Computer Science

The MONK’s Problems - A Performance Comparison
of Different Learning Algorithms

SB.Thrun] Bala E Bloedom I Bratko B.Cestnik J. Cheng

K.Delong 5. Dzeroski D.Fisher SE.Fahlman R. Hamann

K. Kaufman 5. Keller I Kononenko J. Kreuziger R.S. Michalski

T.Michell P Pachowicz Y.Reich H. Vafaie W. Van de Welde
W. Wenzel J.Wnek J. Zhang

December 1991
CMU-C5-91-197

Carne
l\/lellm?l

The MONK'’s Problems — A Performance Comparison
of Different Learning Algorithms

5B.Thrun J. Bala E.Bloedom [Bratkko B.Cestnik J. Cheng

K.DelJong S.Dzeroski D.Fisher SE. Fahiman R. Hamann

K.Kaufman S.Keller 1. Kononenko J.Kreuziger R.S.Michalski

T. Mitchell P Pachowicz Y. Reich H. Vafaie W. Van de Welde
W. Wenzel J. Wnek] Zhang

December 1991
CMU-CS-91-197

School of Computer Science
Carnegie Mellon University
Piusburgh, Pennsylvania 15213-3890

Abstract

This report summarizes a comparison of different Jeaming techniques which was performed at the 2°¢
European Summer School on Machine Leaming, held in Belgium during summer 1991. A variety of sym-
bolic and non-symbolic leaming techniques - namely AQ17-DCI, AQ17-HCI, AQ17-FCLS, AQI4-NT,
AQ15-GA, Assistant Professional, mFOIL, IDSR, IDL, ID5R-hat, TDIDT, ID3, AQR, CN2, CLASS-
WEB, ECOBWEB, PRISM, Backpropagation, and Cascade Correlation - are compared on three classifi-
cation problems, the MONK s problems.

The MONK's problems are derived from a domain in which each training example is represented by six
discrete-valued attributes. Each problem involves learning a binary function defined over this domain,
from a sample of training examples of this function. Experiments were performed with and without noise
in the training examples,

One significant characteristic of this comparison is that it was performed by a collection of researchers,
each of whom was an advocate of the technique they tested (often they were the creators of the various
methods). In this sense, the results are less biased than in comparisons performed by a single person advo-
cating a specific leaming method, and more accurately reflect the generalization behavior of the learning
techniques as applied by knowledgeable users.

Authors® affilistions: J. Cheng, 5.E. Fahlman,T. Mitchell, Y. Reich, and 5.B. Thrun are with Camegie Mellon University; 1. Bala, E. Bloedom, K. De
Jomg, K. Kaufman, R_5. Michalski, P' Pachowicz, H. Vafaie, I. Wnek. and J. Zhang are with George Mason University (USA), I. Braiko, B, Castnik,
5. Dagroski, and L. Kononenko are with Josef Stefan Instituic (Slovenia), W. Van de Welde is with Vrije Universiteit Brussel (Belgium), J. Kreuziger,
R. Hamann, and W. Wenzel are with University of Karlsruhe (Germany), 5. Keller is with University of Zuerich (Switzerland), and D, Fisher is with
Vanderbilt University (USA).

S5.B. Thrun gratefully acknowledges the financial support of Siemens Corp.

Keywords: Machine Learning, MONK"s problems, AQ17-DCI, AQI17-HCI, AQ17-FCLS, AQ14-NT, AQ15-GA,
Assistant Professional, mFOIL, ID5R, IDL, ID5R-hat, TDIDT, ID3, AQR, CN2, CLASSWEE, ECOBWERE, PRISM,
Backpropagation, Cascade Correlation

Once upon a time, in July 1891, the monks of Corsendonk Priory were faced with a school held in
their priory, namely the 2"® European Summer School on Machine Learning. After listening more
than one week to a wide variety of learning algorithms, they felt rather confused: Which algorithm
would be optimal? And which one to aveid? As a consequence of this dilemma, they created a
simple task on which all learning algorithms cught to be be compared: the three WONK's problems.

This report summarizes the results.

-

11

Contents

Results — A Short Overview ix

1 The MONK’s Comparison Of Learning Algorithms — Introduction and Survey

(S.B. Thrun, T. Mitchell, and J. Cheng) 1
1.1 Theproblem mofor B SR SO s it s agtie gl s Spmv o 2
1.2 Vignalizalion o casasimeair S S8 LAl e el oinss niie W dae wF EER o 2

2 Applying Various AQ Programs to the MONK"s Problems: Results and Brief Description

of the Methods
{J. Bala, E.Bloedorn, K.De Jong, K.Kaufman, R.S. Michalski, P. Pachowicz, H. Vafaie, J. Wnek, and

J. Zhang) T
2.1, Introduction i canee s Fin EER DAT e NTEIE G Wi TUN SRR NS SR i 3
2.2 Results for the lst problem (M) oo oo]
2.2.1 Rulesobtained by AQI7T-DCI0 oo ittt it et it i en s |
222 Rulesobtained by AQIT-HCI o0 o e e 10
2.3 HResults for the 2nd problem (Ma) o o0 0o e 11
93.1 Rulesobtained by AQIT-DCI « o 0ottt e e Ll
2.3.2 Rules obtained by AQIT-HCIottt e i 3
2.3.3 Rulesobtained by AQIT-FCLS00 v vimee v i v nime i oo 13
24 Resultsforthe rdproblem (Ms) it i 15
2.4.1 Rules obtained by AQIT-HCT it i it e o 13
2.4.2 Rulesobtained by AQLI4-NT it 15
243 HRulesobtained by AQLIT-FCLS v o v v cm s v s mm s m e o n e oo 16
244 Rulesobtained by AQIS-GA ¢ o 17
9.5 A Brief Description of the Programs and Algorithms 17

25.1 AQIL7-DCI (Data-driven constructive induction)o 17

iv

252 AQL7T-FCLS (Flexible concept RAIMIGEY s we% o wwm i mm s e) W
253 AQL7-HCI (Hypothesis-driven constructive induction) . . . o o oo e -

954 AQIL4-NT (noise-tolerant learning from engineering data)

255 AQI5-GA (AQL5 with attribute gelection by a genetic algorithm). -

2.5.6 The AQ Algorithm that underlies the programs -« oo m e m e

2 The Assistant Professional Inductive Learning System: MONK's Problems
(B. Cestnik, [Kononenko, and L. Bratko)

Ty IRRCOMUBEIOH . v o v 1 S0k8 #0000 S@E GBI AT MR e M AT R U N AT
32 Experimentalresultso

NS THASRRRORE, ... i ¢ SN S DN SR e e e e o (0
1 ey S ————— R S R e
3.5 Resulting Decision Trees oo v vomoons vnsnu s nsesn sy S oW

4 mFOIL on the MONK's Problems
(5. Dieroski)

4.1 Deseription o« 0 van oo

5 Comparison of Decision Tree-Based Learning Algorithms on the MONK's Problems
(W. Van de Welde)

5.1 IDL: ABrief Introduction . .« « o oo v v ovmm s e e e
Bl TOEEOQUEEION .« . v «ooovon v b e bms b oo & ain SRS F e e e e
512 Related Work . . .« « oo v v v o v e s s s e s e e e
Bl OAnelbfiOn 555 o5k G A wNik NIRRT R R e R Mo W T neliEl

52 Experimental Results.o e i

5.2.1 ID5Rontestset 1l U 2 - SR S 2 e

19

20

20

23

24

24

30

n

3

32

33

34

34

a5

558 TTDL o 1eaE B8 1o i snmm simse siw e s e s S e B S p 43
523 IDSR-HAT ontestsetl R 44
524 TDIDTontestsetl i onee.a.. M
505 IDGRontesteab 2o oo s i sas SR GEERR e IR Wl WS g 45
528 (IDL godestaet 200 i v BN SRTSni i lan et SRR EuR s B iR 46
ST TDIDT om téat sab.2 v vs em sren core s e s mers gono gy goms mo Co.. 48
598 TDIDT ontest:mel:] oun wmvm s cwm i e iieesnes B 055 2909 @ed o9 49
520 TDSR-HAT o ek 8et'D 500 ooh ofeae iU inds L R BES B g o 50
5.3 Classification diagrams . . .« . coie v oo wv s pra s e s e .
54 Learningcurveso - v o v v e n IR SO N B MG U ou 58

Comparison of Inductive Learning Programs

{J. Kreuziger, R. Hamann, and W. Wenzel) 59
B.1 Imtroduction « v« v v v v v a s s e e e b e e e SR e R L 50
6.2 Short description of the algorithmso B30
B2l ID8 ... voenooe e i b aEh SR R Somew LR SR S oy S 50
B2 TDBR . . o v vnae oi e a b s s e e e e e e e e e E e h e e A e 61
B8 AQR i s e v S B O S e e B R B s ey e 61
(s o 2 S G ' S it oo - SRR ISt e e i e R T 62
BOE CLASSWER. o oo e s S nites =i ok wen s e s aald S 4 a6
B RIS i DR L SR AR SR Y B SAe e RS R S e 63
8.3.1 Training TimMe v v v v n v m v e e e 63
B2 9 (Nassifior Bemulbs. . v oo iov v witi s we s e ST wowon SLsb e g mona sz ros G+
Bt ConeluSion . . o« v o b s b s Se s e e e e e e e e e s e G3

6.5 Classification diggrams o o v s v s s n ot e e e s

vi

7 Documentation of Prism - an Inductive Learning Algorithm

(5. Keller)

7.1 Short Description . . - - - A G R B

ol ST s e ——————— . il R

7.3 PRISM: Entropy versus Information Gain« vvv v m s
7.3.1 Maximizing the information gain
732 Trimmingthe treeo o v ot e s

74 The Basic ALEorithin .o ow v v v siois fats s s s pimmmn 1ot L miry e b e

5 & Tha Use SEHBUAREEE. . o voooeow s ae s d 3 200 FRd WO SRR R S i

78 General Considerations and a Comparison with ID3

7.7 Tenplemembblon . o o v s sovw v s o s s em ey n e T e

7.8 Results on Running PRISM on the MONK’s Test Setso o
781 TestSetl-Rules 2 WA o () -
783 Tost Sat2-RUIMS . .o «vcovous o v s ra s pnEe SR S e e e
7.8.3 Test Set3-Rules s R R SRR ey 2 .

7.0 Classification disgrams oo 0o s e e e

8 Cobweb and the MONK Problems
(Y. Reich, and D. Fisher)

8.1 COBWEB: A briefoverview oo o v i .
B0 BODBWER © . o o iels «idiits G060 Sl aiesh o8 eom Ok m e i s n g S e
8.2.1 Characteristics predickion oo
8.2.2 Hierarchy correction mechanismo e
8.9.3 [Information utlity funetion o v o oo oo s
B Bestlb . ooouone = oos s bR S O GEERNENE L e s wE i U—

S SWIDIBARY -« s viiie went MR CHET s e e pomen w4 £ 4 FE RS e

30

25

i

97

a7

9 Backpropagation on the MONK's Problems

{S.B. Thrun)

Bl TOERGHMEEHION 5o vomrs s assselam BrEss Fiems SApis Shswr toSoE sngrinseelesow e

9.2 Classifleation diagrams . . ¢ o v v v s vah v e e E R e e

9.3 Resulting weight matrices 0 oo

10 The Cascade-Correlation Learning Algorithm on the MONK's Problems
(S.E. Fahlman)

10.1 The Cascade-Correlation algorithm0 o0 o in v oo .
3 R £ | e e R e S oo e o e I e G R e e e

10.3 Classification diagrams o . v v vt e e e e e e

101

. 102

. 103

. 105

viil

Results — a short overview

1 ' [#F1 [#2] #3]

T Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.5. Michalski,
P. Pachowicz, H. Vafaie _J. Wnek, and J. Zhang
AQIT- 100% | 100% | 94.2%
AQLT-HCI 100% | 93.1% | 100%
AQILT-FCLS 92.6% | 97.2%
AQI4-NT 100%
AQL5-GA 100% | 86.8% | 100%

| B. Cestnik, . Kononenko, and [. Bratko

| Assistant Professional [100% [81.3% | 100%
5. Dieroski
mFOIL [100% | 69.2% | 100%
W. Van de Velde
ID5R BL.7% | BL8%
IDL 97.2% | 66.2%
ID5R-hat) 90.3% | 65.7%
TDIDT 75.7% | 66.7%
J. Kreuziger, R. Hamann, and W. Wenzel
D3 08.6% | 67.9% | 94.4%
1D2, no windowing 83.2% | 60.1% | 95.6%
ID5R 79.7% | 69.2% | 95.2%
AQR 95.9% | 79.7% | 87.0%
CN2 100% | 69.0% | 89.1%
CLASSWEB 0.10 T1.8% | 64.8% | 80.8%
CLASSWERB 0.15 65.7% | 61.6% | 85.4%
CLASSWEB 0.20 53.0% | 57.2% | 75.2%
S. Keller
PRISM 186.3% [72.7% | 90.3%

Y. Reich, and D. Fisher
ECOBWERB leaf prediction TL8W | 67.4% | 68.2%
ECOBWESB l.p. & information utility | 82.7% | T1.3% | 68.0%

S. Thrun

Backpropagation 100% | 100% | 93.1%

Backprop. with weight decay 100% | 100% | 97.2%
I.TFahEman

100% | 100% | 97.2%

| Cascade Correlation

Chapter 1

The MONK'’s Comparison Of
Learning Algorithms — Introduction

and Survey

Sebastian B. Thrun
Tom Mitchell
John Cheng

Carnegie Mellon University, School of Computer Science, Pittsburgh, PA 15213
e-mail: Sebastian. Thrun@es.cmu.edu, Tom.Mitchell@cs.cmu.edu, John.Cheng@cs.cmu.edu

2 §.B. Thrun, T. Mitchell, and J. Cheng

1.1 The problem

The MONK's problems rely on the an artificial robot domain, in which robots are described by six different
attributes [Wnek, Sarma, Wahab and Michalski, 1991]:

ry: headshape € round, square, octagon
rs: body_shape € round, square, octagon
3 issmiling £ ¥es, no

r4: holding € sword, balloon, flag
z5: jacket.color & red, yellow, green, blue
zg: has_tie £ vyes, no

The learning task is a binary classification task. FEach problem is given by a logical description of a class,
Robots belong either to this class or not, but instead of providing a complete class description to the learning
problem, only a subset of all 432 possible robots with its classification is given. The learning task is then to
generalize over these examples and, if the particular learning technique at hand allows this, to derive a simple
class description.

+ Problem M;:
(head_shape = body_shape) or (jacket_color = red)
From 432 possible examples, 124 were randomly selected for the training set. There were no misclassifi-
cations.

+ Problem Mj:
exactly two of the six attributes have their first value.
(E.g.: body shape = head_shape = round implies that robot is not smiling, holding no sword, jacket_color
is not red and has no tie, since then exactly two (bodyshape and head shape) attributes have their first
value) From 432 possible examples, 169 were randomly selected. Again, there was no noise.

+ Problem Ma:
{jacket_color is green and holding a sword) or (jacket_color is mot blue and body._shape is

not octagon}
From 432 examples, 122 were selected randomly, and among them there were 5% misclassifications, L.e.
noise in the training set.

Problem 1 is in standard disjunctive normal form and is supposed to be easy learnable by all symbaolic learning
‘algorithms as AQ and Decision Trees. Conversely, problem 2 is similar to parity problems. It combines different
attributes in a way which makes it complicated to describe in DNF or CNF using the given attributes only.
Problem 3 is again in DNF and serves to evaluate the algorithms under the presence of noise.

1.2 Visualization

All contibutions in this report have two things in common: firstly, they refer to the same problems — the MONK's
problems -, and secondly, most results are visualized by a two-dimensional diagram. Due to the difficulties in
representing a six-dimensional space on a conventional sheet of paper, the plot is unfolded, as might be found in
[Wnek, Sarma, Wahab and Michalski, 1991]. The resulting diagrams of training and testing sets may be found
below,

The MONK's comparison - Introduction and Survey 3

In all training set diagrams, positive examples are marked by “#" and negative ones by “=". Misclassifications,
as in the presence of noise, are indicated by boxes. Correspondingly, in all test sets positive examples are marked
by “#", while empty fields indicate negative examples.

In turn, we will plot the results of all learning algorithms in the same way: # indicates that the learning
algorithm classifies the entity as a positive member, and a blank as a non-member. However, an additional
square will indicate misclassifications, i.e. if the classification obtained by the algorithm is wrong.

Acknowledgements

The authors thank Walter Van de Welde for the excellent organization of 2™ European School on Machine
Learning, at which this comparison was created. We would also like ta thank all participants in this comparison,
including Bruno Roger.

References

J. Wnek, J. Sarma, A. Wahab, and R. Michalski: Comparison learning paradigms via diagrammatic Visual-
ization: A case study in single concept learning using symbolic, neural net and genetic algorithm methods,
Technical Report, George Mason University, Computer Science Department, 1990

S.B. Thrun, T. Mitchell, and J. Cheng

M;: Training set{124 examples, no noise) and test set

(head_shape = body shape) or (jacket_color =

red)

* |- E £
® | » L
& | - - =1 - =
s - " = o
- a* w - = -
=] - K -
w o | e # | @ - # #
AE AR »
® | = * - =
= & | @ -
| @ L] -
= - -
- *
® | @ - L] . =
= L] W o @ L]
* | * | w » " M
| ymmsd | | ballsan _1
ped silow | grean | blum | ved | yallow | greem | 'hlt-tJ
I_T'|'|'l'|l1r_]llr|1li:r1l|r"l“]_“;|l].t|'l|s'|ﬂ:|1|0lf|llFJA
#'i# # | wm|®| % | ® | ®|® | o FEE SN B EE =
'EERERE R R R ® | = o w o= o ®
E # | » Al
¥ | * #* | m L
® | = # | w #* | @
® | w " | o#® #* [w
@ | * * | ® LR
o | ® * | # el
| # | ® # | = | m | = | ®]w|#® ® | #® | W | # ® & | &
AERERERERE NN "I RENEREAE R R,
L2 LR | w
#|m L # | =
* | » L] L
E LN " | ®
® | L ® | w
N #® | ® #* | »
| = | & # | ®= | & e | ® | m & | W n @ | ® | .| "
® | = 'IEAERERE RN - | = | | @ |=|m| =

e
¥ o oy
n 0w 0
¥ LL L rau
a s rou
¥ ach e
= act Tom
¥ L] M
a rou e
¥ age T
. T gm
¥ ah 1.
n act iqu
¥ rou el
A
a rau ok
¥ aqu asl
5 agu ey
¥ wel =l
n ot et
in body Baad
wmiling shaps ahaps
[¥ oy (21
[[
igE [
u A oy
r >at ras
e —
a aci rau
¥ [s
n | res qu
¥ wqu 1y
a 1qu 1qu
'
¥ aet qu
a act qu
I
¥ W w5t
L] (LT Bat
¥ agu agt
n mu ect
L
¥ it @t
- wat | s
.]
in body | mead
amiling shape | nhape

The MONK's comparison - Introduction and Survey

My: Training set (169 examples, no noise)} and test set

“exactly two of the six attributes have their first value”

(=521

¥
) - — = - " Fa
- - I i P a| -|®| -] ® EB
- - = » - = w| -|m] - FE
- P S B " i " [y
“Taf - - - = = s
I - E, « ®| - v
= L = a = s = = - L]
a r] - E L] - - ir

I+

=] = #* - L] o - ® | & *
| » # R - - - - - n
- B " w]-l#]-]- * * r
- Al - %] - | = @ # = | - = b
- #| -] » w |- - » .| - ¥
- -] - » -] - - » - - n
= - - f & - | -,._.
- - - - - * - [R
i
wmiling
[amard | I.I'IIT:‘ i bailoss J
rad allow eeem | blue | red | ﬂj:iiﬂldb;l::n | blue | wed | yellow | gress | blss
|r{n|r|-|:|r|lirlllrlllvi:urnrlllrl-lrl.-lrlnlrli!rJ.lj
¥
»® E] *® L] L L3 L1
L] w L] » *® L] :l_
#* = a* LR L] L] ® | ® # - ,_..n_..
L
L £ - * E E ¥
L] L L] w® | ® L L W ow £ * z
E @ * L]] * ¥
* E] - - L] - * = £] o T
#* * £l o L] L] L] ® - L] T
E * » * * S
L] L. £ d #® | = L] L] LN * * ¥
L L] L] L]] L T
L [L] #* #* L ¥
i '] £ #* | # E] L » * _u_
L] L] L #* £ k] - £ ‘T‘
* *® - L] L] L] T
L L] » o » - L] [] - = o T
MK # # #* * KD
s--ll:lu[

