitory threshold.  

This process is described in Equation 11 wherein a new specific threshold value φ at 

time-step (t+1) is calculated based on changes to the current specific threshold value φ at 

time-step t: 

 

𝜑𝑡+1 = 𝜑𝑡 + (
−5𝑝+25

100
)𝜑𝑡    (10) 

 

Appendix B further shows how this external interaction contributes to the subject’s 

endogenous inhibitory threshold values. 



 

90 

Thus, for example, if privacy value of the current cell is set to 5 (theoretically 

average),82 the new specific threshold value does not change.  However, a privacy value 

of 0 (very public) results in a 125% increase in the new threshold value and the subject 

requires significantly higher need values to pursue an acquisitional goal.  Conversely, 

privacy value of 10 (complete isolation) results in a 50% decrease in the new threshold 

value and requires significantly lower need values to pursue an acquisitional goal.   

 

2.2.6.8 Developing an Acquisitional Goal 

Ultimately, when any of the subject’s specific need values η from the vector of needs 

η exceeds the corresponding inhibitor value φ that regulates it, an acquisitional goal 

α is either created or (if already created) perpetuated.  At every time-step of a model 

run, the subject’s accumulating set of need values are compared to his dynamic set of 

inhibitor values.  If specific need value does not exceed the corresponding specific 

threshold value, then no acquisitional goal has emerged for that need.  If a specific 

need value exceeds a corresponding specific threshold value, then the subject 

generates an acquisitional goal value α for the specific nominal need that need 

represents the strength of the need.  This is expressed as: 

 

𝛼𝑡 = {
𝜂𝑡 − 𝜑𝑡, 𝜂𝑡 − 𝜑𝑡 > 0

0, 𝜂𝑡 − 𝜑𝑡 ≤ 0
    (11) 

 

                                                           
82 The static privacy values of cells range from 0 to 10.  The values were chosen as a relatively easy to conceptualize 

scale.  For further discussion, see the Chapter 4, limitations to parameter values 4.2.1. 
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Thus, each specific need value η is evaluated with respect to its corresponding 

threshold value φ to generate a vector of acquisitional goal values α at time-step t:   

 

𝜶𝑡 = (𝛼1, 𝛼2, … , 𝛼𝑛)     (12) 

 

For a visual depiction of how this subject attribute is derived from, and contributes to, 

interactions endogenous and exogenous to the subject, see Appendix B. 

The current acquisitional goal 𝑔 represents the set of active nominal needs 

that the subject is currently attempting to satisfy.  In equation 13, a specific nominal 

acquisitional goal 𝑔 corresponds to specific need c from the vector of nominal needs 

(if the acquisitional goal value α for that need c is greater than zero) or zero (if the 

acquisitional goal value α for that need c is less than or equal to zero): 

 

𝑔𝑡 = {
𝑐, 𝛼𝑡 > 0
0, 𝛼𝑡 ≤ 0

     (13) 

Thus, the vector for nominal acquisitional goals 𝒈 at time-step t is expressed as: 

𝒈𝑡 = (𝑔1, 𝑔2, … , 𝑔𝑛)     (14) 

 

This subject attribute is referenced in Appendix B. 

The process of needs accumulation and acquisitional goal development is 

further illustrated in the following example.  Given vector c of five nominal needs, a 

vector of accumulated need values η, and a vector of threshold values φ 

corresponding to those needs at time-step t: 
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𝒄 = (𝐴, 𝐵, 𝐶, 𝐷, 𝐸), and    (15) 

𝜼𝑡 = (10, 5, 20, 32, 46), and    (16) 

𝝋𝑡 = (12, 12, 15, 10, 20),     (17) 

 

the following vectors of acquisitional goal values α and nominal acquisitional goal 𝒈 

develop at time-step t: 

 

𝜶𝑡 = (0, 0, 5, 22, 26)     (18) 

𝒈𝑡 = (0, 0, 𝐶, 𝐷, 𝐸)     (19) 

 

Thus, in the above example (Equations 15-19), the subject has developed an 

acquisitional goal at time-step t that is a combination of specific needs: C, D, and E.  

In addition, each of these nominal needs has a corresponding acquisitional goal 

value: 5, 22, and 26 respectively, which describes its strength.   

The primary reason to identify the emerging nominal acquisitional goal 

independent of associated acquisitional goal values is to provide a general nominal 

goal configuration that can be used to identify similar emergent circumstances in the 

future.  While the strengths of acquisitional goal values may be different for future 

acquisitional goal configurations, the configuration itself (i.e., (0, 0, C, D, E)) 

provides a nominal comparison when looking for similar problems that have been 

previously addressed.  Once a problem-set has been defined via the goal 
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configuration, the acquisitional goal values determine the minimum utility necessary 

to satisfy each need within the goal. 

If the accumulated needs when compared to the inhibitory thresholds do not 

create an acquisitional goal (𝜶𝑡 = (0, 0, 0, 0, 0)), then the subject is not “primed.”  

Essentially, while the subject may be thinking about the emerging needs, his 

inhibitory goals are sufficient to suppress any interest in pursuing those needs as an 

acquisitional goal at the current time-step.   

 

2.2.6.9 Target-Memory 

If the subject attends to an object, then the subject also records the interaction with that 

object into his target-memory (see Figure 35).  Target memory acts as an associative 

memory for the subject in which objects and/or locations are indexed based on object-

attributes that the subject encounters (Rhodes, 2000; Park, Shobe, & Kihlstrom, 2005; 

Suzuki, 2005).  An object’s vector of attributes b are values associated with the object 

that correspond to the subject’s vector of nominal needs c:   

 

𝒃 = (𝑏1, 𝑏2, … , 𝑏𝑛)     (20) 

 

These object attribute values represent the subject’s interpretation (which is not 

necessarily accurate) of how the object could satisfy each of his respective specific 

acquisitional goals.   
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Target-memory provides the subject with a list of available targets and/or target-

rich locations that he can refer to when he is interested in interacting in pursuit of an 

acquisitional goal.  Thus, target-memory at time-step t is expressed as a vector tm:  

 

𝒕𝒎𝒕 = (𝑡𝑚1, 𝑡𝑚2, … , 𝑡𝑚𝑛)    (21) 

 

where a target-memory entry is expressed as: 

 

𝑡𝑚 = (𝒃, [0 ∨ 𝑜𝑏𝑗𝑒𝑐𝑡], [0 ∨ 𝑐𝑒𝑙𝑙])   (22) 

 

in which the first item is the vector of attributes b for the encountered object, the 

second entry is either 0 or the object ID for the object with attributes b, and the third 

entry is either 0 or the cell ID for where the object with attributes b was 

encountered.83  For a visual depiction of the components of the subject’s target 

memory, see Appendix B. 

In some circumstances the subject is more interested in target attributes than a 

specific target (Ratcliffe, 2006).  In these situations, the subject engages in targeting that 

is focused on a location.  For instance, the subject may go to a “red-light district” to find 

a prostitute or go to a school to find a child.   In the integrated model, this feature is 

implemented as location-based targeting.84  If location-based targeting is “on”, the 

                                                           
83 Attention is used to determine if the object ID, the location cell, or both are associated with the attributes and 

captured in target memory.  If both object and cell entries are 0, then the memory is not retained. 

84 The location-based targeting parameter is a switch (loc-based-target?) on the model interface (see Appendix A: A3). 
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subject only records a location associated with object-attributes (as opposed to the object 

itself) into the target-memory.  This means when the subject pursues an acquisitional 

goal, he goes where he has, in the past, encountered an object with the requisite attributes 

(Eacott & Heywood, 1994).   

 

2.2.6.10 Targeting Methods 

At every time-step the subject repeats the Stage 1 process outlined in Figure 35.  As a 

result, the subject constantly encounters stimuli in the environment that change his 

accumulated need values.  Therefore, it is possible that the subject will develop additional 

needs that change the current acquisitional goal.  If the current acquisitional goal is a 

new goal, the subject refers to his method memory, which is an accumulation of past 

successful actions,85 to identify a successful targeting strategy. 

If the subject chooses an “active” targeting strategy, he will search for suitable 

targets in his target-memory.  If the subject finds an object with an attribute entry that 

satisfies his current acquisitional goal, then he will select the listed object as a target.86   

If the subject does not find a suitable target but has found a location in his target memory 

that satisfies his current acquisitional goal, then he will move toward the location at 

which he expects to find a suitable target.  If the subject does not find any suitable targets 

                                                           
85 For further discussion of method-memory construction, see the Method Memory Section 2.2.8.2.  

86 If there are multiple target memory entries that could satisfy the emerging acquisitional goal, the subject will select 

the object or location that is closest to his current geo-spatial position. 
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or locations in target memory, the subject will move toward a location with sufficient 

comfort value. 87 

If the subject chooses a “passive” targeting strategy, he will continue to follow 

any schedule that he currently observes or (if not following a schedule) travel to areas of 

significant comfort.  During these routine activities, the subject will interact with the 

environment and remain hyper-aware of his surroundings (100% attention).  At each 

time-step, the subject will check the attributes of all objects at his position and within the 

Moore neighborhood and select the first object that fits his acquisitional goal as a target. 

 

2.2.7 Stage 2: Tactical Planning and Adaptation 

The previous section, 2.2.6, addresses the first stage of implementing the violent 

offending process.  This section addresses the second stage.  Once a target has been 

identified, the subject initiates Stage 2 of the integrated model.  In this stage, the subject 

employs tactical planning to determine how he can exploit the target and achieve his 

acquisitional goal.  If the subject has not yet devised a tactical plan (i.e., this is a new 

goal), he will attempt to formulate one that allows him to interact with the target.  Figure 

36 illustrates the program flow for the beginning of Stage 2 which necessitates that the 

subject understands the emerging problem space88 to identify viable tactical planning 

methods and resources.   

 

 

                                                           
87 As determined by the comfort-need slider on the model interface 

88 Problem space was previously discussed in the Tactical Planning Section 2.1.6.2 
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Figure 36: Stage 2 (part 1) in the integrated model program logic showing features involved in 
preparing the cognitive landscape for tactical planning (elements discussed in the text are 

highlighted gray). 
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2.2.7.1 Setting-up the Cognitive Landscape 

To initiate tactical planning, the subject constructs his perception of the problem-space in 

the perception landscape of the model view.  The panels of the perception landscape 

address the subject’s requirements to access the target (access panel), extract the current 

acquisitional goal from the target (extract panel), and egress from the target once he is 

done (egress panel).   

The integrated model implements tactical planning (and subsequent adaptation) as 

an analog to building and navigating a “maze” of obstacles or inhibitors.  The target’s 

row variables89 define the number of rows assigned to each panel in the subject’s 

perception landscape.90  The target’s inhibitor variables91 define the density of inhibitors 

(as a percent of the cells in the panel) for each panel.92  As these features, rows and 

inhibitors are unique to each individual target, the “maze” of inhibitors constructed in the 

subject’s perception landscape changes with each new target. 

Inhibitors presented by the target are also dependent on the action strategy 

selected by the subject.  The action strategy is selected from the subject’s method-

memory93 and can be either “dominant” or “collaborative.”  If the subject is using a 

                                                           
89These variables, a_rows, ex_ rows, and eg_rows, are associated with the target and automatically adjusted on the 

model interface (see Appendix A: A4) 

90 These three row variables for each object are assigned at instantiation as random values between 1 and 32 because 

each panel in the conceptual landscapes could be a maximum of 32 cells high.  This is a limitation of the model view.   

91The variables, a_inhibitors, ex_inhibitors, and eg_inhibitors, are associated with the target and automatically adjusted 

on the model interface (see Appendix A: A4) 

92 These variables are defined at instantiation for each object as a random value between 5 and 25.  This range was 

chosen based on experimentation with the parameters.  

93 If there is no method-memory entry that is similar to the current circumstance, the subject will randomly choose an 

action method: either “dominant” or “collaborative.”  If the methods are manually specified, the action method is 

manually selected using the action chooser on the model interface (see Appendix A: A3) at instantiation.  
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“dominant” strategy,94  the target presents a significantly higher number of inhibitors to 

the subject via additional defensive inhibitors.  These additional defensive inhibitors 

significantly increase the density of the inhibitors in the perception landscape panels by 

between 5% and 30%.95 

Inhibitors are specific to a target.  Therefore, target “risk” can easily be 

implemented via the target risk parameter96 which uses the target inhibitor and row 

variables to predefine targets at “high-” or “low-risk”.  A target is at a “high-risk” if it 

presents relatively few inhibitors and rows in the subject’s perception landscape.  A 

target is at a “low-risk” if it imposes a higher number of inhibitors and rows (Wheeler, 

2010).   

Figure 37 illustrates an example “maze” in the subject’s perception landscape 

(right side).  The height of each panel in the cognitive landscapes is determined by the 

current target’s corresponding row value.  Inhibitors are represented as green cells that 

are randomly distributed in the corresponding panels of the perception landscape based 

on the current target’s inhibitor values.   

 

 

 

                                                           
94 The subject intends to forcibly extract the acquisitional goal from the target.  This is by the definition offered in 

Section 1.1, violent action. 

95 This range was chosen based on experimentation with the parameters and was tuned to represent the diversity of the 

measure. 
96 target-type? switch on the model interface (see Appendix A: A3) 
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Figure 37: Generating the “mazes” in the cognitive landscape panels. 

 

 

 

It is important to note, that while the perception landscape defines the “maze,” it 

does not provide a solution to navigating the “maze.” To determine how to navigate each 

of the panels, the subject produces a cognitive model of the “maze” in his simulation 

landscape (left side) so that he may run a series of navigation simulations for each panel.  

The “best” successful outcome of these simulated runs then constitutes a tactical plan.97   

 

2.2.7.2 Cognitive Resources 

Maze-running, or finding viable paths through the “maze” in the simulation landscape 

using probe-agents, is an endogenous ABM generated by the subject to derive 

“navigational” solutions as an analogy to tactical planning.  To assist (and bound) the 

subject’s understanding of the simulation landscape, the subject has several cognitive 

                                                           
97 For further discussion of the conceptual framework of the tactical planning implementation, see the Tactical Planning 

Section 2.1.6.2. 
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resources at his disposal: density, paths, depth, and focus.  Each of these cognitive 

resources has an important part in defining and utilizing the cognitive landscapes.   

As shown in Figure 37, density defines the percent of the inhibitors in the 

perception landscape that the subject accounts for in the simulation landscape.  

Generally speaking, underestimates in the density of the inhibitors presented by a target 

are a primary source of dissonance between the tactical plan and action.  Paths 

correspond to the number of routes (concurrent simulation runs) that the subject can 

generate during tactical planning.  This translates to the number of probe-agents that the 

subject will generate in the simulation landscape to find and record viable paths through 

each panel’s inhibitor “maze.”  A probe-agent attempts to run from the red cell at the top 

of each panel (start) to the red cell at the bottom of each panel (finish) while avoiding 

inhibitors.  Depth defines the number of moves that a probe-agent has at its disposal to 

navigate a panel from start to finish.  This resource is dependent on the number of rows in 

the panel.  Focus defines the tendency for the probe-agents to re-orient their respective 

courses through a panel toward the panel finish.  It is implemented as the percent of the 

time that a probe-agent will adjust its course during its navigation through a panel.98  

The tendency toward high (H), medium (M), or low (L) values for each of the four 

cognitive resources (density, paths, depth, and focus) comprise the subject’s tactical 

strategy as derived from his method memory each time the subject selects a new target.  

The subject’s choice of tactical strategy σ to address a specific target is expressed as: 

                                                           
98 Mapping these cognitive resources to psychological principles or cognitive functioning is not the point here.  These 

four factors are simply necessary to practically navigate an unknown landscape.  Absence of any one of these resources 

will not allow success.  For further discussion about implications of these parameters, see the limitations Section 4.2.1.  
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𝜎 ⟹

[
 
 
 
 
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

↓
𝐻
𝑀
𝐿

 𝑝𝑎𝑡ℎ𝑠  
↓
𝐻
𝑀
𝐿

𝑑𝑒𝑝𝑡ℎ 
↓
𝐻
𝑀
𝐿

 𝑓𝑜𝑐𝑢𝑠

↓
𝐻
𝑀
𝐿 ]

 
 
 
 

    (23) 

 

Designation as H, M, or L tendency means that the subject will generate a random r 

new resource value for the corresponding parameters: 

 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ⟹ {
𝐻, 60 ≤ 𝑟 ≤ 90
𝑀, 35 ≤ 𝑟 ≤ 65
𝐿, 10 ≤ 𝑟 ≤ 40

      (24) 

𝑝𝑎𝑡ℎ𝑠 ⟹ {
𝐻, 7 ≤ 𝑟 ≤ 10
𝑀, 4 ≤ 𝑟 ≤ 8
𝐿, 1 ≤ 𝑟 ≤ 5

      (25) 

𝑑𝑒𝑝𝑡ℎ ⟹ {
𝐻, 6.25 𝜆 ≤ 𝑟 ≤ (6.25 𝜆 + 3.75 𝜆)

𝑀, 3.75 𝜆 ≤ 𝑟 ≤ (3.75 𝜆 + 3.75 𝜆)

𝐿, 1.25 𝜆 ≤ 𝑟 ≤ (1.25 𝜆 + 3.75 𝜆)
    (26) 

 

where in the depth calculation, λ is the number of rows in the specific panel, 

 

𝑓𝑜𝑐𝑢𝑠 ⟹ {
𝐻, 60 ≤ 𝑟 ≤ 90
𝑀, 35 ≤ 𝑟 ≤ 65
𝐿, 10 ≤ 𝑟 ≤ 40

     (27) 

 

Thus, even though tendencies (H, M, or L) for each cognitive resource in the subject’s 

tactical strategy are generally defined, there is a significant level of variation in the 

specific cognitive resource parameter values within those tendencies.   
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The subject generates cognitive resource values (based on the above scheme) 

for each panel.  For example, in Figure 37 the tendency for the subject’s density is 

“M,” however, the actual density in the access panel is 50%, in the extraction panel, 

it is 58%, and in the egress panel, it is 57%.   

Once the subject has built his perception landscape for the target and prepared a 

simulation landscape based on that perception landscape, he must define a viable path 

through the “maze” of inhibitors.   As shown in Figure 38, navigation is achieved by 

utilizing the cognitive resources discussed above for each panel and stringing the shortest 

derived paths into one cohesive path to represent the tactical plan.   

The sequence of panels navigated to create the tactical plan is not linear.  This is 

to say, the subject must first consider how the acquisitional goal can be extracted from 

the target, then determine how to access the target.  Thus, in the tactical plan the first 

panel that is navigated is the extraction panel.  If the subject successfully navigates this 

panel (creates a plan of how to exploit the target), then it is worth his time to consider 

how to access the target and given continued success (if he is using a “dominant” action 

strategy) how to egress from the target.  The egress panel represents how the subject 

plans to “get away” with his offense and can include simply exiting the premise or (in 

some murders) moving a deceased victim to another location and dumping the body.  

Successful tactical planning is predicated on the subject’s ability to navigate all three 

panels.  
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Figure 38: Navigating the simulation landscape starts with the extraction panel, then the access 
panel, and finally the egress panel.  The subject strings a single path through all three panels and 

creates the cohesive tactical plan. 

 

 

 

While Figure 38 showed the first part of Stage 2, Figure 39 illustrates the program 

flow for the remainder of Stage 2.  If the subject is unable to produce a tactical plan, he 

reassesses his methods and re-initiates targeting.99  Given the same acquisitional goal, 

his tactical strategy tendencies remain the same.   However, actual cognitive resource 

values are recalculated with each new (or re-established) target.  Thus, even if he selects 

the same target again, the subject will have a new set of circumstances which may lead 

(this time) to a tactical solution.  Ultimately, the subject will continue to re-initiate 

targeting if he fails to produce a tactical plan until his acquisitional goals change or he 

achieves success. 

                                                           
99 The subject can select the same target again. 
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Figure 39: Stage 2 (part 2) of the integrated model program logic showing the utilization of the 
maze-running process to create a tactical plan, pursue action, and adapt to dissonance 

(elements discussed in the text are highlighted gray). 
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If the subject is able to create a tactical plan, he transfers his plan to the 

perception landscape to translate it into action.   The subject approaches this part of the 

maze-running process in a linear manner.  First he must access the target.  The subject 

must then move/accompany the target to an appropriate private location.100  Then he must 

exploit the target, and then he must egress.101  If he is able to do all three without 

experiencing dissonance,102 or un-foreseen inhibitors, then his tactical plan is sufficient 

for the task, and the subject will experience success.   

It is important to note however, just because the subject is able to conceive of a 

tactical plan, does not mean that the plan is viable in reality.  The creation of a tactical 

plan simply implies that the configuration of the subject’s cognitive resources has led 

him to believe he will be successful.  Yet, inhibitors represented in the simulated 

landscape are (by definition) a fraction of the inhibitors identified in the perception 

landscape.  This underestimate leads to missing information in the simulation landscape 

and results in a significant potential for encountering un-foreseen inhibitors during 

action.  These un-foreseen inhibitors are considered dissonance in the maze-running 

process.  Thus, the subject is likely to create a tactical plan that, when put into action, 

leads to some level of dissonance.  Dissonance in any of the three perception landscape 

panels requires that the subject adapt to be successful. 

                                                           
100 If the subject pursues a “dominant” action strategy, he controls and moves the target to a cell with a privacy value 

greater than the privacy-need slider on the interface (see Appendix A: A3).  If he pursues a “collaborative” action 

strategy, he accompanies the target to a cell with a privacy value greater than (privacy need slider - 1).  In a 

“collaborative” strategy, the subject wants privacy, but does not require as much as he does for the “dominant” action 

strategy. 

101 If the subject pursues a “collaborative” action strategy, he does not egress because he has no need to “get-away” / 

retreat from offending. 

102 See the previous discussion on dissonance and its role in adaption in the Adaptation Section 2.1.6.3. 
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In order to adapt, the subject must first recognize that there is an inhibitor 

blocking his navigation in one of the panels.  The subject will address the inhibitor by 

transferring its location from the perception landscape to a corresponding location in the 

simulation landscape.  Once the subject has simulated the new inhibitor’s location, he 

then uses his cognitive resources to adjust the current tactical plan by simulating a new 

path around the obstacle and integrating this new plan with the prior tactical plan.   

This newly adapted plan may, or may not, be the most efficient way around the 

newly discovered inhibitor.  This aspect of maze-running purposefully mimics imperfect 

decision-making.  If the subject is able to work out an adapted path given his current 

cognitive resources, he selects the shortest solution, amends the tactical plan in the 

perception landscape, and continues the attempted action.   

Figure 40 illustrates an example of the adaptation process by showing where the 

subject changed his tactical plan in the simulation landscape to adapt to unforeseen 

inhibitors.  The left most panel illustrates the initial tactical plan that was created in the 

simulation landscape and then transferred to an action-probe103 in the perception 

landscape (far right panel).   The action-probe attempts to carry-out the plan in the 

perception landscape.  However, if the action-probe encounters an inhibitor, it stops and 

the new inhibitor location is transferred to the simulation landscape where probe-agents 

attempt to create a navigational solution around the obstacle.  If a solution is created, the 

solution is then transferred back to the action-probe and it navigates around the inhibitor.  

                                                           
103 An action-probe is a specialized agent that uses the final path (tactical plan) created in the simulation landscape to 

navigate the perception landscape. 
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In the example shown in Figure 40, to be successful, the subject made fifteen 

adaptations104 to the original tactical plan.  A successful action, therefore, may involve a 

significantly different path than was initially planned.  This highlights the point that 

successful action is in many cases only possible through successful adaptation. 

 

 

 

 

Figure 40: The initial tactical plan is transferred from the simulation landscape to the perception 
landscape for action and then re-adjusted in the simulation landscape when new inhibitors 

requiring adaptation are discovered. 

 

 

 

                                                           
104 In the Integrated Model, dark green cells in the simulation landscape indicate inhibitors that are discovered in the 

perception landscape during action.  These inhibitors are transferred to a corresponding location in the simulation 

landscape in order for the subject to revise his tactical plan (adapt). 
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If the subject, given attempts to adapt, is unable to successfully navigate the 

necessary panels in the perception landscape, then he has failed to achieve his 

acquisitional goal.  If the subject is pursuing a “collaborative” action strategy and he 

fails to navigate either the access panel or extract panel, he will re-initiate targeting, 

build a new tactical plan for a new target, and try again.   

However, if the subject is pursuing a “dominant” action strategy and he fails to 

navigate either the access or extract panel during action, he must shift his attention to 

extricating himself from the failed action.  This requires that he initiate an attempt to 

navigate the egress panel to retreat.  This process is illustrated in Figure 41 which shows 

an example of a subject that is able to successfully access the target in his access panel, 

but fails to extract (i.e., kill the target) in his extract panel.  In this example, the subject 

must now drop his primary acquisitional goal and create a new temporary goal – to 

egress without capture.  Thus, the subject in Figure 41 fails to address his acquisitional 

goal, but because he is able to fully navigate the egress panel, he successfully retreats 

from the attempted murder.  
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Figure 41: The subject is unable to adapt his initial tactical plan to navigate newly 
discovered inhibitors in the extract panel (unsuccessful offense).  However, he is able to 

successfully egress (retreat). 

 

 

 

The program flow in Figure 39 shows that failure to adapt while retreating from a 

failed attempt and failure to adapt while egressing from a successful offense both lead to 

overall failure.  Failure to egress following a successful offense is interpreted as the 

subject being “caught after the act” with incriminating evidence (i.e., the victim’s body).  

Failure to retreat following a failed attempt can be interpreted as the subject is “caught in 

the act.”  In the integrated model, failure will stop the simulation run.   