S.B. Thrun, T. Mitchell, and J. Cheng

Ma: Training set (122 examples, 6 misclassifications due to noise) and test set

(jacket_color is green and holding a sword)

or (jacket_color is not blue and body_shape is not octagon)

LI E = - * ¥ ran row
o = - " L " | ® T rou Tom
» # | af-] | 22w #| - EN squ
L] = | o ® | #® L * | W n wqu rau
- - - - - T S cou
- - - - - - =5 Bet row
L = - - = o #* - T raw gm
Ed - L] rew age
- - L E] #* & - - = ¥ g LT
L] » L - T LLL] A
L] - = = = - ¥ ael aq
= z z - 2 = - T - .
- #* E] £ - T mow act
#* M Py T ou aet
- L] £ T aqu gt
#* L] - - L] - T gu act
| = - - T- wct £131
- - - - = - = | 0 et et
in bady baad
amiling ahape shapse
[wward | ‘E‘E‘:‘ balloss I
[sed | yallow | greew | blue | L ﬂ-l‘ll:iﬂt‘nil::vn | ved | yellow | gream | blue |
|— : Fas.iin
rlnlrlllrln_lr!llrl-lrl-lrl-lrll1:J-IrIA[rllIrI-
| @ | @ | ® | # | @ # | @ | w | @ | & * || om | e o oW ¥ rou (LT
L # L] L o #* = #* " L L *® *® - L] £ * - a fau rau
w | o | @ a || # 'EEIE AR BE BN ® | # | e | ® | ® | = T _I:H_ e
- #* L - - " L] E £] L] £] * - Ed - L] * E a u raw
#® | # T act rou
#® | & T et ram
@ | @ [| w | ®]| w | @ | @ | @ | ® | o® # | #® | Wl oR| | e T rau wqu
w % | % | w| 0] w2 |m|m]|e % m| %] e v sau
FEE BE R NN R | % | # L L E I r Lo L] aqu
@ | @ | W | W | @ | #® CEE NE SR RN NN L a (LT aqe
#* * _!_ _c:l_ s
"R [5 sk 1=
| w | @ | @& | ® | @ | @ | ok | #® | *) = # | o | oW W | @ |8 T Eou ack
a || ® | *® L] . E O L #® | ® | W - | @ T Eou agt
o L L #* * L "] - =] £ #* #*] [] £ #* T aqu acy
2 | = | @ | & | & | @ | &= | = 0 = o | ow | | @ oW hMl_ nu act
* L] ¥ aat e
@ | - -_-_ ast gt
in body hend
smiling abape nhape

Chapter 2

Applying Various AQ Programs to the
MONK’s Problems: Results and Brief
Description of the Methods

J. Bala

E. Bloedorn
K. De Jong
K. Kaufman
R.S. Michalski
P. Pachowicz
H. Vafaie

J. Wnek

J. Zhang

Center for Artificial Intelligence, George Mason University, 4400 University Drive, Faixfax, VA 22030

8] Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.5. Michalski, P. Pachowicz, H. Vafaie, J. Waek, J. Zhang
2.1 Introduction

This chapter describes briefly results from applying various AQ learning programs o the MONKS’ problems.
The MONKS' problems are concerned with learning concept descriptions from examples. All examples come
frem the same event, space, which spans 6 multiple-valued attributes. The sizes of the value sets of the attributes,
x1, %2, ..., %6 are 3, 3, 2,3, 4, and 2, respectively. Consequently, the space comsists of the total of 3x3x2x3xdx2
= 432 possible events (examples),

There are three different MONKS’ problems. As described in Chapter 1, the problems differ in the type of the
target concept to be learned, and in the amount of noise in the data. The training and testing sets of examples
were provided by the creators of the problems, Thrun, Mitchell and Cheng. A listing of all the data is in the
Appendix. Here is a brief summary of the data for each problem.

« Problem 1. There were 124 training examples, which represented 30% of the total event space (52 positive
and 62 negative). The testing examples were all possible examples (216 positive and 216 negative).

« Problem 2. There were 169 training examples, which represented 40% of the total event space (105
positive and 64 negative). The testing examples were all possible examples (190 positive and 142 negative).

« Problem 3. There were 122 training examples, which represented 30% of the total event space (62 positive
and 60 negative). The testing examples were all possible examples (204 positive and 228 negative). We
were informed that 5% of the examples were misclassified.

The following AQ programs were used in the experiments:

AQL7-DCI (a version of AQ program with data-driven constructive induction)

AQIT-HCI (a version of AQ program with hypothesis-driven constructive induction)

AQ15-GA (a version of AQ program combined with a genetic algorithm)

« AQL5-FCLS (a version of AQ program oriented toward learning flexible concepts)

AQIL4-NT (a version of AQ program oriented toward noisy data)

Rules generated by different programs were tested using the ATEST program that computes a confusion matrix
(Reinke, 1984). The program computes the so-called consonance degree between an unknown example and
the rules for each decision class. The output from this program includes numerical evaluations of the the
accuracy of the rules based on the percentage of the testing examples correctly classified (by choosing the rule
that best fits the example), and the percentage of examples precisely matched by the correct decision rule..
These percentages are output by ATEST as OVERALL % CORRECT- FLEX-MATCH and OVERALL %
CORRECT-100% MATCH, respectively.

Details of these programs, and of the AQ algorithm underlying these programs are given in Section 2.5. It
<hould be noted that results are not always presented for each of these programs as applied to each of the
three problems. As indicated above, these programs derive from the same basic method, each adding features
appropriate to specific types of problems. The different programs derived basically the same rule for the first
problem; the ones shown here are the ones whose knowledge representation schema allowed for the most elegant
presentation of the output. We felt that for the sake of brevity and emphasis on the matching of the programs
different features with the types of problems to be solved, we should present only the resuits of the programs
better suited for the given type of problem. For example, we felt that there was no reason to apply AQ14-NT,

Applying various AQ programs to the MONK's problems 9

a program with special features to cope with noisy data, to Problem 2, a problem in which data were without
noise, and the testing events were 100% correctly classified by the rules obtained by other programs. For the
same reason, we did apply the data-driven constructive induction program AQ17-DCI to Problem 3, because
it is a strictly data driven method, and as such is less suitable for learning from noisy data than other AQ)

programs.

2.2 Results for the 1st problem (M;)

2.2.1 Rules obtained by AQ17-DCI

These are the rules obtained by AQ17-DCI, a version of the AQ program that employs data-driven constructive
induction. The results include one rule for Class 0 (that represents positive examples of the concept), and one
rule for Class 1 (that represents the negative examples):

Class 0:
Rule 1 [jacket_color > 1] & [head_shape <> body_shape] (total:62, unique:62)

Class 1:
Rule 1 [head_shape=bedy_shapel- (total:41, unique:33)
Rule 2 [jacket_color=1] (total:29, unique:21)

Expressions in [] denote individual conditions in a rule, Values 1, 2, 3 and 4 of the “jacket.color” attribute
denote red, yellow, green, and blue, respectively. The body-shape and the head-shape attributes had values
I-round, 2-square, and 3-octagon. In the above rules, “total” means the total number of training examples of
the given class covered by the rule, and “unique” means the number of training examples covered by that rule
only, and not by any other rules,

There is only one rule for Class 0, and there two rules for Class 1. The latter means that if any of the rules is
matched by a given instance, then that instance is classified to Class 1. A set of such rules is logically equivalent
to a disjunction of conjunctions. The syntax of the rules is defined formally according to the variable-valued
logic caleulus VL1. Individual rules correspond to “complexes™ in VLI.

The results of applying the rules to the testing examples are presented below.

RESULTS
OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 100.00

where:

OVERALL % CORRECT FLEX MATCH means the percentage of the correctly classified examples within the
total set of testing examples, using a flexible matching function (see Reinke, 1984), and OVERALL CORRECT
T 100% MATCH means that the percentage of correctly classified examples that matched the rules éxactly.

The number of testing events satisfying individual rules in the correct class description is given in the table
below:

10 J. Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, P. Pachowicz, H. Vafaie, J. Wnek, J. Zhang .

RULES
R1 R2
CLASS O 215
CLASS 1 144 108

2.2.2 Rules obtained by AQ17-HCI

These are the rules obtained by AQ17-HCI, a version of the AQ program that employs hypothesis-driven
construetive induction. The results include one rule for Class 0 that represents positive examples of the concept,
and one rule for Class 1 that represents the negative examples:

Claas 0O:
Rule 1 [Negi7=false] (total:62, unique:§Z)

Class 1:
Rule 1 [Posi6=falsa] (total:62, unique:62)

where Neg17 and Pos16 are attributes constructed from the original ones, or intermediate ones, as defined below
(these rules, as one can check, are logically equivalent to the AQ1T-DCI generated rules)

c01 <:: [head_shape=1] & [body_shape=2,3] & [jacket_coler>1]
c05 <:: [head_shape=2] & [body_shape=1,3] & [jacket_coler>1]
c08 <:: [head_shape=3] & [body_shape=1,2] & [jacket_coler>1]

: [head_shapa=1] & [body_shape=1]

11 [jacket_color=1]

:: [head_shape=2] & [body_shape=2]

:: [head_shape=3] & [body_shape=3]

: [ci0=false] & [ci2=falaa] & [ci3=false] & [c15=false]
Neg <:: [cOl=false] & [c05=falae] &k [cOB=falsa]

(1]
ey
f=]
AA A A A A A A

TEST RESULTS - SUMMARY
OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 100.00

Number of testing events satisfying individual rules in the correct class description:

RULES
R1
CLASS © 215
cLass 1 216

Other programs either were not used on this problem, or generated similar results.

Applying various AQ programs to the MONK's problems 11

2.3 Results for the 2nd problem (M)

2.3.1 Rules obtained by AQ17-DCI

The rules below were obtained by AQ17-DCI, which is capable of generating all kinds of new attributes from
the original attributes. For the problem at hand, the program found that a new attribute that expresses the
number of variables in the learning examples that have some specific value is highly relevant to this problem.
Such an attribute is assigned by the program the name #VarEQ(x), which means “the number of variables with
value of rank & (in their domain)” in an example. The lowest value in the domain has rank 1, the next lowest
has rank 2, etc. In this case, the relevant attribute was #VarEQ(1). Based on this attribute, the program
constructed appropriate decision rules. There were two one-condition rules for Class 0, representing the positive
examples of the concept, and one rule for Class 1 that represents the negative examples. The rule for Class 1
is logically equivalent to the negation of the union (disjunction) of the rules for Class 0.

Class 0:
Rule 1 [#VarEQ(1)>=3]
Rule 2 [#VarEQ{1)<=1]

Class 1:
Rule 1 [#VarEQ(1)=2]

The rules say that the number of variables that take the lowest value from their domain is 1 or greater than 2
(i.e, not equal to 2.

The results of applying the rules to the testing examples were;

RESULTS i
OVERALL % CORRECT FLEX MATCH: 100.0
OVERALL % CORRECT 100% MATCH: 100.0

2.3.2 Rules obtained by AQ17-HCI

There are 4 top level rules for Class 0 (positive examples), and 6 top level rules for Class 1(negative examples):

Class 0:
Rule 1 [PosT3=true] (total:30, unigue:43)
Rule 2 [cl4=false] & [c26=false] & [cSi=false] k& [c67=false] &
[c72=false] & [NegT4=false] (total:38, uniquae:6)
Rule 3 [holding=2,3] & [cG6#false] & [c20=false] & [NegTd=false] (total:22, unique:S)
Rule 4 [head_shapes2] & [has_tie=2] & [c44=false] &
[c50=false] & [HegT4=false] (total:6, uniquae:2}

Class 1:
Rule 1 [Meg74=true] (total:43, unique:30)
Rule 2 [jacket_color=2,3,4] & [has_tie=1] & (cE0=trua] & [PoaT3i=falsa] (total:17, unique:4}
Rule 3 [head_shape=2,3] & [body_shape=2] k& [c28=false] & [PosTisfalse] (total:16, unique:7)
Rule 4 [body_shapew3] k [c48=true] &k [c66=true] (total:4, umique:2)
Rule 5 [jacket_color=3] & [c4d=trua] & [c52=false] k& [cS3=false] &
[c55=false] & [c69=true] & [PosT3=falme] {(total:4, unique:2}
Rule 6 [body_shape=3] & [c9=false] & [clO=true] k [c23=true] & [c32=trme] (total:3, unique:1)

12

J. Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, P. Pachowicz, H. Vafaie, J. Wnek, J. Zhang

Attributes “ci, i=2..72" “Pos73,"” and “NegT4” were constructed during the learning process. The following
were relevant to the discovered rules:

]

c4

c5

cé

eT

c9
<10
cl4
c1E
clé
cl7
clg
c20
c21l
c22
c23
c2B
c28
c32
c33
37
c3g
c39

e

AA A A A A A A A
.

”
H

A A A A A

[jacket_color=i,4]

[body_shape=2,3] & [is_smiling=2]
[head_shape=2,3] & (is_amiling=2]
[head_shape=2,3] & [body_shape=2,3]
(holding=1,2] k& [jacket_color=1,3,4]
[head_shape=1,3] & [jacket_celor=2,3,4]
[holding=1,2] & [jacket_color=2,3,4]

11 [jacket_color=2,3,4] & [has_tie=2]

: [is_smiling=1] & [jacket_coler=2,3,4]
t: [holding=2,3] & [has_tie=2]

: [holding=2,3] & [jacket_color=2,3,4]

:: [is_smiling=2] & [jacket_color=2,3,4]

: [jacket_color=2,3,4] & [has_tie=1]

:: [body_shape=2,3] & [holding=2,3]

: [is_smiling=2] & [holding=1,2]

:: [holding=1,3] & [jacket_color=2,3,4]

: [head_shape=2,3] & [jacket_color=2,3,4]
: [body_shape=1,3] & [jacket_color=2,3,4]
: [head_shape=2,3] & [jacket_color=1,2,3]
:: [head_shape=2,3] & [has_tie=2]

: [is_smiling=2] & [holding=2,3]

: [e21=false] & [c3T=false]

11 [cB=true] & [ciT=true]

c4d
cdl
cd2
cdd
cdd
c4s
c47
c4B
c49
<50
c52
c53
c55
cBé
c59
Bl
chl
c85
cB8
c87
cf8
cB9
cTd
cT2

A A A A A A A

a

A
o

AA A A A A A A A A A A A A AA

: [c5=true] & [ci1T=trua]

: [ciS=false] & [c28=false]

:: [holding=2,3] & [c39=falsa]

: [body_shape=2, 3] & [c39=false]

i1 [holding=2,3] & [jacket_color=2,3,4]
: [c15=falsa] k& [c39=falsa]

: [cT=false] & [c39=false]

: [jacket_color=1,2,4] & [cT=false]
:: [elT=falase] & [c33=true]

: [body_shape=2,3] k& [c22=false]

: [jacket_color=2,2,4] & [cld=false]
: [jacket_color=2,3,4] & [c2i=true]
:: [holding=1,2] & [ci4=false]

: [holding=1,3] & [cil4=false]

:: [jacket_color=2, 4]

: [c38=falaa] & [cd49=falze]

:: [body_shape=2,3] & [jacket_color=2,3,4]
: [c20=falsa] k& [c39=false]

:t [jacket_color=1,2,3] & [cd46=trual
: [c38=false] k& [cd49=true]

;1 [c40=false] k [cS55=false]

:: [e16=false] k& [cS55=false]

:: [jacket_color=2,3,4] k& [ci8=false]
: [jacket_color=1,2,3] & [c3T=truel

PomT3 ¢i: [cdmfalse] & [cl6=false] k [c33=false] k [c39=false] & [c40=false] or
[ci5=false] & [cd43=false] & [c47=false] & [c68=falae] or
[body_shape=1,2] & [c2i=false] k [c4l=true] & [cdd=false] & [c6S=true] & [c67=talse] or

HegT4 <::

[c33=true] k [cE0=true]

[c4=false] & [c42=true] & [c56=false] & [c65=truel] k [c68=true] or

[c2wfalse] & [c4=false] & [ci6=false] & [ciT=truel & [c26=true] or

[is_smiling=2?] & [holding=2,3] & [cl4=false] & [c4l=true] &
[c43=true] & [c59=falsa] & [c69=false] & [cTO=false] or

[has_tie=2] & [cS=true] & [cd4=false] & [cGi=falsal

TEST RESULTS - SUMMARY
OVERALL % CORRECT FLEX MATCH: 93.06
OVERALL % CORRECT 100% MATCH:

B6.57

The above summary of the results shows that the rules generated by AQ17-HCI approximate quite well the
concept in Problem 2 although they use only logical operators. This result is quite interesting because concepts
such as the one in Problem 2 are among the most difficult to learn using solely logic-based inductive learners
(classical rule learning or decision tree learning programs). This result demonstrates the power of hypothesis-
driven constructive induction.

MNumber of testing events satisfying individual complexes in the correct class description:

CLASS
CLASS

RULES
R1 R2 R3 R4 RS RE
0 232 B84 54 12
1 T4 32 1w

4

Applying various AQ programs to the MONK’s problems 13

2.3.3 Rules obtained by AQ17-FCLS

These are the rules obtained by AQ17-FCLS, a version of the AQ program that learns flexible concepts by
generating rules that permit partial matching. The threshold parameter indicates the minimum percentage of
the individual conditions in the rule that must be satisfied for the rule to apply. The results include two rules
for Class 0 that represent positive examples of the concept, and 18 rules for Class 1 that represent the negative
examples. The discovered rules fully encompass Class 0, but they failed to get a complete grasp of the concept
of Class 1:

Class 0:
Rula 1 [head_shape = 1] & [body_shape = 1] & [is_smiling = 1] &
[holding = 1] & [jacket_color = 1] & [has_tie = 1]
with THRESHOLD = 50 ¥
(Total positive examples covered: 64}

This rule says that three or more variables must be equal to 1 (recall that for “is-smiling” and “has-tie”
attributes, the value 1 means “yes” and value 2 means “no” ; for attibrute “holding” the value 1 means
“sword,” 2 means “balloon,” and 3 means “flag”).

Rule 2 [head_shape = 2 , 3] & [body_shape = 2 , 3] & [is_smiling = 2] k
[holding = 2 , 3] & [jacket_color = 2 , 3 , 4] & [has_tie = 2]
with THRESHOLD = 83 % (5/6)
(Total positive axamples covered: 41)

This rule says that five or six out of six variables must be greater than 1, or equivalently, that at most one
variable can be equal to 1. Thus the disjunction of these two rules above means that the number of variables
which have value 1 cannot be equal to 2.

These rules classified 100% all the examples of Class 0.

Class 1.

Since the curreni program does nol have the ability {o express the negation of the above two rules for Class 0,
to program generated many “light-weight” rules to cover all ezamples of Class 1. The overall performance using
the flerible match was not 100% because in some cases when an ezample maiched equally well the rules for both
classes, an incorrect class was chosen. In the next version of the program, we will include the missing negation
operator.