Alternatively, if the subject successfully retreats from a failed attempt, he will 

continue to pursue his acquisitional goal (if it is still active) by re-initiating targeting and 
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going through the entire process of tactical planning and adaptation again.  With each 

failed attempt but successful retreat, this cycle will continue until the subject is 

successful, his acquisitional goal changes or subsides, or he experiences failure to retreat 

and the simulation ends.  

 

2.2.8 Stage 3: Learning and Burn-in 

The previous section, 2.2.7, addresses the second stage of implementing the violent 

offending process.  This section addresses the third stage.  Figure 42 illustrates that in 

Stage 3 successful interaction feeds forward to the integrated model at several points: 

through the utility of successful interaction in satisfying acquisitional goals, by 

augmenting subject method-memory, and to inform the subject’s spatial awareness.  

 

2.2.8.1 Utility 

Given successful interaction, the subject reduces his accumulated needs based on the 

target’s vector of utility values u.105  Target utility values correspond to the subject’s set 

of nominal needs.  The vector of utility values is static and is expressed as: 

 

𝒖 = (𝑢1, 𝑢2, … , 𝑢𝑛)     (28) 

 

                                                           
105 Utility values are drawn from a normal distribution with a mean that is determined by the object-utility slider on the 

model interface (see Appendix A: A3) and standard deviation of 0.15.  This range was tuned to represent the diversity 

of the intended measure.  Values are clamped between 0 and 1 and assigned at instantiation of each target.  This value 

represents the percent decrease in needs that the subject will experience upon successfully extracting an acquisitional 

goal from the object. 
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These utility values specify percent reduction that is applied toward the subject’s 

acquisitional need.  Such that given specific utility value u and specific need value η at 

the previous time-step t-1 and new environmental stimuli (cell effect value υ and object 

effect value o), the new need value η is calculated as: 

 

𝜂𝑡 = (𝜂𝑡−1 − 𝜂𝑡−1𝑢) + 𝜐 + 𝜊    (29) 

 

For a visual depiction of the contribution of an object’s utility value on the subject’s 

accumulated need values, see Appendix B. 

If the subject has extracted the utility via a “dominant” action strategy the entire 

reduction is applied to the subject’s needs.  However, if the subject has extracted utility 

via a “collaborative” action strategy, he will only be able to apply up to 90% 106 of the 

reduction to his emerging needs.  This implements the notion that the subject does not 

have the same amount of control over a “collaborative” interaction as he does over a 

“dominant” interaction.   

It is also important to note that the utility of the interaction is independent of the 

intended target’s attributes.  This means the subject may believe that the target will 

satisfy an acquisitional goal based on his interpretation of the target’s attributes.  Yet, he 

may find that the target’s true utility is very different and thereby more or less satisfying 

than expected. 

                                                           
106 As determined by selecting a random number r: 0 ≤ r ≤ 90.  In a collaborative strategy, the subject does not 

dominate the interaction.  It is, therefore, assumed that there is a significant variation that will occur in his ability to 

fully derive utility from the interaction. 
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Figure 42: Stage 3 of the integrated model program logic showing the use of the target utility to 
reduce subject needs, integrate success into method-memory, and the subject’s interaction with 

the environment (elements discussed in the text are highlighted gray). 
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This process can be further illustrated by re-visiting the example in Equations 15 through 

19 discussed earlier in this chapter in which nominal needs c, accumulated need values η, 

threshold values φ, acquisitional goal values α, and acquisitional goals 𝒈 at time-step t 

are given as: 

 

𝒄 = (𝐴, 𝐵, 𝐶, 𝐷, 𝐸)     (30) 

𝜼𝑡 = (10, 5, 20, 32, 46)    (31) 

𝝋𝑡 = (12, 12, 15, 10, 20)    (32) 

𝜶𝑡 = (0, 0, 5, 22, 26)      (33) 

𝒈𝑡 = (0, 0, 𝐶, 𝐷, 𝐸)     (34) 

 

If successful “dominant” action against a target yields the following specific utility 

values: 

 

𝒖 = (0.32, 0.15, 0.65, 0.80, 0.56)   (35) 

 

and the vectors for cell effect values υ and current object effect values o at time-step (t + 

1) are: 

 

𝝊 = (0, 0, 0.3, 0.8, −0.5)    (36) 

𝝄 = (5.2, −6.1, 10.6, 0.4, −3.0)   (37) 

 



 

115 

Then, according to Equation 29, each new specific need value η at the next time-step 

(t + 1) is calculated as: 

 

𝜂𝑡+1 = (12,−1.85, 17.9, 7.6, 16.74)   (38) 

 

Furthermore, given the same threshold values φ at time-step (t+1) as at time-step t:  

 

𝝋𝑡+1 = (12, 12, 15, 10, 20)    (39) 

 

The new vector of acquisitional goal values α and new vector of acquisitional goals 𝒈 

for time-step (t+1) are: 

 

𝜶𝑡+1 = (0, 0, 2.9, 0, 0),     (40) 

𝒈𝑡+1 = (0, 0, 𝐶, 0, 0)     (41) 

 

Thus, in the above example, successful “dominant” action led to fully 

exploiting the target’s utility and reduced all of the subject’s need values.  However, 

the success did not eliminate all of the subject’s acquisitional goals.107  In this 

circumstance, the subject will regard the remaining acquisitional goal as a new goal 

and begin looking for new targets. 

 

                                                           
107 Primarily due to an object stimulus that intensified need “C.” 
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2.2.8.2 Method Memory 

The subject tracks successful “dominant” and successful “collaborative” interactions 

along with the targeting, tactical, and action strategies used to achieve that success in his 

method-memory.  The method-memory provides the subject with a list of nominal goal 

configurations that he has encountered previously and how those goals were successfully 

met.  This list is used to derive preferred methods for addressing similar emerging 

acquisitional goals (Einstein & McDaniel, 2005).  Given successful interaction, the 

subject will add an entry into his method-memory that references the vector of nominal 

needs c and correspond to the vector of utility values u.  Thus, a specific acquisitional 

goal addressed by the target’s utility, or utility goal 𝑢𝑔, can be represented as: 

 

𝑢𝑔 = {
𝑐, 𝑢 > 0
0, 𝑢 ≤ 0

     (42) 

 

Thus, to create a vector of utility goals 𝒖𝒈:  

 

𝒖𝒈 = (𝑢𝑔1, 𝑢𝑔2, … , 𝑢𝑔𝑛)    (43) 

 

Appendix B shows the contribution of endogenous and exogenous elements toward 

the subject’s utility goals. 
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The subject uses a specific method-memory entry mm to record the utility goals 

vector 𝒖𝒈, the targeting strategy (tar)108, the tactical strategy to address cognitive 

resources σ109, and the action strategy (act)110.  Thus, a specific method-memory entry is 

expressed as: 

 

𝑚𝑚 = (𝒖𝒈, 𝑡𝑎𝑟, 𝜎, 𝑎𝑐𝑡)    (44) 

 

and the vector representing method-memory mm is expressed as: 

 

𝒎𝒎 = (𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑛)   (45) 

 

Tracking the utility goal (as opposed to the subject’s acquisitional goal or the 

targets attributes) in method memory ensures that the subject is generating his memory 

not from what he expects to encounter, but from what he actually encounters.  When 

seeking preferred methods, the subject compares his current acquisitional goal to the 

utility goals that correspond to previous successes and selects those memories that either 

satisfy or exceed the current acquisitional goal.   

In addition, the utility goal may include additional needs that are not part of the 

subject’s current acquisitional goal (but are collaterally associated with the utility due to 

previous success).  Thus, the subject has the potential to develop unintentional 

                                                           
108 “active” or “passive” 

109 H, M, or L associated with density, paths, depth, and focus (see Equation 25) 

110 “dominant” or “collaborative” 
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associations of success with additional spurious needs.  This provides a potential that the 

subject will choose less than optimal methods to address acquisitional goals resulting in 

boundedly rational decision-making. 

 

2.2.8.3 Spatial Awareness 

After successful interaction, the subject may have satisfied his acquisitional goal in total, 

in part, or not at all.  If he has satisfied the entire acquisitional goal, then the subject 

returns to his previous schedule (if he was following one) and/or travels among known 

areas of comfort.  If the subject has not satisfied (or has only partially satisfied) the 

acquisitional goal, the subject returns to his method-memory to look for previous 

successes to satisfy the new acquisitional goal, develop a new set of methods, and 

proceed to address the goal through tactical planning and adaptation. 

Additionally, if the subject has used a successful “dominant” action strategy, 

effectively killing the target, the victim/target is removed from the simulation and 

references to the target in target-memory are removed.  This means that the subject will 

not consider the victim as a future viable target. 

 

2.2.8.4 Model Memory and Burn-in 

During implementation of the model, it was necessary to build limitations to the subject’s 

method-memory size (for efficient operation).  Therefore, it was determined that the 

subject’s method-memory would be a fixed length. 111  When the subject reaches the 

                                                           
111 This parameter is set via the method-memory-size slider on the interface (see Appendix A: A3). 
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memory limit, he will begin to over-write old memories in light of newer memories 

(Koechlin & Hyafil, 2007).  For this reason, the subject’s method-memory will change 

over the course of the model run, produce limited dynamic associative memories (Eacott 

& Heywood, 1994) and create an evolving offender that changes his methods (of 

operation) over-time (Ressler, Burgess, & Douglas, 1988; Salfati & Bateman, 2005). 

The integrated model can start with a subject that has an empty method-memory 

and begins accumulating memories at the beginning of the model run.  However, it was 

determined this strategy for building method-memory does not allow the subject to 

effectively utilize “experience” at the start of the simulation.  Therefore, burn-in,112 is 

necessary to effectively implement method-memory.   

To produce burn-in, the model can be set to begin preliminary method-memory 

build-up until a user-defined time-step.  This initial build-up involves lowering the 

subject’s inhibitory threshold and allowing the need accumulator to breach the threshold 

at high frequency.   This produces a condensed barrage of cycles through the violent 

offending process.  During burn-in, ending the simulation due to failure to egress or 

retreat is suspended.113  While the subject does not gain utility from failed interactions, he 

will continue to interact and the simulation continues.  At a user pre-defined time-step, 

the simulation pauses and current method-memory, location information, and spatial 

comfort and privacy are recorded.  The model components are then reset with the 

recorded information and the actual model run begins.     

 
                                                           
112 A pre-designated period of time to run the simulation prior to collecting data 

113 This is achieved by setting the capture? parameter on the model interface (see Appendix A: A1) to “off.” 
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2.2.9 Model Outputs 

The integrated model contains a number of different outputs that provide means to 

evaluate the model for verification and calibration as a viable representation of the 

violent offending process.  Tests using these outputs will be discussed in greater detail in 

the Verification Section 2.3.  However, it is important to discuss how these model outputs 

were addressed as part of the model implementation. 

In the integrated model, the subject can transition through ten different states.  

These states are: Acq. Goal (α), Tactical Plan (T), Access (A), Extract (K), Egress (D), 

Fail Action (X), Collaboration (C), Fail/Capture (F), Retreat (R), and No Acq. Goal 

(⌐α).  Each of these states is defined in Table 3 and can be used to track the subject status 

within the current cycle of the violent offending process. 

 

 

 
Table 3: Integrated Model States and definitions. 

 

 

Definition

Acq. Goal α
The subject has developed an acquisitional goal, but not yet 

developed a tactical plan.

Tactical Plan T
The subject has developed a tactical plan but not yet had an 

opportunity to access the target.

Access A
The subject has successfully accessed the target (collaborate)  or 

victim (dominate).

Collaboration C The subject has collaborated with the target

Extract K
The subject has extracted the acquisitional goal from the victim, 

but he has not yet successfully egressed.

Egress D The subject has successfully egressed.

Fail Action X
The subject has failed to access and/or extract the acquisitional 

goal from the victim and must now attempt to retreat.

Fail/Capture F The subject has failed to retreat. 

Retreat R
Although the subject has failed to access and/or extract the 

acquisitional goal from the victim, he has successfully retreated.

No Acq. Goal ¬α The subject’s acquisitional goal did not persist.

State
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The ⌐α, C, D, and R states are end states for the cycle because they result in the 

subject re-engaging in the environment and potentially initiating a new cycle of the 

violent offending process.  F is an end state because it ends the simulation.  Figure 43 

illustrates the ten states listed above: 

 

 

 

 

Figure 43: Subject states in the violent offending process. 

 

 

 

The number of times the subject transitions to each state is counted over the 

course of the simulation run.  These counts are then used to evaluate first order transition 

probabilities to each state.  State counts offer an explicit means to verify the model 

because the number of transitions into a state equal the number of transitions out of a 

state and both are equal to the state count.  Thus, the number of times the individual is in 

state i is the sum of the number of times the individual transitioned to state i which is also 

equal to the sum of the number of times the individual transitioned from state i (unless 

state i is a terminal state). 
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Transitions can also be verified by calculating the probabilities of first-order 

transitions from the current state i to another state j.  This can be done in the model, again 

using the state counts.  The probability of transitioning to state j from state i is P(j|i), and 

can be calculated using the new state counts c(j) and the prior state counts c(i):  

 

𝑃(𝑗|𝑖) =
𝑐(𝑗)

𝑐(𝑖)
⁄      (46) 

 

As the subject enters various states of the model (with the exception of the Fail 

Action state)114, the model places a site-marker that represents the specific state in the 

navigation layer of the model “view.”  This allows spatial configurations of state 

transitions to be used with various spatial metrics.  Additionally, given appropriate 

temporal scaling of the model during calibration, days can be modeled and utilized, in 

conjunction with state transitions, for days-between-hit (dbh) metrics and comparisons.  

Spatial and temporal outputs and their utility in calibrating and validating the model will 

be further discussed in the Validation Section 2.4. 

The integrated model can be set to collect an entire cycle of the violent offending 

process.  Within the integrated model this is referred to as a “narrative” (Auble, 2015) 

and constitutes a series of directly related events (as illustrated in Figure 43).  This 

function records the subject’s chain of transitions from development of a tactical plan115 

                                                           
114 The subject does not place a site-marker when he fails to successfully act.  This is because this state does not 

specifically correspond to a physical site. 

115 The model generates frequent acquisitional goals that revert back to no acquisitional goal.  To keep the narratives 

manageable, the model will only start recording a chain of events once the subject has successfully developed a tactical 

plan. 
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to output and notes the methods used, time-step, and spatial location of each event.  This 

“narrative” is not only invaluable during verification procedures, but it also provides the 

means to contextualize events during interpretation of integrated model outputs. 

An important part of utilizing the model outputs is in how the outputs are to be 

contextualized and interpreted.  This entails having some idea of what the outputs “mean” 

(Auble, 2015).  Thus, while Figure 43 shows possible states, the interpretation of those 

states in terms of actual violent offending gives a better sense of how these states can tell 

a story or script violent offending outcomes (Schank & Abelson, 1975; Beauregard, 

Proulx, Rossmo, Leclerc, & Allaire, 2007; Leclerc & Wortley, 2013).  Table 4 shows the 

integrated model states and examples of interpretations for each in an analysis of 

potential “sexual murder” outcomes (Kocsis, Cooksey, & Irwin, 2002; Salfati, James, & 

Ferguson, 2008; Dover, 2010).  The scenario offered by this example will be revisited 

during verification tests (see Section 2.3) and when calibrating to a real-world series in 

Chapter 3, Section 3.2. 
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Table 4: Integrated Model States and an example interpretation. 

 

 

 

 

Given the interpretations assigned to each state in Table 4, a sequence of states, 

like those found in Table 5, provides cohesive event-chains to further analyze.116   

Event-chains 1, 2 and 3 all result in the subject reverting to a non-acquisitional 

goal state prior to offending.  However, in event-chain 5, the subject successfully 

commits a “sexual murder.”117  In event-chain 4 the subject does not commit a violent 

offense, but instead employs the services of a prostitute.  In event-chains 6 through 10, 

                                                           
116 These event-chain narratives are further depicted in Appendix C, along with the causal-path of the event-chain 

expressed and a state diagram illustrating the subject’s trajectory through the violent offending process. 

117 The definition of “sexual murder” used here does not differentiate between a murder committed as part of a sexual 

experience or a rape committed in conjunction with an instrumental murder.  For further differentiation between these 

two types of murder, see Dover (2010). 

Example Interpretation…(Sexual Murder)

Acq. Goal α
The subject has developed an interest in exerting control and/or 

having a sexual experience.

Tactical Plan T

The subject has developed a tactical plan to either engage the 

services of a prostitute (collaborate) or abduct a female victim 

(dominate).

Access A
The subject has successfully secured the services of a prostitute 

(collaborate) or abducted a female (dominate).

Collaboration C
The subject has successfully engaged in sexual interaction with a 

prostitute (target).

Extract K
The subject has successfully raped and/or killed the female 

victim.

Egress D The subject has successfully dumped the female victim’s body. 

Fail Action X

The subject has failed in his attempt to abduct and/or rape/kill 

the female victim and must now retreat without being detected 

or captured.

Fail/Capture F The subject has failed to retreat and is either arrested or killed. 

Retreat R

Although the subject has failed in his attempt to abduct and/or 

rape/kill the female victim, he has successfully avoided detection 

or capture.

No Acq. Goal ¬α
The subject’s interest in exerting control and/or having a sexual 

experience did not persist. 

State
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the subject fails at various points during the violent offending process, but gets away in 

event-chains 6 and 8, and he is arrested in event-chains 7, 9 and 10.  

 

 

 
Table 5: Event-chains and interpretations in a “sexual murder” series. 
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2.3 Verification 

Verification (sometimes referred to as internal validity) “is the process of making sure 

that an implemented model matches its design” (Crooks, Castle, & Batty, 2008, p. 419).  

In this dissertation, this was established through a number of verification procedures.  

Throughout the implementation process, the model code was subjected to incremental 

tests of functionality and annotation.  Once the code was completed, a line-by-line walk-

though was performed accompanied by logging procedures to the model output field for 

review.  This procedure identified several key coding and logic errors that were 

corrected.   

Verification also included testing parameters associated with the three different 

stages of the violent offending process as they relate to an established baseline of the 

integrated model.  This was followed by a profile analysis of code procedures, as 

suggested by Cioffi-Revilla (2014a), to ensure call volumes were appropriate given 

parameter settings.   These two procedures, stage-based testing and profiling, are 

described in greater detail below. 

 

2.3.1 Stage Parameter Tests 

Stage tests had two primary purposes.  First, these tests were a form of model verification 

to ensure that parameters behaved consistently with underlying abstraction and coding of 

the model.  Second, the stage tests were used as sensitivity tests to understand how each 

set of parameters contribute to outcomes in the model.  Table 6 provides a list of the 

stages, configurations, and parameters tested.   
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Table 6: Stages tested, test configuration names, and the parameters tested.118 

 
 

 

 

Stage 1 verification tests examined interactions between the subject and targets 

within the model “view” and focused on parameters that constrain the subject’s targeting 

capacity.  By concentrating on scheduling, object clustering, and location-based 

targeting, these tests assessed the effectiveness of routine activities and spatial awareness 

on driving subject output behavior.  Stage 2 verification tests examined the subject’s 

internal tactical planning and adaptation capabilities and focused on parameters 

associated with constructing and navigating the subject’s cognitive landscapes.  This 

series of tests evaluated the effects of target risk and the subject’s preferred methods on 

output behaviors.    Stage 3 verification tests examined learning and experience by 

focusing on method-memory and burn-in.  

 The integrated model states for the verification tests were all interpreted in terms 

of a series of “sexual murders” (see Table 4).  In addition, to ensure the verification tests 

were not affected by issues of scale (see the discussion about scale in Section 2.2.3.1) the 

following parameters on the interface (see Appendix A: A3) were set to the following 

                                                           
118 See Appendix A 

Test Configuration Parameter(s) Tested

Scheduling Schedule?

Obj-share-loc?

Object-pref?

Location-based 

Targeting
Loc-based-target?

Target-type?

preset-target-type

Manual-method?

Variation

Learning Use-memory?

Burn-in Start-sim 

Stage 2:

Tactical Planning & 

Adaptation 

Target Risk

Methods

Stage 3:

Learning & burn-in

Stage 1:

Interactions Object clustering 



 

128 

defaults for all verification tests: view-width = 20 miles, minutes-per-tick = 1, base-

threshold = 1000, and object-effect = 15.  These settings are selected based on 

preliminary testing of the integrated model. 

 

2.3.2 Model Baseline Configuration 

To facilitate verification tests, a model baseline was run to provide a reference point from 

which to gauge the efficacy of changes in stage-specific parameters.  The model baseline 

configuration is shown in Table 7.   

 

 

 
Table 7: Parameters for the model baseline configuration. 

  
 

 

 

Baseline

OFF

Obj-share-loc? OFF

Object-pref? OFF

Target-type?
contingent on…

Obj-share-loc = True& 

Object-pref? = True

--

preset-target-type
contingent on…

Target-type? = True
--

OFF

OFF

Targeting --

Density --

Paths --

Moves --

Focus --

Action --

Variation --

OFF

0

Manual-method?

contingent on…

Manual-method? = True

Use-memory?

Start-sim

Parameter(s) Tested

Schedule?

Loc-based-target?

contingent on…

Schedule? = True
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The model baseline configuration was run for 14,400 time-steps (equivalent of 10 

days), 100 times.119,120  As shown in Figure 44, transition between each state was 

calculated and displayed in a Markov model to illustrate model baseline first-order 

transition probabilities.   

 

 

 

 

Figure 44: Model baseline first order transition probability p(i|j) between states. 

 

 

 

2.3.3  Testing Procedure 

The stage-based testing configurations are listed in Table 8.  Each of the test 

configurations consists of the baseline configuration with parameter variation.  The 

parameters used in each stage are located on the integrated model interface illustrated and 

further described Appendix A. 

                                                           
119 With variations in the model random seed 

120 The subject’s need accumulator is always active.  It is acknowledged that this may not be a “realistic” representation 

of developing needs because it does not appear to account for sleep.  However, there is some research that suggests 

cognitive processes (Mueller & Dyer, 1985; Stark & Squire, 2001; Schott, et al., 2004; Suzuki, 2005) and needs, as 

“hard-wired” and implicit drives (Slade, 1994; Sun, 2009), do not always operate at a conscious level.  For this reason, 

and because the subject is constantly stimulated by the environment regardless of schedule, the subject’s needs were 

allowed to accumulate at all times. 
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In the Stage 1 verification tests, the Scheduling configuration set the schedule? 

parameter to “on”.  The Object clustering configuration set the obj-share-loc? and object-

pref? parameters to “on”.  The Location-based targeting configuration set the loc-based-

target? parameter to “on”.   

In the Stage 2 verification tests, the Object risk configuration set object clustering 

and target-type? parameters to “on” and tested the preset-target-types parameter set to 

“high-risk” and “low-risk”.  The Methods configuration set the manual-methods? 

parameter to “on,” targeting strategy to “active,” the density, paths, moves, and focus 

resources to “M”, action strategy to “dominant,” and tested variation parameter at 0%, 

25%, and 50%. 

In the Stage 3 verification tests, the Learning configuration set the use-memory? 

parameter to “on.”  The Burn-in configuration set the use-memory? parameter to “on” 

and set the start-sim parameter to 14,400 time-steps.121 

 

 

 

                                                           
121 The Burn-in configuration runs from 0 to 14,400 time-steps during burn-in and then from 14,400 to 28,800 time-

steps during the substantive simulation. 
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Table 8: Stage-based testing configurations. 

 
 

 

 

Each configuration was run for 14,400 time-steps (to simulate 10 days), 100 

times.  As with the model baseline, a Markov model was used to map first-order 

transition probabilities from each state i to the next j.  For each Markov model, the mean 

difference (deltas) between transition probabilities of the test configuration (P1) and the 

model baseline (P2) were calculated as  Δ𝑃̅: 

 

Δ𝑃̅(𝑗|𝑖) = 𝑃̅1(𝑗|𝑖) − 𝑃̅2(𝑗|𝑖)     (47) 

 

As shown in Figure 45, delta transition probabilities were captured and displayed 

on a delta Markov model to understand how test configuration probability outcomes 

changed from the baseline.   Differences were measured using a t-score and significance 

was determined by calculating two-tailed p-values.  Significant findings are reported with 

Scheduling
Object 

Clustering

Location-based 

Targeting
Object risk Methods Learning Burn-in

ON OFF OFF OFF OFF OFF OFF

Obj-share-loc? OFF ON OFF ON OFF OFF OFF

Object-pref? OFF ON OFF ON OFF OFF OFF

Target-type?
contingent on…

Obj-share-loc = True& 

Object-pref? = True

-- -- -- ON -- -- --

preset-target-type
contingent on…

Target-type? = True
-- -- -- high/low -- -- --

OFF OFF ON OFF OFF OFF OFF

OFF OFF OFF OFF ON OFF OFF

Targeting -- -- -- -- "active" -- --

Density -- -- -- -- M -- --

Paths -- -- -- -- M -- --

Moves -- -- -- -- M -- --

Focus -- -- -- -- M -- --

Action -- -- -- -- "dominate" -- --

Variation -- -- -- -- 0/25/50 -- --

OFF OFF OFF OFF OFF ON ON

0 0 0 0 0 0 14400

Manual-method?

contingent on…

Manual-method? = True

Use-memory?

Start-sim

Stage 3:

Learn & Burn-in

Parameter(s) Tested

Schedule?

Loc-based-target?

contingent on…

Schedule? = True

Stage 1:

Interactions

Stage 2:

Tactical Planning & Adaptation 
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either * (p < 0.05) or ** (p < 0.01).  The results of these stage-based verification tests are 

shown and discussed below. 

 

 

 

 

Figure 45: A delta (Δ) Markov model is used to illustrate the difference between 
test and baseline configuration first order transition probabilities (PΔ). 

 

 

 

2.3.4 Stage 1 Verification 

The first stage focused on testing exogenous interactions between the subject and objects 

within the environment.  The environment of the stage-based tests offered significant 

opportunity to create a variety of different spatial arrangements between the subject’s 

routine-based anchor-points and movement while pursuing needs-based goals.  As the 

verification test results inform calibration of the model, the delta transition probabilities 

are discussed in terms of significant and/or interesting findings. 
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2.3.4.1 Scheduling 

As Figure 46 illustrates, turning scheduling “on” significantly improves the subject’s 

probability of accessing a target (0.17**), reduces his probability of not being able to 

create a tactical plan (-0.14*), and increases his propensity to successfully collaborate 

(0.15*). 

It is possible that scheduling creates an environment in which the subject has a 

better chance of identifying targets and locations he has encountered in the past, and is 

likely to repeatedly encounter due to his routine activity-space.  Storing these targets (or 

target locations) in his target-memory leads to relatively quick selection of a potential 

target, tactical planning, and attempted action.  Thus, scheduling seems to facilitate 

target-memory and is an important consideration when calibrating the model. 

 

 

 

 

Figure 46: Scheduling (on) change in transition probability from Model baseline (ΔP). 
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2.3.4.2 Object Clustering  

Figure 47 shows that when object clustering is “on” there is a significant increase in the 

subject’s probability to successfully access a target (0.37**).  Additionally, the subject is 

significantly more likely to pursue a “collaborative” action strategy (0.28**) and 

significantly less likely (-0.17**) to pursue a “dominant” action strategy.  Both of these 

factors significantly decrease the subject’s likelihood of failing to access a target (-0.07*) 

overall, or kill a target (-0.11*) when pursuing a “dominant” action strategy.   

These results verify that clustering has a significant effect on the subject’s 

efficacy in targeting.  There also appears to be a greater propensity to incorporate a 

“collaborative” action strategy which is a significant consideration for model calibration.  

This is especially true if a comparison series involves a target-rich environment. 

 

 

 

 

Figure 47: Cluster (on) change in transition probability from Model baseline (ΔP). 
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2.3.4.3 Location-based Targeting 

As indicated in Figure 48, the location-based targeting test configuration did not produce 

significant results when compared to the model baseline.  This may be due to the 

subject’s tendency to frequent areas that are already anchor-points for a significant 

number of objects.  Thus, the subject may be likely to encounter an object with desired 

attributes in the same general areas as originally recorded in target-memory.  This could 

obfuscate whether the subject was targeting the location or the object.  In conjunction 

with object clustering, however, location-based targeting may be useful to configure a 

subject’s specific victim selection preferences to target-rich areas.  For this reason, 

location-based targeting may still prove to be useful during calibration. 

 

 

 

 

Figure 48: Location-based (on) change in transition probability from Model baseline (ΔP). 

 

 

 

2.3.5 Stage 2: Verification 

The second stage focuses on testing endogenous factors of tactical planning and 

adaptation within the subject’s cognitive landscapes.   
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2.3.5.1 Risk 

In Figure 49, a “high-risk” target configuration significantly increases the subject’s 

probability of successfully accessing a target (0.30**) and significantly reduces the 

subject’s failure to create a tactical plan (-0.25**).  Additionally, a “high-risk” 

configuration significantly increases the subject’s propensity to be successful if pursuing 

a “collaborative” action strategy (0.22**), and decreases his tendency to fail to kill a 

victim if pursuing a “dominant” action strategy (-0.13**). 

 

 

 

 

Figure 49: “High-risk” target change in transition probability from Model baseline (ΔP). 

 

 

 

In Figure 50, a “low-risk” target configuration significantly increases the 

subject’s probability of successfully accessing a target (0.37**) and significantly reduces 

the subject’s failure to create a tactical plan (-0.30**).  Additionally, a “low-risk” 

configuration significantly increases the subject’s propensity to be successful if pursuing 

a “collaborative” action strategy (0.27**).  This configuration also significantly reduces 

the subject’s tendency to attempt to kill a victim (-0.17**) but decrease his tendency to 



 

137 

fail when doing so (-0.10*) indicating an overall reduction in the subject’s tendency to 

select a “dominant” action strategy, but effective implementation of the “dominant” 

action strategy when utilized.   

 

 

 

 

Figure 50: “Low-risk” target change in transition probability from Model baseline (ΔP). 

 

 

 

Both the “high-risk” and “low-risk” configurations increase the subject’s ability to 

access a target, decrease failures in creating a tactical plan, increase collaborations, and 

decrease tendencies toward a “dominant” action strategy.  This is likely because both 

configurations utilize object clustering.  Thus, some of these findings are likely conflated 

with the effects of object clustering.     

However, if the “high-risk” and “low-risk” configurations are compared to each 

other (effectively controlling for object clustering), as in Figure 51, there is a higher 

tendency in a “high-risk” configuration for the subject to kill a victim (0.09*) and if he 

fails an attempted offense, to successfully retreat (0.14*).  This makes sense given that 

targets at “high-risk” pose fewer inhibitors to a subject than targets at “low-risk”. 
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Figure 51: “High-risk” victim v. “Low-risk” victim change in transition probability (ΔP). 

 

 

 

2.3.5.2 Methods 

The baseline configuration selects preferred methods based on a random selection from a 

(flat) distribution of methods.  The Method configuration tests the efficacy of variations 

in the manual-methods settings.  All possible manual-method configurations are not 

tested.122  However variation is tested.  The expectation, then, is that when variation is 

set to 0%, (no variation from the default manual-method settings) there will be a 

significant difference from the baseline and no significant difference when variation is 

set to 50%. 

In the method variation tests (Figure 52 – Figure 54) the default action method is 

set to “dominant” (Ressler, Burgess, & Douglas, 1988; Reiss & Roth, 1993; Stone, 2001; 

Kocsis, Cooksey, & Irwin, 2002; Salfati & Taylor, 2006; National Center for the 

Analysis of Violent Crime, 2007).  Thus, the subject will select a “dominant” action 

                                                           
122 Testing all manual-method configurations (without variation) would entail 324 separate test configurations. 



 

139 

strategy with the designated amount of variation.  This means when variation is set to 

0%, the subject should always select a “dominant” action strategy.  As this variation 

slides toward 50%, the subject’s tendency to favor a “dominant” action strategy should 

become much less pronounced until at 50%, he is just as likely to select a “collaborative” 

action strategy.   

As illustrated in Figure 52, if variation is set to 0%, the subject is significantly 

more likely to create a tactical plan after developing an acquisitional goal (0.11**), but 

less likely to access a target (-0.16**) and more likely to return to a non-breach state 

(0.19**).  If the subject does access a target, then he is significantly more likely to kill 

the target (0.44**) or fail while attempting to kill a target (0.13*) indicating that the 

subject is much more likely in general to pursue a “dominant” action strategy.   

 

 

 

 

Figure 52: Method variation (0%) change in transition probability from Model baseline (ΔP). 

 

 

 

Figure 53 illustrates that when variation is set to 25% the subject still has a 

significantly higher tendency than the baseline configuration to kill the target (0.13*) and 
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a lower tendency to collaborate (-0.19*).  This is, like the previous configuration 

(variation = 0%), an artifact of the subject’s tendency to vary from a “dominant” action 

strategy 25% of the time.  

 

 

 

 

Figure 53: Method variation (25%) change in transition probability from Model baseline (ΔP). 

 

 

 

Figure 54 illustrates that, as expected, there is no significant difference between 

the method configuration when variation equals 50% and the baseline configuration.  The 

overall results from the Method tests (Figure 52-Figure 54) appear to verify the 

underlying functionality of the variation parameter. 
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Figure 54: Method variation (50%) change in transition probability from Model baseline (ΔP). 

 

 

 

2.3.6 Stage 3: Verification 

The third stage focused on testing the subject’s ability to learn from previous experience 

and successful methods for achieving goals.   This relies on feedback from integrated 

model outputs and the incorporation of successful methods in the subject’s method-

memory. 

 

2.3.6.1 Learning 

The learning test configuration involved implementing method-memory in lieu of the 

manual methods tested in Stage 2.  As is illustrated in Figure 55, method-memory alone 

did not produce significant differences in transition probabilities over the model baseline.  

This was not unexpected and is likely because the model runs were relatively short and 

did not allow the subject sufficient time or enough experiences to noticeably learn from 

interactions. 
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Figure 55: Delta Method-memory (on) change in transition probability from Model 
baseline (ΔP). 

 

 

 

2.3.6.2 Burn-in 

When the subject is allowed burn-in time (10 days) and intense exposure to goal 

development, Figure 56 shows that there is an increases in the probability of successful 

tactical planning (0.08*) and “collaborative” action strategy (0.30**), but a significant 

decrease in the probability of killing the target (-0.23**).  This implies that burn-in leads 

to a more likely choice of “collaboration” as a successful action strategy.  This is useful 

information for calibrating the model to a real-world comparison series.123 

 

 

 

                                                           
123 see Chapter 3, Configuring the GRK Series Section 3.2. 
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Figure 56: Burn-in (10 days) and Method-memory (on) change in transition probability 
from Model baseline (ΔP). 

 

 

 

2.3.7 Code Profiles 

For each stage-based verification test, three runs were profiled to ensure the frequency of 

called procedures made sense.  The code profiles were aggregated and a mean profile for 

each test configuration was produced.  These aggregated code profiles can be found in 

Appendix D. 

There were 52 procedures called among all of the profiled simulation runs.  Five 

of these procedures were related to burn-in124 and were only called during the burn-in 

configuration tests.  Of the remaining 47 procedures, 16 are only called once per time-

step and 1 is called once per time-step with an additional call upon simulation end.  The 

most frequently called procedures involved in object navigation and scheduling.125 The 

third most common procedure called is used to reset a series of internal switches that 

                                                           
124 These procedures control other procedures dedicated to saving method-memory and location information and 

resetting the model during transition from burn-in to actual simulation 

125 Although scheduling was only turned “on” during one of the tests, objects actually set a schedule at each time-step.  

The scheduling parameter only determines whether or not the objects follow their schedule.  This procedure operates in 

the background so that scheduling can be turned “on” during a simulation run. 



 

144 

keep track of subject states.  Given the context of the verification tests, code profiling 

revealed that all procedures are being called appropriately.  There are no discrepancies or 

abnormalities noted. 

 

2.4 Validation 

External validation involves structural and behavioral (how the model behaves) validity 

(Cioffi-Revilla, 2014a).  Structural validity focuses on theoretical and empirical 

examination and “refers to internal features of the model, including main assumptions 

concerning relevant agent attributes, interaction rules, and environments” (Cioffi-Revilla, 

2014a, p. 297).  Behavioral validation focuses on how well the model approximates the 

referent system it was implemented to represent (Crooks, Castle, & Batty, 2008).  The 

key to behavioral validation is the comparison of empirical data to simulation outputs to 

determine “whether simulated spatial patterns generated by an ABM [or other model] 

correspond to known empirical patterns in its referent system” (Cioffi-Revilla, 2014a, p. 

299) 

In this dissertation, structural validation is achieved in Chapter 2 (Section 2.2 and 

Section 2.3) through the abstraction and specification of implicit theoretical concepts 

behind model elements and the implementation of those abstractions within explicit 

program logic.   

Behavioral validation is an ongoing procedure that is important in understanding 

the integrated model’s practical application to real-world circumstances.  However, 

because this model focuses, in part, on internal features of the violent offending process, 
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data to empirically validate this model are not readily available.  In fact, one of the 

proposed contributions of this modeling effort is to create a mechanism to generate 

synthetic data for hidden features. 

To explore whether or not the integrated model provides meaningful insights into 

the internal and external drivers of offending behavior, it will be calibrated to a real-

world murder series.  While beyond the scope of this dissertation, the violent offending 

process implemented in the integrated model does not apply exclusively to serial violence 

(Dover, 2010).  In fact, the implemented model is quite capable of producing a subject 

who does not offend or offends only once.  However, there are significant advantages to 

calibrating the integrated model to a series of murders.   

From 2010 to 2014, there were approximately 14,000 to 15,000 murders in the 

United States per year (Uniform Crime Reports, 2014).  There is a general sense that only 

a fraction of these murders are part of a series (Douglas & Burgess, 1986; Egger, 1990; 

Petee & Jarvis, 2000).  Yet, there are no well-supported estimates of the occurrence of 

serial murder primarily because the phenomenon presents a conundrum; how do you 

definitively determine whether unsolved murders are committed by the same offender 

unless that offender is in custody or forensic evidence links the cases?  Some estimates 

state that “there are between twenty-five and fifty serial killers operating throughout the 

U.S. at any given time” (Bonn, 2014, p. 2).  However, these estimates are based on 

known serial murders or linked cases.  Thus, researchers are not entirely aware of how 

many unsolved or unlinked cases should, in fact, be linked to a series.  This presents a 



 

146 

prime example of a hidden population of offenders.  For a comprehensive exploration of 

the challenges facing research on violent serial offending, see Petee and Jarvis (2000).  

Additionally, applying the integrated model to a series of murders, because it 

incorporates “primed, non-offending” and “primed, offending” outcomes, provides 

potential insight into the role of internal and external subject features in series longevity 

and tempo.  Thus, calibrating the integrated model to a murder series will provide an 

empirical comparison of how well the model can reasonably and consistently 

approximate a real-world scenario.126 

 

2.4.1 Calibration Procedures 

“Calibration involves fine-tuning the model to a particular context and this means 

establishing a unique set of parameters that dimension the model to its data.  This is not 

validation per se but calibration can often involve validation because the parameters are 

often chosen so that performance of the model related to data is optimal in some way, in 

terms of some criterion of goodness of fit.” (Crooks, Castle, & Batty, 2008, p. 419) 

The “Scenario Builder” on the integrated model interface is designed to assist in 

configuring the model to a specific series.  This entails identifying the geospatial and 

temporal scale and back-drop of the scenario, identifying anchor-points for the offender, 

and locating known event-sites (i.e., abduction-sites or kill-sites) for comparison to 

simulated sites.  The simulation setup then uses these anchor-points and known event-

                                                           
126 For a discussion of a similar process used to validate a model of households in East Africa see Kennedy, Cotla, 

Gulden, Coletti, & Cioffi-Revilla (2014). 
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sites to create a simulated activity-space that is utilized by the subject during the 

simulation run.   

In addition, qualitative details of the series are reviewed to understand what 

combinations of integrated model parameter settings are likely to be the most appropriate.  

During configuration, the following are considered: comfort, privacy, scheduling, 

location-based targeting, object clustering, preferred methods, target risk, and learning 

methods.  After reviewing the real-world series details, it is possible that multiple model 

configurations may be developed and tested.   

 

2.4.2 Comparison Metrics 

It is important to note that once the model has been configured, the purpose of simulation 

runs is to reproduce aspects of the real-world scenario.  Thus, there must be careful 

consideration as to how the simulation runs will be compared to the real-world scenario.  

Comparisons are made based on temporal metrics, spatial metrics, and qualitative 

matching criteria.  These comparison metrics provide ad hoc goodness of fit measures 

that are based on qualitatively observable and quantitatively measurable model and real-

world outputs. 

 

2.4.2.1 Temporal Metrics 

Temporal comparisons are made by collecting the time-step (converted to day) that a 

specific type of event takes place and calculating the number of days until the next one.  
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This is referred to as days-between-hits and can be applied to accesses (abductions) or 

kills depending on the specific comparison series.127 

To better understand the tendency for a simulated series to match dbh spacing of a 

comparison series, a metric was developed that calculates the mean distance of each hit-

day from the mid-point between the preceding and following hit-days.  This dbh-score S 

is calculated as follows: 

 

𝑆 = √∑ (
𝑝𝑖−

𝑝𝑖+1−𝑝𝑖−1
2

𝑛
)

2

𝑛
𝑖=2      (48) 

 

where p represents a hit-day in the series of hit-days.  Note that the calculation requires at 

least three hit-days, (i), (i-1), and (i+1).  The closer the dbh-score is to zero, the more 

regular the dbh spacing in the series.   

For example, Figure 57 illustrates the dbh-score with 10 example hit-days.  In 

series A hit-days are clustered around the first and last days of the series (S = 0.25).  In 

series B three hit-days cluster at the beginning and end of the series while there is a 

cluster of four hit-days in the middle (S = 0.14).  Series C indicates slightly more regular 

hit-day spacing (S = 0.05), and in series D the hit-days are evenly distributed across the 

whole series (S = 0.000).   

 

 

 

                                                           
127 In some series, access or abduction dates might be more appropriate if the kill dates are not known. 
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Figure 57: Timelines illustrating the dbh-score (S) as applied to four series with 10 
example hit-days each. 

 

 

 

2.4.2.2 Spatial Metrics 

It is important to have a clear idea of what event-sites offer relevant spatial comparison-

sites.  In some series, kill-sites, if known, may provide the best comparison-sites.  

However, in other series, especially if the kill-sites are unknown and different from body 

dump-sites, dump-sites may be the more appropriate comparison-sites. 

Spatial comparisons can be made using two metrics that are calculated at the end 

of each simulation run.  First, the mean distance of specified128 simulated-sites129 from 

the closest known comparison-site130 is calculated.  This is referred to as the comparison 

location score.  The closer the score is to zero, the closer the match to comparison event-

sites.  Second, the proportion of comparison-sites that are accounted for by simulated-

sites is calculated.  This is referred to as the comparison completeness score.  The closer 

the score is to 1, the closer the simulated output has come to accounting for all 

comparison-sites. 

                                                           
128 Specific type of site (i.e., kill-site or dump-site) being used for comparison in the scenario. 

129 Simulation-sites are the simulated event-sites. 

130 Comparison-sites are the comparison event-sites of the real-world scenario. 
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In addition, centroid calculations for the “series” spatial center-of-gravity are also 

helpful (Elnekave, Last, & Maimon, 2007; Buscema, Breda, Grossi, Catzola, & Sacco, 

2013).  To understand dynamic directionality of events, x and y coordinates for sequential 

triads of dump-sites are used to produce triangle centroids A(x,y):    

 

𝐴(𝑥, 𝑦) = (
𝑥𝑖+𝑥𝑖−1+𝑥𝑖−2

3
,
𝑦𝑖+𝑦𝑖−1+𝑦𝑖−2

3
)   (49) 

 

Simulation-site centroids are used to create series-specific centroid-paths for different 

simulation configurations.  These paths are then compared to the centroid-path of the 

scenario comparison-sites to better understand how the simulated series spatially evolves 

when compared to the real-world series.  

 

2.4.2.3 Qualitative Matching Criteria 

A set of matching criteria is developed to assess how well simulation outputs reproduce 

the comparison series.  In addition, to the spatial metrics and the temporal metrics 

discussed above, other metrics the like length of the comparison series (in days) and the 

number of events are used to make non-trivial comparisons.  Appropriate qualitative 

matching criteria are series-specific and require extracting suitable comparison criteria 

from the real-world scenario.   
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CHAPTER 3: ANALYSIS & RESULTS 

 

 

 

Chapter 2 abstracts and implements an integrated model of the violent offending process 

and conducts a number of verification tests to ensure internal validity.  The chapter 

concludes by offering a procedure to calibrate the model and compare outputs to a real-

world series of violent offenses.   This chapter will focus on describing the application of 

this calibration procedure to a specific series (Section 3.1), testing the procedure for 

configuring the model to a real-world series (Section 3.2), and the results of a comparison 

between this series and simulated results from the integrated model (Section 3.3). 

3.1 Series Scenario 

The real-world comparison series selected is The Green River Killings (GRK) in the 

Pacific Northwest of the United States.  This series was chosen because it is well 

documented, it was solved with the arrest of the offender (Gary Ridgway), and because 

there is a significant amount of open-source spatial and temporal information about the 

series available outside of law enforcement sources.   

The 49 murders that Gary Ridgway is known to be responsible for took place 

from 1982 to 1998 and were centered around the Seattle-Tacoma Metropolitan area in 

Washington State.  The majority of the victims were taken from International Boulevard 

along the east side of the Sea-Tac International Airport.  This area was well known as a 

prostitute “stroll,” and Ridgway’s victims were young women that frequented the area. 
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The victims were solicited for prostitution by Ridgway and taken in his vehicle 

either to secluded areas or to his home (which was in a nearby neighborhood) where 

Ridgway would engage the victims (sometimes consensually and sometimes non-

consensually) in sexual intercourse.  After killing a victim, Ridgway would drive to a 

secluded area where he would dump her nude or partially clothed body.  Ridgway was 

known to return to these locations to watch the victims decompose and/or to have sex 

with the body (Lackey, Jones, & Johnson, 2015).  Many of the victims’ decomposed 

and/or skeletonized remains were not found until weeks, or even years later. 

Ridgway was married three times and his wives/girlfriends indicated that he was 

hyper-sexual, often demanding sex several times a day and frequently using the services 

of prostitutes (Lackey, Jones, & Johnson, 2015).  After leaving the Navy, Ridgway 

worked as a truck painter at the Kenworth Truck Company in Renton, Washington, 

approximately four miles northeast of the Sea-Tac International Airport.  His address was 

less than a mile southeast of the Sea-Tac International Airport (Montaldo, 2011).   

 

3.2 Configuring the GRK Series  

The GRK series and Ridgway’s personal and social behaviors provide a number of data 

points that can be significantly represented in the integrated model.  Although the entire 

GRK series involved at least 49 murders, it was decided that the current comparison 

would focus on the first nine murders.  The first nine incidents were consolidated to an 

area within King’s County (within the Seattle-Tacoma Metropolitan area), and occurred 

within the first 74 days of the series between July 8, 1982 and September 20, 1982.  This 
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provides a focused set of spatial (consolidated within the model view) and temporal 

outcomes to drive model configuration.  While the tenth abduction occurred 6 days after 

the ninth, the tenth and eleventh victims were recovered in regions significantly outside 

of the Kings County area.131  

 The GRK series involved sexual murders.  Therefore, integrated model states for 

the verification tests were all interpreted in terms of a series of “sexual murders” (see 

Table 4).  In addition, the view-width was set 20 miles to match the scale of the reference 

maps, minutes-per-tick was set to 1 to ensure significant opportunities for the subject to 

interact in the environment, and base-threshold was set to1000 to ensure the model was 

instantiated with a subject who would not immediately begin developing acquisitional 

goals (prior to building a target-memory).  These parameter values were held constant 

across all GRK calibrations. 

 

3.2.1 Model “View” 

Several maps of the GRK victim dump-sites were located online from a variety of 

sources.132  These maps were used to identify relevant spatial locations on a street map 

view of the same area from the MapQuest website133 and then imported into the 

integrated model.  The model scale was matched to the scale of the imported maps (20 

miles by 20 miles).  Spatial features including water areas, anchor-sites, and the first nine 

                                                           
131 see Chapter 4, Section 4.1.1 for a discussion of the spatial findings. 

132 seattletimes.nwsource.com/art/news/local/greenriver/graphics/grbodies.gif 

seattletimes.nwsource.com/art/news/local/greenriver/graphics/bodymap06.gif 

seattletimes.nwsource.com/art/news/local/greenriver/graphics/grresidences.gif 

www.asesinos-en-serie.com/new/wp-content/uploads/2012/08/gary-ridgway-victimas-asesinatos-maps-of-killings.jpg 

133 www.mapquest.com 
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victim dump-sites were manually located and marked in the model “view”.  Anchor-

points defined in the model were Ridgway’s home prior to 1987 (“home”), Kenworth 

Truck Company in Renton (“work”), and the north boundary, middle, and south 

boundary of the International Boulevard prostitute “stroll” (“play”).  Figure 58 shows the 

original GRK series map and spatially relevant sites used to configure the integrated 

model.  Dump-sites 1, 3, 4, 5, and 6 are along the Green River.  Dump-sites 2 and 8 are in 

the prostitute “stroll” area. 
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Figure 58: The first nine Green River Killings associated with Gary Ridgway.  
Most of the victims were abducted from the International Boulevard prostitute 

“stroll.” Also shown are Ridgway’s home and work anchor-points. 

 

 

 

Figure 59 illustrates the configuration of the GRK series dump-sites and Ridgeway’s 

anchor-points in the integrated model “view.” 
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Figure 59: The first nine body dump-sites from the GRK series are implemented 
in the integrated model as comparison-sites.  The integrated model also includes 

anchor-points associated with Gary Ridgway. 

 
 

 

3.2.2 Comfort and Privacy 

In the integrated model, the subject’s initial areas of significant comfort were defined by 

Ridgway’s anchor-points.  Comfort, at a much lower level, was stochastically generated 

for other locations in the model to provide a back-ground comfort for the region.  It was 

reasoned that, by selecting certain areas to kill and dump bodies, Ridgway self-defined 
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his areas of most significant privacy.  Therefore, the highest areas of privacy in the model 

were defined as the nine real-world dump-sites in the GRK series and Ridgway’s home. 

 

3.2.3 Schedule 

Ridgway’s accountable time was not discernible from the open source materials 

consulted.  However, it was assumed, because he worked for a business as a truck 

painter, that he did have a schedule.  In the integrated model, the subject’s work schedule 

follows normal work/business hours.  Therefore, from 7:00 am to 5:00 pm the subject is 

scheduled to be at (or on his way to/from) “work,” from 5:00 pm to midnight he is 

scheduled to be at “home” or “play,” and from midnight to 7:00 am he is scheduled to be 

at “home.” This schedule does not account for weekends. 

 

3.2.4 Location-based Targeting 

Ridgway targeted victims based on their presence at a prostitute “stroll.”  This indicates 

that he hunted in areas he knew to be target-rich, as opposed to following or tracking-

down specific victims.  For this reason, implementing the GRK series involved location-

based targeting to represent a tendency for the subject, while targeting, to be more 

interested in specific locations rather than specific targets. 