Rule 1 [is_smiling = 1] k& [holding = 2 , 3] & [jacket_color = 2] &
[has_tie = 2]
with THRESHOLD = 100 ¥ {total positive axamples covered: B)

Rule 2 [head_shaps = 2 , 3] & [body_shape = 2 , 3] & [is_smiling = 1] &
(holding = 2 , 3] & [jacket_color = 2 , 3 , 4] & [has_tie = 1]
with THRESHOLD = 100 ¥ © (total positive examplea covered: 9)

Rule 3 [head_shapa = 2 , 3] & [body_shape = 2 , 2] & [is_smiling = 2] &
[holding = 2 , 3] & [jacket_color = 2] k& [has_tie = 2]
with THRESHOLD = 100 % (total positive examples coverad: T)

Rule 4 [head_shape = 3] k [body_shape = 1] & [is_smiling = 1] &
[holding = 1] & [jacket_color = 3] & [haa_tie = 2]

14 J. Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.5. Michalski, P. Pachowicz, H. Vafaie, J. Wnek, J. Zhang

with THRESHOLD = 23 % (total positive examples covered: 5)

Rule 5 [head_shape = 1] k& [is_smiling = 1] & [holding = 2 , 31k
[jacket_color = 3 , 4] & [has_tie = 2]
with THRESHOLD = 100 % {total positive examples covered: 5)

Rule & [head_shape = 2 , 3] & [body_shape = 1] k [is_smiling = 2] &
[holding = 1 , 2] & [jackst_color = 2]
vith THRESHOLD = 100 % (total positive examples covered: 4)

Rule T [head_shape = 1] & [body_shape = 2 , 3] & [is_smiling = 2] &
[holding = 2 , 3] & [jacket_color =2, 3, 4] & [has_tis = 1]
with THRESHOLD = 100 % {total positive examples covered: 5)

Rule 8 [head_shape = 2 , 3] & [is_smiling = 2] & [jacket_color = 1] &
[has_tie = 2]
with THRESHOLD = 100 % (total positive examples covered: 1)

Rule 9 [head_shaps = 2 , 3] & [body_shape = 2 , 3] &k [is_smiling = 2] k
[holding = 1] & [jacket_coler = 2,3, 4] & [has_tie = 1]
with THRESHOLD = 100 % (total positive examples covered: 4}

fiule 10 [head_shape = 1 , 3] & [body_shapa = 1] & [holding = t , 2] &
[jacket_color = 4] & [has_tie = 2]
with THRESHOLD = 100 % (total positive examples coverad: 3)

Bule 11 [head_shape = 2] & [body_shapa = 2] & [is_sailing = 1] &
[holding = 1] & [jacket_color = 2 , 3 , 4] & [has_tie = 2]
with THRESHOLD = 100 % (total positive examples covered: 5)

fule 12 [head_shape = 1 , 2] & [body_shape = 3] & (holding = 2 , 3] &
[jacket_color = 1] & [has_tie = 2]
with THRESHOLD = 100 % {total positive examples covered: 2)

Rule 13 [head_shape = 1] & [body_shape = 1] & [is_smiling = 2] &
[holding = 3] & [jacket_color = 2] & [has_tie = 2]
with THRESHOLD = 100 % (total positive examples covered: 1)

Rule 14 [head_shape = 1] & [body_shape = 3] & [is_smiling = 2] &
[holding = 1] & [jacket_coler = 1 , 3] & [has_tia = 2]
with THRESHOLD = 100 % (total positive examples coverad: 1)

Rule 1§ [head_shaps = 1] & [body_shape = 2] & [is_smiling = 2] &
[holding = 2 , 3] & [jacket_color = 1] & [has_tie = 2]
with THRESHOLD = 100 % (total positive examples covered: 1)

Rule 16 [head_shape = 2] k [body_shape = 1] & [is_smiling = 1] &
[holding = 3] & [jacket_color = 2 , 3]
with THRESHOLD = 100 % (total positive examples covered: 2)

Rule 17 [head_shape = 3] k& [body_shape = 7] & [is_smiling = 1] &
[holding = 2] & [jacket_coler = 1 , 2]
with THRESHOLD = 100 % (total pesitive examples covered: 2)

Rule 18 [head_shape = 2 , 3] & [body_shape = 1] & [is_smiling = 2] &
[holding = 2 , 3] & [jacket_coler = 2, 3 . 4] k [has_tis = 1]
with THRESHOLD = 100 % {total positive examples covered: 3)

Applying various AQ programs to the MONK's problems

TEST RESULTS - SUMMARY

The percentage of correctly classified testing events: 02.6%
The percentage of correctly classified testing events in Class 0: 100.0%
The percentage of correctly classified testing events in Class 1: 85.2%

The total number of rules in the descriptiona: 2 for Class 0
18 for Class 1.
The total number of conditions in the descriptions: 110

2.4 Results for the 3rd problem (Mj;)

2.4.1 Rules obtained by AQ17-HCI

Below are the rules obtained by the hypothesis-driven constructive induction method:

Class 0:
Rule
Rala
Rule
Rule

W) e

Class 1:
Rula
Rule 2

-

[Poal=trual (total:4%, unique:49)
[body_shape=2,3] & [holding=2,3] & [jacket_color=3] (total:1l, unique:11}
[body_shape=1] & [holding=1] & [jacket_color=3] (total:1, unique:1}
[body_shape=2] & [holding=2] & [jacket_color=2] (total:1, unique:1)
[(Neg2=trus] (total:5T, uniquae:57)

(body_shape=3] & [holding=1] & [jacket_color=3,4] (total:3, unique:3)

where Posl and Neg2 are attributes constructed from the eriginal ones (Wnek & Michalski, 1991)

Poal <:: [jacket_color=4] or [body_shape=3] k [jacket_color=1,2,4]

Neg2 <:: [body_shape=1,2] & [jacket_color=1,2,3]

TEST RESULTS - SUMMARY
OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 86.11

Since this problem involves noisy data, the flexible match should always be used. The results from 100% match
are shown just for comparison.

Number of testing events satisfying individual complexes in the correct class description:

CLASS 0
CLASS i

RULES

R1 R2 R3I R4
180 24 0 0
216 12

16 J. Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, P. Pachowicz, H. Vafaie, J. Wnek, J. Zhang
2.4.2 Rules obtained by AQ14-NT

These are the rules obtained by AQ14-NT, a version of the AQ program that employs a noise-filtration technique.
The results include one rule for Class 0 that represents positive examples of the concept, and one rule for Class
1 that represents negative examples.

After only two loops of concept-driven filtration of training dataset (with truncation parameter equal to 10%)
and repeated learning, we received the following set of rules:

Class 0:
Rula 1 [jacket_color=4]
Rule 2 [body_shape=3] & [holding=2..3]
fule 3 [body_shape=3] & [jacket_color=1i..2]
Class 1:
Rule 1 [body_shape=1..2] & [jacket_color=1..3]
Rule 2 [holding=1] & [jacket_calor=3]

These rules recognized all test data correctly, i.e., on the 100% level.
Since there was supposed to be noise in the data, we are somewhat su rprised by such a high degree of recognition.

2.4.3 Rules obtained by AQ17-FCLS

These are the rules obtained by AQ17-FCLS. The results include two rules for Class 0 that represent positive
examples of the concept, and one rule for Class 1 that represents the negative examples. The threshold parameter
indicates the minimum percentage of selectors in the rule that must be true for the rule to apply. This set of
rules is intentionally incomplete and inconsistent with the training set since it was generated with a 10% error
tolerance. This produced better results than other tolerances that were tried:

Class O:
Rule 1 [head_shape > 1] & [body_shape = 3] k [jacket_coler = 4]
with THRESHOLD = &7 % {Total positive examplea coverad: 42)
Rule 2 [head_shaps = 1] & [body_shape = 3] & [jacket_color = 4]
with THRESHOLD = 67 % {Total positive examples covered: 26)
Class 1:
Rule 1 [body_shaps = 1 , 2] & [jacket_color =1 , 2, 3]
with THRESHOLD = 100 % (Total positive examples coverad: 57)

TEST RESULTS - SUMMARY
The percentage of correctly classified events: 97.2%
The percentage of correctly classified events in Class 0: 100.0%
The percentage of correctly classified events in Class 1: 94.7%
The total number of rules in the descriptions: 2 for Class 0
1 for Class 1
The total number of conditions in the descriptions: 8

Applying various AQ programs to the MONK's problems 17

2.4.4 Rules obtained by AQ15-GA

Below are the rules obtained by AQ15-GA, a program that uses a genetic algorithm in conjunction with the AQ
rule-generation algorithm. The first rule is for the positive examples of the concept, Class 0, and the second for
the negative examples, Class 1. A genetic algorithm determined that 3 attributes (body shape, holding, and
- jacket color) were the most meaningful. Using these, the rules discovered were as follows:

Class O:
Rule 1 [jacket_color=4]
Rule 2 [body_shape=3] & [jacket_color=l..2]
Rule 3 [body_shape=2..3] & [holding=2..3] & [jacket_color=3]
Rule 4 [body_shape=1] & [holding=1] & [jacket_color=3]
Rule 5 [body_shape=2] & [holding=2] & [jacket_color=2]

Class 1:

Fule 1 [body_shape=1..2] & [jacket_color=i..3]
Rule 2 [body_shape=3] & [holding=1] & [jacket_coler=3..4]

Results on testing the rules on testing events using program ATEST:

TEST RESULTS - SUMMARY
OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 100.00

2.5 A Brief Description of the Programs and Algorithms

2.5.1 AQ17-DCI (Data-driven constructive induction)

This program is based on the classical AQ algorithm, but it includes an algorithm for constructive induction
that generates a number of new attributes. The quality of any generated attribute is evaluated according to a
special Quality Function (QF) for attributes, and if that function exceeds a certain threshold value, then the
attribute is selected. A brief description of the algorithm for constructive induction (Bloedorn and Michalski,
1991) is given below. The program works in two phases.

Phase 1.

1. Identify all numeric-valued attributes.

2. Repeat steps 3 through 5 for each possible combination of these attributes, starting with the pairs of
attributes, and extending them if their quality was found acceptable according to the attribute Quality
Function (QF).

3. Repeat steps 4 and 5 for each constructive induction operator. The current operators include addition,
subtraction, multiplication, integer division and logical comparison of attributes (Bloedorn and Michalski,
1991).

4. Calculate the values of the given attribute pair for the given constructive induction operator.

5. Evaluate the discriminatory power of this newly constructed attribute using the attribue Quality Function
(QF), described by Bloedorn and Michalski (1991). If the QF for an attribute is above an assumed
threshold, then the attribute is stored, else it is discarded.

18 J. Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, P. Pachowicz, H. Vafaie, J. Wnek, J. Zhang

f. Repeat steps 4 and 5 for each available function operator that takes as argument an entire event (example],
and calculate various global functions {properties) of it.

The program has a default list of global functions, but allows the user to modify the list to fit the problem at
hand. The default list of functions include MAX (the maximum of the values of the numerical attributes in an
event), MIN (the minimum value), AVE (the average value), MF (the most-frequent value), LF (least-frequent),
and #VarEQ(x), which measures the number of variables (attributes) that take the value x in an example of a
given ¢lass.

Phase 2.

1. Identify in the data all attributes that are binary.

2. Search for pairwise symmetry among the attributes and then for larger symmetry or approximate sym-
metry groups, based on the ideas described in (Michalski, 1969a; Jensen, 1975.)

3. For each candidate symmetry group, create a new attribute that is the arithmetic sum of the attributes
in the group.

4. Determine the quality function (QF) of the newly created attributes, and select the best attribute.

5. Enhance the dataset with values of this attribute, and induce new decision rules.

The method described above allows the system to express simply symmetric or partially symmetric Boolean
functions and k-of-n functions, as well as more complex functions that depend on the presence of a certain
number of attribute values in the data. Such functions are among the most difficult functions to express in
terms of conventional logic operators.

2.5.2 AQI17-FCLS (Flexible concept learning)

This method (Zhang and Michalski, 1991) combines both symbolic and numeric representations in generating
a concept description. The program is oriented toward learning flexible concepts, i.e, imprecise and conlext-
dependent. To characterize such concepts the program creates two-tiered descriptions, which consist of a Basic
Caoncept Representation (BCR) and an Inferential Concept Interpretation (ICI) to handle exceptions. In the
program, the BCR is in the form of rules, and the ICI is in the form of a weighted evaluation function which
sums up the contributions of individual conditions in a rule, and compares it with a THRESHOLD. The learning
program learns both the rules and an appropriate value for the THRESHOLD.

Each rule of a concept description is learned in two steps, the first step is similar to the STAR algorithm in
AQ that generates a general rule, and the second step optimizes the rule by specializing it and adjusting the
accuracy threshold.

2.5.3 AQ17-HCI (Hypothesis-driven constructive induction)

AQ17-HCI (Hypothesis-Driven Constructive Induction) is a module employed in the AQIT attribute-based
multistrategy constructive learning system. This module implements a new iterative eonstructive induction
capability in which new attributes are generated based on the analysis of the hypotheses produced in the
previous iteration (Wnek and Michalski, 1991). Input to the HCI module consisis of the example set and a
set of rules (in this case generated by the AQL5 program). The rules are then evaluated according to a rule

Applying various AQ programs to the MONK's problems 19

quality criterion, and the rules that score the best for each decision class are combined into new attributes.
These atiributes are incorporated into the set of training examples, and the learning process is repeated. The
process continues until a termination criterion is satisfied. The method is a special implementation of the idea
of the “survival of the fittest,” and therefore can be viewed as a combination of symbolic learning with a form

of genetic algorithm-based learning.

A brief description of the HCI algorithm follows:

1. Induce rules for each decision class using a standard AQ algorithm (as implemented in AQ-15) from a
subset of the available training examples.

2. Identify variables from the original set that are not present in the rules, and classify them.
3. For each decision class, generate a new atiribute that represents the disjunction of the highest quality.

4. Modify the training examples by adding the newly constructed attributes and removing the ones found
to be irrelevant.

5. Induce rules from this modified training set.

6. Test these rules against the remainder of the training set. If the performance is not satisfactory, return
to step 1. Otherwise, extend the initial complete set of training examples with the attributes from the
obtained rules. Induce the final set of rules from this set of examples.

In these examples, the induction in steps 1, 5 and 6 was performed using the learning algorithm implemented
in the AQ15 program.

2.5.4 AQIl4-NT (noise-tolerant learning from engineering data)

The program implements an algorithm specially designed for learning from noisy engineering data (Pachowicz
and Bala, 1991a and 1991b). The acquisition of concept descriptions (in the form of a set of decision rules) is
performed in the following two phases:

« Phase 1:

Concept-driven closed-loop filtration of training data, where a single loop of gradual noise re-
moval from the training dataset is composed of the following three stages:

1. Induce the decision rules from a given dataset using the AQl4 (NEWGEM) inductive learn-
ing program.

2. Truncation of concept descriptions by removing “least significant” rules, that is rules that
cover only a small portion of the training data (this step is performed using the so-called
TRUNC procedure).

3. Create a new training dataset that includes only training examples that are covered by the
truncated concept descriptions.

+ Phase 2:

Acquire concept deseriptions from improved training dataset using the AQ14 learning program.

20 J. Bala, E. Bloedoran, K. De Jong, K. Kaufman, R.5. Michalski, P. Pachowicz, H. Vafaie, J. Wnek, J. Zhang

A justification for Phase 1 is that the noise in the data is unlikely to constitute any strong patterns in the data,
and therefore will require separate rules to account for it. Thus, the example covered by the “light rules” are
likely to represent noise, and therefore are removed from the dataset. Experiments with AQI4-NT applied to a
variety of engineering and computer vision problems have shown that it systematically produces classification
rules that both perform better and are also much simpler.

2.5.5 AQ15-GA (AQ15 with attribute selection by a genetic algorithm)

In this approach we use genetic algorithms in conjunction with AQ15. Genetic algorithms are used to explore
the space of all subsets of a given attribute set. Each of the selected attribute subsets is evaluated [its fitness
measured) by invoking AQ15 and measuring the recognition rate of the rules produced.

The evaluation procedure as shown is divided into three main steps. After an attribute subset is selected, the
initial training data, consisting of the entire set of attribute vectors and class assignments corresponding to
examples from each of the given classes, is reduced. This is done by removing the values for attributes that
were eliminated from the original attribute vector. The second step is to apply a classification process (AQL3)
to the new reduced training data. The decision rules that AQ15 generates for each of the given classes in the
training data are then used for classification. The last step is to use the rules produced by the AQ algorithm in
order to evaluate the classification and hence, recognition with respect to the test data.

In order to use genetic algorithms as the search procedure, it is necessary to define a fitness function which
properly assesses the decision rules generated by the AQ algorithm. The fitness function takes as an input a
set of attribute or attribute definitions, a set of decision rules created by the AQ) algorithm, and a collection
of testing examples defining the atiribute values for each example. The fitness function then views the AQ-
generated rules as a form of class description that, when applied to a vector of attribute or attribute values,
will evaluate to a number. [t is evaluated for every attribute subset by applying the following steps: For every
testing example a match score is evaluated for all the classification rules generated by the AQ algorithin, in
order to find the rule(s) with the highest or best match. At the end of this process, if there is more than one
rule having the highest match score, one rule will be selected based on the chosen conflict resolution process.
This rule then represents the classification for the given testing example. If this is the appropriate classification,
then the testing example has been recognized correctly. After all the testing examples have been classified, the
overall fitness function will be evaluated by adding the weighted sum of the match score of all of the correct
recognitions and subtracting the weighted sum of the match score of all of the incorrect recognitions.

2.5.6 The AQ Algorithm that underlies the programs

All the above programs use AQ as the basic induction algorithm. Here is a brief description of the AQ algorithm:

1. Select a seed example from the set of training examples for a given decision class,

2. Using the ertend againsi operator {Michalski 1983), generate a set of alternative most general rules (a
star) that cover the seed example, but do not cover any negative examples of the class.

3. Select the “best” rule from the star according to a multi-criteria rule quality function (called LEF - the
lexicographical evaluation function), and remove the examples covered by this rule from from the set of
positive examples yet to be covered.

4. If this set is not empty, select a new seed from it and go to step 2. Otherwise, if another decision class
still requires rules to be learned, return to step 1, and perform it for the other decision class.

Applying various AQ programs to the MONK's problems 21
Acknowledgements

The authors thank Bill Deichler for his comments and criticism of this paper. This research was done in the
Artificial Intelligence Center of George Mason University. The activities of the Center are supported in part by
the Defense Advanced Research Projects Agency under the grants administered by the Office of Naval Research,
No. NOOD14-87-K-0874 and No. NO0014-91-1-1854, in part by the Office of Naval Research under grants No.
NOOD14-88-K-0307, No. NO0014-88-K-0226, No. N00014-90-J- 4059, and Ne. N00014-91-J-1351, and in part by
the National Science Foundation under grant No. IRI-0020266.

References

Bala, J.W. and Pachowicz, P.W., “Recognizing Noisy Patterns of Texture via [terative Optimization and Match-
ing of their Rule Description”, Reports of Machine Learning and Inference Laboratory 90-12, Center for Artificial
Intelligence, George Mason University, Fairfax, Va. 1990.

Bloedorn, E., and Michalski, R.S., “Data-driven Constructive Induction in AQ17-DCI: A Method and Experi-
ments,” Reports of Machine Learning and Inference Laboratory, Center for Artificial Intelligence, George Mason
University, 1991,

Bloedorn, E., Michalski, R.S. and Wnek, J., “AQ17 - A Multistrategy Constructive Learning System,” to
appear in Reports of Machine Learning and Inference Laboratory, Center for Artificial Intelligence, George
Mason University, 1991.

Jensen, G.M, “SYM-1: A Program that Detects Symmetry of Variable-Valued Logic Functions,” Report No.
729, Department of Computer Science, University of Illincis, Urbana, May 1975.

Michalski, R.S, “chognition of Total or Partial Symmetry in a Completely or Incompletely Specified Switching
Function,” Proceedings of the IV Congress of the International Federation on Automatic Conirol ([FAC), Vol.
27 (Finite Automata and Switching Systems), pp. 109-129, Warsaw, June 16-21, 1969.

Michalski, R.S., “On the Quasi-Minimal Solution of the Covering Problem” Proceedings of the V International
Symposium on Information Processing (FCIP 69), Vol. A3 (Switching Circuits), Bled, Yugoslavia, pp. 125-128,
1969.

Michalski, R.S., “Discovering Classification Rules Using Variable-Valued Logic System VL,,” Proceedings of
the Third International Joint Conference on Artificial Intelligence, pp. 162-172. Stanford, California, August
20-23, 1973.

Michalski, R.5., “A Theory and Methodology of Inductive Learning,” Chapter in the book, Machine Learning:
An Artificial Intelligence Approach, R.S. Michalski, J. Carbonell and T. Mitchell (Eds.}), pp. 83-134, Morgan
Kaufmann Publishing Co., Mountain View, CA, 1983.

Michalski, R.S. and Larson, J.B., “Selection of the Most Representative Training Examples and Incremental
Generation of VL1 Hypotheses: the Underlying Methodology and the Description of Programs ESEL and
AQ11," Reports of Intelligent Systems Group, Report No. 867, Dept. of Computer Science, University of
lllinois, Urbana, 1978.

Michalski, R.S. and McCormick, B.H. “Interval Generalization of Switching Theory,” Proceedings of the Third
Annual Houston Conference on Compuler and Systems Science, Houston, Texas, April 26-27, 1871,

22] Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, P. Pachowicz, H. Vafaie, J. Wnek, J. Zhang

Michalski, R.S., Mozetic, I., Hong, J., and Lavrac, N., “The Multipurpose Incremental Learning System AQ1L5
and its Testing Application to Three Medical Domains,” Proceedings AAA[, Philadelphia, August 11-15, 1986,

Mozetic, I, “NEWGEM: Program for Learning from Examples, Program Documentation and User’s Guide”,
Reports of Intelligent Systems Group, No. UIUCDCS-F-85-949, Department of Computer Science, University
of Illinois at Urbana-Champaign, 1985,

Pachowicz, P.W. and J. Bala, “Improving Recognition Effectiveness of Noisy Texture Concepts through Opti-
mization of Their Descriptions”, Proc of the 8th Ini. Workshop on Machine Learning, Evanston, pp.625-629,
1991a.

Pachowicz, P.W. and Bala, J, “Advancing Texture Recognition through Machine Learning and Concept Opti-
mization”, Reports of Machine Learning and Inference Laboratory, MLI-6, Artificial Intelligence Center, George
Mason University, 1991b (also submitted to IEEE PAMI).

Reinke, R.E., “Knowledge Acquisition and Refinement Tools for the ADVISE Meta-expert System,” Masterls
Thesis, University of [llinois, 1984,

Whnek, J. and Michalski, R.S.: “Hypothesis-driven Constructive Induction in AQLT: A Method and Experi-
ments,” Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, Sydney Australia,
August 1991,

Zhang, J. and Michalski, R.S., “Combining Symbelic and Numeric Representations in Learning Flexible Con-
cepts: the FCLS System”, to appear in Reports of Machine Learning and Inference Laboratory, Artificial
Intelligence Center, George Mason University.

Chapter 3

The Assistant Professional Inductive
Learning System: MONK’s Problems

B. Cestnik!
I KDnﬂn&nk{:I
I. Bratkol!?

1 Jotef Stefan Institute, Jamova 39, 61000 Ljubljana, Slovenia, E-mail: bojan.cestnik@ijs.ac.mail.yu
1 Faculty of Electrical Engineering and Computer Science, Triaska 25, 61000 Ljubljana, Slovenia

23

24 B. Cestnik, I. Kononenko, and I. Bratko

3.1 Introduction

Assistant Professional (Cestnik, Kononenko and Bratko, 1987) is a system for inductive learning of decision
tree. [t is based on ID3 (Quinlan, 197%) and upgraded with several new features. Among the most important
improvements are binarization of the attributes, ability to prume the constructed free at various levels and
uiilization of improved probability estimates.

The main purpose of binarization, which groups the attribute values into two subsets, is to normalize the
informativity of all the attributes with respect to the number of values. As a result we usually get smaller and
more accurate decision trees. In addition, binarization also prevents over-splitting of the learning set. Thus,
the attribute selection becomes more reliable even in lower levels of the tree where the number of examples
is relatively small. However, the binary construction is computationally less efficient and sometimes generates
irees that are not well structured.

The basic induction algorithm tends to construct exact decision tree, although in most of real-world problems
the classification can not be exact due to noise in data. As a result, a constructed tree may not only capture
the proper relations in data but also fit rather random (noisy) patterns. Decision tree pruning mechanisms
{Mingers, 1989) were designed to prevent such over-fitting phenomencn. The algorithm that is implemented in
Assistant Professional is described in (Cestnik and Bratko, 1991).

Most of the inductive learning algorithms use probability estimates in crucial sub-tasks when constructing a
decision tree, such as in selecting the most "informative” attribute and in pruning the tree. Usually, relative
frequency is taken as an estimate. It has been shown that relative frequency is rather poor estimator, especially
when the number of examples is small. A more general bayesian estimate that proved to be more robust with
respect of the number of examples was presented in (Cestnik, 1990). It is called m-estimate and has the following

form: N+ mx P,

N+m
where n is the number of positive examples, N is the total number of examples, p, is prior probability and m
is a parameter of the estimation. The formula is studied and explained in detail in (Cestnik and Bratko, 1991).

=

All the mentioned improvements enable Assistant Professional to construct reliable and compact decision trees.
The system was successfully used in many real-world applications in various problem areas, such as medicine,
economy, industrial quality control, properties prediction, etc.

3.2 Experimental results

Assistant Professional was tested on the three Monk’'s domains. The tests were conducted on IBM PS5 II,
model 0. The domains were named as follows: FIRST, SECOND and THIRD. Here are the results of the
measurements of classification accuracy.

| classification accuracy on testing sample

FIRST 100.00 % (432 of 432)
SECOND 81.25 % (351 of 432)
THIRD 100.00 % (432 of 432)

On the first and the third domain Assistant Professional was able to find a perfect domain model. However,
in the second domain the constructed tree is very large and its performance is relatively poor. In an extensive
study of the domain (testing sample) we were able to determine (with a help of our "neural nets”) the correct

maodel which is the fellowing:

The Assistant Professional Inductive Learning System 25

A Tobet is O.K.
if exactly two attributes (out of &) are equal to 1.

This concept is extremely complicated for a system that learns decision trees in an attribute-value logic for-
malism. Note that on average you have to test almost all attributes to determine the answer. Therefore, the
constructed tree tends to be very bushy.

Here are the constructed decision trees in the three domains. In square brackets there is the number of examples
in the corresponding node.

3.3 Discussion

In this section we will briefly discuss the achieved results from the perspective of the three improvements of
Assistant Professional that are mentioned in the introduction,

Obviously, the binarization contributes the most in the THIRD domain. The constructed tree has a clear
structure and is perfectly understandable. In the FIRST domain, however, binarization has a rather negative
effect on the tree structure, since the concept Body_shape = Head_shape would require three branches (there are
three possible values for each attribute). In the SECOND domain binarization is expected to be helpful since
it only matters if an attribute has the first value or not. Nevertheless, due to the very complicated concept, it
did not really show it's power.

The pruning mechanism contributes mostly in the THIRD domain, since there are some examples corrupted hy
“npise”. The main task is to detect and eliminate this corruption. The FIRST and the SECOND domain did
not contain any noise; therefore, the corresponding trees were not pruned at all. : '

The improved probability estimate, which is used also in the tree pruning mechanism, proved to have crucial
effect also in the tree construction phase. Just by changing the value of parameter m (Cestnik and Bratko,
1991) different attributes can be selected at various nodes in the tree. As a result, one mayor deficiency of the
original algorithm, namely the inability to backtrack, was in a way alleviated.

3.4 Literature

Cestnik, B., Kononenko, I., Bratko, . (1987), ASSISTANT 86: A Knowledge-Elicitation Tool for Sophisticated
Users, Progress in Machine Learning, Eds. I.Bratko and N.Lavrac, Sigma Press, Wilmslow.

Cestnik, B. (1990), Estimating Probabilities: A Crucial Task in Machine Learning, Proc. of ECAI 90, Stock-
holm, Sweden, August 3-8.

Cestnik, B., Bratko, I. (1991), On Estimating Probabilities in Tree Pruning, Proc. of EWSL 01, Porto, Portugal,
March 6-8, 1991,

Mongers, J. (1989), An Empirical Comparison of Pruning Methods for Decision Tree Induction, Machine Learn-
ing vol. 4, no. 2, Kluwer Academic Publishers.

Quinlan, J.R. (1979), Discovering Rules by Induction from Large Collections of Examples, Expert Systems in
the Microelectronic Age, Ed. D.Michie, Edinburgh University Press.

26 B. Cestnik, I. Kononenko, and L Bratko

3.5 Resulting Decision Trees

Constructed decision trees in the three domains:

Decision Tree From Domain: FIRST
Pruned with m= 0.00

Number of Nodes : 15
Number of Leaves: 8
Number of Nulls : 0

| AG:Jackat_color [124]
| [red]

| Vi=yes [2a]
[yellow, green, blue]

| At:Head_shaps [95]

| [round, squars]

| | A2:Body_shaps [T1]

| [square]

| | Al:Head_shaps [27]
| [round]
I 1 Vi=ne [15]
| [square]
I | Vi=yes [12]

[rouad, octagon]
| A2:Body_shapa [44]
| [round]
| | Af:Hesd_shape [22]
| | [round]
| | | Vi-yes [a]
I | [squarel
I 1 | Vi-ne [14]
| [octagen]
I | ¥2=no [z22]
[octagon]
AZ:Body_shape [24]
[octagon]
| Vi-yas [13]
[round, squara]

|
|
|
!
|
|
I
I
|
|
|
|
1
|
|
I
|
I
I
I
I
1
1
|
|
I | ¥2=no [11]

I
I
I 1
| |
[
| |
| B |
| |
|
|
|
1
1 1
[
(|
I 1
| [oc
1 1
I 1
.
[
[|

Decision Tree From Domain: SECOND
Pruned with m= 1.00

Mumber of Nodes : 113
Number of Leaves: 57
Number of Nulls : 1

| A4:Holding [189]

| Caward]

| A5:Jacket_color [54])

| Crad]

| | A2:Body_shapas [15]
| [round, square]

| | ¥2-no [a]

| [ectagen]

|| A3:Is_smiling [8]

|| [yes]

| | | ¥2~na [4]

I | [ael]

| | 1 Al:Haad_shapa [2]

I & 1 [round]

| I | | BULL LEAF:

I 1 1 | Vi=yas [46.0%]
1 | I | ¥2=-no [54.0%]
I 1 | [=quare]

I 1 1 | Vi-yes (11
1 | [ectagonl

i | | ¥2-ne (1l

[yellow, grean, blusl
| Al:Head_shaps [35]
| [round]
| | AS:Jacket_color [10]
| | [green]
I | | AS:Has_tie [4]
I I | [ne]
I 1 1 | A3:Is_smiling [2]
I 111 [yes]
I 1 1 1 1¥2=me [1]
I 1 1 | [;ne]
I 1 1 1 | ¥i=yes [1]
| 1 | [yesl
b1 Vi-ne [21
I | C[yellew, blua]
I 1 | V2=ne [8]
| [squara, octagen]
| | AG:Has_tie [29]
I | [nel
I 1 | A3:Ia_smiling [16]
1
|
|
|
|
I
|
I
I
I
I
|
|
|
I

| A3:Is_smiling [13]
| [yesl

i
|
I
|
I
|
I
|
I
I
I
I
1
I
I
|
I
I
|
|
|
|
|
|
|
|
|
1
[
!
!
|
|
|
|
|
1
1
I
|
I
I
I
i
1
I
I
I
I
|
I

I | [yes]

I | | A2:Body_shape [6]
| | | [round]

| | | | ¥2=no [1]
| I | [square, octagan]
[1 | Vi-yas (5]
I |1 Inel

I 1 1 A2:Body_shape [10]
(.| | [round]

I 1 1 | Vi-yes [4]
| | | [squars, sctagon]
I 1 | | ¥i=ne - 8]
| [yesl

|

I

[balloon, flag]
| AS:Jackat_color [115]
| [greem, blus]

| A3:Is_smiling [58]

|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
1
[
1
1
I
|
|
I
I
|
I
I
I
I
I
|
I
I
I
|
I
I
I
[
I

[r

| [yes]

The Assistant Professional Inductive Learning System 27

| ¥2-ne (8]
[no]

| 42:Body_shape [T]

| [square, sctagen]

|| Vi-yas [4]
| [round]
| 1 ¥2=no [31

I | a6:Has_tie [31]

I
[
(|
[
[
[
| |
| [nel
| |
(I
Il
(I
[
[
(|
[
1
[nel

g —————————— e e e

| [yeal

| | ki:Head_shape [17]
[reund]
| ¥2=-no [9]

[squars, sctagon]
| A2:Body_shape [8]
| [round]
| | ¥V2-ne [2]
| [aquars, sctagen]
| | Vi-yes [&]

Al:Head_shape [14]

[round]
| Vi-yes [5]
[square, octagon]
| AZ:Bedy_shape [9]
| [round]

| | Vi=yen [4]
| [squars, sctagon]
I | ¥2-no [51

Al:Head_shape [27)
[round]
| A2:Body_shape [11]

[round, squars]
| A2:Bedy_shapa [2]

|
I
I
I
I
I | | [square]
I 1 1 | AG:Has_tie [6]
I 1 1 1 [yes]
I I 1 1 Vi-yes [4]
I 1 1 1 [nel
[I 1 | v2=ne [21
I 1 | [round]
I | | | AG:Has_tie [3]
I I | 1 [yes]
I 1 1 1 | ¥i=ne [z]
I 1 1 [rel
I 1 1 1 | ¥i=yas [1]
| | [ectagon]
] I | ¥2=no [2]
| [square, sctagon]
I | ¥2-ne [18]
d, yellow]

A2:Body_shaps [57]
[round, square]
| &1:Head _shaps [43]
| [round]
| A8:Has_tie [13]

[yes]
| vZ-no (51
[nal
| AS:Jacket_color [8]
| [red]
I 1 A3:1s_smiling (5]
I 1 [yesl

| | ¥2=-na [3l
| [nel
I | A2:Body_shape [2]
] | [round]
I 1 | ¥2=ne [1]
I | [squara]
| I | vi=yes [i]
[yallaw]
|1] Vi-yss (3l
[square, octagon]
| Aq:Holding [20]
| [ballean]
| | AZ:Body_shape [13]
| [round]
I | &5:Jacket_celor [5]
| [red]
| | ¥2-no [1]
| [ysllew]
| | Vi-yes [4]
[squara]
| A5:Jacket_color [8]
| [rad]
I | A3:Ia_smiling [4]
| Cyes]
|| Al:Kead_shape [2]
I | [square]
I I | ¥2-na [1]
| | [ectagon]
I
I

(.
[
[
|
[
I |
I
(.

I | Vi-yes [11
[ne]

| | Vi-yaa [2]
{yallow]

| A3:la_smiling [4]

| [yesl

| | Vi-yes 11

| [no]

1 | ¥2-no [3]

I

|

I

I

|

|

I

|

|

|

|

I

I

i

I

i

I

|

I

|

I

i

[flag]
| Al:Head_shape [17]
| [square]
| | AS:Jacket_color [8]
i | [red]
I 1 | A3:Is_smiling [4]
I | [yes]
| I | ¥2-no {11
I | [ne] :
| | | A2:Bedy_shapa [3]

1 | | [reund]

1 | | | AB:Has_tia [2]

| I | | [yes]

| | | | | ¥i-no [1]

| I 1 | [nel

| | | I | Vi-yes [1]

| | | [aguare]

| 1 1 Vi-yes [1]

| [yallow]

| | A3:Ia_smiling [4]

| | [yesl

| | | Vi-yes [1]

| | [aal

I 1 1 | Vi-ne [31

| [octagon]

I | A3:Is_smiling [9]

| | [yes]

I | | A5:Jacket_coler (5]

|

I

|

|
|
I
|
I
|
1
|
!
|
!
!
|
|
!
|
I

I 1 [red]
I 1 | ¥2=ne [3l
I | [yellew]

28 B. Cestnik, I. Kononenko, and I. Bratke

F 0 1 1 b 1 b1 Vieyes [21 Decision Tree From Domain: THIRD
A e Pruned with m= 3.00

I 1 1 '} 1 1 1 I AS:Jacket_coler [4]

I 1 1t 1 1 1 1 [yellew]

L1 1 1 1 1 1 1 | AS:Has_tie [2]

b0 bbb [yes] Number of Nodes @ 9

I L E L OB A 8 e (1] Number of Leaves: 5

I | I | I I I | | [me] <

T T T R A N R (1] Number of Nulls : 0

[Y IO N R N | [red]

10 1] Vieyes [2]

1 1 | [octagen]

} ll 1 : ‘E:_':;"ﬂ' ke | A2:Body_shape [122]

I 1 | 1 | Ad:Holding [10] | [octagon]

| | I i | [balleen] | | A4:Holding [41]

| | | | | | AS:Jacket_celor [8] | | [sword]

L I | I | | [yellow] I | | AS:Jacket_color [14]
L0 1 1 1 1 1 vzne [3l I 1| [green]

o1 111 [redd I 1 1 vieyes (2]
I 1 1 1 1 1 | A3:Is_smiling [3] 1 1 [red, yelles, blus]
L1 1 1 1 1 1 [yes oLt | nepes (1]
It 1 1 1 1 1 1Vvine t1l L | 1 | ¥ise (11
b 1 100 a0 || [valloen, flag]

L1 1 1 1 1 1 1vi-yes [2 3 L Li¥avas (27]

I i | | | [flag] | [round, square]

' | AL:Hesd_shape [4] | | A5:Jacket_color [81]

| IR I (R B | | [round, square] I | [blue]
oL | Vimyes (2] e N

I I | | | | [octagon] I | [red, ysllow, green]
1| I 1 | | AG:Jacket_color [2] I 1] Vi-yes (571

I 1 1 1 1 | [yellew] I 1 1. (51

| |] | | I | | ¥Vi=-no [1]

I 1 11| [eed]

111 | Vi-yes (11

I 1 | | [nel

I I | I I Vi~yas [41

Chapter 4

mFOIL
on the MONK’s Problems

Saso DZeroski

Artificial Intelligence Laboratory, Jofef Stefan Institute, Jamova 39, 61111 Ljubljana, Slovenia
e-mail: saso.dzeroski@ijs.ac.mail.yu

For correspondence until May 1st 1992: The Turing Institute, 36 North Hannover Street, Glasgow G1 2ZAD
United Kingdom, e-mail: saso@turing.ac.uk

29

30 5. Dieroski
4.1 Description

The learning system considered in this summary is named mFOIL and belongs to the class of inductive learn-
ing systems that construct logic programs (sets of Prolog clauses) from training examples and background
_knowledge. This kind of systems that learn relations has been recently named Inductive Logic Programming.

The basic structure of mFOIL is similar to that of FOIL (Quinlan 1990), but the search heuristics and stopping
criteria employed are quite different. They are adapted to learning from imperfect (noisy) data. Instead of the
entropy (information gain) heuristic, estimates of the expected error of clauses are used as search heuristics.
Namely, clauses with the least expected error (estimated from the training set) are considered best. Bayesian
probability estimates, such as the Laplace estimate and the m-estimate (Cestnik 1990) are used for estimating
the expected error of clauses. In addition, mFQIL uses beam search instead of the hill climbing used in FOIL.

FOIL uses a function-free concept description language, in which conditions of the form Attribute = value are
not directly expressible, but require the addition of special predicates in the background knowledge. Such
conditions are, however, necessary for solving the monk’s problems. mFOIL can use conditions of the above
form without adding special predicates in the background knowledge.

mFOIL is described in my MSc thesis (DZeroski 1991), which is available on request. It is implemented in
Quintus Prolog 2.5.1 (cca. 600 lines of code) and was run on a Sun SPARC Station 1.

I ran mFOIL using different search heuristics: Laplace or m-estimate of expected error of clauses. Different
values of m were used in the m-estimate. Higher values of m direct the search towards more reliable clauses,
i.e., clauses that cover more examples. This did not influence the results on the first training set, but had some
effect on the results on the second and the third set. Below are given the rules obtained together with the
corresponding search heuristics. The bad resuits on the second set are due to the small number of examples for
each of the disjuncts and the bias in mFOIL which favors shorter rules.

References

Cestnik, B. (1990) Estimating probabilities: A crucial task in machine learning. European Conference on Al
ECAI 1990. Stockholm, Sweden.

Dieroski, 5. (1991) Handling noise in inductive logic programming. M.Sc. Thesis, University of Ljubljana,
Faculty of Electrical Engineering and Computer Science.

Quinlan, J.R. (1990) Learning logical definitions from relations. Machine Learning 5 (3), 239-266.

mFOIL on the MONK's Problems 31

4.2 Set1l

Heuristics used in mFOIL:

Laplace,

m=0,0.01,05,1,2, 3,64, 8 16, 32, 64
Induction time: cca 1 min

Accuracy: 100 %

robot{A,B,C,D.E,F} :-

A=B.
robot(A,B,C,D,E.F} :-
Esrad.