 

3.2.5 Object Parameters 

The integrated model was instantiated with a stochastically generated population of 

objects.  However, Ridgway specifically targeted women who frequented a known 
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prostitute “stroll.”  This level of location-based specificity was not only a factor of 

location-based targeting on the part of Ridgway, but also a by-product of the exogenous 

features of the environment and object population itself.   Therefore, in the integrated 

model object clustering was utilized. 

Based on the default settings laid-out in the clustering discussion in the 

Methodology Section (2.2.6.2), it was estimated that approximately 90% (~450) of the 

individuals that Ridgway was likely to encounter would follow a schedule and 

approximately 20% (~90) of these would gravitate toward Ridgway’s “play” locations 

along the International Boulevard during part of that schedule.  Of these individuals it 

was further estimated that 80% (~72) would have attributes that Ridgway might consider 

attractive and useful for achieving a goal with either “collaborative” or “dominant” 

action.  These parameters were viewed as practical assumptions that gave the subject a 

reasonable population of suitable targets that would congregate in areas that he 

frequented.   

Ridgway’s targets, prostitutes and teenage runaways, constituted a vulnerable 

population at risk of victimization.  This was due to the ease of sexual access to these 

individuals, their involvement in criminal activity (and therefore reluctance to report 

victimization to the police), and their marginalization by the rest of society.  Effectively, 

this meant there were relatively few inhibitors for Ridgway to overcome in order to 

access and victimize the women he preyed upon.  For this reason, target risk, when used 

in the model, was implemented with a preset of “high-risk”. 



 

159 

Prostitutes both repulsed and stimulated Ridgway creating a confluence of 

aggression and sexual arousal (Lackey, Jones, & Johnson, 2015).  Consequently, the 

attributes of target vulnerability, sexual attraction, and (at the same time) social repulsion 

drove his target selection.  Additionally, Ridgway found arousal and satisfaction in 

murdering his victims (Lackey, Jones, & Johnson, 2015).  These are factors that can be 

expressed in the integrated model via object-effect (the potential target’s effect over the 

subject’s needs-accumulator)134, object-attributes (the subject’s perception that the 

potential target has useful attributes for satisfying a goal)135, and object-utility (the actual 

utility toward the subject’s goal)136.  The impact of these parameters were considered and 

utilized to fine tune calibration of the model to the GRK series.  

 

3.2.6 Tactical Planning and Adaptation Methods 

During calibration, one configuration used manual-methods to explore the subject’s 

tactical planning and adaptation.  In this configuration, targeting was set to “active” 

because, in the GRK series, Ridgway sought out targets at locations and during times that 

were in conflict with his scheduling constraints. 

It was reasoned that successful victimization (due to vulnerability in targets) did 

not necessitate more than a low (“L”) setting for the density (perception of inhibitors) and 

paths (number of cognitive navigations) parameters.  The subject’s depth (number of 

moves) and focus were not highly resourced.  However, within the model these settings 

                                                           
134 As discussed in the Chapter2, Scale Section 2.2.3.1. 

135 As discussed in the Chapter 2, Target Memory Section of 2.2.6.9. 

136 As discussed in the Chapter 2, Utility Section of 2.2.8.1. 
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are related to the subject’s time to tactically plan and adapt and his ability to stay on task, 

respectively.  Based on the series scenario, there is no indication that Ridgway was 

lacking time or focus.  Therefore, these settings were left as the default baseline medium 

(“M”). 

Ridgway’s frequent use of prostitutes (without murder), hyper-sexual activity 

with compliant wives and/or girlfriends, and necrophilic activities with previously 

dumped bodies all constitute a “collaborative” action in which Ridgway was satisfying 

needs.137  This appears to have been happening more frequently than the killings 

themselves.  While Ridgway was a very prolific serial murderer, he more frequently 

seems to have used “collaborative” action to satisfy emerging needs.  Thus, when using 

the manual methods, the action strategy was set to “collaborative” and variation was set 

to 15%. 

 

3.2.7 Learning 

As an alternative to manual-methods, the ability to organically produce a viable method 

for tactical planning and adaptation was implemented using method-memory.  

Additionally, burn-in to pre-configure evolving methods was explored with and without 

the tendency (67%) to use a “dominant” action strategy when no reference memory 

exists138.  

                                                           
137Engaging in necrophilic activities with a victim that he had previously killed and dumped was a matter of 

“economics and convenience” (Lackey, Jones, & Johnson, 2015) for Ridgway to satisfy emerging needs without 

expending energy to first “dominate” a non-compliant victim. 

138 The dom-tendency? switch on the model interface (see Appendix A: A3) was implemented as a means to de-conflict 

when there are no method-memory entries available for the current goal configuration. 
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3.2.8 Running the Integrated Model 

The model was instantiated with 500 objects (potential targets).  The minute-per-tick 

(mpt) parameter was set to one mpt (each time-step in the model represents one minute).  

If the subject did not kill a victim within the first ten days (14,400 time-steps), the 

simulation stopped.  If he did commit a murder in the first ten days, then the model 

continued to run for 74 more days (time from first GRK abduction to ninth abduction) or 

until he failed to retreat from an attempted or completed murder and was captured. 

During each run access-sites, kill-sites, dump-sites, and collaboration-sites were 

marked on the “view” and recorded.  Additionally, a “narrative” showing the event-chain 

(from breach to success or failure), the time-step, and the location (cell) was captured to 

provide context to each sequence of events and allow specific run calculations.  Spatial 

outputs were also recorded and included a break-down of event-sites, event-chains, and 

comparisons to real-world dump-sites. 

First, the Model Baseline (MB) configuration as described in the Model Baseline 

Configuration Section 2.3.2 was run.139  Second, a Series Baseline (SB) model was run in 

which scheduling, location-based-targeting, object clustering, and target risk were turned 

“on.”  The Manual-Method (MM) configuration utilized the SB configuration and 

manually set tactical planning and adaptation methods to reflect “active” targeting 

strategy, low (“L”) density, low (“L”) paths, medium (“M”) depth, medium (“M”) focus, 

“collaborative” action, and variation set to 15 (15% chance of each of these settings 

changing when a new acquisitional goal emerges).  The final two configurations, Burn-in 

                                                           
139 The same parameters were used except a failure was considered an arrest/capture and the simulation stopped. 
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1 (B1) and Burn-in 2 (B2), used the SB configuration with method-memory turned “on,” 

10 days of burn-in, and variations on object-effect, object-attributes, object-utility, and 

dominant tendency.  These five configurations are compared in Table 9. 

 

 

 
Table 9: Integrated model test configurations for comparison to the GRK series. 

 
 

 

 

3.3 GRK Series Comparison Results 

Each configuration was run 100 times.  In this section, outputs for each run are compared 

across a set of GRK series matching criteria and compared to the real-world outcomes of 

the GRK series.   The three closest matches to dbh-score from each configuration are 

compared to the GRK series on a timeline and aggregated spatial outputs are displayed 

for each configuration.   

 

Configuration Parameters
Model Baseline

(MB)

Series Baseline

(SB)

Manual-Method

(MM)

Burn-in 1

(B1)

Burn-in 2

(B2)

Scheduling? OFF ON ON ON ON

Loc-based-target? OFF ON ON ON ON

Target-type? OFF ON ON ON ON

Preset-target-type -- "high risk" "high risk" "high risk" "high risk"

Obj-share-location? OFF ON ON ON ON

Object-pref? OFF ON ON ON ON

Object-effect 0 0 0 0 15

Object-attributes 0 0 0 0 30

Object-utility 0.5 0.5 0.5 0.5 0.9

"Dominate" tendency -- -- -- OFF ON

Manual-method? OFF OFF ON OFF OFF

Targeting (method) -- -- "active" -- --

Tactical (method) -- -- L/L/M/M -- --

Action (method) -- -- "collaborate" -- --

Variation (method) -- -- 15 -- --

Start-sim 0 0 0 14400 14400

Use-memory? OFF OFF OFF ON ON
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3.3.1 Matching Criteria 

Match criteria were developed to assess how well simulation outputs reproduce the GRK 

series.  From each simulation run, the spatial metrics (comp_loc_score and 

comp_completeness), temporal metrics (dbh and dbh-score), length of the series (in 

days), number of murders, and number of collaborations were compared.    

Table 10 shows the 95% confidence interval ranges around the mean values 

(n=100) of each configuration for the GRK match elements.  The GRK value for each 

criterion is listed in the right-most column of the table.  While no configuration range 

matches the GRK value for location-score of 0, the MB configuration comes the closest 

with a range between 0.8 and 2.1.  No configurations matched the GRK value for the 

completeness-score of 1.  However, the SB and B2 configurations both were the closest 

to a match with ranges of 0.20 to 0.27 and 0.19 to 0.28, respectively.  The GRK series 

had a mean of 9.3 dbh; the closest match was the B1 configuration with a range between 

2.3 and 5.5 dbh.  The SB and B2 configurations both produced ranges that contained the 

GRK dbh-score of 0.06.  The portion of the GRK series tested was 74 days long.  The B1 

and B2 configurations produced, on average, the longest series with mean lengths 

between 8.3 and 14.6 days and between 9.5 and 14 days.  The portion of the GRK series 

tested involved 9 murders.  The closest match was the B2 configuration which produced 

a mean range between 3.2 and 5.8 murders.  It was assumed the GRK series involved 

approximately 2 to 3 sexual experiences (“collaborations”) a day.140  The MB, SB, and 

B1 configurations produced ranges that encompassed this estimate.   

                                                           
140 Based on statements made by Ridgway’s wives and girlfriends (Lackey, Jones, & Johnson, 2015) 
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Table 10: Mean (95% confidence interval) model outputs for GRK match 
elements for each model configuration. 

 
 

 

 

The GRK match elements from Table 10 were assessed and relaxed criteria 

ranges were derived from a qualitative review of model outputs.  The GRK match 

elements, GRK output, and relaxed matching criteria are listed in Table 11 

 

 

 
Table 11: GRK outputs that drive qualitative assessment 

criteria for the integrated model configurations. 

  
 

GRK Match Elements
Model Baseline

(MB)

Series Baseline

(SB)

Manual-Method

(MM)

Burn-in 1

(B1)

Burn-in 2

(B2)

GRK

Value

location-score 0.8 - 2.1 2.1 - 3.4 1.3 - 2.6 1.2 - 2.5 2.0 - 3.4 0.0

completeness-score 0.09 - 0.14 0.2 - 0.27 0.12 - 0.19 0.11 - 0.18 0.19 - 0.28 1.00

avg. days-between-hits 0.9 - 1.5 0.6 - 1.1 1.6 - 2.6 2.3 - 5.5 1.6 - 2.9 9.3

dbh-score 0.01 - 0.04 0.04 - 0.08 0.02- 0.04 0.01 - 0.05 0.03 - 0.07 0.06

series length 2.9 - 4.5 2.8 - 6.2 5.5 - 9.1 8.3 - 14.6 9.5 - 14 74.0

count kill-sites 1.2 - 2 2.6 - 4 1.7 - 2.7 1.5 - 2.6 3.2 - 5.8 9.0

collaborations-per-day 1.3 - 2.1 3 - 4.3 4 - 5.6 1.9 - 2.8 4.9 - 6.3 2.0 - 3.0

All confidence ranges represent a 95% confidence interval

GRK Match Elements GRK Output
Relaxed 

Matching Criteria

location-score 0
≤ 5.00 

(count kill sites > 0)

completeness-score 1 ≥ 0.40

avg. days-between-hits 9.3
range: 

3 - 15

dbh-score 0.06
range: 

0.04 - 0.08

series length 74 ≥ 45

count kill-sites 9
range: 

6 - 12

collaborations-per-day ~2-3, unk
range: 

1 - 10
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Table 12 shows the number of runs from each of the different test configurations 

that matched the relaxed GRK criteria.  The SB configuration produced 65 runs that fit 

the location-score criteria.  SB and B2 both produced 21 runs that fit the completeness-

score.  The MM, B1, and B2 configurations each produced 14 runs that generated days-

between-hits within the criteria range.  The B2 configuration produced 6 runs and the B1 

configuration produced 6 runs that had dbh-scores similar to the GRK series.  The B1 

configuration was able to produce 6 runs that lasted more than 45 days.  In three of the 

B1 configurations and one of the SB configurations the subject was still active when the 

simulation ended.  These four runs constitute unsolved series during the data collection 

period.  Configuration B2 produced 16 runs that matched the kill-sites criteria.  The SB, 

B2, and MM configurations all produced a significant number of runs that met the 

collaborations-per-day criteria (77, 76, and 75, respectively).   

 

 

 
Table 12: Frequency of series from each test configuration that met the GRK match criteria. 

 
 

 

 

GSK Match Criteria
Model Baseline

(MB)

Series Baseline

(SB)

Manual-Method

(MM)

Burn-in 1

(B1)

Burn-in 2

(B2)

location-score
≤ 5.00 (count kill sites > 0)

52 65 53 47 53

completeness-score
 ≥ 0.40

5 21 13 10 21

days-between-hits
range: 3 - 15

1 2 14 14 14

dbh-score
range: 0.04- 0.08

1 4 2 6 6

length of series
≥  45 days

0 1 1 6 3

count kil-sites 
range: 6 - 12

6 14 11 11 16

collaborations-per-day
1 - 10

53 77 75 66 76
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As shown in Table 13, all five configurations produced a significant number of 

series with kill-sites.  If only runs that produce at least one kill-site are considered,141 the 

MB configuration has the highest percent of criteria matches for location-score (78.8%).  

However, B1 and/or B2 had higher percent matches on all other criteria. 

 

 

 
Table 13: Percent of series (with at least one murder) from each test configuration that 

met GRK match criteria. 

 
 

 

 

Table 14 shows that none of the runs from any of the five configurations met all 

seven GRK match criteria during the simulations.  Among all five configurations, two 

runs (one from the MM configuration and one from the B2 configuration) met six of the 

seven criteria.  Among all five configurations, 18 runs met five of the seven criteria.  

Eleven of these runs used the B1or B2 configuration.  None of the MB configuration runs 

met more than four of the seven criteria. 

 

 

 

                                                           
141 Number of days and collaborations-per-day did not require that the series have any kill-sites and were not 

considered for this part of the analysis.  Runs with at least one kill-site: MB (66), CB (84), MM (74), B1 (63), and B2 

(75). 

GSK Match Criteria
Model Baseline

(MB)

Series Baseline

(SB)

Manual-Method

(MM)

Burn-in 1

(B1)

Burn-in 2

(B2)

location-score
≤ 5.00 (count kill sites > 0)

78.8% 77.4% 71.6% 74.6% 70.7%

completeness-score
 ≥ 0.40

7.6% 25.0% 17.6% 15.9% 28.0%

days-between-hits
range: 3 - 15

1.5% 2.4% 18.9% 22.2% 18.7%

dbh-score
range: 0.0366 - 0.0766

1.5% 4.8% 2.7% 9.5% 8.0%

count kil-sites 
range: 6 - 12

9.1% 16.7% 14.9% 17.5% 21.3%
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Table 14: Number of series from each configuration that met at least 1, 2, 3, 4, 5, 6, 
and 7 GRK match criteria. 

 
 

 

 

3.3.2 Days-Between-Hits 

Figure 60 shows timeline comparisons for the three runs from each of the five 

configurations that were closest to the GRK dbh-score142 (0.06).   The closest matches 

from each configuration are run MB-2 (0.07) from the MB configuration, run SB-3 

(0.06), from the SB configuration, run MM-3 (0.08) from the MM configuration, run B1-

1 (0.05) and run B1-3 (0.05) from the B1 configuration, and run B2-1 (0.06) from the B2 

configuration.   

Overall, the nine closest dbh-scores came from SB, B1, and B2.  Five of the six 

best matches were from B1 and B2.   Although the runs represented in Figure 60, are the 

three closest matches to the GRK dbh-score from each configuration, only two of these 

runs (SB-3 and MM-3) were close to half as long as the GRK series. 

 

 

 

                                                           
142 In this analysis, dbh-score refers to days between kills. 

GSK Match Criteria
Model Baseline

(MB)

Series Baseline

(SB)

Manual-Method

(MM)

Burn-in 1

(B1)

Burn-in 2

(B2)

all 7 criteria 0 0 0 0 0

at least 6 criteria 0 0 1 0 1

at least 5 criteria 0 3 4 6 5

at least 4 criteria 2 10 9 15 11

at least 3 criteria 4 23 18 18 21

at least 2 criteria 35 57 49 42 41

at least 1 criteria 77 91 89 87 71
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Figure 60: Timelines comparing abduction days from the GRK series to access (abduction) days 
from three examples of each of the configurations.  Note cluster-score describes standardized 

clustering and does not reflect length of a series.  

 

 

 

The dbh-score describes the clustering tendency, not length of the series or the 

number of events.  Therefore, the runs from Figure 60 were re-plotted on a new set of 

timelines in Figure 61 and scaled to the same length (in days) as the GRK series.  These 

new timelines illustrate that, with scaling there is much more qualitatively similar 
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clustering to the GRK series.  Figure 61 also includes the scaling factor used for each 

series. 

 

 

 

 

 

Figure 61: Timelines comparing the three closest matches to the GRK dbh-score from each 
configuration.  The scaling factor for each run is also shown. 

 

 

 

A second set of criteria (reduced from the original seven criteria in Table 12 to five 

weighted criteria) was used to further search each set of configuration runs for 

qualitatively similar runs to the GRK series.  Weights were used to increase emphasis on 
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matching series longevity and the number of kill-sites.  These new criteria and weights 

are listed in Table 15.  

 

 

 
Table 15: Adjusted and weighted GRK match criteria. 

 
 

 

 

Figure 62 shows the timelines for the “best fit” (based on the revised criteria and 

weights) from each configuration.  The “best fit” for MB, SB, and MM were also found 

to be the best dbh-score fits previously identified.  The “best fit” for B1 and B2, however, 

have higher dbh-scores than the GRK series and show significantly elevated tendency to 

cluster in comparison to the GRK series. 

 

 

 

GRK Match Elements
Relaxed 

Matching Criteria
Weight

location-score
< 5.00 

(count kill sites > 0)
1

completeness-score  > 0.40 1

avg. days-between-hits
range: 

3 - 15
1

series length > 45 2

count kill-sites 
range: 

6 - 12
2
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Figure 62: Timelines for the “best fit” (based on the revised criteria and weights) from each 
configuration. 

 

 

 

Figure 63 shows, given scaling, MB, SB, and MM are visually closer matches to 

the GRK series clustering tendency than the B1 or B2 configurations. 

 

 

 

 

 

Figure 63: Scaled timelines for the “best fit” from each configuration. 
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3.3.3 Spatial Comparisons 

Access-sites were expected to cluster around the International Boulevard prostitute 

“stroll.”  Kill-sites were expected to cluster around the prostitute “stroll,” Ridgeway’s 

home, and the GRK dump-sites.  Dump-sites were expected to be found at the same 

locations as the GRK dump-sites.  Collaboration-sites were expected to cluster around 

the prostitute “stroll,” Ridgeway’s home, and the GRK dump-sites. 

Event-sites were collected for each configuration and aggregated for all 100 runs.  

They were then displayed as heat-maps to illustrate spatial tendencies143 for each type of 

event-site for each of the five configurations.  An example of event-sites captured during 

a run from each configuration can be found in Appendix E.   

Figure 64 illustrates the aggregated spatial distribution of access-sites, 

collaboration-sites, kill-sites, and dump-sites for the MB configuration.  Access-sites 

generally cluster around the subject’s home, work, and the prostitute “stroll.”  

Collaboration-sites were found near the subject’s home, the middle of the prostitute 

“stroll,” and in the vicinity of the Green River dump-sites.  The subject primarily killed 

victims in the middle of the prostitute “stroll” and at his home.    The subject primarily 

dumped bodies where he killed, although there was also a tendency to utilize the Green 

River dump-site locations. 

 

 

 

                                                           
143 In this spatial analysis, “tendency” is defined as more than 10% of the maximum number of sites at any point over 

the course of 100 configuration runs.  Effectively, this equates to at least an orange colored cell for the heat-maps.   
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Figure 64: Aggregated spatial distribution of access-sites, collaboration-sites, 
kill-sites, and dump-sites for the MB configuration. 

 

 

 

Figure 65 illustrates the aggregated spatial distribution of access-sites, 

collaboration-sites, kill-sites, and dump-sites for the SB configuration.  Access-sites 

generally cluster around the subject’s home, work, and the prostitute “stroll.”  

Collaboration-sites were near the subject’s home, the middle of the prostitute “stroll,” 

and in the vicinity of the Green River dump-sites.  The subject killed victims in the 

middle of the prostitute “stroll,” at his home, and in the area of the Green River dump-



 

174 

sites.  The subject primarily dumped bodies where he killed, although he did utilize other 

GRK dump-site locations. 

 

 

 

 

Figure 65: Aggregated spatial distribution of access-sites, collaboration-sites, 
kill-sites, and dump-sites for the SB configuration. 

 

 

 

Figure 66 illustrates the aggregated spatial distribution of access-sites, 

collaboration-sites, kill-sites, and dump-sites for the MM configuration.  Access-sites 

generally clustered around the subject’s home, work, and the prostitute “stroll.”  

Collaboration-sites were near the subject’s home and the middle of the prostitute “stroll.”  
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The subject killed victims in the middle of the prostitute “stroll” and at his home.  The 

subject dumped bodies primarily where he killed, although there was also a tendency to 

utilize the Green River and other GRK dump-site locations. 

 

 

 

 

Figure 66: Aggregated spatial distribution of access-sites, collaboration-sites, 
kill-sites, and dump-sites for the MM configuration. 

 

Figure 67 illustrates the aggregated spatial distribution of access-sites, 

collaboration-sites, kill-sites, and dump-sites for the B1 configuration.  Access-sites 

generally clustered around the subject’s home, work, and the prostitute “stroll.”  

Collaboration-sites were near the subject’s home and the middle of the prostitute “stroll.”  
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The subject killed victims in the middle of the prostitute “stroll,” at his home, and in the 

area of the Green River dump-sites.  The subject dumped bodies primarily where he 

killed, although there was also a tendency to utilize other GRK dump-site locations. 

 

 

 

 

Figure 67 Aggregated spatial distribution of access-sites, collaboration-sites, kill-
sites, and dump-sites for the B1 configuration. 

 

 

 

Figure 68 illustrates the aggregated spatial distribution of access-sites, 

collaboration-sites, kill-sites, and dump-sites for the B2 configuration.  Access-sites 

generally clustered around the subject’s home and the prostitute “stroll.”  Collaboration-
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sites were near the subject’s home and the middle of the prostitute “stroll.”  The subject 

killed victims in the middle of the prostitute “stroll” and at his home.  The subject 

dumped bodies primarily at the prostitute “stroll” and Green River dump-site locations. 

 

 

 

 

Figure 68: Aggregated spatial distribution of access-sites, collaboration-sites, 
kill-sites, and dump-sites for the B2 configuration. 
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The initial spatial expectations (with respect to each event-site) and aggregated 

tendencies for each of the five configurations are outlined in Table 16.  Grey boxes in 

Table 16  indicate configuration tendencies that were not consistent with expectations of 

the GRK series.   

 

 

 
Table 16: Initial spatial expectations (with respect to event-sites) and aggregated tendencies for 

each of the five configurations. 

 
 

 

 

All five configurations had tendencies toward access-sites near the prostitute 

“stroll” which is consistent with expectations.  However, all of the configurations also 

had tendencies to create access-sites at the subject’s home and four of the five (excluding 

B2) tended to create access-sites near the subject’s work which is not consistent with 

expectations. 

Each of the configurations created kill-sites at the subject’s home and near the 

prostitute “stroll” dump-sites which is consistent with expectations.  However, only MB, 

Event-Sites Locations Expectations
Model Baseline

(MB)

Series Baseline

(SB)

Manual-Method

(MM)

Burn-in 1

(B1)

Burn-in 2

(B2)

home X X X X X
work X X X X

prostitute "stroll" X X X X X X

home X X X X X X
work

prostitute "stroll"/dump-sites X X X X X X
Green River dump-sites X X X X

other GRK dump-sites X

home X X X X
work

prostitute "stroll"/dump-sites X X X X X X
Green River dump-sites X X X X X X

other GRK dump-sites X X X X

home X X X X X X
work

prostitute "stroll"/dump-sites X X X X X X
Green River dump-sites X X X X X

other GRK dump-sites X

access-sites

kill-sites

dump-sites

collaboration-sites
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SB, and B1 also had tendencies to create kill-sites near the Green River dump-sites, and 

none of the configurations consistently created kill-sites near the other GRK dump-sites. 

Additionally, all of the configurations created dump-sites consistent with the 

prostitute “stroll” and Green River dump-sites.  However, only SB, MM, and B1 also had 

tendencies to create dump-sites consistent with other GRK dump-sites.  B2 was the only 

configuration that, consistent with the GRK dump-sites, did not have a tendency to create 

a dump-site at the subject’s home. 

Furthermore, all five configurations created collaboration-sites at the subject’s 

home and near the prostitute “stroll” which is consistent with expectations.  However, 

only four of the five configurations (excluding B2) had tendencies to create 

collaboration-sites at the Green River dump-sites and no configuration consistently 

created collaboration-sites near other GRK dump-sites. 

 

3.3.4 Dump-site Centroids 

The location and order of dump-sites created during a model run produce distinct 

centroid-paths that can be compared to the GRK dump-site centroid-paths.  Thus, dump-

sites from the “best fit” runs144 for each configuration were used to calculate dynamic 

triangle centroid-paths over the course of the run.  These centroid-paths were plotted and 

compared to the triangle centroid path for the GRK dump-sites.  