4.3 Set 2

Heuristic used in mFOIL: m=3
[nduction time: cca 10 min
Accuracy: 69.21 %

robot{A,B,C,D,E,F) :=
E=yellow,
not C=no,
not D=sword,
F=no.
robot(A,B,C,D,E,F) =
D=flag,
B=octagon,
C=yes,
not E=green.
robot(A,B,C,D,E,F) :-
C=mo,
E=red,
not D=sword,
not B=round,
not A=round.
robot(A,B,C,D,E,F) :=
E=yellow,
B=round,
not Ceyes,
not D=flag.
robot(A B, C,D,E,F) :=
B=square,
C=yes,
E=yallow.
robot(A,B,C,D,E.F) :-
E=green,
B=round,
not Feyes,
not A=square.

robot(A,B,C,D.E,F} 1=

E=grean,

not C=no,

F=no,

A=round,

not D=sword.
robot(A.B,C,D,E,F) :=

B=square,

E=blue,

C=yas,

not A=round.
Tﬂbﬂt(*vB|GrD'ErF} Ched

not C=yas,

A=round,

E=yellow,

not D=sword.
robot(A,B,C,D,E,F) :-

E=green,

D=aword,

F=no,

C=yen,

not A=reund.
robot{A,B,C,D,E,F) :~

E=green,

not F=no,

B=gquara,

not C=yes,

not A=square.
robot(A,B,C,D,E,F) :=

not C=yas,

E=rad,

F=no,

not A=round.
robot (A,B,C.D,E,F) :~

E=green,

A=square,

not C=no,

not D=sword,

not F=no.
robot(A,B,C,D,E,F) :=

E=blue,

B=gquare,

not F=no,

not Cw=yas,

not D=sword.
robot{A,B,C,D,E,F) :=

E=blue,

F=no,

not C=no,

not A=square.
robot(A,.B,C,D.E,F) :~-

F=na,

E=rad,

not Cayes,

not B=round.
robot{A,B,C,D,E,F} :=

D=aword,

C=no ,

Bmoctagon,

32) 5. Diercski

RAAMEN 4.4 Set3
F=yas.
robot(A,B,C,D.E,F) :-
Seromle Heuristic used in mFOIL: m=f4
;-:T Induction time: cca 1 min
=HLue, :
not D=flag, Accuracy: 100%

not A=aquara.
robot(A,B,C,D.E,F) :-

A=pctagon,

D=flag, robot{A,B,C,D,E,F) :=

noet F=no, not Bwoctagon,

not E=red, not E=blue.

not B=octagonm. robot (A,B,C,0,E,F) :-
Emgreen,
D=gword,

B=octagon.

Chapter 5

Comparison of Decision Tree-Based
Learning Algorithms on the MONK’s

Problems

Walter Van de Welde

Vrije Universiteit Brussel, Artificial Intelligence Laboratory, Pleinlaan 2, B-1050 Brussels, Belgium
e-mail: walter@arti9.vub.ac.be

33

34 W. Van de Welde

5.1 IDL: A Brief Introduction

5.1.1 Introduction

IDL is an algorithm for the incremental induction of decision trees. Incremental learning methods are useful
when examples become available on a regular basis but good hypotheses are needed anytime, possibly for a
performance task. Incrementality is, however, not the primary motivation for this research. More importantly,
IDL is specifically designed to find small decision trees. There are various reasons to prefer smaller trees. One
reason is efficiency: the fewer decision nodes in a tree, the more efficient an instance can be classified with it. This
is, however, a weak argument since cost and frequency of test execution should be taken into account, so that
the most cost-effective tree is not necessarily also the smallest one [Nunez 88; Tan and Schlimmer 89]. Another
reason to prefer small trees is comprehensibility: small trees tend to be easier to understand. Comprehensibility,
however, also depends on the form of the tree. For example Arbab and Michy (85) argue that linear trees are
easier to understand. Perhaps the strongest argument for small trees is the relation between tree complexity and
classification accuracy [Breiman, Friedman, Olshen and Stone 84; Quinlan 86; Mingers 80a,b; Utgoff 80]. Pearl
(78] showed that the complexity of a hypothesis for explaining data is related to the likelihood that it actually
explains it. A learning algorithm with a bias towards simplicity is likely to find more accurate hypotheses as
well. This heuristic of Occam's Razor has been employed and justified by many authors both empirically [Clark
and Niblett 89; Fisher and Schlimmer 88; Iba, Wogulis and Langley 88] and theoretically [Blumer, Ehrenfeucht,
Haussler and Warmuth 87]. -

Complex trees are sometimes unavoidable. For example, an accurate tree for a concept exhibiting the parity
problem]l has an exponential number of nodes [Séshu 89] and trees for boolean disjunctive normal form concepts
contain duplicated subtrees when only using ground attributes as tests [Pagallo and Haussler 89]. Also, different
heuristics in otherwise similar algorithms may lead to significant variations in tree size [Mingers 83a). The
induced trees may nonetheless be more complex than strictly necessary. For example, inding the smallest trees
for the six-multiplexer concept [Barto 85; Wilson 87] is well known to be far beyond all classical decision tree
induction algorithms [Quinlan 88]. So, even when a small tree exisis, state of the art decision tree algorithms
may fail to find, or even come close to it. IDL on the other hand finds small trees which are often optimal in
size. For example, it has no problem inducing a best tree for the 6-multiplexer while requiring fewer examples
and less computation than the other algorithms. The problem of induding optimal decision trees is, however,
NP-hard [Hyafil and Rivest 76; Hancock 89]. A practical algorithm is necessarily based on strong heuristic
guidance and is guaranteed to fail on at least some induction tasks.

To appreciate the novelty of the approach taken in IDL, it is useful to take a look at the relationship with its
predecessors, non-incremental top-down induction of decision trees like ID3 [Quinlan 83,86] and the incremental
algorithms ID4 [Schlimmer and Fisher 86], ID5 [Utgoff 88a] and ID5R. [Utgofl 90]. Top-down induction performs
a general-to-specific hill-climbing search, guided by statistical heuristics and without backtracking. The incre-
mental versions, for which a statistics-based best split is always tentative, are designed to recover with minimal
loss of training effort from deviations from the search path which ID3 would follow given the same examples
E. More sophisticated representations and search operators allow these algorithms to simulate a backtracking
top-down search in a hill climbing search [Langley, Gennari and Iba 87; Fisher 87). However, these algorithms
do not contribute any new ideas to improve the complexity or accuracy of learned decision trees. IDL uses
the same search operators to construct a small and accurate tree which is not necessarily [Dl-equivalent but
topologically minimal. In a topologically minimal tree only a minimal number of tests is required to classify
objects. IDL is guided by statistics in a top-down search for an accurate tree. At the same time it looks for
smaller trees in a bottom-up fashion. Here it is guided, not by statistics, but by tree topological eonsiderations,
In effect, IDL simulates a bi-directional search.

Comparison of Decision Tree-Based Learning Algorithms 35

5.1.2 Related Work

1D4 [Schlimmer & Fisher 1986], ID5 [Utgoff 88a] and ID5R [Utgoff 89] are three recently developed algorithms
for incremental induction of decision trees. The relation with IDL was briefly explained in the introduction. In
[Van de Velde 89] it was conjectured that IDL finds a topologically minimal tree if it exists. Elomaa and Kivinen
[90] showed, however, how IDL may fail to find the optimal tree for the 3-multiplexer. The multi-multiplexer
concept also disproves this conjecture. Their algorithm IDL' nevertheless successfully postprocesses trees and
removes irrelevant attributes. Related experiments are reported on in [Van de Velde 90]. These experiments
use a version of IDL which is more eager to apply the statistical selection criterion. This has the advantage
that any consistent tree can be taken as an initial hypothesis, no matter how it was generated.

Others have explicitly addressed the problem of suboptimality in tree-size. Pruning techniques [Quinlan 87;
Fisher and Schlimmer 88; Mingers 89b] avoid overfitting and reduce complexity, often while increasing accuracy,
In a multiplexer-like concept the problem occurs at the top: a TDIDT-like algorithm will choose a wrong tap-
level atiribute and there is no way to prune this away. Quinlan [88] proposes to transform a tree into a set
of rules which are subsequently simplified. Every possible classification path is interpreted as a rule. Each
of the conditions in the rule is.removed in turn and classification accuracy of the rule set is tested. If this is
improved, then the condition is permanently removed. This process has been shown to be capable of strong
optimization at the expense of introducing a different representation. More sophisticated rule simplification
techniques have been studied by many authors [Michalski 87; Clark and Niblett 89; Zhang and Michalski 89].
They use statistical measures to balance the importance and typicality of patterns. The techniques of pruning,
tree transformation, and rule tweaking can be viewed along a continuum of increasing liberty to manipulate the
representation of patterns. IDL is somewhere in the middle: it manipulates several rules at once and is capable
of both introducing and deleting tests in a rule. Also note that IDL is incremental, is not motivated by noise,
works with one representation, and uses tree structure information in addition to statistics.

Other researchers reduce tree complexity by allowing different tests than the primitive ones, for example boolean
combinations [Breiman, Friedman, Olhsen, Stone 84; Clark and Niblett 89; Pagallo and Haussler 89; Seshu 89] or
linear threshold units [Utgoff 88b; Utgoff and Brodley 00]. Of these, FRINGE [Pagallo and Haussler 89] is closest
in spirit to [DL. It was developed to overcome the problem of replicated subirees when learning Disjunctive
Normal Form concepts. Such concepts usually have no decision tree representation without replications when
the primitive attributes are used. FRINGE examines the fringe (2 bottom levels) of a complete tree to find
replicated partial paths. The conjunction of two attributes or their negation is added as first class attribute
and a new tree is built. This process iterates until no more changes occur. In comparison, note that IDL is
incremental, does not change representation bias and tackles the replication problem for concepts which do have
a representation without replication. Utgoff and Brodley's method [90] is also incremental.

Wilson [87] used multiplexer concepts to test his classifier system, called Boole. Quinlan [38] noted the ex-
tremely slow convergence rate and obtains much better results when using C4, a TDIDT like algorithm, and
postprocessing to rules (see above). Bonelli, Parodi, Sen and Wilson [30] describe NewBoole, a new version of
Boole which converges significantly faster to accurate results. It still requires around 800 examples to find an
(almost) accurate hypothesis, and around 5000 examples to find the minimal set of rules. The same authors also
used nmeural nets of different sizes to learn the same concept. They report convergence after 1600 cycles for a
reasonable net (6:20-20-10-10:1). On the 11-multiplexer NewBoole requires around 4000 examples to converge,
a neural net around 8000.

Selective training goes back to the windowing technique in ID3 [Quinlan 83]. Wirth and Catlett [38] discuss
related techniques and note that the benefit of windowing is limited. Utgoff [89] shows that a window size of
one (i.e., ID5R-hat) results in improved training. The idea is not really applicable in IDL, because it still does
much work after the tree has become fully accurate.

36 W. Van de Welde

5.1.3 Conclusion

IDL represents a new approach to the incremental induction of decision trees. It uses a similar representation
as 1D4 [Schlimmer and Fisher 36] and the same set of search operators, (splitting, pruning and transposition) as
ID5(R) [Utgoff 88a,90]. It was argued that a decision tree represents a target concept by virtue of representing
a specialization of it. The task of induction is to find a tree such that this specialization is as close as possible
to the target concept. Search for a good decision tree can be understood as search in concept space, mediated
by decision tree manipulations. The role of the three operations was reconsidered, as well as the heuristics to
guide their application. A statistical selection measure, based on a metric on concept space [Lopez de Mantaras
90] is used to guide the expansion of a tree. Tree topological considerations, based on a notien of topological
relevance, guide the transpaosition of nodes to generate oportunities for pruning. IDL uses these heuristics to
simulate a bi-directional search for a tree which is topologically minimal. Such a tree minimizes the number of
tests needed for classification, and is therefore small. Experiments show that IDL finds small trees, and often
optimal ones.

A number of things need to be investigated further. A major open issue is to characterize the concepts for
which IDL finds a topologically minimal tree. It is not understood, for example, what makes the 3-multiplexer
so different from the 6-multiplexer concept to justify the occasional failure of IDL on the former. Alsa, the
large standard deviations on the mushroom domain are not well understood. It is disappointing that IDL could
not find drastically better trees on natural domains, like it did for the multiplexers. Are there no natural data
sets for multiplexer-like concepts? Since IDL occasionally fails to find an optimal tree an average case analysis,
as outlined by Pazanni and Sarrett [90] would be more useful than a worst-case one. Integration of IDL with
constructive induction techniques seems a promising line of research. Situations in which IDL keeps on switching
the levels of attributes could be used as an indication that a new attribute may be useful. The behavior of [DL
in the presence of noise has not been studied. The integration of techniques developed for top-dawn algorithms
[Mingers 89b] should be investigated. '

References

Arbab, B., and Michie, D. (1985) Generating Rules from Examples. In Proceedings of the Ninth International
Joint Conference on Artificial Intelligence p631-633.

Barto, A.G. (1985) Learning by statistical cooperation of self-interested neuron-like computing elements. In
Human Neurobiology 4, p229-256.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M.K. (1987) Occam’s razor. In Information Processing
Letters 24, p377-380. North Holland, Amsterdam.

Bonelli, P., Parodi, A., Sen, S., Wilson, 5. (1990) NEWBOOLE: A Fast GBML System. In Porter, B.W.,
Mooney, R.J. (Eds.) Proceedings of the Seventh International Conference on Machine Learning, pl53-159.
Morgan Kaufmann, San Mateo CA.

Breiman, L., Friedman, J.H., Olhsen, R.A. , Stone, C.J. (1984) Classification and regression trees. Belmont,
CA: Wadsworth International Group.

Clark, P., and Niblett, T. (1980) The CN2 Induction Algorithm. In Machine Learning 3, p261-283. Kluwer
Academic Publishers. Boston, MA.

Cockett, J.R.B. (1987) Discrete decision theory: Manipulations. In Theoretical Computer Scienca; 54, p215-236.

Comparison of Decision Tree-Based Learning Algorithms 7

Elomaa, T., Kivinen, J. (1990) On Inducing Topologically Minimal Decision Trees. In Proceedings of the second
[EEE conference on Tools for Artificial Intelligence. Washington, D.C.

Fisher, D.H. (1987) Knowledge Acquisition via Incremental Conceptual Clustering. Doctoral Dissertation,
Department of Information and Computer Science, University of California, Irvine, CA.

Fisher, D.H., and Schlimmer, J.C. (1988) Concept Simplification and Prediction Accuracy. In Laird, J. (Ed.)
Froceedings of the Fifth International Conference on Machine Learning p22-28. Morgan Kaufmann, San Mateo

CA.

Flann, N.S. and Dietterich, T.G. (1990) A Study of Explanation-Based Methods for Inductive Learning. In
Machine Learning 4, pl87-. Kluwer Academic Publishers, Boston MA.

Hancock, T. (1989) Finding the smallest consistent decision tree is NP-complete. M.5¢. thesis, Harvard Uni-
versity, Cambridge, MA.

Hyafil, R. and Rivest, R.L. (1976) Constructing optimal binary trees is NP-complete. In Information Processing
Letters 5, pl5-17.

[ba, W., Wogulis, J., Lanley, P. (1988) Trading Off Simplicity and Coverage in Incremental Concept Learning.
In Laird, J. (Ed.) Proceedings of the Fifth International Conference on Machine Learning p73-T9. Morgan
Kaufmann, San Mateo CA.

Langley, P., Gennari, J.H., Iba, W. (1987) Hill-Climbing Theories of Learning. In Langley, P. (Ed.) Proceedings
of the Fourth International Workshop on Machine Learning p312-323. Morgan Kaufmann, San Mateo CA.

Lopesz de Mantaras (1990) ID3 Revisited: A Distance-Based Criterion for Attribute Selection. To be published
in Machine Learning. Kluwer Academic Publishers, Boston MA.

Mingers, J. (1989a) An empirical comparison of selection measures for decision-tree induction. In Machine
Learning 3, p319-342. Kluwer Academic Publishers. Boston, MA.

Mingers (1989b) An empirical comparison of pruning methods for decision-tree induction. In Machine Learning
4, p227-243. Kluwer Academic Publishers. Boston, MA.

Nunez, M. (1988) Economic induction: a case study. In Sleeman, D. (Ed.) Proceedings of the Third European
Working Session on Learning p139-145. Pitman, London UK.

Pagallo, G., Haussler, D. (1989) Two Algorithms that Learn DNF by Discovering Relevant Features. In Segre,
AM. (Ed.) Proceedings of the Sixth International Workshop on Machine Learning pl119-123. Morgan Kauf-
mann, San Mateo CA.

Pazzani, M.J., Sarrett, W. (1990) Average Case Analysis of Conjunctive Learning Algorithms. In Porter, BW |
Mooney, R.J. (Eds.) Proceedings of the Seventh International Conference on Machine Learning, p339-347.
Morgan Kaufmann, San Mateo CA.

Pearl, J. (1878) On the connection between the complexity and credibility of inferred models. In [nternational
Journal General Systems 4, p255-264.

Quinlan, J.R. (1983) Learning efficient classification procedures and their application to chess end games. In
Michalski, R., Carbonell, J., Mitchell, T. (Eds.) Machine Learning: An artificial intelligence approach p463-482,

18 W. Van de Welde

Morgan Kaufmann, San Mateo CA.

Quinlan, J.R. (1986) Induction of Decisicn Trees . In Machine Learning 1, pd1-106. Kluwer Academic Publish-
ers, Boston MA.

Quinlan, J.R. (1987) Simplifying Decision Trees. In International Journal of Man-Machine Studies.

Quinlan, J.R. (1988) An empirical comparison of genetic and decision-tree classifiers. In Laird, J. (Ed.) Pro-
ceedings of the Fifth International Conference on Machine Learning p135-141. Morgan Kaufmann, San Mateo
CA.

Rendell, L. (1986) A General Framework for Induction and a Study of Selective Induction. In Machine Learning
1, p177-226. Kluwer Academic Publishers, Boston MA.

Schlimmer, J.C., Fisher, D. (1986) A case study of incremental concept induction. In Proceedings of the Fifth
National Conference on Artificial Intelligence p496-501. Morgan Kaufmann, San Mateo CA.

Schlimmer, J.C. (1987) Concept Acquisition through Representation Adjustment. Doctoral Dissertation. Uni-
versity of California, Irvine.

Seshu, R. (1989) Solving the Parity Problem. In Morik, K. (Ed.) Proceedings of the Fourth European Working
Session on Learning p263-271. Pitman, London UK.

Steels, L. (1990) Components of Expertise. In Al Magazine. Summer 1990 p.

Tan, M., Schlimmer, J.C. (1989) Cost-Sensitive Concept Learning of Sensor Use in Approach and Recognition.
In Segre, A.M. (Ed.) Proceedings of the Sixth International Workshop on Machine Learning p392-395. Morgan
Kaufmann, San Mateo CA.

Utgoff, P.E. (1988a) ID5: An Incremental ID3. In Laird, J. (Ed.) Proceedings of the Fifth International
Conference on Machine Learning p107-120. Morgan Kaufmann, San Mateo CA.

Utgoff, P.E. (1988b) Perceptron Trees: A case study in hybrid concept representations. In Proceedings of the
Seventh National Conference on Artificial Intelligence, p601-606. Morgan Kaufmann, San Mateo CA.

Utgoff, P.E. (1989) Improved Training via Incremental Learning. In Segre, A.M. (Ed.} Proceedings of the Sixth
International Workshop on Machine Learning p362-365. Morgan Kaufmann, San Mateo CA.

Utgoff, P.E. (1990) Incremental Learning of Decision Trees. In Machine Learning 4, p161-186. Kluwer Academic
Publishers, Boston MA.

Utgoff, P.E., and Brodley, C.E. (1990) An Incremental Method for Finding Multivariate Splits for Decision
Trees. In Porter, B.W., Mooney, R.J. (Eds.) Proceedings of the Seventh International Conference on Machine
Learning, p58-65. Morgan Kaufmann, San Mateo CA.

Van de Velde, W. (1989) IDL, or Taming the Multiplexer. In Morik, K. (Ed.) Proceedings of the Fourth
European Working Session on Learning p211-226. Pitman, London UK.

Van de Velde, W. (1990) Incremental Induction of Topologically Minimal Trees. In Porter, B.W., Mooney, R.J.
(Eds.) Proceedings of the Seventh International Conference on Machine Learning, p6-74. Morgan Kaufmann,
San Mateo CA.

Comparison of Decision Tree-Based Learning Algorithms ' 39

Wilson, S.W. (1987) Classifier Systems and the Animal Problem. In Machine Learning 2 p . Kluwer Academic
Publishers, Boston MA.

Wirth, J., Catlett, J. (1988) Experiments on the Costs and Benefits of Windowing in [D3. In Laird, J. (Ed.)
Proceedings of the Fifth [nternational Conference on Machine Learning p87-99. Morgan Kaufmann, San Mateo
CA.

Zhang, J., Michalski, R.S. (1989) Rule Optimization via 3G-Trunc Method. In Morik, K. (Ed.) Proceedings of
the Fourth European Working Session on Learning p251-262. Pitman, London UK,

40 W. Van de Welde
5.2 Experimental Results

I have done some of the experiments for the comparison of the algorithms. The runs on the first data-set are
complete, except for the timing information. The runs for the second example are in progress and [will send
them later today. I will not do the third example since [surender to noise. Nevertheless I think you will agree
that in the class of decision tree algorithms, the performance of IDL is quite impressive.

Here is what [did. [ran several algorithms on the training-set and tested them on the test-set. If the algorrithm
is non-incremental [used a run on the complete training set. If the algorithm is incremental I ran it with 500
examples randomly selected from the training set. Testing is always on the full test set. All results are averaged
over 10 runs.

I used the following algorithma:

TDIDT: plain old ID3 with information gain as selection measure,

no pruning.

IDSR: the incremental veraion of ID3 produced by Utgeff. Information
gain is the selection measure. No pruning.

IDL: IDL as described in an unpublished paper, very similar to the
algorithm described in IML-30

IDER-hat: IDSR with example filter. Trains only if the example is
misclassified by the current hypothsis. Neo pruning.

[send the results in several files. In seperate mails I will provide the following information:

TDIDT: the traa
size and accuracy of the tree
the concept described by it

ID6R, IDL, IDSR~hat:

data on size and accuracy as it evolves with training
a typical tree and its size and accuracy

the concept described by that . typical tree

The evolving data for the incremental algorithms allow to produce the learning curves for each of the algorithms.
I produced graphs with Exel and will send them by mail if [do not succeed making a postscript version of it.

About the results:

+ IDL is clearly the best. It produces the smallest trees with by far the best accuracy of all. It is also worth
noticing that the standard deviations for IDL are very small, and that the concepts described by the trees
that IDL produces are the same. This means that search in concept space is finished, but IDL can not decide
on the best representation. So it limit-cycles between J different trees, all small and equally accurate (the
only difference is in the order of testing the three relevant attributer). This illustrates how the use of not
only statistical information bt also tree-topological one makes the algorithm unsensitive to sampling differences
(small disjuncts or sparse sampling are no big problem either). Here are the data for all 10 trees 1o show this:

MONES-1 IDL used IDL nodes IDL leaves IDL accuracy
500 500 42 2% 97.22222
500 500 36 26 97.22222

500
500
500
500
500
500
500
500

500
500
500
500
500
500
500
500

40 27

40 28
36 26
47 29
40 27
42 29

Comparison of Decision Tree-Based Learning Algorithms 41

57.22222
a7.22232
97.22222
97.22222
97.22222
97.22222
97.22222
97.22222

On the other hand ID5SR produces larger and less accurate trees with enormous standard deviations as shown
by data for the 10 trees that ID5SR produces:

MONKS=1

so0
500
500
500
500
500
500
500
500
500

500
500
500
500
500
500
500
500
500
500

ID5R used IDSR nodes IDSR leaves IDSR accuracy

75

48

&4 40

50
61
T0
40
T3
78
T4
59

az
40
43
27
45
50
46
ar

81. 944944
81.71296
90,97222
87.73148
TT.31481
97.22222
T7.546235
84.02778
80. 32407
86.3425%

As expected ID5R-hat does somewhat better than ID5R. Here are the data for the 10 trees to give an idea of

the deviations.

MONES-1 IDSR-hat usad IDSR-hat nodes IDSR-hat leaves I[D5A-hat accuracy
(36 85.416664

500
500
500
500
500
500
500
500
500
500

51
62
52
49
53
52
50
48
58
53

56
68
40
40
40
51
39
40
49
40

43

79.861118

27 97.22222
27 97.22222
27 97.22222
33 92.361115
26 9444444
27 97.22222
32 90.27T7TT8
2T 97.22222

I sent a number of files with the results of TDIDT, IDL, ID5R and [D5R-hat on the second monk’s concept.
The results are averaged only over 5 runs this time.

The effect I seem to get is that [DL does not get beyond its initial phase of building up a iarlge tree. In other
words, it does not get anyway near to collapsing it. The fact that it grows larger than for_IDﬁR is not a_nomalous,
but normally this is followed by a rapid collaps to a smaller form (see MONKS-1 this effect). This concept
seems to be too difficult for trees to handle anyway...

Here are the 5 individual results for IDL:

MONES-2 IDL used IDL nodes IDL leavea IDL accuracy
500 500 176 111 T4.30556

42 W. Van de Welde

500 500 170 104 65.046295
500 500 180 114 T3.842589
500 500 197 112 68.05556
500 500 184 111 61.34259

Here are the 5 individual results for ID5GR:

MONES-2 IDSR used IDSR nodes IDSR leaves IDSR accuracy
500 500 145 93 £4.,12037

500 500 153 91 64.583336

S00 500 173 104 65.74074

500 500 171 102 &5.27778

540 500 165 95 61.805557

Here are the 5 individual results for ID5R-hat:

MONES-2 IDSR-HAT used IDSR=-HAT nodes IDSR-HAT leaves IDSR-HAT accuracy
500 113 130 77 63.425528

500 115 131 82 65.74074

500 118 133 80 64.B1481

500 120 133 B4 62.5

500 115 138 83 62.73148

IDL finds larger trees, slightly more accurate. ID3R and ID5R-HAT find trees that are comparable in accuracy
to the TDIDT tree (66.666664% with 159 nodes and 95 leaves) but the IDSR-HAT tree is smaller.

Comparison of Decision Tree-Based Learning Algorithms

5.2.1 ID5R on test set 1

DESCRIPTION OF THE TREE:

;i Typical tres found by idSr

1 trained on first monks's training set

i

:; 500 examples (random from full

i training set)
1: 64 nodes
11 40 leaavaes

17 81.T1298 accuracy on tast sat

JACKET _COLOR = 1 : <i>,..
JACEET_COLOR = 2 :
HAS_TIE = 1 :
BODY_SHAPE = 1 ; <i>,,,
BODY _SHAPE = 2 :

HEAD_SHAPE = 1 : <0>. ..
HEAD_SHAPE = 2 : <1>...
HEAD_SHAPE = 3 : <0>...
BODY_SHAFE = 3
HEAD_SHAPE = 1 : <0>...
HEAD_SHAPE = 2 : <0>...
HEAD_SHAPE = 3 : <1>...
HAS_TIE = 2 :

BODY_SHAPE = 1 :

HEAD_SHAPE = 1 : <1>...

HEAD_SHAPE = 2 : <0>...

HEAD_SHAPE = 3 : <0>...
BODY_SHAPE = 2 :

IS5 SMILING = 1 : <1>...

IS_SHILING = 2 : <0>...

BODY_SHAPE = 3 :

HEAD_SHAPE = 1 : <0>...
HEAD_SHAPE = 3 : <i>...

JACEET _COLOR = 3 :
HOLDING = i
HEAD_SHAPE = 1 :

BODY_SHAPE = 1 : <i>...
BODY_SHAPE = 2 : <0>
HEAD_SHAPE = 2 :
BODY_SHAPE = 1 : «<0>...
BODY_SHAFE = 2 : <1>...

BODY_SHAPE = 3 : «<O>». ..

HEAD_SHAPE = 3 :
BODY_SHAPE = 2 : <0>

BODY_SHAPE ™ 3 : <1>...

HOLDING = 2 :
HAS_TIE = 1 : <0>...
HAS_TIE = 3 :

HEAD_SHAPE = 1 : <€0>...
HEAD_SHAPE = 2 : <1>...

HEAD_SHAPE = 3 :

IS_SMILING = § : «1>...
IS_SMILING = 2 : <0>...

HOLDING = 3 :

I3_SHMILING = | :
HAS_TIE = 1 : <0>...
HAS_TIE = 2 : <1>...

IS_SMILING = 2 :

HEAD_SHAPE = 1 : <0Q>,,,
HEAD_SHAPE = 2 : «<0>. .,
HEAD_SHAPE = 3 : <12...

JACKET _COLOR = 4 :
HEAD_SHAFE = 1 :

BODY_SHAPE = 1 : <1>...
BODY_SHAFE = 2 : <0>...
BODY_SHAPE = 3 : <0>...

HEAD_SHAPE = 2 :

BODY_SHAFE = 1 : <0>...
BODY_SHAPE = 2 : <1>, ..
BODY_SHAPE = 3 : <0>...

HEAD_SHAFE = 3 :

BODY_SHAPE = 2 : <0>. ..
BODY_SHAPE = 3 : <€1>...

5.2.2 IDL on test set 1

DESCRIPTION OF THE TREE:

11 Typical tree found by idl

11 trained on first monks's training set

;7 500 examples (randem from

H full training set)

i+ 38 nodes

it 26 leavaes

i+ 9T7.22222 accuracy on test set
BODY_SHAPE = 1 :

HEAD_SHAFE = 1 : <1>,..

HEAD_SHAFE = 2 :
JACKET_COLOR = 1 : <1>...
JACKET_COLOR = 2 : <€OQ>...
JACKET_COLOR = 3 : <0»>...
JACKET_COLOR = 4 : <0>...

HEAD_SHAFE = 3 :
JACKET_COLOR = 1 : <1>...
JAGKET_COLOR = 3 : <0>...
JACKET _COLOR = 3 : <0>...

BODY_SHAPE = 2 :
HEAD_SHAPE = 1 :
JACKET _COLOR = 1 : <€1>...
JACKET _COLOR = 2 : <0>, ..
JACKET _COLOR = 3 : €0>, .,
JACKET_COLOR = 4 : <0>...

HEAD_SHAFE = 2 : <1>...

HEAD_SHAPE = 3 :
JACKET_COLOR = 1 : €1>...
JACKET_COLOR = 2 : «<€0Q>. .,
JACKET _COLOR = 3 : <0>
JACKET_COLOR = 4 : <0>, .,

BODY_SHAPE = 3 :

HEAD_SHAPE = 1 :
JACKET_COLOR = 1 : <€1>...
JACKET _COLOR = 2 : <O0>...
JACEET _COLOR = 3 : <0, ..
JACKET _COLOR = 4 : <0>...

HEAD_SHAPE = 2 :

JACKET _COLOR = 1 : <1>...
JACEET _COLOR = 2 : <0>...
JACKET_COLOR = 3 : <0>...
JACKET _COLOR = 4 : <0>..,

HEAD_SHAPE = 3 : £

=1

: J—

44 W. Van de Welde

5.2.3 ID5R-HAT on test set 1 5.2.4 TDIDT on test set 1

DESCRIPTION OF THE TREE:

;3 Tree found by idBr-hat trainmed
; on first monks’s training set

58 axamples used sut of 500
{randem from full training set)
49 nodes

32 leaavea

; 90.2TTTB accuracy on test sat

JACKEET COLOR = 1 : «<1>. ..
JACKET_COLOR = 2 :

DESCRIPTION OF THE TREE:

ii Tree found by tdidt trained
:; on first monks'’s training set
i+ 124 examples (full training s
i+ B8 nodes

i1 B2 laavaes

33 TH.65444 accuracy on test set

JACKET_COLOR = 1 : <1>
JACEET_COLOR = 2 :
HOLDING = 1 :

HEAD_SHAFE = 1 :
BODY_SHAPE = 1 : <i>
BODY_SHAPE = 2 : <0>
BODY_.SHAFE = 3 : <0>

HOLDING = 1 : HEAD_SHAPE = 2 :
HEAD_SEAPE = 1 : IS_SHMILING = 1 : <1>»
BODY_SHAPE = 3 : <0> IS_SMILING = 2 : <0>

BODY_SHAPE = 1 : <1>... HEAD_SHAFE = 3 :

BODY_SHAPE = 2 ; <0>...
HEAD_SHAPE = 2 :
BODY_SHAPE = HE L1 -
BODY _SHAPE = 2 : «<1>, ..
HEAD_SHAPE = 3 : <0>...
HOLDING = 2 : <0, ..
HOLDING = 3 :
BODY _SHAPE = 1 :
HAS_TIE = 1 : <1>...
HAS TIE = 2 : <0>, ..
BODY_SHAPE = 2 :

-

HAS_TIE = | : <13
HAS_TIE = 2 : <O
HOLDING = 2 :
BODY_SHAPE = L : <0>
BODY_SHAPE = 2 : <1>
BODY_SHAPE = 3 : <>
HOLDING = 3 :
IS_SHILING = 1 :
HEAD_SHAPE = 1 :
BODY_SHAPE = 1 : <1>
BODY_SHAPE = 2 : <0>

HEAD_SHAPE = 1 : <0>... BODY_SHAPE = 3 : <>
HEAD_SHAPE = 2 : <1>... HEAD_SHAPE = 2 : <1>
HEAD_SHAPE = 3 : <0>... HEAD_SHAPE = 3 :

BODY_SHAPE = 3 :
HEAD_SHAPE = 1 : <0»,..
HEAD_SHAPE = 3 : <1>,..

BODY_SHAPE = 1 : <0>
BODY_SHAPE = 3 : <12
IS_SMILING = 2 :

at)

JACEET_COLOR = 3 : BODY_SHAPE = 1 : <03
HEAD_SHAPE = 1 : BODY_SHAPE = 2 : <0>
BODY_SHAPE = 1 : <1>... BODY_SHAPE = 3 :
BODY_SHAFE = 2 : <0>. .. HAS_TIE = 1 : <0>
BODY_SHAPE = 3 : <0>,., HAS_TIE = 2 : <1>»
HEAD_SHAPE = 3 : JACKET _COLOR = 3
BODY_SHAPE = 1 : <0>... HAS_TIE = 1 :
BODY_SHAPE = 2 : <€i>... HOLDING = 1 :
BODY_SHAFE = 3 : <03, .. IS_SNILING = 1 :
HEAD_SHAPE = 3 : BODY_SHAPE = 1 :
BODY_SHAPE = 1 : <0>... HEAD_SHAPE = 1 : <1>
BODY_SHAPE = 2 : <0». .. HEAD_SHAPE = 2 : <0>
BODY_SHAPE = 3 : <1>.,, BODY_SHAPE = 2 :
JACKET_COLOR = 4 : HEAD_SHAPE = 1 : <0>
HEAD_SHAPE = 1 : HEAD_SHAPE = 2 : <1»
BODY_SHAPE = 1 : <1>... IS_SHILING = 2 : <O>
BODY_SHAPE = 2 : <0>... ROLDING = 2 :
BODY_SHAPE = 3 : «<0>... IS_SMILING = 1 : <0>
HEAD_SHAPE = 2 : IS_SWILING = 2 :
BODY _SHAPE = 3 : <Q> HEAD_SHAPE = 1 : <1>
BODY_SHAPE = 1 : <0>... HEAD_SHAPE = 2 : <0>
BODY_SHAPE = 7 : <1>. ., HOLDING = 3 : <0>
HEAD_SHAFE = 3 : HAS_TIE = 2 :
BODY_SHAPE = 1 : <0>... IS_SMILING = 1 :
BODY_SHAPE = 3 : <1>,., HOLDING = 1 :

HEAD_SHAPE = 1 : <1>

Comparison of Decision Tree-Based Learning Algorithms

HEAD_SHAPE = 1 : <0>
HOLDING = 2 :
HEAD_SHAPE = 1 : <0>
HEAD_SHAPE = 7 : <1>
HEAD_SHAPE = 3 : <1>
HOLDING = 3 : <i>
IS_SMILING = 2 :
HOLDING = 1 :
BODY_SHAPE = 1 :
HEAD_SHAPE = 2 :
HEAD_SHAFE = 3 :
BODY_SHAPE = 3 :
HEAD_SHAPE = 2 :
HEAD_SHAPE = 3 :
HOLDING = 2 : <0>
HOLDING = 3 :
HEAD_SHAPE
HEAD_SHAPE
HEAD_SHAPE
JACKET_COLOR = 4 :
HEAD_SHAPE = 1 :
BODY_SHAPE = 1 : <i>
BODY_SHAPE = 2 : <0
BODY _SHAFE = 3 : «<0>
HEAD_SHAPE = 2 :
BODY_SHAPE = 1 : <0>
BODY_SHAPE = 2 : <1>
BODY_SHAPE = 3 : <0
HEAD_SHAFE = 3 :
BODY_SHAPE = 2 : <0>

1 i <0>
2 : 0>
3 €1>

BODY_SHAPE = 3 : <1>{1 1 1 11 1 -> 1}

5.2.5 ID5R on test set 2

DESCRIPTION OF THE TREE:

Typical tres found by idSr
trained on second monks's
training sat

500 axamples {(random from
full training sat)

165 nodes

45 laavas

JACEET _COLOR = 1 :
13_SHILING = 1 :
HEAD_SHAPE = 1 : <03, ..
HEAD_SHAPE = 2 :
HOLDING = 1 : <0>...
HOLDING = 2 : <03...
HOLDING = 3 :
BODY_SHAPE = 1 ; €03
BODY_SHAPE = 3 : <1>
HEAD_SHAPE = 3 :
HOLDING = 1 : <0>...
HOLDING = 2 :

[$4-]
<0

<03
€13

61,.80555T accuracy on test set

BODY_SHAPE = 1 : <0>
BODY_SHAPE = 2 : <1»
HOLDING = 3 : <0>
IS_SMILING = 7 :
HOLDING = 1 :
HAS_TIE = 1 : <0>..,
HAS_TIE = 2 :
HEAD_SHAPE ™= 1 : <O>»
HEAD_SHAPE = 1 : <1>...
HOLDING = 2 ;- «<i>...
HOLDING = 3 :
HEAD_SHAFE = 1 :

HAS.TIE = 1 : <02, ,,

HAS_TIE = 2 :

' BODY_SHAPE = 1 : <0>
BODY_SHAPE & 2 : <1>
HEAD_SHAPE = 7 :

HAS_TIE = 1 :
BODY_SHAPE = 1 : <O>
BODY_SHAPE = 2 : <1>

HAS.TIE= 2 : <1>...

HEAD_SHAPE = 3 ; <1»,..,

JACKET_COLOR = 2 :

BODY_SHAPE = 1 :
HEAD_SHAPE = 1 :
IS_SMILING = 1 : <0>,..
IS_SMILING = 2 : <1>. ..
HEAD_SHAFE = 2 :
HOLDING = 1 :
IS_SNILING = 1 : <O>
IS_SNILING = 2 : <1>,..
HOLDING = 2 : <i>...

HOLDING = 3 :
IS_SMILING = 1 : <i>...
IS_SMILING = 2 ; <0O>, .,
HEAD_SHAPE = 3 :
HOLDING = 1 : <i>...
HOLDING = 2 : 1>, ..
HOLDING = 3 :
IS_SMILING = 1 : <i>
IS_SMILING = 2 :
HAS_TIE = 1 : <1>
HAS_TIE = 2 : <0>

BODY_SHAPE = 2 !
IS_SMILING = 1 ; «€1>...
IS_SMILING = 2 | <0>. ..

BODY_SHAPE = 3 :

HEAD_SHAFE = 1 :
HOLDING = 2 : <03, ..
HOLDING = 3 : <1>...

HEAD_SHAPE = 2 :
HOLDING = 1 : <i>...
HOLDING = 2 : <0>...
HOLDING = 3 : <1i>...

HEAD_SHAPE = 3 : <0»...

JACKEET _COLOR = 3 :

HEAD_SHAFE = 1 :
BODY_SHAPE = 1 : «<0>...
BODY_SHAPE = 2 :

HOLDING = 2 :
HAS_TIE = 1 :

IS_SMILING = 1 : <0>
IS_SKILING = 2 : <1>
HAS_TIE = 2 : <1>...
HOLDING = 3 :
IS_SMILING = 1L : <0>...
IS_SMILING = T :
HAS_TIE = 1 : <i>

46

HAS.TIE = 2 : <0>
BODY_SHAPE = 3 :
HAS_TIE = 1 : <0>...
HAS_TIE= 2 :

HOLDING = 1 :
IS_SMILING = 1 : <0>
IS_SMILING = 2 : <1>

HOLDING = 2 : <0>...