                                                           
144 Using the modified and weighted criteria 
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Figure 69 illustrates the centroid-path for the MB configuration “best fit” run.  

While it seems to move in an opposite direction, the MB centroid-path remains in the 

same general area as the GRK path. 

 

 

 

 

Figure 69: Centroid-path for the MB example. 

 

 

 

As shown in Figure 70, the centroid-path for the SB configuration “best-fit” does 

not match the shape of the GRK centroid-path; however, it does follow the same general 

directionality at the beginning of the series and remains in the same general area over the 

course of the run. 
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Figure 70: Centroid-path for the SB example. 

 

 

 

Figure 71 illustrates that the centroid-path for the MM configuration “best-fit” 

closely matches the beginning of the GRK centroid-path.  However, it never takes the 

southwest turn that the GRK series does and instead doubles back on itself. 

 

 

 

 

Figure 71: Centroid-path for the MM example. 
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Figure 72 shows the centroid-path for the B1 configuration “best fit”.  It moves in 

the opposite direction from the GRK centroid-path.  However, it remains in the same 

general area. 

 

 

 

 

Figure 72: Centroid-path for the B1 example. 

 

 

 

Figure 73 shows the centroid-path for the B2 configuration “best fit” example.  

This path remains significantly northwest of the GRK centroid-path for the majority of 

the run.   
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Figure 73: Centroid-path for the B2 example. 

 

 

 

3.4 Summary 

Section 3.1 provided a short synopsis of the Green River Killer (GRK) series in Seattle-

Tacoma, Washington, and the relevant spatial, temporal and behavioral features that were 

used to test the configuration procedures for the integrated model.   

Section 3.2 provided a review of how the integrated model was configured using 

open-source details about the series.  Different configurations of the model were 

described.  Section 3.3 reported findings of the comparison between the model 

configurations and the GRK series using weighted qualitative matching criteria, temporal 

analysis using days-between-hit data for selected configuration runs, and timeline 

visualizations.  Finally, the configurations were compared to the real-world series by 

examining aggregated event-sites, and series centroid-paths.  A significant amount of 

information was learned about the performance of the integrated model and the spatial 
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and temporal dynamics of the comparison series.  These findings will be further 

discussed in the larger context of the integrated model in the next chapter.  
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CHAPTER 4: DISCUSSION 

 

 

 

4.1 Discussion of Findings 

Measuring how well the integrated model “fits” the GRK series involves addressing 

comparisons between the real-world series and simulated model outputs based on spatial, 

temporal, and qualitative criteria.  The findings from the previous chapter will be 

discussed in these terms.  In addition, the integrated model will be further examined with 

regard to the implications of these findings and the larger context of using the integrated 

model to better understand the violent offending process.   

 

4.1.1 Spatial Findings 

At first blush, it appears that all configurations performed with relatively similar 

results in reproducing the event-sites.  Generally speaking, the integrated model identified 

access-sites, kill-sites, dump-sites, and collaboration-sites where they would be expected 

to be, given calibration to the GRK series.  Yet, the model is designed to utilize pre-

defined areas of significant spatial comfort and privacy at instantiation.  Thus, it should 

be no surprise that the subject tended toward accessing targets in areas that he had 

significant comfort (“work,” “home,” or “play”) and killing and collaborating (sexually) 

in areas that he felt he had a sufficient level of privacy (“home” and GRK dump-sites).   
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For this reason, it is a foregone conclusion that the subject will dump a victim near 

or on GRK dump-sites.  However, given expectations that the subject would utilize 

privacy and comfort areas to select certain sites for certain activity, what bears further 

examination is the general tendencies among these pre-defined locations for the subject to 

favor one area over another.  While the simulated aggregated spatial outputs from Section 

3.3.3 generally reproduce the GRK dump-sites, nuanced differences are based on the 

underlying implementation of temporal and spatial drivers.   

It is important to note, that expectations of access-site, kill-site, and 

collaboration-site locations were not based on location data from the GRK series, but 

rather general statements.  Thus, the expectation that access-sites are primarily in the area 

of the prostitute “stroll” is based on qualitative observations from open-source 

information that did not specify where along International Boulevard access took place, 

nor did it explicitly exclude accessing targets at other locations like the subject’s “work” 

or “home.”  In fact, finding that the subject accessed targets near Ridgway’s home during 

simulation may, in actuality, be consistent with the reality of the GRK series.  Ridgeway 

lived just south of the prostitute “stroll” and often complained about prostitutes in his 

own neighborhood.  Additionally, while it is clear that Ridgway would return to dump-

sites to have sexual experiences with living and deceased victims, it is not clear which 

dump-sites.  Thus, tendency for the absence of collaboration-sites and kill-sites at some 

dump-sites may not be altogether inconsistent with the known facts of the GRK series.  

“Scheduling” tends to keep a subject close to locations involved in the schedule.  

Therefore, the subject, while following a schedule, does not travel far from his “home,” 
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“work” and “play” anchor-points unless he has a current acquisitional goal and is 

pursuing an “active” targeting strategy.  In the GRK series, the prostitute “stroll” is the 

only location determined to be a “play” location for the subject.  This limits the subject’s 

resulting activity-space and may exclude other relevant locations the subject frequents 

when not at “home” or “work.”  In addition, over time it is logical to assume that the 

subject will incorporate changes not only in spatially relevant anchor-points but also 

scheduling and other temporal constraints.  Notably missing from the integrated model is 

the incorporation of days that the regular “work” schedule does not apply.   On a 

weekend, for instance, the subject may have more latitude to expand his spatial 

awareness due to relaxed time constraints. 

Reliance on static spatial privacy is a limiting factor as well.  If the subject’s 

spatial awareness evolves in terms of comfort, then his knowledge of areas that provide 

significant privacy should also evolve over time.  Consequently, the discovery of a body 

and resulting investigative and media related activities are likely to significantly reduce 

the privacy of an area, at least during the short-term.  Thus, the absence of reasons to 

temporarily avoid preferred private locations and lack of dynamic privacy may account 

for over- and under-represented tendencies toward certain dump-sites.  

While the aggregation of event-sites across configurations is useful to understand 

the underlying context of spatial features, the use of centroids provides a significantly 

more constructive dynamic analysis.  This type of comparison more deeply explains the 

relevance of dynamic spatial features and highlights that the sequence and number of 

dump-sites matters when comparing the integrated model to a real-world series.   
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In contrast to the aggregated spatial results that can appear qualitatively 

convincing, the simulated centroid-paths did not have the same dynamic spatial features 

as the GRK series.  This highlights a deeper layer of understanding about the GRK series.  

While privacy and comfort are the primary drivers of the event-sites that are available, 

there are other important elements that have a significant impact on sequence and timing.   

In a dynamic spatial comparison to a real-world series like the GRK, it is 

necessary, therefore, to consider additional factors not currently incorporated into the 

integrated model.   These include (but are not limited to) the subject’s spatial choices as 

they relate to avoiding investigation, evolving dynamic levels of privacy, and increased 

awareness of risk among potential targets.  Thus, if the subject abducts from the 

prostitute “stroll” and dumps the victim’s body next to the Green River, target and 

environmental circumstances affecting the viability of future event-sites are likely to 

(temporarily) change.  For example, targets at the prostitute “stroll” may become more 

situationally aware, 145 thus forcing the subject to hunt in a new area, or the subject may 

need to find a new area to dump a body because media coverage surrounding previous 

dump-sites has brought too much attention to a previously private location.  

 

4.1.2 Temporal Findings 

The temporal findings from the previous chapter focus on two different, but related, 

outputs; series longevity and days-between-hit (dbh) clustering.  In general, it was 

difficult to find a significant number of model runs that lasted as long as the GRK series.  

                                                           
145 Temporarily changing potential victims from “high-risk” to “medium- “or “low-risk” 
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This is especially interesting considering that the GRK data only included the first nine of 

49 total murders.  Additionally, those runs that did come close to the length of the GRK 

series were not particularly good matches based on clustering characteristics as measured 

with dbh score.   When model runs approached GRK dbh-score, the lengths of the runs 

were significantly shorter than the GRK series.   The inability of the integrated model to 

generate series with concurrent longevity and clustering characteristics similar to the 

GRK series appears to be due to two factors; (1) the inability of the integrated model to 

produce a subject who successfully evades capture for a prolonged period of time, and (2) 

issues in temporal scaling. 

It may be that the integrated model over-emphasizes the concept of “capture” 

following failure to egress.  That is to say, in the integrated model, failure to egress from 

an attempted action involving access or extraction leads automatically to capture, 

whereas in a real-world series, failure to egress under the same circumstances may lead 

to evidence or a witness, but not necessarily immediate capture.  In fact, barring being 

caught in the act or with the body (which would be considered failure to egress after the 

extraction), it may be more realistic to regard failure to egress not as capture, but rather 

as increased exposure to suspicion by law enforcement.  In this way, if the subject 

regularly fails to egress from attempted action, over time he may accumulate enough law 

enforcement scrutiny to lead to capture.  However, until then, he remains free and 

potentially active. 
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Findings in the previous chapter146 indicate that the Series Baseline (SB), Burn-in 

1 (B1), and Burn-in 2 (B2) configurations consistently produce the most GRK temporal 

clustering characteristic matches and B1 and B2 produce the most consistent longevity 

(albeit not concurrently with temporal clustering).  Structurally speaking, SB, B1 and B2 

incorporate significant representations of target clustering and risk.  Additionally, B1 and 

B2 incorporate learning, via the method-memory and burn-in procedures, that appear to 

aid the subject in making useful and purposive decisions.   

 Conversely, Manual Method (MM) did not perform well in matching temporal 

cluster characteristics or longevity even though it too utilized significant representations 

of target clustering, risk, and cognitive decision-making.  The primary difference 

between MM and the better performers (SB, B1, and B2) appears to be that MM uses 

preset assumptions about the subject’s preferred methods with slight variation (15%), 

whereas the B1 and B2 configurations allows those preferred methods to emerge and the 

SB configuration creates random action strategies.  Thus, it appears that increased 

variation (whether purposeful or not) in preferred methods tends to create underlying 

structural similarities to the GRK series.  Also, strategies that are responsive to 

environmental realities increase potential for avoiding failure, thereby producing a 

greater potential for series longevity.  Both of these points stress that endogenous 

variation and adaptability are key elements in reproducing temporal clustering 

characteristics and series longevity.  This supports recent research that stresses a nuanced 

                                                           
146 See Matching Criteria, Section 3.3.1, and Days-Between-Hits, Section 3.3.2. 
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understanding of geospatial, temporal, and crime scene differentiation and consistency 

for serial offenders (Osborne & Salfati, 2015; Sorochinski, 2015).    

 

4.1.3 Criteria-based Matching 

Criteria-based matching was used with the intention of quickly identifying “best fit” runs 

produced by the various integrated model configurations.   However, none of the five 

configurations was able to adequately match the GRK series on all seven criteria.  Even 

when the seven criteria are relaxed to relatively liberal ranges, the best that any 

configuration could muster was three runs that match six of the seven criteria; two from 

B2 and one from MM. 

After further examination, however, it is apparent that the integrated model was 

capable of reproducing some of the individual criteria with regularity.  Specifically, more 

than 50% of the runs in all five configurations generated collaborations-per-day that 

matched the relaxed criteria for the GRK series.  This tendency significantly increases to 

74% when the Model Baseline (MB) is excluded from the comparison.   

Additionally, some of the criteria were only valid if the subject killed at least 

once.  Among all configurations, an average of 72% of the runs concluded with at least 

one murder.  Thus, while the integrated model provides potential for violence, it is not a 

foregone conclusion that every run will result in violent offending147 which automatically 

precludes several of the GRK criteria.  When the subject did kill, the location-score, 

completeness-score, and kill-site count met GRK outcomes (based on relaxed criteria 

                                                           
147 This is, in itself, an interesting finding that supports the notion of “non-primed, non-offenders” and “primed, non-

offenders” discussed in Chapter 2, “Primed” Behavior, Section 2.1.2. 



 

192 

ranges) with much more regularity.  Ability to satisfy criteria that address event-site 

locations, however, is not a surprise considering that dump-sites generated by the 

integrated model are dependent on pre-determined privacy and comfort derived from the 

GRK series.   

Criteria-based matching also highlights useful differences between configurations 

in temporal factors (mean dbh and dbh-score).  Although none of the configurations 

overwhelmingly matched the GRK series, Table 12 shows that MM, B1 and B2 

significantly out-performed the MB and SB configurations in matching days-between-hits 

(dbh), and B1 and B2 were much more effective at matching dbh-score.  The dbh-score 

criterion is based on temporal clustering characteristics and, given differences in the 

configuration matches and superior performance of B1 and B2, points to a potential 

relationship between the integrated model’s endogenous features of adaptability and 

series tempo (which is relatively unaddressed in the literature).   

Furthermore, the location criteria (location-score and completeness-score) are not 

particularly diagnostic of a “fit” to the GRK series simply because they are already biased 

toward the GRK dump-site locations.  In fact, these location criteria are probably better 

addressed in terms of dynamic sequence through the use of centroids.  Thus, to enhance 

the notion of a criteria-based “best fit”, it would be beneficial to re-examine the spatial 

metrics used and perhaps replace them with a more useful means to measure the 

differences between centroids generated by the integrated model and the GRK series 

centroid. 
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4.2 Discussion of Broader Implications 

This dissertation has been the first to explore the efficacy of computationally 

implementing the violent offending process and has incorporated a number of significant 

steps toward representing exogenous and endogenous subject features.  Central to this 

research is the question; can the violent offending process be computationally expressed 

as a complex social simulation?  The findings in this dissertation suggest that, indeed, it 

can be. 

In general, the integrated model provides theoretically and structurally sound 

representation of violent offending as an emergent feature of decision-making and 

ecologically relevant interactions.  The integration of needs-driven behavior with agent-

based environmental interactions provides an interesting and viable means to represent 

inhibitory thresholds, the development of acquisitional goals, and satisficing through 

preferred endogenous tactical and adaptation strategies.  Furthermore, the incorporation 

of two different types of subject memory (target-memory and method-memory), and their 

integration with the subject’s ability to explore his environment and learn from 

experience represent significant scientific contributions to the emerging field of 

computational criminology. 

The introduction of maze-running in Section 2.2.7.2 highlights an effective means 

to tether the relatively esoteric concepts of tactical planning and adaptation to the 

analogy of navigating traversable space.  This provides a means to leverage a cognitive 

landscape to better understand ecological realities not only from a dynamic perspective, 

but also from a larger understanding of an individual bounded reality.  In essence, maze-



 

194 

running provides a significant advancement toward, and interesting realization of, “the 

whirl of reorientation, mismatches, analyses/synthesis over and over again ad infinitum as 

a basis to comprehend, shape and adapt to an unfolding, evolving reality that remains 

uncertain, ever-changing, unpredictable.” (Boyd, 1992, p. 33). 

Significantly, a number of the interactions that emerge in the model do not 

involve violent offending.  For this reason, the integrated model’s features are not limited 

solely to violent offending and appear to have application across decision-making and 

ecologically relevant interaction in general. 

In addition, these first steps toward creating a viable synthetic offender have 

established the relevance of the stages necessary to create qualitatively convincing 

interactions that result in violent outcomes.  The interaction of these stages in the 

integrated model cement the notion that the emergence of violent behavior, like many 

other human behaviors, is in reality the interaction of endogenous processes with 

exogenous stimuli reinforced by bounded learning and satisficing (Simon, 1972). 

The introduction of “narratives”148 into the model enables the tracking of pre-and 

post-behaviors for each event-site and in doing so, provides an invaluable means to 

contextualize many of the findings.  Thus, not only does the integrated model record a 

kill-site, but it also connects it to the initial breach that developed the acquisitional goal, 

the tactical planning, and access that came before the killing, and the dump or failure to 

egress that followed.  This does not mean that the breach or tactical planning events 

offer explicit spatial data, but rather, the model, by tracking these events, creates event-

                                                           
148 As discussed in Chapter 2, Model Outputs, Section 2.2.9 and Chapter 3, Running the Integrated Model, Section 

3.2.8. 
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chains that describe the overall progression from a “non-primed, non-offender,” to a 

“primed, offender.”149 

It is important to note that, the integrated model defines an “offender” in terms of 

current state.  This does not reduce the criminal culpability of the subject for a murder-

event, but it does address the dynamic transition of the subject between offending and 

non-offending states throughout the series.  It also further highlights that, even for a 

subject who is a prolific serial killer like Ridgway, the majority of his time is spent in a 

“non-primed, non-offending” or “primed, non-offending” state.  Practically speaking, this 

means that it behooves the investigative community to understand (and potentially 

exploit) the counter-intuitive reality that murder offenders mostly engage (even 

throughout an active series) in non-offending activity. 

The integrated model, therefore, has the potential to provide significant insight 

into hidden behaviors that drive the development of offending outcomes.   Thus an 

important overall implication to consider is that, with further calibration and validation, 

the creation of a synthetic offender can offer a significant contribution to understanding 

how the violent offending process evolves, or does not evolve, given significant internal 

conditions and external stimuli.  For instance, this type of effort can explore targeting 

decisions, opportunity-based spatial offending (Ratcliffe, 2006), or limitations to offender 

adaptability. 

                                                           
149 The incorporation of event-chains provides an interesting form of data imputation (derivation of missing values).  

While imputation generally is achieved via statistical methods, the integrated model provides an alternative method of 

actually building a form of contextual imputation. 
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A logical second question then, is: if the efficacy of the integrated model is 

predicated on further calibration and validation, can it be calibrated to a specific 

series?150  The answer appears to be a qualified “yes.”  While calibrating the integrated 

model to a specific series may be possible, this first step in doing so with the GRK series 

has highlighted a number of issues and challenges.  Overcoming these challenges will 

require further addressing temporal scaling, dynamic comfort and privacy, and the 

ecological impact of the subject’s violent activities. 

The complexity of the violent offending process prohibits exact “duplication” of a 

real-world series.  Yet, if the underlying process is consistent with the underlying process 

of real-world events, it is important to have an understanding of what the specific outputs 

actually mean.  As an analogy, if an apple seed is planted in the earth, the expectation is 

that, given favorable environmental conditions and time, an apple tree will grow.  It is 

understood that given certain inputs, certain outputs will follow.  The expectation of 

output does not, however, include exact expectations of fruit yield or branch 

configuration and no two seeds will produce exactly the same tree.  Non-deterministic 

modeling of the violent offending process is similar to planting an apple seed.  The 

potential for violent behavior exists, and given a certain set of cultivating environmental 

conditions, the model can encourage that behavior to emerge.  However, the nature and 

yield of that emergence are not solely determined by the potential of the subject, but also 

the interactions of the subject’s potential with the specifics of a dynamic environment.   

                                                           
150 It is interesting to note that any one run of the integrated model is an accumulation of interactions.  Thus, every run 

constitutes a series of interactions that may, or may not, be defined as violent offending.  Given this perspective, it 

appears that the notion of calibration to a specific violent offending event versus a series of violent offending events 

depends on how the outcome events in the model run are eventually defined. 
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Thus, certain things are relatively predictable.  For instance, given stimuli, 

behavior will emerge.  Probability-wise, the subject may have greater tendencies toward 

certain strategies for dealing with acquisitional goals.  However, the more specifically 

one would like to reproduce an explicit outcome of a specific series of events; the more 

significantly the subject’s potential (and environment) must be bounded.  Thus, how and 

with whom he interacts, where he goes and what happens when he gets there must be 

highly defined.  Unless the subject is completely bounded to a specific real-world series, 

the expectations of predictably reconstructing the behavior are unreasonable.  The most 

we can hope for is approximations. 

So then the question is; what insights can the integrated model provide when 

applied to a specific series?  The integrated model has significant potential to provide 

spatial and temporal insights primarily because there is value in understanding where the 

theoretically and structurally informed assumptions put forth in the model diverge from 

observable reality.  This can provide a viable theory of the offender’s behavior that could 

lead to earlier opportunities for interdiction. 

For instance, it is easy to conclude that the underlying assumptions having to do 

with privacy and comfort in the integrated model account for event-site placement across 

aggregated runs.  However, these factors do not account for spatial discrepancies 

evidenced in each of the specific model runs.  Thus, in a specific series, there is value in 

further examining the spatial dynamics of the series by highlighting other ecologically 

relevant factors like investigation and its dynamic impact on comfort and privacy.  It may 

very well be that privacy and comfort are responsible for driving potential site locations, 
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but dynamic social factors are responsible for the choice of actual event-sites.  This 

supports dynamic models of opportunity-based offending (Ratcliffe, 2006) and routine 

activities (Cohen & Felson, 1979).  

This type of refinement highlights those features that provide meaningful insights 

into the internal and external drivers of violent offending in general.  For instance, 

application of the integrated model to the GRK series suggests that while the underlying 

temporal structure of the configuration runs is similar to the GRK series, the scale of 

component parameters needs to be adjusted.  This finding further suggests that there may 

be structural process similarities between events that occur at very different tempos like 

serial murder and mass murder.  The main difference between these types of events might 

essentially be the temporal scale at which they are expressed.   

 

4.2.1 Limitations 

While this project provides a viable means to model the violent offending process, it 

highlights several of the challenges encountered in this endeavor.  It is important to 

examine these limitations and how they were addressed and/or can be overcome to 

understand their impact on the functioning and overall efficacy of the integrated model, 

as well as, provide guidance for further implementation and research.   

Configuring the integrated model to the GRK series proved relatively straight-

forward given known and readily available series details.  Spatial, temporal, and 

investigative details were fairly well-documented and available via open-source 

information.  However, there were some challenges during configuration that bear further 
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examination.  These challenges were driven by assumptions about linked cases, 

geospatial representation of speed and travel routes, and occasionally conflicting or 

absent open-source information.    

While the GRK series officially connects Ridgway to 49 murders, there is 

speculation that he may be responsible for as many as 71 murders spanning from 1974 to 

1998 (Montaldo, 2011).  This could certainly pose complications in any comparison, 

especially if suspected cases are temporally and spatially interspersed among officially 

connected cases.  To this point, the comparison of the integrated model to a real-world 

scenario like the GRK series is only as “good” as what is currently known about the 

extent of offending.  Reliance on officially connected and/or adjudicated cases may, in 

fact, provide an incomplete understanding of the series.   

This is a particular issue in the GRK series because while it is assumed that the 

integrated model was configured and compared to the first nine murders, there is a 

possibility that there was (based upon the aforementioned speculation) an additional 

murder committed by Ridgway within the 74-day time-frame, and four unaccounted-for 

murders before the official series began.  However, the choice was made during this 

analysis to exclude these five potentially confounding cases because they were not part of 

the official record.  Their attribution to Ridgway is only speculation at the time of this 

writing. 

Speed is represented as a function in which maximum walking speed is 5 miles 

per hour and maximum driving (or alternative transportation method) speed is 30 miles 

per hour.  While the limits to these speeds is adjustable, it is recognized that the speed 
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function as implemented does not allow for particularly realistic geo-spatially determined 

variations (i.e., urban versus rural).  By defining speed zones (in future implementations 

of the model) it is suggested that speed can be more realistically represented by making 

speed an attribute of the cells within respective zones and basing agent (subject and 

object) movement on speed curves or distributions within those zones. 

Travel routes (i.e., roads and paths) are not utilized in the subject’s spatial 

representation.  Although major road systems are present on the reference maps, the 

integrated model is not a traffic model and is not intended to simulate or identify travel 

routes.  It is instead intended to present the subject’s cognitive representation of the 

environment and  key locations.  Therefore, while it is acknowledged that travel routes 

are an important part of an individual’s activity-space, it was decided that generating 

road-based navigation routes would have the effect of appearing more spatially granular 

than the model warranted and generally over-complicate matters.  For this reason, 

clustering around anchor-points and incident sites (that are driven by comfort and 

privacy) is more representative than travel between these sites and targets encountered.  

Furthermore, breaches experienced between locations and event-sites cannot be 

interpreted as literal locations.   

As with any open-source data, accuracy is a concern.  To this point, while the 

GRK data used to configure the model was widely reported in multiple sources, there 

were still issues that required some clarification.  For instance, there was some confusion 

about where Ridgway’s pre-1987 home was located.  Several news sources confused his 

three different residences (one from pre-1987, one from 1987 – 1997, and one post-
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1997).  The first nine officially connected killings took place in 1982.  Therefore, the 

only residence that was relevant to the current configurations was the pre-1987 residence.  

The residence location selected during configuration was the location that had the most 

support for being the pre-1987 residence. 

Additionally, as already noted in the discussion on spatial findings in Section 

4.1.1, the expectations of access-site, kill-site, and collaboration-site locations in the 

GRK series were not based on well-defined location data.  This is not as much a 

limitation to the model as it is a caveat in the interpretation and comparison of these 

simulated event-sites to speculated event-sites in a real-world case.   

As previously noted in the discussion on model memory in Section 2.2.8.4, due to 

computational resource limitations, the sizes of method-memory and target-memory were 

restricted.  While this could have an effect on resources available to the subject during 

decision-making, it was reasoned that newer memories would have a greater impact on 

the subject than older memories (Koechlin & Hyafil, 2007).  For this reason, if the 

subject reaches a memory limit, he will replace the oldest memory with the newer one.   

As previously noted in the discussion on parameters in Section 2.2.1 many of the 

values for parameters are not associated with standard units of measure.  For instance, 

needs accumulation is based in values that do not have real-world defined units.  Nor is 

there a corresponding real-world value, for instance, that measures inhibitory threshold 

that can be used when calibrating to a real-world series.  However, these “unit-less” 

values were generated as relative parameter values within the model itself.  When 

possible, “unit-less” parameters were calibrated using reasonable assumptions about 
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accumulation in relation to time and distance (which did have standard transferable 

units).  Additionally, given the same parameter across configurations of the model, “unit-

less” values can be compared across model runs and findings are couched in statements 

of relativity. 

Cognitive resources (density, paths, depth, and focus) were developed as 

necessary elements to navigate the cognitive landscape panels during maze-running.  For 

this reason, while there may be interesting parallels, attempting to equate them to 

psychological or neurological concepts or principles is not validated in the integrated 

model at this time and presents an opportunity for further investigation and research. 

Scheduling is implemented without weekends, variations, or deviations.  

Scheduling was implemented this way to simplify the model and, in the absence of 

detailed and nuanced scheduling information, avoid making unwarranted or extraneous 

assumptions about variations in the subject’s temporal or spatial constraints.   

The integrated model has been calibrated to one real-world case (GRK).  

Although this comparison involved multiple configurations, there is still more validation 

to the model that must take place.  For this reason, generalizability of the findings or 

statements about the model must be understood to be preliminary and based on limited 

findings.  Ultimately, more cases are needed to validate the integrated model and its 

implementation of the violent offending process.   
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4.2.2 Implications for Further Research 

This project has built and tested a complex social simulation of the violent offending 

process.  Yet, this is only the start.  The integrated model offers significant and exciting 

opportunities for further development and research that can be divided into two 

categories; (1) suggestions for improving the integrated model itself and (2) ideas for 

further computational and criminological research.  Both are discussed below. 

 

4.2.2.1 Further Development of the Integrated Model 

Currently, the integrated model can incorporate multiple evolving needs.  These needs 

were initially implemented to be relatively abstract so as not to over-complicate the 

integrated model during development.  However, explicit representation of needs could 

be an important part of creating well-defined and interpreted acquisitional goals.  This 

can provide a useful means to generate compound actions and a more nuanced 

understanding of offending and non-offending outputs. 151 

As previously discussed in this chapter, it is proposed that incorporating the 

subject’s adaptive responses to emerging investigations and social circumstances will 

improve the ability of the integrated model to reproduce dynamic and temporal aspects of 

a real-world series.  For instance, by integrating the concept of accumulated suspicion by 

law enforcement (as opposed to capture) when the subject fails to egress, it is suggested 

that series longevity will be increased.  Furthermore, emerging social effects that likely 

have an impact on the subject would include detrimental effects on privacy following the 

                                                           
151 See further discussion on the interpretation of model outputs using “narratives” in Chapter 2, Section 2.2.9. 



 

204 

recovery of a victim or increased situational awareness of potential targets.  Addressing 

these factors will contribute significantly to generating qualitatively convincing spatial 

and temporal dynamics by effectively pushing the subject to expand his activity-space 

and spatial awareness. 

It will also be beneficial to develop a means to automate procedures to refine 

configuration of the integrated model during calibration.  One possible method may be 

the use of a genetic algorithm to utilize refined criteria-based matching and “evolve” the 

most viable matching configurations.  This automation will also necessitate establishing 

new metrics to measure dynamic centroid variation (i.e., cosine similarity) and should 

include the means to also automate centroid calculations. 

 

4.2.2.2 Further Computational, Social, and Criminological Research 

This dissertation suggests a new role for computational research in criminology and the 

social sciences that focus on the integration of endogenous subject features of decision-

making and learning within environmental interactions.  This type of research agenda 

includes further validation of the model, exploration of further analytical methods, and 

addressing general and specific research questions.    

The GRK comparison represented a proof-of-concept for the integrated model.  

However, further research must include an effort to calibrate the integrated model across 

a significant number of real-world series.  This is an important step toward empirical 

validation of the integrated model through spatial and temporal comparisons.  For 

example, calibrating the integrated model to other real-world murder series (sexual 
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murders and non-sexual murders), rape series, and robbery series will provide additional 

opportunities to refine comparison metrics, devise selection criteria for default parameter 

values, and highlight parameters that are (and are not) significant.  This will also provide 

an opportunity to better understand variations in model configuration during calibration 

and establish a more robust understanding of the divergences of real-world series from 

the integrated model’s proposed violent offending process.  

The integrated model produces iterative cycles of interaction that span from 

development of the acquisitional goal (inhibitory threshold breach) to interaction 

“outcome.”  Aggregating transitions between states across all iterations of the violent 

offending process allows one to calculate first-order transition probabilities.  Given future 

validation and refinement, first order transition probabilities have the potential to provide 

a basis for useful causal-path analysis for aggregated, as well as specific, events (see 

Appendix C).  

Other methods of analyzing integrated model outcomes should also be examined.  

For instance, temporal analysis of aggregated runs may provide opportunities to apply 

hazard force analysis (in which intensity is measured as dbh within any given series) to 

simulated data.  Once the integrated model has been validated, coupling hazard force 

analysis with power law analysis may provide significant insights about tempo and 

severity of violent events (Cioffi-Revilla, 2014b).  Furthermore, given structural 

similarities of “priming” with the concepts of criticality and “metastability” in bifurcation 

theory in conflict analysis, the integrated model may provide unique insights “into 
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situations that are deceptively stable but in fact are fully capable of generating extreme 

events that will surprise decision makers.” (Cioffi-Revilla, 2012b, p. 207). 

The integrated model can be used to address specific research questions.  For 

instance, it can offer insights toward the exploration of events with similar structure but 

different time scale (i.e., serial murder versus mass murder) or explore the relationships 

between offender adaptability, criminal series longevity, and tempo (a topic that is 

relatively unaddressed in the literature).  These research efforts can go a long way toward 

understanding the violent offending process as having multiple layers of application 

throughout social and criminological research.  For this reason, examining and further 

testing the robustness of event structure across temporal scale within the context of the 

integrated model provides a promising focus for future study.  

In addition, the integrated model, due to its foundational incorporation of 

threshold-based drivers and resultant compound events, offers an interesting and unique 

way to integrate the concept of “loss of killing inhibition” (as applied to individual 

radicalization) into the violent offending process (Cioffi-Revilla, 2012a).  Not only will 

incorporating the notions of distancing and differentiation provide insight into criminal 

violence, but it will also move toward using of the integrated model to enhance current 

understanding of the dynamics of radicalization in terrorism (Cioffi-Revilla, 2012a). 

The integrated model can also be used to explore specific issues of social 

interaction and investigative relevance.  For instance, if an offender has a tendency to be 

absent during accountable time, under certain conditions it may be possible to infer 

negative social effects on the offender’s lifestyle (i.e., he is absent a lot from work and 
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therefore he cannot hold down a job).  The repercussions of this type of analysis could 

offer non-trivial insights for investigative leads.   

Another set of dynamic questions that could be explored are the interplay of 

action strategies with target–rich environments.  For instance, when an offender selects a 

victim from a target-rich environment for “dominant” action, the integrated model 

appears to show (as a function of comfort and privacy) that he is also likely to have a 

significant number of “collaborative” encounters in the same location.  Further validation 

of the model using real-world events will create a greater understanding of this dynamic 

and will go a long way toward addressing (and supporting) practical investigative 

assumptions. 

The specification of “primed” and “non-primed” behaviors also has the potential 

to be the first step toward establishing a set of guiding principles of primed behavior.  

Paramount to this effort is the determination that state of “priming” and state of “action” 

are two separate features that complement each other.  As such, within an offending 

context, a subject can be a “non-primed, non-offender,” a “primed, non-offender,” and a 

“primed, offender.”  This also means that there is a potential fourth condition of “non-

primed, offender” that is not addressed in this dissertation but does pose an interesting 

theoretical question for further investigation.  For instance, is there a condition under 

which a subject violently offends, but has no intentions throughout the event to commit a 

violent offense?  The theoretical implications of this fourth condition are ultimately 

dependent on the underlying social construction of what constitutes “violent offending,” 

and are left for future investigation.  



 

208 

Ultimately, the development of the integrated model has long term implications 

for computational and criminological research in general.  The ability to create an 

offender in silico to simulate the violent offending process can, given further validation 

of the integrated model, produce viable hidden populations of primed non-offender 

populations and synthetic data.  This will help researchers to better understand transitions 

from non-offender to offender states and create a way to better address and define 

complex and dynamic aspects of violent offending. 

 

4.3 Summary 

This chapter begins in Section 4.1.1 by discussing findings from the spatial, temporal and 

criteria-based analyses in the previous chapter.  In Section 4.1.1, it is found that the five 

different configurations of the model closely matched the GRK series with respect to 

aggregated spatial placement of event-sites.  However, a deeper discussion of these 

findings highlights that the dynamic spatial quality, which depends on site sequencing, is 

not well matched.  This spatial discrepancy is attributed to the lack of dynamic 

representation of privacy and the subject’s lack of response to social circumstances that 

are, in the real-world, likely to drive an offender to new event-sites. 

Temporal findings (see Section 4.1.2) are discussed in terms of days-between-hits 

and series longevity.  It is found that the integrated model is effective at matching the 

GRK series when it comes to temporal clustering characteristics.  However, the 

integrated model does not perform well in creating runs that had the same longevity as 

the real-world series.  Interestingly, temporal findings seem to suggest that the more 
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variation that a subject has in his preferred tactical planning and adaptation methods, the 

more the simulated series appears to be structurally similar to the GRK series.  

Furthermore, the more responsive the methods are to changing ecological conditions, the 

better chance the subject has of avoiding capture. 

Criteria-based matching (see Section 4.1.3) is discussed as relatively ineffective at 

identifying a “best fit” configuration.  However, it is also found that some of the criteria 

do show significant matching with the GRK series and the temporal criteria are fairly 

effective in identifying two configurations that emphasize adaptive learning as providing 

effective matches.  However, the discussion notes that these findings simply reinforce the 

temporal findings.   

Broader implications of the findings are discussed in Section 4.2.  It is argued that 

the integrated model, while still in need of validation, is a significant step toward 

computationally expressing the violent offending process.  Furthermore, it is asserted that 

calibration of the integrated model to a specific series is not only possible, but also 

necessary to further validate the model and provide deeper understanding of how specific 

instances of violent offending differ from the violent offending process as expressed in 

the integrated model. 

A significant number of limitations to the integrated model (and strategies to 

overcome them) are discussed (see Section 4.2.1) in terms of configuration challenges, 

memory limitations, “unit-less” parameters, cognitive resources, scheduling and the 

necessity for further validation.  Finally, implications for further research are discussed 
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(see Section 4.2.2) in terms of further development of the integrated model and further 

suggestions for social and criminological research. 
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CHAPTER 5: CONCLUSIONS 

 

 

This dissertation begins with four enduring questions about violent offending.  

The answers to these questions highlight how this research provides unique insights into 

the violent offending process.  First, can a violent “offender” be identified prior to 

attack? The answer is “yes.”  The integrated model provides the opportunity to examine a 

“potential” violent offender’s transitions from pre-offending states to active offending.   

Second, is it possible to discover and/or predict offending trajectories? Again the 

answer is “yes.”  The integrated model represents the transitions in the violent offending 

process as compound events that can be discovered and formalized as a forward-

branching process and contextualized via event-chain narratives.  In addition, model 

outputs produce state transition probabilities that can inform causal-path analysis of 

specific offending trajectories.  While the prediction of a particular subject’s pathway 

through the process is still not tenable, the integrated model implements the means to 

discover and generally predict probability-driven trajectories.   

Third, how does offending depend on the micro-level features of the offender?  

The representations of endogenous needs-driven decision-making, tactical planning and 

adaptation, associative memory, and experiential learning all contribute to the subject’s 

outcome states.  The integrated model can be used to understand variations in each of 

these factors and their effect on state transitions. 
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Fourth, how can hidden attributes and features of violent offenders be effectively 

examined?  The integrated model provides a unique opportunity to examine endogenous 

subject features by allowing violent offending to become an emergent feature of the 

model.  Furthermore, the integrated model provides a significant level of transparency in 

watching how features, that in the real-world are hidden from examination, interact and 

produce behavior.  These outputs can then be collected directly, free from biases 

associated with data collection strategies, and give an accurate representation of explicit 

outcomes. 

This dissertation is motivated by the need to apply new methodologies to violent 

offender research.  This is not to say that traditional research is without merit.  Instead, 

this dissertation seeks to address the “hard” problem of getting to hidden attributes of 

violent offending and the endogenous features that implicit theories of violence attempt 

to address.  While general methods of social and behavioral research depend on 

observation of outcomes, the methods executed here find that additional focus on the 

underlying process of violent offending can produce interesting and insightful 

conclusions that may validate some current understanding of violent behavior and 

suggest deeper interconnectedness generated by the offender, victim, and environment 

interactions.    

It is further suggested that this dissertation highlights useful analytical 

methodologies like formalization of forward-branching processes and transition 

probabilities that are used in interpreting states and generating causal-paths.  These are 

extremely important considerations for analysts, investigators and policy-makers thinking 



 

213 

about contingencies and interested in expanding their understanding of a problem space 

(Boyd, 1992; Kauffman, 2003). 

The overall objective of this dissertation is to explore if implementation of the 

violent offending process as a computationally expressed complex social simulation 

provides meaningful insights into the internal and external drivers of offending.  

Achieving this primary goal necessitated the completion of four objectives; 1) phased 

creation of an integrated model of the violent offending process, 2) verification of the 

model, 3) calibration of the model to a real-world series of violent offenses, and 4) 

development of a way to determine the model’s efficacy in producing qualitatively 

realistic temporal and spatial outcomes.  As a result, this dissertation has produced a 

viable integrated model of the violent offending process with significant internal 

validation that can be calibrated to, and generate simulated outputs comparable with, a 

real-world series.    

It is important to remember that this dissertation is exploratory, not predictive.  

Thus, the reason for its creation is not to find immediate opportunities for anticipating the 

trajectory of, or the next event within, a series of violent crimes.  While in time this type 

of modeling effort may have predictive applications, prediction itself is outside the scope 

of this dissertation.  However, “meaningful insight” does not imply the exercise of 

prediction (Epstein J. , 2008).  In fact,” meaningful insight” in this exploratory effort 

involves understanding the complexities of offending in a more sophisticated or nuanced 

way, re-enforcing or (in some cases) re-defining implicit theory, and even identifying 

useful analogies to better understand the overall complexities of decision-making within 
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a dynamic social system.  Additionally, this modeling effort should be seen as an 

opportunity to identify new questions that can enhance other research efforts. 

In criminology and crime analysis, computational methodologies offer practical 

contributions to understanding the complexity of crime as a social phenomenon.152  With 

increasing computational resources, expanding methods, and no shortage of “hard” 

problems to be addressed, there is a significant amount of momentum to be gained.  This 

dissertation furthers the field of computational criminology by integrating macro-level 

subject-environment interactions with boundedly rational endogenous features of the 

violent offender himself.  In this way, the integrated model adds to general discourse 

about crime trends and can also offer specific insights about offending behavior.     

Thus, not only does this dissertation successfully prototype a computational 

expression of the violent offending process in Chapter 2, but it also produces “practical” 

findings in Chapter 3.  Primary among these findings is the notion that a subject’s ability 

to vary his methods and adapt are key elements in temporal clustering characteristics and 

series longevity.  Additionally, while areas of privacy and comfort provide the subject 

with targeting and site options, dynamic interactional factors influence specific choices.  

Moreover, the development of maze-running as analogy to tactical planning and 

adaptation provides a unique way to better understand the dynamic circumstances in 

which decisions are made.   

The integrated model as a whole highlights the possibility that there may be a 

process of violent interaction that can be applied to offending outcomes expressed at 

                                                           
152 There is also an educational aspect to computational criminology (seeing traditional crime problems in new ways) 

that will likely play an important role in changing the mentality of analysts and investigators.   
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various temporal scales.  Thus, given further modeling efforts, a useful model of 

interactions in general could be distilled from the integrated model.  This is especially 

promising when one considers that the majority of the interactions organically allowed to 

evolve in the integrated model tend to be “collaborative” and not “dominant.”  Thus, with 

a slight shift in perspective, the integrated model presents an interaction model.  

In conclusion, the exercise of creating a complex model of the violent offending 

process necessitates the explicit examination of a diversity of factors involved in violent 

offending and decision-making.  However, it also presents opportunities for research that 

extend far beyond the emergence of violence.  The underlying theoretical and structural 

basis of the integrated model provides computationally explicit means to improve 

understanding of a variety of behavioral and political domains.  In doing so, this 

integrated model presents the first step toward a much more comprehensive 

understanding of the dynamic endogenous and exogenous features of human interaction. 
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APPENDIX A 

 

 

 

The integrated model interface is shown.  Each area (A1, A2, A3, and A4), along with a 

description of the interface elements in the area, follow. 
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A1 

Type Label Explanation Note… 

BUTTON reset 

runs the RESET-INTERFACE 
procedure to reset maze-running 
parameters, object clustering and 
object number on the model 
interface. 

procedure:  
reset-interface 

BUTTON reset log 

runs code to reset "running-
event-log.csv" which captures the 
specific methods used during 
tactical planning and adaptation 
for a specific target following a 
successful egress from a 
dominant action. 

code: 
file-open "/logs/running-
event-log.csv" 
file-print "end" 
file-close 
file-delete "/logs/running-
event-log.csv" 
file-open "/logs/running-
event-log.csv" 
file-print 
(word 
"targeting,density,paths,dept
h,focus,action,target,file") 
file-close  

BUTTON setup 
runs the SETUP procedure to 
instantiate a stylized non-
scenario-based simulation. 

procedure:  
setup 

BUTTON scenario 

runs the SETUP-CASE procedure 
to instantiate a specific "series" 
as defined through the SCENARIO 
BUILDER elements. 

procedure:  
setup-case 

BUTTON go 

initiates the simulation through 
the GO procedure.  The 
simulation will continue to iterate 
until it reaches the END-SIM tick 
or the simulation is stopped due 
to failure to egress. 

procedure:  
go 

BUTTON profile scenario 

runs the PROFILE-SCENARIO 
procedure to capture a code 
profile of procedure calls during a 
specific simulation run 

procedure: profile-scenario 

BUTTON start-sim 

sets the START-SIM input to the 
appropriate tick on which to start 
the simulation.  This calculation is 
based on the MIN-PER-TICK slider 
and the number of days indicated 
in the DAYS input. 

code: 
set start-sim days * (60 / 
min-per-tick) * 24 
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BUTTON end-sim 

sets the END-SIM input to the 
appropriate tick on which to end 
the simulation.  This calculation is 
based on the MIN-PER-TICK slider 
and the number of days indicated 
in the DAYS input. 

code: 
set end-sim days * (60 / 
min-per-tick) * 24 

BUTTON step 
initiates one iteration of the 
simulation through the GO 
procedure.  

procedure:  
go 

BUTTON heatmap-sites 

runs the HEATMAP-SITES 
procedure in conjunction with 
the COLLECT-SITES switch (must 
be "on").  Visualizes aggregated 
event-sites as a heat-map.  

procedure:  
heatmap-sites 

BUTTON clear-file 
runs code to clear the current 
"simulation-sites.txt" file. 

code: 
ifelse file-exists? 
"simulation-sites.txt" 
     [file-delete "simulation-
sites.txt" clear-output 
export-output "simulation-
sites.txt"] 
     [clear-output export-
output "simulation-
sites.txt"] 

INPUTBOX start-sim 

indicates the tick on which the 
simulation will begin.  This value 
can be set either manually or 
using the START-SIM button.  If 
this value is greater than 0, the 
simulation run involves burn-in 

type:  
Number 

INPUTBOX end-sim 

indicates the tick on which the 
simulation will end (if the 
simulation is not stopped by 
failure/capture).  This value can 
be set either manually or using 
the END-SIM button.  

type:  
Number 

INPUTBOX days 

used to designate the number of 
days into the simulation for 
either the START-SIM button or 
the END-SIM button. 

type:  
Number 

INPUTBOX seed-number 

indicates the seed number that 
will be used during the specific 
simulation run.  This value can be 
manually entered or imported 
using the IMPORTED-SEED input 
and READ-SEEDS button.   

type: Number 
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SWITCH capture? 

If switch is "on," failure to egress 
during dominant action is 
considered "capture" and the 
simulation will end.  If switch is 
"off," failure to egress during 
dominant action is not 
considered "capture" and the 
simulation continues.  This is 
used during burn-in to allow the 
subject to rapidly build 
tendencies without stopping the 
simulation. 

value:  
ON/OFF 

SWITCH new-seed-num? 

If switch is "on," the SEED-
NUMBER input will change each 
time the model is run.  Under 
these circumstances, each run of 
the same model will be unique. If 
switch is "off," the SEED-NUMBER 
input will not change.  Under 
these circumstances, a specific 
run can be reproduced. 

value:  
ON/OFF 

SWITCH grab? 

if switch is "on," when output 
requirements are met, export a 
series of useful visualizations of 
event-sites when the simulation 
ends. 

value:  
ON/OFF 

SWITCH narrative? 

if switch is "on," record events 
during the simulation and, when 
output requirements are met, 
export the simulation events to a 
.txt file 

value:  
ON/OFF 

SWITCH schedule? 

if switch is "on," subject (and 90% 
of objects) follow a schedule as 
defined in Scheduling Procedures 
(SET-SCHED_TARGET and SET-
SCHED_TARGET-OBJ) 

value:  
ON/OFF 

SWITCH collect-sites? 

If switch is "on," event-site 
locations and types are written to 
a file (simulation-sites.txt) that 
accumulates event-sites over 
multiple simulation runs.  This 
allows the model to aggregate 
event-sites and visualize them as 
a heat-map using the HEATMAP-
SITES button.  

value:  
ON/OFF 

MONITOR ->ticks 
reports the number of time-steps 
represented by the DAYS input 

source:  
days * (60 / min-per-tick) * 
24 
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MONITOR day(s) 

reports the number of days into 
the simulation (from START-SIM 
input value).  If time-steps have 
not yet reached START-SIM input 
value (during burn-in), reports a 
negative number representing 
number of days until simulation 
start. 

source:  
floor ((ticks - start-sim) / 
((60 / min-per-tick) * 24)) 

MONITOR Active Goals 

reports nominal active goal.  A 
letter (A, B, C, D…) in any position 
indicates the goal incorporates a 
specific need, a "0" in any 
position indicates that need is 
absent. i.e. [A B C D E] or [A 0 0 D 
E].  Size of the goal (number of 
needs) is determined by the 
NEEDS slider under SUBJECT 
PARAMETERS. 

source:  
[goals_active] of one-of 
subs 

MONITOR Target 

reports the object the subject the 
subject is currently targeting for 
interaction (regardless of 
collaborative or dominant action) 

source:  
[target] of one-of subs 

MONITOR time 
Reports current (decimal) time 
represented in the simulation. 

source:  
(((ticks - start-sim) / ((60 / 
min-per-tick) * 24)) - floor 
((ticks - start-sim) / ((60 / 
min-per-tick) * 24))) * 24 

MONITOR Targeting 
reports current targeting strategy 
(active or passive) 

source:  
[targeting_method] of one-
of subs 

MONITOR Tactical 
reports current tactical strategy 
(cognitive resources: density, 
paths, depth, focus) as H/M/L 

source:  
[tactical_method] of one-of 
subs 

MONITOR Extraction 
reports current action strategy 
(dominant or collaborative) 

source: [action_method] of 
one-of subs 

MONITOR loc score 
reports the final comparison 
location score for the run 

source:  
comp_location_score 

MONITOR com score 
reports the final comparison 
completeness score for the run 

source:  
comp_completeness 

MONITOR dpd 
reports the mean days per 
dominant extraction for the run 

source:  
day_per_extract 

MONITOR avg dbh 
reports the mean number of days 
between dominant extractions 
for the run 

source:  
avg_dbh 

MONITOR stdev dbh 
reports the standard deviation of 
days between dominant 
extractions for the run 

source:  
standard-deviation dbh 



 

223 

MONITOR Breach 
reports the running total of 
threshold breaches for the run 

source:  
count sites with [site_type = 
"breach"] 

MONITOR TP 
reports the running total of 
successfully conceptualized 
tactical plans for the run 

source:  
count sites with [site_type = 
"tactical plan"] 

MONITOR Access 
reports the number of successful 
accesses for the run 

source:  
count sites with [site_type = 
"access"] 

MONITOR kills 
reports the number of successful 
kills (dominant extractions) for 
the run 

source:  
count sites with [site_type = 
"kill"] 

MONITOR dumps 
reports the number of successful 
body dumps (post dominant 
extraction egresses) for the run 

source:  
count sites with [site_type = 
"dump"] 

MONITOR Collab 
reports the number of successful 
collaborations (collaborative 
extractions) for the run 

source:  
count sites with [site_type = 
"collab"] 

MONITOR retreats 
reports the number of successful 
retreats from attempted (but 
failed) dominant action 

source:  
count sites with [site_type = 
"retreat"] 

MONITOR Fail 

reports the number of 
unsuccessful retreats and/or 
unsuccessful egress after killing 
(dominant extraction).  If 
CAPTURE? switch is "on," this 
reports the number of captures. 

source:  
count sites with [site_type = 
"capture"] 

MONITOR runtime 
reports current value of the 
runtime timer 

source:  
time 

MONITOR agents 

reports total number of agents 
currently active in the simulation.  
Includes subject, objects, 
locations, and other navigational 
and visualization agents. 

source:  
count turtles 

MONITOR memories 
reports the number of entries 
currently in the subject's 
METHOD_MEMORY 

source:  
length [method_memory] 
of one-of subs 

MONITOR Thresholds 
reports subject's current 
threshold values  

source:  
[thresholds] of one-of subs 

MONITOR Needs 
reports subject's current need 
values (needs-accumulator) 

source:  
[needs_accumulator] of 
one-of subs 

MONITOR Goals 
reports subject's current goal 
values (NEEDS - THRESHOLDS...> 
0 indicates an active goal) 

source:  
[goals] of one-of subs 



 

224 

MONITOR  hit day(s) 
reports running list of kill 
(successful dominant extraction) 
days  

source:  
hit_day 

MONITOR 
day(s) between 
hits 

reports a running list of days 
between HIT DAY(S) 

source:  
dbh 

MONITOR dbh cluster-score 
reports the final dbh-score for 
the run 

source:  
cluster-score 

MONITOR time(s) of day 
reports running list of kill 
(successful dominant extraction) 
times  

source:  
tod 

OUTPUT Model output 
area in which the model writes 
various narrative, logging, and 
profiling outputs 

not manually interactive 
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A2 

Type Label Explanation Note… 

VIEW Model View 

space in which the model 
interactions are visualized. The 
space is divided into the cognitive 
landscapes and environmental 
landscapes. 

for a more complete 
description see Chapter 2, 
Section 2.2.2 

BUTTON grab-view 
runs the GRAB-VIEW procedure 
to export the current model view 
as a .png file 

procedure:  
grab-view 

BUTTON Model preset 

runs the PRE-SET-SETTINGS 
procedure to set interface 
parameters based on the 
MODEL-PRESET chooser 

procedure:  
pre-set-settings 

BUTTON read-seeds 

runs the READ-SEEDS procedure 
using the values listed in the 
IMPORTED-SEED input.  The first 
value is used for the SETUP-SEED-
NUMBER and the second value is 
used for the SEED-NUMBER  

procedure:  
read-seeds 

BUTTON setup 
runs the SETUP procedure to 
instantiate a stylized non-
scenario-based simulation. 

procedure:  
setup 

CHOOSER model-preset 
used to designate which model 
preset will be activated using the 
MODEL PRESET button 

values:  
"Model Baseline", "Series 
Baseline", "Manual 
Method", "Burn-in 1", 
"Burn-in 2" 

INPUTBOX imported-seed 

used to list two values to be 
referenced by the READ-SEEDS 
button.  The first value is used to 
set the SETUP-SEED-NUMBER and 
the second value is used to set 
the SEED-NUMBER  

type:  
String 
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A3: SUBJECT PARAMETERS 

Type Label Explanation Note… 

SWITCH loc-based-target? 