HEAD_SHAPE = 1 .
IS_SAILING = 1 :
BODY_SHAPE = 1 :
HAS_TIE = 1 : <0>
HAS_TIE = 2 : <1>...

BODY_SHAPE = 2 :
HOLDING = 1 : <O>...
HOLDING = 2 : <i>...
HOLDING = 3

HAS_TIE = 1 : <1>
HAS_TIE = 2 : <0Q>
BODY_SHAPE = 3 :
HOLDING = 1 : <1>,..
HOLDING = 2 :
HAS_TIE = 1 : <1>
HAS_TIE = 2 : <0>»
IS_SMILING = 2 :
HOLDING = 1 :
HAS_TIE = 1 : <1>...
HAS_TIE = 2 : <0». ..
HOLDING = 2 : <0>...
HOLDING = 3 : <0>...
HEAD_SHAPE = 3 :
HOLDI®G = 1
HAS_TIE = 1 :
BODY_SHAPE = 1 : <0>...
BODY_SHAPE = 2 :
IS_SHILING = 1 : <0X
IS_SHMILING = 2 : «<1>
BODY_SHAPE = 3 : <0>...
HAS_TIE = 2 :
IS_SWILING = 1 : <1>,..
IS_SHILING = 2 :
BODY_SHAFE = | : <1>
BODY_SHAPE m= 2 : <0>
HOLDING = 2 :
BODY_SHAPE = 1 : <1>. ..
BODY_SHAFE = 2 : <0>...
BODY_SHAPE = 3 : <0>..,
HOLDING = 3 :
HAS_TIE = 1 : <1>...
HAS_TIE = 2 :
BODY_SHAPE = 1L : <i>...
BODY_SHAPE = 2 : <0>...
JACEET _COLOR = 4 :
BODY_SHAPE = 1 :
HAS_TIE = 1 : <0>...
HAS_TIE = 2 :
HEAD_SHAPE = 1 : <i»...
HEAD_SHAPE = 2 : <0>...
HEAD_SHAFE = 3 :
IS_SNILING = | : <i>...
IS_SMILING = 2 : <0>...
BODY_SHAPE = 2 :
HOLDING = 1 :
IS_SMILIFG = 1 : <1>,..
IS_SHILING = 2 :
HEAD_SHAPE » | : <0>,..
HEAD_SHAPE = 2 :
HAB_TIE = 1 : <1i>

W. Van de Welde

HAS_TIE = 2 : <0>
HOLDING = 2 : <i>...
HOLDING = 3 ;
HAS_TIE = 1 :

[S_SHILING = 1 :
HEAD_SHAPE = 1 : <03
HEAD_SHAPE = 2 : €13

IS_SMILING = 2 : <1>...

HAS_TIE = 2 :
IS_SMILING = 1 : <1>...
IS_SNILING = 2 : <0>...
BODY_SHAPE = 3

IS_SHILING = 1 :
HOLDING = 2 : <0>. ..
HOLDING = 3 : <i>. ..

IS_SMILING = 2 : <0>..,

5.2.6 IDL on test set 2

DESCRIPTION OF THE TREE:

Typical tree found by idl
trained on second monks's
training set

i+ 500 examples (random from

HH full training set}

:; 170 nodes

ii 10T leaves

i1 66, 203T0E accuracy on test set

IS_SMILING = 1 :
HAS_TIE=1 :
JACEET_COLOR = 1 : =0>, ..
JACKET_COLOR = 2 :
BODY_SHAPE = 1 : <0>,..
BODY_SHAPE = 2 : €1» ..
BODY_SHAPE = 3 :
HEAD _SHAPE = 1 : <0>, ..
HEAD SHAPE = 2 : <1>...
HEAD_SHAPE = 3 : <0>...
JACKET_COLOR = 3 :
BODY_SHAPE = { : <0>. ..
BODY_SHAPE = 2 :

HEAD_SHAPE = 1 : <0>...

HEAD_SHAFE = 2 :
HOLDING = 1 : <03
HOLDING = 2 : <1>
ROLDING = 3 ; <i>»

HEAD_SHAPE = 3 :
HOLDING = 1 : <0>
HOLDING = 3 : <1>

BODY_SHAPE = 3 :
HEAD_SHAPE = 1 : <0>,..
HEAD_SHAPE = 1 : <i>...
HEAD_SHAPE = 3 : <0>, ..

JACEET _COLOR = 4 :

BODY_SHAPE = 1 : <0>. ..

BODY_SHAPE = 2 :
HEAD_SHAPE = 1 : <0>...

Comparison of Decision Tree-Based Learning Algorithms

HEAD_SHAPE = 2 : <1>... HEAD_SHAPE = 2 :

BODY_SHAPE = 3 : HOLDING = 1 : <1>
HEAD_SHAPE = 1 : <0>... HOLDING = 3 : <>
HEAD_SHAPE = 2 : <1>... : HEAD_SHAPE = 3 : |

HAS_TIE = 2 : HOLDING = 1 : <1>
JACKET _COLOR = 1 : HOLDING = 3 : <0>

BODY_SHAPE = 1 : <>, .. JACKET _COLOR = 3 :

BODY_SHAPE = 2 : HEAD_SHAPE = 2 : <0>...
HEAD_SHAPE = 1 : «<0>, .. HEAD_SHAPE = 3 : £1»...
HEAD_SHAPE = 3 : JACEET _COLOR = 4 :

HOLDING = 1 : <0> HEAD_SHAPE = 1 @ <1>...
HOLDING = 2 : <1> HEAD_SHAPE = 2 : <0>. ..

BODY_SHAPE = 3 : HEAD_SHAPE = 3
HEAD_SHAPE = 1 : <0>,.., HOLDING = 1 : <1i>
HEAD_SHAPE = 2 : HOLDING = 3 : <0>

HOLDING = 1 : <0 BODY_SHAPE = 3 :
HOLDING = 3 : <1> HAS_.TIE = 1 :
JACKET_COLOR = 2 : JACEET _COLOR = 1 :

BODY_SHAPE = 1 : HEAD_SHAPE = 1 : <Q>, .,
HEAD_SHAPE = 1 : <0>... HEAD_SHAPE = 2 :
HEAD_SHAFE = 2 : HOLDING = 1 @ <0>

HOLDING = 1 : <0> HOLDING = 2 : <1>

HOLDING = 2 : <1>» HOLDING = 3 : <1>

HOLDING = 3 : <1 HEAD_SHAPE = 3 :
HEAD_SHAPE = 3 : <1>... HOLDING = 1 : <0O>

BODY_SHAPE = 2 : <1>... : HOLDING = 3 : <1>

BODY_SHAPE = 3 : JACKET _COLOR = 2 : <0>...
HOLDING = 1 : <0>. .. JACKET_COLOR = 3 :
HOLDING = 2 : <1i>... HEAD_SHAPE = 1 : <1>. .,
HOLDING = 3 : <1>... HEAD_SHAPE = 2 : <0»...

JACEET _COLOR = 3 : HEAD_SHAPE = 3 : <1>..,

BODY_SHAPE = 1 ; <1i>... JACEET_COLOR = 4 :

BODY_SHAPE = 2 : HEAD_SHAPE = 1 :
HEAD_SHAPE = 1 : <1>.., HOLDING = 1 : <0>
HEAD_SHAPE = 2 : <0%.., HOLDING = 2 : <1>
HEAD_SHAFE = 3 : HOLDING = 3 : <1»

HOLDING = 1 : <1> HEAD_SHAPE = 2 : <1», ..
HOLDING = 3 : <0> HAS_TIE = 3 :
BODY_SHAPE = 3 JACKET_COLOR = 1 : <1>...
HEAD_SHAPE = 1 : JACKET _COLOR = 2 : <0>. ..
HOLDING = 1 : <0> JACKET_COLOR = 3 : <0>...
HOLDING = 2 : <i> JACKET _COLOR = 4 : <D>, .,
HEAD_SHAPE = 2 : . BODY_SHAPE = 3 :
HOLDING = 1 : <1 HAS_.TIE= 1 :
HOLDING = 2 : <O> JACEET _COLOR = 1 :
HEAD_SHAFE = 3 : HEAD.SHAPE = 2 : €1>...
HOLDING = 1 : <1> HEAD_SHAFE = 3 :
HOLDING = 2 : <03 HOLDING = 1 : <O¥
JACKET _COLOR = 4 : HOLDING = 2 : <1>

BODY_SHAPE = 1 : €£1>... HOLDING = 3 : <1>

BODY_SHAPE = 2 : <1>... JACEET _COLOR = 2 :

BODY _SHAPE = 3 : HEAD_SHAPE = 1 : «<1i»...
HEAD_SHAFE = 1 : «<1»... HEAD_SHAPE = 2 :
HEAD_SHAFE = 2 : <0»>... HOLDING = 1 : <1>

IS_SHILING = 2 : HOLDING = 2 : <0>
BODY_SHAPE = 1 : HEAD_SHAPE = 3 : <0>. ..
HAS_TIE = 1 : JACKET_COLOR = 3 :

JACEET COLOR = 1 : <0>,.. HEAD_SHAPE = 1 ; <0, ..

JACEET COLOR = 2 : <1>... HEAD_SHAPE = 1 :

JACKET _COLOR = 3 : <0>, ., HOLDING = 1 @ <1>
JACKET_COLOR = 4 : <0>,.. HOLDING = 3 ; <0>
HAS_TIE = 2 : HEAD_SHAPE m 3 : <0%. ..

JACKET _COLOR = 1 : JACKET _COLOR = 4 : <0>...
HEAD_SHAPE » 1 : <0>,.. HAS_TIE = 2 :

HEAD_SHAFPE = 2 : <i>,.. JACRET_COLOR = 1 ; <1>...
HEAD_SHAFE = 3 : <€1»... JACKET _COLOR = 3 :
JACEET _COLOR = 2 : HEAD_SHAPE = 1 :

HEAD_SHAPE = | : <1>... HOLDING = 1 : <i»

48

HOLDING = 2 : <0>

HEAD_SHAPE = 2 : «<0>...
HEAD_SHAPE = 3 : <0>...
JACEET_COLOR = 4 : <0%»...

5.2.7 TDIDT on test set 2

DESCRIPTION OF THE TREE:

i The tres found by TDIDT
1; trained on second monks's
i+ training set

;i 169 axamples (full training set)
i1 159 nodas

77 95 leaves

i1 &6, 666664 accuracy on tast sat

JACKET_COLOR = 1 :
IS_SMILING = 1 :
HAS_TIE = 1 : <0>
HAS_TIE = 2 :
HEAD_SHAPE = 1 ; <0
HEAD_SHAPE = I :
HOLDING = 1 : <0>
HOLDING = 3 :
BODY_SHAFPE
BODY_SHAPE
HEAD_SHAPE = 3
HOLDING = 1 : <0>
HOLDING = 2 @
BODY_SHAPE = 1 : <0>
BODY_SHAPE = 2 : <1>
HOLDING = 3 : <0»
IS_SMILING = 2 :
HOLDING = 1 :
HAS_TIE = 1 : <0>
HAS_TIE = 2 :
BODY_SHAPE = 1 : «<0>
BODY_SHAPE = 3 : <1»
HOLDING = 2 : <i>
HOLDING = 3 :
HEAD_SHAPE = 1 :
HAS_TIE = 1 : <>
HAS_TIE = 2 :
BODY_SHAPE = 1 : <0»
BODY_SHAFE = 2 : <1>
HEAD_SHAPE m= 2 :
HAS_TIE = 1 :
BODY_SHAPE = 1 : <0>
BODY_SHAPE = 2 : <1i>
HAS_TIE = 2 : <1>
HEAD_SHAPE = 3 : <1>
JACKET_COLOR = 1 :
IS_SMILING = 1 :
HOLDING = § :
BODY_SHAPE = 1 : <0>
BODY_SHAPE = 2 : <1>
BODY_SHAPE = 3 : <0>
HOLDING = 2 :

1 0>
@ £l

-

W. Van de Welde

HAS_TIE = 1 :

BODY _SHAPE = 1 :
BODY_SHAPE = 2 :
BODY_SHAPE = 3 :

HAS_TIE = 2 : <i>»
HOLDING = 3 :
HAS_TIE = 1 :

BODY_SHAPE = 1 :
BODY _SHAPE = 2 ;
BODY_SHAPE = 3 :

HAS_TIE = 2 : <1>
IS_SHILING = 2 :
BODY_SHAPE = 1 :
HOLDING = 1 : <1>
HOLDING = 2 : <i>
HOLDING = 3 :

HEAD_SHAPE = 1 :
HEAD_SHAPE = 2 :
HEAD_SHAPE = 3 :
HAS_TIE = 1 :
HAS_TIE = 2 :

BODY_SHAPE = 2 : <0
BODY_SHAPE = 3 :
HEAD_SHAPE =
HEAD_SHAPE =
HOLDING =
HOLDING =
HEAD_SHAPE =
JACEET_COLOR = 3 :
IS_SMILING = 1 :
HAS_TIE = 1 :
HEAD_SHAPE =
HEAD_SHAPE =
HOLDING =
HOLDING =
HOLDING =
HEAD_SHAPE =
HOLDING =
HOLDING =
HAS_TIE = 2 :
BODY_SHAPE =
BODY_SHAPE = 2 :
HEAD_SHAPE = 1

CA S S

[R e

B

HOLDING = 1

BODY_SHAPE = 3 :
HOLDING = 1 :

L €1
: 41>

{1 -]
0>

: <0
B
HELS B
¢ €1

HE L -]
r €1>

r €1

<0>
€1
<0

0>
<1
<i>»

<1>
0>

1
0>

R §)
HEAD_SHAPE = 2 : <0»
HEAD_SHAPE = 3 :
HL S B
HOLDING = 3 : <0>»

HEAD_SHAPE = 1

HAEAD_SHAPE = 2 :
HEAD_SHAPE = 3 :

HOLDING = 2 ;

HEAD_SHAPE = 1

HEAD_SHAPE = 2 :
HEAD_SHAPE = 3 :

IS_SMILING = 2 ;
HOLDING = 1
BODY_SHAPE =
HAS_TIE =
HAS_TIE =
BODY_SHAPE =
HAS_TIE =
HAS_TIE =
BODY_SHAPE =
HAS_TIE =

Ll 70 O R

: €0
1 €1

: €l>
1 R0

HEAD_SHAPE = 1

HEAD_SHAPE = 2 :

: <0»>
1>
<1

HILS &
<0
<0>

: A0
<1

Comparison of Decision Tree-Based Learning Algorithms

HAS_TIE = 2 : <i>
HOLDING = 2 :
HEAD_SHAFE = 1 :

BODY_SHAFE = 1 : <D>
BODY _SHAPE = 2 : <i>
BODY_SHAPE = 3 : <0>

HEAD_SHAPE = 2 : <0»

HEAD_SHAPE = 3 : <0
HOLDING = 3

HAS_TIE = 1 :

BODY_SHAPE = 2 : <1>
BODY_SHAPE = 3 : <0>

HAS_TIE = 2 : <O»
JACKET COLOR = 4 :
BODY_SHAPE = 1 :
HAS_TIE = 1 : <O>»
HAS_TIE = 2 :
HOLDING = 1 : <i>»
HOLDING = 3 :

HEAD_SHAPE = 1 : <1>
HEAD_SHAFE = 2 : <0>
HEAD_SHAPE = 3 ; <1>

HOLDING = 3 : <0>»
BODY_SHAFE = 2 : .
HEAD_SHAPE = 1 :
HOLDING = { : <0»
HOLDING = 2 ;

IS_SHILING = 1 : <O>

IS SMILING = 2 : <1>

HOLDING = 3 :
HAS_TIE = 1 :
IS_SMILING
IS_SMILING
HAS_TIE = 2 :
IE_SMILING
IS_SMILING
HEAD_SHAPE = 2 :
HAS_TIE = | : <1>
HAS_TIE = 2 :
IS_SMILING = 1 : <1>
IS_SMILIEG = 2 : <0>
HEAD_SHAPE = 3 : <i»
BODY_SHAPE = 3 :
HOLDING = 1 ; <O>
HOLDING = 2 ; <0>
HOLDING = 3 :
IS_SMILING = 1 : <1>
IS_SMILING = 2 ; <D>

[

e =

5.2.8 TDIDT on test set 1

DESCRIPTION OF THE TREE:

i+ Tres found by tdidt
trained on first monks's
training set

868 nodes
52 leaves
T6.69444 accuracy on tast set

<03

H 4 &

1>
<>

124 axamples (full training set)

JACKET_COLOR = 1 : <1»
JACKET _COLDR = 2 :
HOLDING = 1
HEAD_SHAPE = 1 :
BODY_SHAPE = 1 ; <1>
BODY_SHAPE = 2 : <D>
BODY_SHAPE = 3 ; <0Q>
HEAD_SHAFE = 2 :
IS_SMILING = 1 : <i>
IS_SMILING = 2 ; <0>
HEAD_SHAPE = 3 :
HAS_TIE = 1 : <1>
HAS_TIE = 2 : <0>
HOLDING = 2 :
BODY_SHAPE = 1 : <0>
BODY_SHAPE = 2 : <1>
BODY_SHAPE = 3 : <0>
HOLDING = 3 ;
IS_SMILING = 1 :
HEAD_SHAFE = 1 :

BODY_SHAPE = 1 : <1>
BODY_SHAPE = 2 : <0>
BODY_SHAPE = 3 : <0>

HEAD_SHAPE = 2 : <i>»
HEAD_SHAPE = 3 :
BODY _SHAPE = 1

IS_SMILING = 2 :
BODY_SHAPE = 1 : <0>
BODY_SHAPE = 2 : <0>
BODY_SHAPE = 3 :

HAS_TIE = 1 : <03
HAS_TIE = 2 : <12
JACEET _COLOR = 3 :
HAS_TIE = 1 :

HOLDING = 1 :

[5_SMILING = 1 :
BODY_SHAPE = 1 :
HEAD_SHAPE = 1

HEAD_SHAFPE = 2 :

BODY _SHAFE = 2 :
HEAD_SHAPE = 1
HEAD_SHAPE = 2

IS_SMILING = 2 : <Q>
HOLDING = 2 :

IS_SMILING = | : <O>

IS_SMILING = 2 :

: £0>
BODY_SHAPE = 3 : <1>»

I $ &]
0¥

1 <02
T €1

HEAD_SHAFE = 1 : <1>
HEAD_SHAPE = 2 : <0»

HOLDING = 3 : <0>
HAS_TIE= 2 :
IS_SMILING = 1 :
HOLDING = 1 :

HEAD_SHAPE = 1 : <1>
HEAD_SHAPE = 2 : <0

HOLDING = 2 :

HEAD_SHAPE = 1 : <Q>
HEAD_SHAPE = 2 : <1»
HEAD_SHAPE = 3 : «i>

HOLDING = 3 : <i>
IS_SMILING = 32 :
HOLDING = 1 :
BODY_SHAFE = 2 :

HEAD_SHAFE = 2 : <1>»

HEAD_SHAPE = 3
BODY_SHAPE = 3 :

HEAD_SHAPE = 2 :
HEAD_SHAPE = 3 :

T A0

<0>
<1

30

HOLDING = 2 : <0>
HOLDING = 3 :
HEAD_SHAPE = 1 : <0>
HEAD_SHAFE = 2 : <0>
HEAD_SHAPE = 3 : <1»
JACEET_COLOR = 4 :
HEAD_SHAPE = 1 :
BODY_SHAPE = 1| : <i>
BODY_SHAPE = 2 : <0>
BODY_SHAPE = 3 : <>
HEAD_SHAPE = 2 :
BODY_SHAFE = 1 : <0>
BODY_SHAPE = 2 | <1>
BODY _SHAPE = 3 : <0>
HEAD_SHAPE = 3
BODY_SHAPE = 2 : <0>

BODY_SHAPE = 3 : <1>{1 t 111 1 -> 1}

5.2.9 ID5R-HAT on test set 2

DESCRIPTION OF THE TREE:

Typical tree found by idSr=-hat
trained on second
monks's training set

115 axamples used out of 500
{random from full training set)
; 131 nodas

: A2 laavas

; B5.T74074 accaracy on tast sat

HOLDING = 1 :
HAS_TIE = 1 :
JACKET_COLOR = 1 : <O»...
JACKET_COLDR = 2 :
HEAD_SHAPE = 1 : <0>...
HEAD_SHAPE = 2 : «1>, ..