If switch is "on," the subject only 
records a location associated 
with object-attributes into 
TARGET-MEMORY. 

value:  
ON/OFF 

SWITCH manual-method? 

if switch is "on," the subject's 
preferred methods are manually 
set on the model interface using 
the MANUAL METHODS 
parameters. USE-MEMORY? Is 
automatically set to "off." 

value:  
ON/OFF 

SWITCH use-memory? 
if switch is "on," use the 
METHOD-MEMORY to define the 
subject's preferred methods. 

value:  
ON/OFF 

SLIDER needs defines the number of NEEDS 
range:  
1 --> 10 
(default: 5) 

SLIDER comfort-need 
defines the minimum comfort 
value of a cell for a subject to 
feel "comfortable." 

range:  
0 --> 9 
(default: 6.5) 

SLIDER privacy-need 
defines the minimum privacy 
value of a cell for a subject to 
feel "privacy." 

range:  
0 --> 9 
(default: 7.5) 

SLIDER 
target-memory-
size 

defines the number of memory 
slots for the TARGET-MEMORY. 

range:  
0 --> 100 
(default: 50) 

SLIDER 
method-memory-
size 

defines the number of memory 
slots for the METHOD-MEMORY. 

range:  
0 --> 100 
(default: 50) 

SLIDER base-threshold 
defines the base value for initial 
thresholds  

range:  
0 --> 2000 
(default: 1000) 

SLIDER 
initial-
accumulation 

defines the base value for initial 
needs accumulation  

range:  
0 --> 2000 
(default: 250) 

A3: MANUAL METHODS 

Type Label Explanation Note… 

CHOOSER targeting 

manually defines the subject's 
targeting strategy.  Requires that 
MANUAL-METHOD? Switch is 
"on." 

values:  
"active", "passive" 

CHOOSER density 

manually defines the tendency of 
the density (cognitive resource) 
of the subject's tactical planning 
strategy.  Requires that 
MANUAL-METHOD? Switch is 

values:  
"H", "M", "L" 
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"on." 

CHOOSER paths 

manually defines the tendency of 
the paths (cognitive resource) of 
the subject's tactical planning 
strategy.  Requires that 
MANUAL-METHOD? Switch is 
"on." 

values:  
"H", "M", "L" 

CHOOSER moves 

manually defines the tendency of 
the depth (cognitive resource) of 
the subject's tactical planning 
strategy.  Requires that 
MANUAL-METHOD? Switch is 
"on." 

values:  
"H", "M", "L" 

CHOOSER focus 

manually defines the tendency of 
the focus (cognitive resource) of 
the subject's tactical planning 
strategy.  Requires that 
MANUAL-METHOD? Switch is 
"on." 

values:  
"H", "M", "L" 

CHOOSER action 

manually defines the subject's 
action strategy.  Requires that 
MANUAL-METHOD? Switch is 
"on." 

values:  
"dominate", "collaborate" 

SLIDER variation 
defines the percent of time that 
the subject will vary from each of 
the manually defined methods. 

range:  
0 --> 100 

A3: OBJECT PARAMETERS 

Type Label Explanation Note… 

CHOOSER location-shared 

defines what type of location will 
be shared between objects and 
the subject.  Requires OBJ-
SHARE-LOC? switch to be "on." 

values:  
"work", "play" 
(default: “play”) 

SWITCH obj-share-loc? 

if switch is "on," a percent (as 
defined by the TARGET-PERCENT 
slider) of objects will share a 
common location (anchor-point) 
with the subject.  Requires 
SCHEDULE? Switch to be "on." 

value:  
ON/OFF 

SWITCH object-pref? 

if switch is "on," a percent 
(determined by the PREF-
PERCENT slider) of objects with 
specific attributes congregate 
around the shared location  

value:  
ON/OFF 
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SWITCH dom-tendency? 

if switch is "on," when there are 
no targeting strategies to select 
from in METHOD-MEMORY, the 
subject will have a 67% chance of 
selecting a dominant strategy.  If 
switch is "off," under the same 
circumstances the subject will 
have a 50% chance of selecting a 
dominant strategy. 

value:  
ON/OFF 

SLIDER 
number-of-
objects 

defines the initial population of 
objects in the run. 

range:  
1 --> 1000 
(default: 500) 

SLIDER target-percent 

defines the percent of objects 
that will share a common 
location (anchor-point) with the 
subject if the OBJ-SHARE-LOC? 
switch is "on." 

range:  
0 --> 100 
(default: 20) 

SLIDER pref-percent 

defines the percent of objects 
with specific attributes to 
congregate around a shared 
location if the OBJECT-PREF? 
switch is "on." 

range:  
0 --> 100 
(default: 80) 

SLIDER object-effect 

defines the mean of a random -
normal distribution (with 
standard deviation of 15) that 
creates the list of object effect 
values for each object 

range:  
0 --> 100 

SLIDER object-attributes 

defines the mean of a random -
normal distribution (with 
standard deviation of 30) that 
creates the list of object attribute 
values for each object 

range:  
0 --> 100 

SLIDER object-utility 

defines the mean of a random -
normal distribution (with 
standard deviation of 0.15) that 
creates the list of object-utility 
values for each object 

range:  
0 --> 1 

A3: ENVIRONMENT PARAMETERS 

Type Label Explanation Note… 

INPUTBOX 
setup-seed-
number 

indicates the seed number that 
will be used during model 
instantiation.  This value can be 
manually entered or imported 
using the IMPORTED-SEED input 
and READ-SEEDS button.   

type:  
Number 
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SWITCH new-setup-seed? 

If switch is "on," the SETUP-SEED-
NUMBER input will change each 
time the model is instantiated.  
Under these circumstances, each 
new instantiation of the model 
(prior to being run) is unique. If 
switch is "off," the NEW-SEED-
NUMBER input will not change.  
Under these circumstances, a 
specific model setup can be 
reproduced. 

value:  
ON/OFF 

SLIDER home-number 
defines the number of home 
locations (anchor-points) for the 
subject 

range:  
1 --> 10 
(default: 1) 

SLIDER work-number 
defines the number of work 
locations (anchor-points) for the 
subject 

range:  
1 --> 10 
(default: 1) 

SLIDER ent-number 
defines the number of play 
(entertainment) locations 
(anchor-points) for the subject 

range:  
1 --> 10 
(default: 1) 

SLIDER min-per-tick 
defines the number of minutes 
represented by a time-step of 
the model 

range:  
0.1 --> 5 
(default: 1) 

SLIDER view-width 
defines the width (in miles) 
represented by the view space 

range:  
1 --> 100 
(default: 20) 

SLIDER walk-tolerance 

defines the subject's tolerance 
for walking as opposed to using a 
vehicle.  This parameter is used 
in the calculation of the subject's 
speed. 

range:  
0 --> 25 
(default: 1) 

A3: SIMULATION LENGTH 

Type Label Explanation Note… 

SWITCH adj-end-sim? 

if switch is "on," following the 
first kill (successful dominant 
extraction), the END-SIM input 
value will be adjusted to reflect 
the current time-step + the END-
SIM-DAYS value (converted to 
time-steps).  In calibration this 
ensures that recording the length 
of a series begins with the first 
kill (at the beginning of the 
series).  

value:  
ON/OFF 
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SLIDER end-sim-days 

defines the number of days after 
the first kill (successful dominant 
extraction) the simulation will 
run.  During comparison to a real 
series, this value should reflect 
the length (in days) of the series 
the model is being compared to. 

range:  
0 --> 365 

SLIDER min-sim-days 

defines the number of days the 
simulation will run without a kill 
(successful dominant extraction) 
before ending the simulation. 

range:  
0 --> 30 

A3: SCENARIO BUILDER 

Type Label Explanation Note… 

BUTTON set folder 

sets the user directory for the 
maps, cell lists, activity-space, 
comparison sites, and simulation 
sites utilized in a real-world 
series comparison (as defined by 
directory input). 

procedure:  
set directory user-directory 

BUTTON clear drawing 
clears all drawing elements from 
the view to start a new real-
world series setup 

code: 
cd 

BUTTON manual setup 
clears all drawing elements and 
sets up the model for manual 
entry of view elements 

code: 
reset-interface 
ca 
if new-seed-num? = true 
     [set seed-number 
(120000 - random 60001)] 
random-seed seed-number 
CREATE-NEEDS-LIST 
SETUP-VIEW 
SETUP-LANDSCAPES 

BUTTON add location 

allows a user to manually place a 
location (as defined by 
location_types chooser) in the 
view. 

procedure:  
pick-location 

BUTTON non-anchor 

allows a user to manually 
designate a cell as a non-usable 
location (i.e., body of water) by 
changing the cell color value to 0 
(black) as selected by the 
add_color chooser. Radius of 
cells effected is determined by 
the color_radius slider. 

procedure:  
pick-non-geospatial-
locations 
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BUTTON comfort 

allows a user to manually 
designate a cell as an area of high 
comfort by changing the cell 
comfort value to between 6 and 
10  

procedure:  
pick-manual-comfort 

BUTTON privacy 

allows a user to manually 
designate a cell as an area of high 
privacy by changing the cell 
privacy value to 10  

procedure:  
pick-manual-privacy 

BUTTON comp sites 

allows a user to manually place 
comparison sites from the real-
world series into the view for 
comparison to simulation 
outputs. 

procedure:  
pick-comp-sites 

BUTTON save scenario 

allows the user to save the 
currently configured scenario to 
the root folder (as defined by 
directory input). 

code: 
if "yes" = user-one-of "This 
will over-write any existing 
scenarios in the root 
folder...continue?"  
      ["yes" "no"] 
     [save-scenario-view] 

BUTTON read scenario 

allows the user to load a 
previously saved scenario from 
the root directory (as defined by 
directory input). 

procedure:  
read-scenario-view 

BUTTON set risk 

allows the user to set target 
"risk" (as defined by the preset-
target-type chooser) if the 
target-type? switch is "on."  

procedure:  
set-preset-target-type 

BUTTON 
finish manual 
setup 

allows the user to finalize the 
building of a real-world scenario 
by instantiating the model 
agents, cells, and scale. 

code: 
SET-NEW-COMFORT 
SET-NEW-PRIVACY 
CREATE-PATCH-ATTRIBUTES 
CREATE-NEW-OBJECTS 
CREATE-NEW-SUBJECTS 
CREATE-SCALE 
reset-ticks 

CHOOSER location-types 
defines the type of location 
manually placed in the view. 

values:  
"home", "work", "play" 

CHOOSER add-color 
defines the color of cells selected 
when identifying non-anchor 
locations, comfort, and privacy 

values:  
0, 55, 69.5 

CHOOSER preset-target-type 

defines what target type will be 
created if the target-type? switch 
is ON. Use SET RISK button to set 
OBJECT FEATURE parameters. 

values: "high risk", "low 
risk" 
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INPUTBOX directory 
defines the directory folder that 
contains scenario files 

type:  
String 
(default: \scenarios\GRK2\) 

SWITCH target-type? 
determine if the model will 
utilize target risk 

value:  
ON/OFF 

SLIDER color-radius 
defines the radius of effect when 
a cell is selected 

range:  
0 --> 10 

A3: VISUALIZATIONS 

Type Label Explanation Note… 

BUTTON import image 

Runs the IMPORT-IMAGE 
procedure which imports the 
image file identified in the 
IMAGE-FILE chooser into the 
model view 

procedure:  
import-image 

BUTTON show landscape 

Runs the SHOW-LANDSCAPE 
procedure which visualizes the 
view landscape based on the 
LANDSCAPE chooser. 

procedure:  
show-landscape 

BUTTON privacy heatmap 

Runs the HEATMAP-PRIVACY 
procedure which visualizes the 
view landscape based on privacy 
values 

procedure:  
heatmap-privacy 

BUTTON comfort heatmap 

Runs the HEATMAP-COMFORT 
procedure which visualizes the 
view landscape based on comfort 
values 

procedure:  
heatmap-comfort 

BUTTON Show Sites 

Runs SHOW-SITES procedure 
which uses the SHOW-BREACH, 
SHOW-TP, SHOW-ACCESS, 
SHOW-COLLAB, SHOW-KILL, 
SHOW-DUMP, SHOW-CAPTURE, 
SHOW-RETREAT switches (if 
"on") to visualize event sites in 
the model view 

procedure:  
show-sites 

BUTTON clear view 

Runs the CLEAR-VIEW procedure 
to remove all objects on the 
model view drawing layer and 
reset locations and event sites. 

procedure:  
clear-view 

BUTTON grab-view 
Runs the GRAB-VIEW procedure 
to export the current model view 
as a .png file 

procedure:  
grab-view 

BUTTON 
show comparison 
points 

Runs the SHOW-COMP-SITES 
procedure to visualize the 
comparison event sites from a 
real world series. 

procedure:  
show-comp-sites 
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BUTTON 
remove 
radii/grid/chain 

Runs code to remove Radii 
agents, offense chains, and score 
grid from the Model view 

code: 
ask site-counts [die] 
ask offense_chains [die] 

BUTTON offense-chain 

Runs the CREATE-OFFENSE-
CHAIN procedure which 
visualizes the chain of sites 
(based on a specific victim) from 
access to body disposal during 
dominant action. 

procedure:  
create-offense-chain 

BUTTON score-radius 

Runs the SCORE-RADII procedure 
to create radii agents at each 
compsite and compare their 
locations to output disposal sites.  
The size of the radii is 
determined by the RADIUS slider. 

procedure:  
score-radii 

BUTTON score grid 

Runs the SCORE-GRID procedure 
to create a grid that will indicate 
areas in which there are model 
output disposal sites and real-
world comparison sites.  The size 
of the grid is determined by the 
GRID-SIZE slider. 

procedure:  
score-grid 

BUTTON 
location 
comparison 

Runs the COMPARE-LOCATIONS 
procedure to compare simulation 
output disposal sites to 
geospatial comparison sites by 
calculating comparison location 
and comparison completeness 
scores.  This procedure runs 
automatically at the end of a 
simulation run. 

procedure:  
compare-locations 

CHOOSER image-file 
defines the image files that can 
be imported using the IMPORT-
IMAGE button. 

values:  
"focused_map.png", 
"compare 
focused_map.png", 
"focused_map_clear.png" 

CHOOSER landscape 
defines the landscapes that can 
be visualized using the SHOW-
LANDSCAPE button 

values:  
"comfort", "privacy", 
"greyscale", "none" 

SWITCH show_breach? 
if switch is "on," show threshold 
breach sites when SHOW-SITES 
button is activated. 

value:  
ON/OFF 

SWITCH show_tp? 
if switch is "on," show successful 
tactical planning sites when 
SHOW-SITES button is activated. 

value:  
ON/OFF 

SWITCH show_access? 
if switch is "on," show successful 
access sites when SHOW-SITES 
button is activated. 

value:  
ON/OFF 
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SWITCH show_collab? 

if switch is "on," show successful 
collaboration (collaborative 
extraction) sites when SHOW-
SITES button is activated. 

value:  
ON/OFF 

SWITCH show_kill? 

if switch is "on," show successful 
kill (dominant extraction) sites 
when SHOW-SITES button is 
activated. 

value:  
ON/OFF 

SWITCH show_dump? 

if switch is "on," show successful 
body dump (egress from 
dominant extraction) sites when 
SHOW-SITES button is activated. 

value:  
ON/OFF 

SWITCH show_capture? 

if switch is "on," show capture 
(unsuccessful egress from failed 
dominant access or action) sites 
when SHOW-SITES button is 
activated. 

value:  
ON/OFF 

SWITCH show_retreat? 

if switch is "on," show successful 
retreat (egress from failed 
dominant action) sites when 
SHOW-SITES button is activated. 

value:  
ON/OFF 

SWITCH subject-path? 

if switch is "on," retain the 
subject's path (as a red line) 
throughout the simulation in the 
model view, do not show maze 
running probe paths in the 
cognitive landscapes.  If switch is 
"off," do not retain subject path, 
show maze-running paths probes 
in the cognitive landscapes. 

value:  
ON/OFF 

SLIDER radius 
defines the radius size for radii 
created with the SCORE-RADIUS 
button. 

range:  
1 --> 100 

SLIDER grid-size 
defines the size of the grid 
created with the SCORE-GRID 
button. 

range:  
5 --> 50 

 

  



 

237 

 

  



 

238 

A4: MAZE-RUNNING PARAMETERS: TACTICAL PLANNING 

Type Label Explanation Note… 

SLIDER TP-Access-density 

This is not a manually set value.  
Defines the percent of inhibitors 
from the access panel in the 
perception landscape that will be 
generated in the access panel of 
the simulation landscape.  
Automatically Generated based 
on the subject's tactical planning 
strategy: density tendency 
(H/M/L) 

range:  
0 --> 100 

SLIDER TP-Access-paths 

This is not a manually set value.  
Defines the number of paths that 
will be generated in the access 
panel of the simulation landscape 
to develop a tactical plan.  
Automatically Generated based 
on the subject's tactical planning 
strategy: paths tendency (H/M/L) 

range:  
1 --> 10 

SLIDER TP-Access-depth 

This is not a manually set value.  
Defines the number of time-steps 
available to develop a tactical 
plan in the access panel of the 
simulation landscape.  
Automatically Generated based 
on the subject's tactical planning 
strategy: depth tendency (H/M/L) 

range:  
Access-Rows --> 1000 

SLIDER TP-Access-focus 

This is not a manually set value.  
Defines the tendency to move 
toward the end target in the 
access panel simulation 
landscape to develop a tactical 
plan.  Automatically Generated 
based on the subject's tactical 
planning strategy: paths 
tendency (H/M/L) 

range:  
0 --> 100 

SLIDER TP-Extract-density 

This is not a manually set value.  
Defines the percent of inhibitors 
from the extract panel in the 
perception landscape that will be 
generated in the extract panel of 
the simulation landscape.  
Automatically Generated based 
on the subject's tactical planning 
strategy: density tendency 
(H/M/L) 

range:  
0 --> 100 
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SLIDER TP-Extract-paths 

This is not a manually set value.  
Defines the number of paths that 
will be generated in the extract 
panel of the simulation landscape 
to develop a tactical plan.  
Automatically Generated based 
on the subject's tactical planning 
strategy: paths tendency (H/M/L) 

range:  
1 --> 10 

SLIDER TP-Extract-depth 

This is not a manually set value.  
Defines the number of time-steps 
available to develop a tactical 
plan in the extract panel of the 
simulation landscape.  
Automatically Generated based 
on the subject's tactical planning 
strategy: depth tendency (H/M/L) 

range:  
Extract-Rows --> 1000 

SLIDER TP-Extract-focus 

This is not a manually set value.  
Defines the tendency to move 
toward the end target in the 
extract panel of the simulation 
landscape while developing a 
tactical plan.  Automatically 
Generated based on the subject's 
tactical planning strategy: paths 
tendency (H/M/L) 

range:  
0 --> 100 

SLIDER TP-Egress-density 

This is not a manually set value.  
Defines the percent of inhibitors 
from the egress panel in the 
perception landscape that will be 
generated in the egress panel of 
the simulation landscape.  
Automatically Generated based 
on the subject's tactical planning 
strategy: density tendency 
(H/M/L) 

range:  
0 --> 100 

SLIDER TP-Egress-paths 

This is not a manually set value.  
Defines the number of paths that 
will be generated in the egress 
panel of the simulation landscape 
to develop a tactical plan.  
Automatically Generated based 
on the subject's tactical planning 
strategy: paths tendency (H/M/L) 

range:  
1 --> 10 
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SLIDER TP-Egress-depth 

This is not a manually set value.  
Defines the number of time-steps 
available to develop a tactical 
plan in the egress panel of the 
simulation landscape.  
Automatically Generated based 
on the subject's tactical planning 
strategy: depth tendency (H/M/L) 

range:  
Egress-Rows --> 1000 

SLIDER TP-Egress-focus 

This is not a manually set value.  
Defines the tendency to move 
toward the end target in the 
egress panel of the simulation 
landscape while developing a 
tactical plan.  Automatically 
Generated based on the subject's 
tactical planning strategy: paths 
tendency (H/M/L) 

range:  
0 --> 100 

A4: MAZE-RUNNING PARAMETERS: ADAPTATION 

Type Label Explanation Note… 

SLIDER A-Access-paths 

THIS IS NOT A MANUALLY SET 
PARAMETER.  Defines the 
number of paths that will be 
generated in the access panel of 
the simulation landscape to 
adapt.  Automatically Generated 
based on the subject's tactical 
planning strategy: paths 
tendency (H/M/L) 

range:  
1 --> 10 

SLIDER A-Access-depth 

THIS IS NOT A MANUALLY SET 
PARAMETER.  Defines the 
number of time-steps available to 
adapt in the access panel of the 
simulation landscape.  
Automatically Generated based 
on the subject's tactical planning 
strategy: depth tendency (H/M/L) 

range:  
Access-rows --> 1000 

SLIDER A-Access-focus 

THIS IS NOT A MANUALLY SET 
PARAMETER.  Defines the 
tendency to move toward the 
end target in the access panel of 
the simulation landscape while 
adapting.  Automatically 
Generated based on the subject's 
tactical planning strategy: paths 
tendency (H/M/L) 

range:  
0 --> 100 
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SLIDER A-Extract-paths 

THIS IS NOT A MANUALLY SET 
PARAMETER.  Defines the 
number of paths that will be 
generated in the extract panel of 
the simulation landscape to 
adapt.  Automatically Generated 
based on the subject's tactical 
planning strategy: paths 
tendency (H/M/L) 

range:  
1 --> 10 

SLIDER A-Extract-depth 

THIS IS NOT A MANUALLY SET 
PARAMETER.  Defines the 
number of time-steps available to 
adapt in the extract panel of the 
simulation landscape.  
Automatically Generated based 
on the subject's tactical planning 
strategy: depth tendency (H/M/L) 

range:  
Extract-rows --> 1000 

SLIDER A-Extract-focus 

THIS IS NOT A MANUALLY SET 
PARAMETER.  Defines the 
tendency to move toward the 
end target in the extract panel of 
the simulation landscape while 
adapting.  Automatically 
Generated based on the subject's 
tactical planning strategy: paths 
tendency (H/M/L) 

range:  
0 --> 100 

SLIDER A-Egress-paths 

THIS IS NOT A MANUALLY SET 
PARAMETER.  Defines the 
number of paths that will be 
generated in the egress panel of 
the simulation landscape to 
adapt.  Automatically Generated 
based on the subject's tactical 
planning strategy: paths 
tendency (H/M/L) 

range:  
1 --> 10 

SLIDER A-Egress-depth 

THIS IS NOT A MANUALLY SET 
PARAMETER.  Defines the 
number of time-steps available to 
adapt in the egress panel of the 
simulation landscape.  
Automatically Generated based 
on the subject's tactical planning 
strategy: depth tendency (H/M/L) 

range:  
Egress-rows --> 1000 
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SLIDER A-Egress-focus 

THIS IS NOT A MANUALLY SET 
PARAMETER.  Defines the 
tendency to move toward the 
end target in the egress panel of 
the simulation landscape while 
adapting.  Automatically 
Generated based on the subject's 
tactical planning strategy: paths 
tendency (H/M/L) 

range:  
0 --> 100 

A4: MAZE-RUNNING PARAMETERS: INHIBITORS 

Type Label Explanation Note… 

SLIDER Access-rows 

THIS IS NOT A MANUALLY SET 
PARAMETER. Defines the number 
of rows in the access panel.  
Based on A_ROWS value from 
current target. 

range:  
1 --> (Max-pycor) - (Min-
pycor + 1) - 10 

SLIDER 
Access-inhibitor-
density 

THIS IS NOT A MANUALLY SET 
PARAMETER. Defines inhibitor 
density of the current access 
panel in the perception 
landscape.  Based on 
A_INHIBITORS value from the 
current target. 

range:  
0 --> 100 

SLIDER Extract-rows 

THIS IS NOT A MANUALLY SET 
PARAMETER. Defines the number 
of rows in the extract panel.  
Based on EX_ROWS value from 
current target. 

range:  
1 --> (Max-pycor) - (Min-
pycor + 1) - (Access-Rows + 
2) - 5 

SLIDER 
Extract-inhibitor-
density 

THIS IS NOT A MANUALLY SET 
PARAMETER. Defines inhibitor 
density of the current extract 
panel in the perception 
landscape.  Based on 
EX_INHIBITORS value from the 
current target. 

range:  
0 --> 100 

SLIDER Egress-rows 

THIS IS NOT A MANUALLY SET 
PARAMETER. Defines the number 
of rows in the egress panel.  
Based on EG_ROWS value from 
current target. 

range:  
1 --> (Max-pycor) - (Min-
pycor + 1) - (Access-Rows + 
2) - (Extract-Rows + 2) 

SLIDER 
Egress-inhibitor-
density 

THIS IS NOT A MANUALLY SET 
PARAMETER. Defines inhibitor 
density of the current egress 
panel in the perception 
landscape.  Based on 
EG_INHIBITORS value from the 
current target. 
 

range:  
0 --> 100 



 

243 

A4: MAZE-RUNNING PARAMETERS: OBJECT FEATURES 

Type Label Explanation Note… 

SLIDER set_a_inhibitors 

THIS IS NOT A MANUALLY SET 
PARAMETER. Defines access 
inhibitors as determined by 
PRESET-TARGET-TYPE chooser.  
TARGET-TYPE? switch must be 
"on"  

range:  
0 --> 100 

SLIDER set_ex_inhibitors 

THIS IS NOT A MANUALLY SET 
PARAMETER. Defines extraction 
inhibitors as determined by 
PRESET-TARGET-TYPE chooser.  
TARGET-TYPE? switch must be 
"on"  

range:  
0 --> 100 

SLIDER set_eg_inhibitors 

THIS IS NOT A MANUALLY SET 
PARAMETER. Defines egress 
inhibitors as determined by 
PRESET-TARGET-TYPE chooser.  
TARGET-TYPE? switch must be 
"on"  

range:  
0 --> 100 

SLIDER 
set_d_inhibitors_
add 

THIS IS NOT A MANUALLY SET 
PARAMETER. Defines defensive 
inhibitors (added to inhibitors if 
dominant action) as determined 
by PRESET-TARGET-TYPE chooser.  
TARGET-TYPE? switch must be 
"on"  

range:  
0 --> 100 

SLIDER set_a_rows 

THIS IS NOT A MANUALLY SET 
PARAMETER. Defines the number 
of access rows as determined by 
PRESET-TARGET-TYPE chooser.  
TARGET-TYPE? switch must be 
"on"  

range:  
0 --> 31 

SLIDER set_ex_rows 

THIS IS NOT A MANUALLY SET 
PARAMETER. Defines the number 
of extraction rows as determined 
by PRESET-TARGET-TYPE chooser.  
TARGET-TYPE? switch must be 
"on"  

range:  
0 --> 31 

SLIDER set_eg_rows 

THIS IS NOT A MANUALLY SET 
PARAMETER. Defines the number 
of egress rows as determined by 
PRESET-TARGET-TYPE chooser.  
TARGET-TYPE? switch must be 
"on"  

range:  
0 --> 31 
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APPENDIX B 

 

 

 

Diagram of the formalized variables involved in generating needs accumulation, and 

acquisitional goal development via threshold-driven behaviors.  These variables are 

encapsulated in the integrated model within the subject, objects, environment, or 

interactions between these elements.   
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APPENDIX C 

 

 

 

Diagrams of subject event-chain outcomes of the violent offending process, the causal-

path of the event-chain expressed as a compound event, and constructed event-chain 

narratives as described in the discussion on model output narrative (see Chapter 2, 

Section 2.2.9). 

 

 

 

 



 

 

2
4

7
 

C1: No acquisitional goal outcome (α – ⌐α). 
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C2: No acquisitional goal outcome (α – T – ⌐α). 
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C3: No acquisitional goal outcome (α – T – A[collaborate] – ⌐α). 
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C4: Collaboration outcome (α – T – A[collaborate] – C). 
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C5: Successful Offending outcome (α – T – A[dominate] – K[dominate] – D). 
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C6: Successful retreat from failed offending outcome (α – T – X[dominate] – R). 
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C7: Failed retreat from failed offending outcome (α – T– X[dominate] – F). 
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C8: Successful retreat from failed offending outcome (α – T – A[dominate] – X[dominate] – R). 
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C9: Failed retreat from failed offending outcome (α – T – A[dominate] – X[dominate] – F). 
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C10: Failed retreat from failed offending outcome (α – T – A[dominate] – K[dominate] – X[dominate] – F). 
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APPENDIX D 

 

 

 

Aggregated code profiles used during verification of the integrated model to monitor 

procedure calls. 
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Process Name baseline scheduling location-based cluster

ACTION-ACCESS 14401 14401 14401 14401

ACTION-EGRESS 14401 14401 14401 14401

ACTION-EXTRACT 14401 14401 14401 14401

CHECK-NEEDS 14401 14401 14401 14401

CHECK-PATH 2856 4010 1362 7824

CHECK-PATH-START 2856 4010 1362 7824

CHECK-PRIVACY 14401 14401 14401 14401

CLEAR-COGNITIVE-SPACE 21633 13867 24724 7669

CLUSTER 2 2 2 2

COMPARE-LOCATIONS 2 2 2 2

CONTROL-TARGET 14401 14401 14401 14401

CREATE-NEW-INHIBITORS 205 148 190 250

CREATE-NEW-OBJECTS -- -- -- --

CREATE-NEW-PROBES 205 148 190 250

CREATE-NEW-SUBJECTS -- -- -- --

CREATE-NEW-TP-PROBES 520 384 486 712

CREATE-SCALE -- -- -- --

DEVELOP-GOALS 14401 14401 14401 14401

DISTANCE-NAV_TARGET 1216317 882416 1224841 849672

GENERATE-ACTION-PATH 2856 4010 1362 7824

GENERATE-A-INHIBITORS 615 443 571 751

GENERATE-C-INHIBITORS 615 443 571 751

GENERATE-PROBES 615 443 571 751

GO 14401 14401 14401 14401

IDENTIFY-TARGET 14401 14401 14401 14401

INSERT-METHOD-MEMORY 14401 14401 14401 14401

INTERACT 14401 14401 14401 14401

MOVE-AGENTS 14401 14401 14401 14401

MOVE-PROBES 989 807 638 1364

OUTCOME-EXTRACTION 14401 14401 14401 14401

PRESERVE-AGENTS -- -- -- --

REFINE-PROBE-PATHS 173 128 162 237

RESET-GOAL 21249 13686 24339 7418

RESET-LANDSCAPES 205 148 190 250

RESET-THRESHOLDS 14402 14402 14402 14402

RESET-TP-ACTION-SWITCHES 21249 13686 24439 7418

RUN-PROBES 205 148 190 250

RUN-REFINE-ADAPTATION 492 480 200 835

SET-METHODS 268 136 259 222

SET-NEW-PARAMETERS 205 148 190 250

SET-PATCH-COMFORT 14401 14401 14401 14401

SET-PAUSES -- 4650 -- 2925

SET-PAUSES-OBJ -- 13310 -- 13311

SET-REGIONS 205 148 190 250

SET-SCHED_TARGET 14401 14401 14401 14401

SET-SCHED_TARGET-OBJ 7168806 7168295 7178152 7156928

SET-TARGET-LANDSCAPE 205 148 190 250

SETUP-LANDSCAPES 205 148 190 250

SHOW-SITES -- -- -- --

TACTICAL-PLANNING 14401 14401 14401 14401

TRANSFER-INHIBITOR-ADAPT 492 480 200 835

WRITE-TO-EVENT-LOG 6 4 3 7

Stage 1
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Process Name baseline low-risk high-risk Variation=0 Variation=25 Variation=50

ACTION-ACCESS 14401 14401 14401 14401 14401 14401

ACTION-EGRESS 14401 14401 14401 14401 14401 14401

ACTION-EXTRACT 14401 14401 14401 14401 14401 14401

CHECK-NEEDS 14401 14401 14401 14401 14401 14401

CHECK-PATH 2856 7712 4265 3046 3277 4499

CHECK-PATH-START 2856 7712 4265 3046 3277 4499

CHECK-PRIVACY 14401 14401 14401 14401 14401 14401

CLEAR-COGNITIVE-SPACE 21633 8275 12744 21218 20119 17797

CLUSTER 2 2 2 2 2 2

COMPARE-LOCATIONS 2 2 2 2 2 2

CONTROL-TARGET 14401 14401 14401 14401 14401 14401

CREATE-NEW-INHIBITORS 205 274 334 625 338 220

CREATE-NEW-OBJECTS -- -- -- -- -- --

CREATE-NEW-PROBES 205 274 334 625 338 220

CREATE-NEW-SUBJECTS -- -- -- -- -- --

CREATE-NEW-TP-PROBES 520 695 922 1866 974 599

CREATE-SCALE -- -- -- -- -- --

DEVELOP-GOALS 14401 14401 14401 14401 14401 14401

DISTANCE-NAV_TARGET 1216317 846070 849278 1200783 1212596 1205245

GENERATE-ACTION-PATH 2856 7712 4265 3046 3277 4499

GENERATE-A-INHIBITORS 615 823 1003 1876 1014 659

GENERATE-C-INHIBITORS 615 823 1003 1876 1014 659

GENERATE-PROBES 615 823 1003 1876 1014 659

GO 14401 14401 14401 14401 14401 14401

IDENTIFY-TARGET 14401 14401 14401 14401 14401 14401

INSERT-METHOD-MEMORY 14401 14401 14401 14401 14401 14401

INTERACT 14401 14401 14401 14401 14401 14401

MOVE-AGENTS 14401 14401 14401 14401 14401 14401

MOVE-PROBES 989 1482 1110 2477 1462 1193

OUTCOME-EXTRACTION 14401 14401 14401 14401 14401 14401

PRESERVE-AGENTS -- -- -- -- -- --

REFINE-PROBE-PATHS 173 232 307 622 325 200

RESET-GOAL 21249 8024 12303 20038 19485 17420

RESET-LANDSCAPES 205 274 334 625 338 220

RESET-THRESHOLDS 14402 14402 14402 14402 14402 14402

RESET-TP-ACTION-SWITCHES 21249 8024 12303 20038 19485 17420

RUN-PROBES 205 274 334 625 338 220

RUN-REFINE-ADAPTATION 492 906 374 605 562 670

SET-METHODS 268 208 351 623 391 266

SET-NEW-PARAMETERS 205 274 334 625 338 220

SET-PATCH-COMFORT 14401 14401 14401 14401 14401 14401

SET-PAUSES -- 2413 4452 -- -- --

SET-PAUSES-OBJ -- 13226 13082 -- -- --

SET-REGIONS 205 274 334 625 338 220

SET-SCHED_TARGET 14401 14401 14401 14401 14401 14401

SET-SCHED_TARGET-OBJ 7168806 7156496 7049906 7093557 7139080 7133270

SET-TARGET-LANDSCAPE 205 274 334 625 338 220

SETUP-LANDSCAPES 205 274 334 625 338 220

SHOW-SITES -- -- -- -- -- --

TACTICAL-PLANNING 14401 14401 14401 14401 14401 14401

TRANSFER-INHIBITOR-ADAPT 492 906 374 605 562 670

WRITE-TO-EVENT-LOG 6 8 21 13 8 9

Stage 2
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Process Name baseline Method-memory Burn-in

ACTION-ACCESS 14401 14401 28801

ACTION-EGRESS 14401 14401 28801

ACTION-EXTRACT 14401 14401 28801

CHECK-NEEDS 14401 14401 28801

CHECK-PATH 2856 2414 12916

CHECK-PATH-START 2856 2414 12916

CHECK-PRIVACY 14401 14401 28801

CLEAR-COGNITIVE-SPACE 21633 22541 25494

CLUSTER 2 2 2

COMPARE-LOCATIONS 2 2 2

CONTROL-TARGET 14401 14401 28801

CREATE-NEW-INHIBITORS 205 264 1010

CREATE-NEW-OBJECTS -- -- 1

CREATE-NEW-PROBES 205 264 1010

CREATE-NEW-SUBJECTS -- -- 1

CREATE-NEW-TP-PROBES 520 644 2700

CREATE-SCALE -- -- 1

DEVELOP-GOALS 14401 14401 28801

DISTANCE-NAV_TARGET 1216317 1222996 2432067

GENERATE-ACTION-PATH 2856 2414 12916

GENERATE-A-INHIBITORS 615 793 3030

GENERATE-C-INHIBITORS 615 793 3030

GENERATE-PROBES 615 793 3030

GO 14401 14401 28801

IDENTIFY-TARGET 14401 14401 28801

INSERT-METHOD-MEMORY 14401 14401 28801

INTERACT 14401 14401 28801

MOVE-AGENTS 14401 14401 28801

MOVE-PROBES 989 778 2916

OUTCOME-EXTRACTION 14401 14401 28801

PRESERVE-AGENTS -- -- 1

REFINE-PROBE-PATHS 173 215 900

RESET-GOAL 21249 22121 24202

RESET-LANDSCAPES 205 264 1010

RESET-THRESHOLDS 14402 14402 28802

RESET-TP-ACTION-SWITCHES 21249 22121 24203

RUN-PROBES 205 264 1010

RUN-REFINE-ADAPTATION 492 240 941

SET-METHODS 268 262 738

SET-NEW-PARAMETERS 205 264 1010

SET-PATCH-COMFORT 14401 14401 28801

SET-PAUSES -- -- --

SET-PAUSES-OBJ -- -- --

SET-REGIONS 205 264 1010

SET-SCHED_TARGET 14401 14401 28801

SET-SCHED_TARGET-OBJ 7168806 7174772 14373970

SET-TARGET-LANDSCAPE 205 264 1010

SETUP-LANDSCAPES 205 264 1010

SHOW-SITES -- -- 1

TACTICAL-PLANNING 14401 14401 28801

TRANSFER-INHIBITOR-ADAPT 492 240 941

WRITE-TO-EVENT-LOG 6 3 3

Stage 3



 

261 

 

 

 

 

APPENDIX E 

 

 

 

Examples of event-sites captured during a run from each configuration. 
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UNCLASSIFIED

Toward Implementing a Complex Social 
Simulation of the Violent Offending Process:  

The promise of a synthetic offender

Thomas J. Dover
Ph.D. Candidate

Computational Social Science Program,
George Mason University

Dissertation Defense
April 12, 2016

 

 
 
 

Slide 2 

UNCLASSIFIED

2

• Can violent “offenders” be identified prior to attack?

• Is it possible to discover and/or predict violent 
offending trajectories?

• How does violent offending depend on micro-level 
features of the offender?

• Can hidden attributes/features of a violent offender 
be effectively examined?

Motivation…

4/12/2016
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Slide 3 

UNCLASSIFIED

Limitations to current violent offender research
• Outcome-driven approach
• Limited generalizability /offender population size
• Inaccessible populations…

Adding complexity to violent offender research
• Process-driven approach
• Generate offender populations in silico
• Watch violent behavior emerge…

Motivation…

34/12/2016

 

 
 
 

Slide 4 

UNCLASSIFIED

State-of-the-art:

• Test criminological theory
• Explore complexities of geospatial patterns 

& visualize event clustering and hotspots
• Data-mining
• Discover criminal social networks
• Series tempo
• Insider threat

Computational Criminology…

44/12/2016
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Slide 5 

UNCLASSIFIED

Primarily focus on…

Macro-level interactions 

Micro-level rule-sets that “imitate” 
behavior (non-generative). 

Computational Criminology…

54/12/2016
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Research Question…

Does implementation of the violent 
offending process as a complex social 
simulation provide meaningful insights into 
the internal and external drivers of violent 
offending behaviors?

64/12/2016
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Slide 7 

UNCLASSIFIED

Research Objectives…

1. Create a prototype integrated model of 
the violent offending process,

2. Establish internal validation of the model,

3. Apply the model to a real-world series of 
violent offenses,

4. Develop methods to evaluate efficacy of 
the integrated model.

74/12/2016

 

 
 
 

Slide 8 

UNCLASSIFIED

Design…the big picture

Subject

Behavior

Environment

generates affects

stimulates

84/12/2016
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Slide 9a 

UNCLASSIFIED

Design…

Behavior emerges from Problem-solving
• Canonical Theory (fast process)
• Offender Interaction Process Model (OIPM)

B = Strategic
T = Tactical
C = Execution
E = Evaluation

Ω ----------------------------
S = Successful Offending
F = Failed Offending
N =No Offending

𝑆 ⟸ 〈(𝐵) ∧ (𝑇|𝐵) ∧ (𝐶|𝑇)〉 

9a4/12/2016
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UNCLASSIFIED

Design…

Behavior emerges from Problem-solving
• Canonical Theory (fast process)
• Offender Interaction Process Model (OIPM)

B = Strategic
T = Tactical
C = Execution
E = Evaluation

Ω ----------------------------
S = Successful Offending
F = Failed Offending
N =No Offending

𝑆 ⟸ 〈(𝐵) ∧ (𝑇|𝐵) ∧ (𝐶|𝑇)〉 

9b4/12/2016
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Subject-Environment

Subject

Needs accumulation

Tactical Planning & 
Adaptation

Implementation…hybrid

NetLogo 5.2.0

104/12/2016
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Unique Features…

1. Goals are generated with a driven threshold 
system,

2. Associative memory enables learning from 
experience,

3. Tactical planning and adaptation are internally 
represented and simulated,

4. Outputs can be explicitly defined and 
represented as a forward-branching model with 
accompanying transition probabilities.

114/12/2016
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Slide 12 

UNCLASSIFIED

Implementation…needs & goals

Need

Acquisitional 
goal

Goal

Inhibitory 
goal

suppresses

overcomes

1

*

1

**

1

Need
Internal drivers that motivate

Goal
Intended state of the world

Inhibitory goal
Intention to keep from satisfying a need 

Acquisitional goal
Intention to satisfy need

124/12/2016
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Implementation…needs accumulation

Need (η)
η = (η1, η2, …, ηn-1, ηn)
accumulates via external stimuli

Inhibitory goal (ϕ) 
φ = (φ1, φ2, …, φn-1, φn)
affected by external stimuli (i.e., privacy)

Acquisitional goal (α) 
α = (α1, α 2, …, α n-1, α n),

𝛼 = {
𝜂 − 𝜑, 𝜂 − 𝜑 > 0

0, 𝜂 − 𝜑 ≤ 0
  

134/12/2016

  



 

275 

Slide 14 

UNCLASSIFIED

Implementation…learning

Target memory – associative
• object attributes (index),
• object and/or
• location

Method memory – associative & episodic
• utility goals (index), 
• targeting (“active” v. “passive”), 
• tactical (cognitive resources), and
• action (“dominate” v. “collaborate”)

144/12/2016
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Design…learning to achieve a goal

Preferred 
method

Acquisitional 
goal (α)

Target targeting:
passive/active

tactical:
cognitive 
resources 

Tactical
plan

inhibitors

Target 
Memory

Method
Memory

Action

action:
collaborate/

dominate 

utility

154/12/2016
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Implementation…tactical planning

simulation
landscape

perception
landscape

cognitive landscapes

access panels

extract panels

egress panels

16a4/12/2016
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Implementation…tactical planning

simulation
landscape

perception
landscape

cognitive landscapes

Inhibitors
cognitive
resource:

density

16b4/12/2016
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Slide 16c 
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Implementation…tactical planning

simulation
landscape

perception
landscape

cognitive 
resource:

paths

cognitive 
resource:

depth

cognitive 
resource:

focus

cognitive landscapes

16c4/12/2016
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Implementation…tactical planning

simulation
landscape

perception
landscape

cognitive landscapes

Tactical Plan

16d4/12/2016
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Implementation…tactical planning & adaptation

174/12/2016
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UNCLASSIFIED

Design…outcomes

¬α = no acquisitional goal
α = acquisitional goal
T = tactical plan
A = access
K = extraction
D = egress

Ω ----------------------------
S = Successful Offending

18a4/12/2016
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Slide 18b 

UNCLASSIFIED

Design…outcomes

¬α = no acquisitional goal
α = acquisitional goal
T = tactical plan
A = access
K = extraction
D = egress

Ω ----------------------------
S = Successful Offending

F = Failed Offending
P = Primed
N =No Offending (¬α)

• Forward-branching process, similar to fast process of the Canonical Theory 
• Extends the Offender Interaction Process Model (OIPM)

18b4/12/2016
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UNCLASSIFIED

Design…outcomes

¬α = no acquisitional goal
α = acquisitional goal
T = tactical plan
A = access
K = extraction
D = egress

Ω ----------------------------
S = Successful Offending

F = Failed Offending
P = Primed
N =No Offending (¬α)

R =Retreat

• Forward-branching process, similar to fast process of the Canonical Theory 
• Extends the Offender Interaction Process Model (OIPM)

18c4/12/2016
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Design…outcomes

¬α = no acquisitional goal
α = acquisitional goal
T = tactical plan
A = access
K = extraction
D = egress

Ω ----------------------------
S = Successful Offending

F = Failed Offending
P = Primed
N =No Offending (¬α)

R =Retreat

• Forward-branching process, similar to fast process of the Canonical Theory 
• Extends the Offender Interaction Process Model (OIPM)

Known

Unknown

Known after arrest

18d4/12/2016
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Implementation…event-chains

19a4/12/2016
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Slide 19b 
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Implementation…event-chains

19b4/12/2016
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UNCLASSIFIED

Validation…why a murder series?

 “Serial murder” accounts for a small fraction of ~15,000 
murders a year in the U.S.

 Estimates of the occurrence of serial murder unknown…
• 20-50 active serial murders at any time…?

 Involves hidden population of ”primed, non-offender” 
subjects who often “hide in plain site”

 General structural questions about serial vs. single offending
• Why does an offender repeat events?
• How many “serial” offenders are arrested after only one event (even though 

they intended to continue)?
• What underlying features have an impact on series longevity and tempo?

204/12/2016
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Calibration…Green River Killings (GRK)

Scenario*

• 49 sexual murders
• Young women (prostitutes and runaways)
• 1982 – 1998: Seattle-Tacoma Metro Area, WA
• Victims abducted/taken from prostitute “stroll” 

(abduction-site)
• Bodies dumped in secluded areas (dump-sites)

Gary Ridgway
• Lived and worked in area
• Hyper-sexual, frequented prostitutes
• Solicited victims for sex, then killed victims at his 

home and secluded areas near dumpsites (kill-sites)
• Known to return to dump-sites with prostitutes or to 

have sex with victim corpses (collaboration-sites)

__________________________
* open source

214/12/2016
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GRK…configuration

Configuration
 First 9 murders…

Geospatial elements
• anchor-points  & comfort
• dump-sites & privacy

 Location-based targeting
• prostitute “stroll”

 Targets “high risk”

5 configurations, 100 runs per

Outputs
• “Dominate” vs. “Collaborate”
• abduction-, kill-, & dump-sites
• days-between-hits (DBH)

224/12/2016
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Analysis & Results…overall findings

Spatial
• Subject tendency to favor certain areas to abduct, kill and dump
• Centroids paths do not have same dynamic spatial features as GRK
• Additional factors need to be considered (i.e., investigation, target 

situational awareness)

Temporal
• Increased variation in preferred methods – structurally similar to GRK
• Increased adaptability – longevity similar to GRK
• Nuanced spatial and temporal (behavioral) consistency

Criteria-based
• Individual criteria useful, but as a whole this method did not perform as 

well as expected.

234/12/2016
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Discussion…

• First to explore efficacy of computationally implementing  the 
violent offending process.

• Narrative event-chains provide invaluable way to 
contextualize outputs.
• Future work should differentiate between needs to develop more 

robust representation 

• Internal cognitive features offer a new and useful way to 
represent a problem space and derive tactical planning and 
adaptation solutions.

• Significant representation of “primed-” offending and non-
offending behaviors.

244/12/2016
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Further…Research

1. Calibrate to other series and types of violent behavior (i.e., 
murder, rape, robbery, insider threat, terrorism, etc.)

2. Role of adaptability in series longevity and tempo

3. Causal-path analysis and transition probabilities of outcomes

4. Co-morbidity of “collaborative” and “dominate” event-sites

5. Factors in reduction of the “killing inhibition” 

6. Risk-terrain modeling as a feature of offender decision-making

7. Explore structural similarities of events at different scale

8. Guiding principles of primed behavior…

254/12/2016
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Conclusion…enduring questions

Can offenders be identified prior to attack?
• Examination of “primed, non-offending” behavior…
• Outputs that include not only observable states, but also 

hidden states… 

Is it possible to discover and/or predict offending 
trajectories?

• Outputs as states,…significant opportunities for analysis.
• Causal-path analysis of first-order transition probabilities
• Terrorism analysis
• Role of opportunity-based targeting

264/12/2016
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How does offending depend on the micro-level 
features of offenders?

• Representation of endogenous aspects of the subject 
through an accumulator model and an internal simulation 
of a problem space.

How can hidden attributes and features of violent 
offenders be effectively examined?

• Explicit representation of implicit theoretical foundations.
• Observable outputs of internal features and their traceable 

effects on external interactions… 

Conclusion…enduring questions

274/12/2016
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Questions?

284/12/2016
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Slide 29 
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Thomas J. Dover
Ph.D. Candidate

Computational Social Science Program
George Mason University

Thank You.

294/12/2016
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