HEAD_SHAPE = 3 : <0>...
JACEET.COLOR = 3 :
BODY_SHAPE = 1 : <0>...

BODY_SHAPE = 2
IS_SMILING = 1 : «<0>,..
IS_SNILING = 2 : <i>. ..

BODY_SHAPE = 3 : <0>...

JACKET_COLOR = 4 ; <0>,..

HAS_TIE = 2 :

BODY_SHAPE = 1 :
IS_SMILING = 1 : <0>...
IS_SMILING = 2 : <1>...

BODY_SHAPE = 2 :
IS_SHILING = 1 :

JACKET_COLOR = 1 : <0>...
JACKET _COLOR = 2 : <1>. ..
JACEET_COLOR = 4 ; <1>...

IS_SMILING = 2 : <0>...
BODY_SHAPE = 3 :
JACEET _COLOR = 2 : <0>
JACKET _COLOR = 1
IS_SKILING = { ; <Q>,..

W. Van de Welde

IS_SMILING = 2 : <i>...

JACKET_COLOR = 3 :
HEAD_SHAPE = 1 :

IS_SMILING = 1 : <03
IS_SMILING = 2 : <13
HEAD_SHAPE = 2 : <1>...
HEAD_SHAPE = 3 : <1>...
JACKET_COLOR = 4 : <0>...
HOLDING = 2 :
HEAD_SHAPE = 1 :
HAS_TIE = 1 :

I5_SMILING = 1 : <>, ..

IS_SHMILING = 2 :
BODY_SHAPE = 1 : <0>...
BODY_SHAPE = 2 : €1>. ..

HAS_TIE = 2 :

JACKET_COLOR = 1§ :
IS_SNILING = 1 : <0>. .,
IS_SNILING = 2 : <1>...

JACKET_COLOR = 2 : <1>...

JACKET_COLOR = 3 :
IS_SHILING = 1 : <1>...
IS_SHILING = 2 : <0». ..

JACKET _COLOR = 4 :
BODY_SHAPE = 1 : <1>,..
BODY_SHAPE = 3 : <>, .,

HEAD_SHAPE = 2 :
JACEET_COLOR = 1 :
IS_SHMILING = 1 : <03...
IS_SMILING = 2 @ <1>...
JACKET_COLOR = 2 :

BODY_SHAPE = 1 : <i>...

BODY_SHAPE = 2 : <0»,..

BODY_SHAPE = 3 : <0>...
JACKET_COLOR = 3 :

HAS_TIE = 1 :

IS_SMILING = 1 : <1>,,,
IS_SWILING = 3 : <0>...
HAS_TIE = 2 : <0>,.,
JACKET_COLOR = 4 : «<O>, ..
HEAD_SHAPE = 3 :

JACKET_COLOR = 1 :
BODY_SHAPE = 1 : <Q>. ..
BODY_SHAPE = 2 : €1>. ..
BODY_SHAPE = 3 : <1>...

JACKET _COLOR = 2 :
BODY_SHAPE = 1 : <1>..,
BODY_SHAFE = 2 :

[S_SMILING = 1 : €1>...
IS_SMILING = 2 : <03, ..
BODY_SHAPE = 3 : <0>...
JACKET COLOR = 3 : <O>...
JACKET_COLOR = 4 : <€1>...
HOLDING = 3 :
IS_SMILING = 1 :

HEAD_SHAPE = 1
HAS_TIE = 1
HAS_TIE = 2

HEAD_SHAPE = 2
BODY_SHAPE = 1 :

JACKET_COLOR = 1 : <0>. ..
JACKET _COLOR = 2 : <1>...
JACKET_COLOR = 3 : <1i>...
JACKET_COLOR = 4 : <0%. ..
BODY_SHAFE w 2 : <1>...
BODY_SHAPE = 3 : €13, ..

HEAD_SHAPE = 3 :

JACKET_COLOR = 1 : <0>...

0>, ..
1>, ..

Comparison of Decision Tree-Based Learning Algorithms

JACEET_COLOE = 2 : <€1>...
JACEET_COLOR = 3 :
HAS.TIE = 1 : <i>...
HAS_TIE = 2 : <0>...
IS_SMILING = 2 :
HEAD_SHAPE = 1 :
BODY_SHAPE = 1 : <1>, .,
BODY_SHAPE = 2
HAS_TIE = 1 :
JACEET_COLOR = 1 : <0>
JACEET _COLOR = 3 : <1>
JACKEET_COLOR = 4 ; <1>
HAS_TIE = 2 :
JACKET_COLDR = 1 : <1>
JACKET_COLOR = 3 : <03
JACKET _COLOR = 4 : <0>
BODY_SHAPE = 3 : <1>...
HEAD_SHAPE = 2 :
JACEET_COLOR = 1 :
HAS_TIE = 1 :
BODY_SHAPE = 1 : <0>
BODY_SHAPE = 2 : <1»
HAS_TIE = 2 : <1>...
JACKET_COLOR = 2 : <0>...
JACKET_COLOR = 3 : <0>...
JACKET_COLOR = 4 : <0>...
HEAD_SHAPE = 3 :
JACKET_COLOR = 1 : <1»...
JACKET.COLOR = 2 :
AAS_TIE = 1 :
BODY_SHAPE = 1 : <1>
BODY.SHAPE = 3 : <0>
HAS_TIE = 2 : <0>, ..
JACKET_COLOR = 4 : <0>...

52 W. Van de Welde
5.3 Classification diagrams

(a) Result of IDSR on test set 1, Accuracy: 83.1%
(b) Result of IDL on test set 1, Accuracy: 100.0%

2 = * " £] L] L] L L L L] - {:[D Ed #* *® £] L L] D L E *® —_¥"" rou ren
@ | oW | | L E D oo oW w D I:[® | o= ; rou rou
| [=] | » [=] e Tl 1] e o
* & L - * * n u ram
| # o | @ L # | # - i oo rou
E] o) L] # | # T aat rou
L L - k] o * - L a L L] ? T T
| ® || # | # | @ [| # || [P ey
| # | # | & | @ | &% @ |8 &8s] = # k@@ | ® | we]a 's'_ g 94
2 e (@ J|®|®|s]|w e =]|= 7] = | x| # | @]| == I 1u 1mu
| ow ® | *® * | @ - i oLt su
L ® | £ ® | T ach aqE |
x| » | =] #]| = | = || alfml[a]l |« [[@ o [l [[] = P rou act |
T wlwf{w]f e =] AR - IE S rou act]
» | - [#] .| ® * » | # * - y e e
e 3 * | # B [a sau aes
@ | # | & @ L] L L I [: w | ® | | R | E ® | 2| » T T Bl
- - - w w L L] - - L ® D U #* L E " # #* # -® *® L [ey aey
in bad y head
ammiling ahaps thapa
award | “r:.‘:.;“ | sallaon —|
red | yellow | grees | blwe | eed | ﬂﬁ:’i“.’-‘ﬂ;::il | blae | ewd | yellow | grees blua
Baralie
:fll1r|l|r|l|r|l|r1l|rlalr!'llrl-lrlil'rlllrlllb‘lﬂi
* L ® a*] * * * a* E E £ a * o * - - k] - L] - L] ¥ ram o |
® | & | & [@ | | @ W W L o | o | R | R oW o | e L T raw [
= L] L] E E T iqu (1
R " » | = e agn i
* | » | » | = e e eu
.| » | w " o ast o
L | oW - - “-r_ réw qu
L o | o I [qu F:
- - E L] E - | .] L] E] - E o a* o - - E L] L] ¥ fqm 19w
#* £ a* a* £] o |, | L] £ & E] * * *® - a* * & * E] L o ‘-:_L ige Bga
w | | * » | » it o i
| = | | -_l‘ st squ
L ® | L] T [wat
L] £ k. L * L T [st
LN R LA] LN ¥ T set
s » w| .] g e act
w @ | w || m| o] @] |w|w]ow|w]w| w|w]|w|®]|w|n]n|n|x]| x| s act ast
- |]] * »* 3 - a* * - E - * * » » E - * - - - - k] T wet met
In Body head
wmiling ihape 1haps

Comparison of Decision Tree-Based Learning Algorithms 53
(a) Result of IDSR-HAT on test set 1, Accuracy: 90.3%
(b) Result of TDIDT-based method on test set 1, Accuracy: 75.7%
@ e |wwiwfjulalae|aleOO)e|z]|e|lele]le]=]g]» [w|w]|a] ¥ — o
g ool afalalalelmofz|=]=slo=]s[s|/e][»]» Frar o e
| W - - E L] T T rou
| # E] | ® . -
| » a|m w| . S vk rn
| # | ow #® | = T aet [T
| * | = % | m||= u,,._ e =
x| » | = I | L rau s
ele|2|ele|e|e|e|w|wlgOle|s|sle|s|as|a[s][s]+]=]= s R
2| |a|e]e]e]e ==L | 2 | @ 2|2 |®|®| %= . . i
£ £ ; ; [] - L] - - £ ¥ BEL 2qu
"EYIEIIE ® | » » | = T‘l{ # A Bkl i
| # HBEE AIRDEEID I e ras aet
| » wle| o e IR #l = o T .
z | = 2| = @ | @ l_.-“ T ey
| # #| # | * [i e
AEFEEDRRF RN # : as
sla OOl e]e2]2la| s OOl =]a[s[e[s[s][ala]a]=]= En S s
amiling gl Febin]
Boidiag

|_ award | flag | balloon I

| ted | yellow | grees | biwe | ved | :ul’l:‘-h“l-“::ﬂ | bise | red | ysliaw | gream | klus I

Ll ais Fitefalybulslals balels bplated sle e le einzls]
AR EREEEDI DD EEIREE ¥ reu [reu
= sl =l=[=]esigggal=[cl=]===10cc/cl=|*]|= - rou F rou
& ol owflalfa] e | » # # r e |
| & L_I # | wlajfalie] N & s age | tau
= [=] * | * | » * # [e S
|- m - - " - t 3 E L] ; aat reu
T]Tﬂ#| n| " B [=] * ¥ ron g
| =] w|w | e * B e ot
[elelwle]lglele[elelele[gle]es{e]z{2]e]2]g/e[=]=]=* S P e
Cil=1=] RN EEIEIEREIE = ===EIEIE n viu qu
(el ®|® [#] o ow|[n]e [] » ¥ act v
* M | # * * T i Pz
" HIEIRRERE [=] #ITI_I ® | = # || = # Ty e wEL
w [|» HINIYERE (7] AR | =|l=i] = e o P
|| m E]|E # | n|lm]e [#] EREEY » ") 13s ast
"R # | [[e][=]]] # | w # # - vau ast
BER= B R E= slalea{a[a[a[O]e|e|s]|a I MCam | act
e |gOglgl=l=]=l==gOlOolllial={=]={=[Ol=l0l=]»|*]= B i

amiliag

W. Van de Welde

54

(a) Result of ID5R on test set 2, Accuracy: 66.2%

Accuracy: T1.3%

(b) Result of IDL on test set 2,

v H
menlmm.mmﬁqﬂquww.mx“uhl
TMTMHMM;WQHMNmemmr
el Lol oo
[#]a]» * N » " L3 _M_I.
={«O0 (=[]~ Dﬁ—m'
oo oo = 2l |=|w
* N E . m_.._-M#a
%|» m_Mn.M alw|n M_
el :M__H_n s|s[x]=|=] |0
" * JEIEIRIEY “D_M__H_M_
M_#s-_ﬂ_ O |=]= a afa
nOEEREOOEREERCE
0} »] * M * e
[[0 [0+ [+ [0 D
w|n| ([N |=]|n]= |n]n
{100 [DOUef=l=} (O (=]>]> 0
m LY . ﬂﬁ_m__um :s-EM
s| 1] [=] I*] |*| [® afals]| |»
nooERENEERENCEREE
* s|s |0 (0 10
O #M_DD * ML UM
o] |2[x]» = 0
wlel[Jin]» .._-I._ sinlnjn|e 0
wla| [n]e _._#ﬂ__“_-.n-_uD
M » |= m al =

ballozn

Toldiag
fag

smwrd

blus

grees | wiue | red

_color

Jac
| rellaw

rod

ced | yeilow | grewn | wiue |

[

s | yloaly|=fypleleyl

a |y ds |y |=]yfalyialxlslrl

uuuuuuuu

11111

W W
-

tttttt

[T

Bead
thaps

|—:IIF1rL

pafe els o|e e es e|ea]e afs o]
el ol Lol
_mpr s| (=] [» 2| |»
« 100 [0l ==} A+«10
sle|x| [-] {|* =] #m_ m
100 (O] |+ O[O
s|o] [=] |« [*] [*] |* o] [»
=[] |» ®|w * | O
a| |= #_H__.ﬂ_li u-:ﬂL_H_M_
MNEIL * | % ____UM
* Ol _H_nMi giain
AEERERECcEEDOR
aln| |»] [»] [» m x(nfe] [«
wlnl[] (=] [=]|®]| [|* == |
x| |= -_D_ME -m_ﬂ_r
» . a| |=
#naﬂ—:ﬂm__u- 0 Mnﬁ 0
sls|=|[] =] «| O
Jolo]O {10100 [*] [*]=|*] |*
b 0] IR
==\ (O [*]|* 0 Mn- i
wln =] [=]={0]= (=100 10
® L] " * * - L]

Comparison of Decision Tree-Based Learning Algorithms

(a) Result of TDIDT on test set 2, Accuracy: 67.1%
(b) Result of IDSR-HAT on test set 2, Accuracy: 67.8%

| = # » [*] [#] - ¥ o
= " rlilii!- " =] * = #EII:I 1 - -
a L] ® L] L] £] D E W #* £ .';- oy
| ol=lo =] El = w o] » =] Cl= * - a sau
L b D m# Emﬂ ¥ aat
[=]=1 » . Ol =1==lg [Cl = T=1o (=] [_—
IE3 [=] »] = (] w =] = O 7 rou
1 * [« wl=]T [=IOl 1=l [Z i
w| - =lBE =] E R # =] [[2]]=[[=] » N | aqn
|__—|D L] ® ’,Tl Ii! IE' [i Iﬂ lu_ 1qu
gl =1 gl [glol=l«] O #[2e]lo][== N
BEIEE) =] # (=] Gl = -
x [«] I # " w | e [[P
E # # [wle]=]= Cifieli=]=]= 1=] (] N e
#l » * [RN B3] | K2] Ol = [[=] = [v aqu
g » O w [=] » [[=] * M wqu
al (=1 gl Elioi+lgl 3 Ol ==l === N
oL C=lal 1] Tel 1 = | L
award 1 1.::::-':“; | balloon 1
| ged | yellow | gpreen | wiwe | red | rtljl:-:lrl'd::-- | blue | ved | yellow | gresm bius
-!slllr]nlrlnirinIrl:ﬂlm:l-Irlnlr!ulvlnlrll§r1-|
|T| Ill £ lF *® Jlll E ¥ row
0 1 0 13 D S) I s
- = # # * 2] " # ™ ™ EN e
=] 3 =] Calfel alell=] = FRIE ® | # # = | san
" #] [=] - » # ER act
3 e) 32 0 2 A A S
. == =1 w] # [[el = e ¥ rou
w [mw] » # DR EIE =] O = | [B rou
wl w o] [=] " [[w]le{==]=[[=]l=]= ER e
cl=] T[] 1O =/« *] [=
*O . 1 [m][m] # (=] [e][# [a [l = [2]] = [[=] |7 uch
| #* DL’JD & |lm t]li! __'u_- aen
[w] » Off=] = w | = =[] ER [
| # - . ™ =] = w [[u]e]=]= [n | row
- » =] =] » =]l w|[w =IERE 2118 EN qu
e | o T K IO (] O N | EX Y EXERE =] = v
ol 1+ [oll=igl (al (=Tl Tl el [B
A=) ol » || = [T =[] = [=] s et

56 W. Van de Welde

5.4 Learning curves

IDSR on MONKS-1
80 T
70
60 1
50 < |D5R nodes
40 }

-+ |D5R leaves

30 fl # |D5R accuracy '

20 7

10 1

Q- ; + - - - " |
0 50 100 150 200 250 300 350 400 450 500

ID5R-HAT on MONKS-1

< NIL nodes
+ NIL leaves |

NIL accuracy

|
|
|

20
i0
t . 4 —t - - F 0
0 50 100 150 200 250 300 350 400 450 500

Comparison of Decision Tree-Based Learning Algorithms

a7

IDL on MONKS-1

| T IDL nodes
! |
| * |DL leaves

| ® IDL accuracy |
I l

IDL-HAT on MONKS-1

100
SDT i
; <90
?OT %ao
EO-_jr £70 *|— i
' 2 T NIL nodes |
501- E“ |
3 -» leave
40 AT 80 |+ NIL leaves
30 - 40 ‘ # NIL accuracy |
20 Ezﬂ
1:- F
19 10
0 & —— e+ 0

0 50 100 150 200 250 300 350 400 450 500

a8

W. Van de Welde

Chapter 6

Comparison of Inductive Learning
Programs

J. Kreuziger
R. Hamann
W. Wenzel

Institute for Real-Time Gomputer Control Systems & Robotics, Prof. Dr.-Ing. 17. Rembold and Prof. Dr.-
Ing. R. Dillmann, University of Karlsruhe, Faculty for Informatics, Postfach 6980, 7500 Karlsruhe 1, Germany,
E-Mail: kreuzig@ira.uka.de

60 J. Kreuziger, R. Hamann, and W. Wenzel

6.1 Introduction

At the Institute for Real-Time Computer Contrel Systems & Robaotics a library of inductive machine learning
algorithms is being developed. So far this library consists of:

» [D3 - classical decision tree learning algorithm

s ID5R - an incremental decision tree learning algorithm

e AQR - a version of the AQ-rule learning algorithms

+ ON2 - rule decision list learning algorithm

« COBWEB - conceptual clustering algorithm for attributes with symbolic values
» CLASSIT - conceptual clustering algorithm for attributes with numerical values

« CLASSWEB - algorithm that integrates COBWEB and CLASSIT. In the following only this algorithm is
referred to.

These algorithms have been implemented in a very homogeneous way, Le. they use the same description for
objects that have to be learned, they are called in a similar way and they are all available under one common
user interface.

The reason for building up this ML-library is, that our institute is interested in applying machine learning
techniques to roboties applications. As a first step we wanted to gain experiences with the classical inductive
learning methods in order to find out their capabilities and limitations.

All algorithms base on a common description of the objects to he learned, which consists of a set of attributes,
each defined by a name, a domain, a 'noisy-flag’ and some additional information for the conceptual clustering
algorithm. In addition a symbol which is used for unknown attribute values can be identified. Each algorithm
will then be called with a set of examples (classified for ID3, ID5R, AQR and CN2; unclassified for CLASSWEB).
As ID5R and CLASSWERB are incremental methods, a former received classifier can also be given as input. Each
algorithm results in a classifier which can be used for classifying further given objects. For a better understanding
of the results a textual representation of the classifier can be printed on the screen. For decision tree learning
algorithms and conceptual clustering also a graphical display is available. For the incremental methods it is
also possible to display a trace during classifier generation. The implementation work has been done on a SUN
Spare Station 1+ in SUN Lucid Common Lisp using CLX and CLUE for only the graphical interface ([HW91]).

6.2 Short description of the algorithms

In this section a very short description of the algorithms will be given. For further details please see the
corresponding literature. The representation of examples as attribute-value-pairs, where the set of attributes is
given and fixed, is common to all algorithms.

6.2.1 ID3

ID3 is the most popular representative of TDIDT-algorithms (Top Down Induction of Decision Trees). [t builds
up a decision tree based on the classified training examples ([Quig6]). The internal nodes of a decision tree

Comparison of Inductive Learning Programs Gl

represent a test based on one specific attribute. For each possible attribute value there is one subtree, which
is for itself a decision tree. The leaves of the tree represent class names. For classifying a new chject with a
built-up decision tree, the value of the attribute at the root of the tree will determine which subtree has to he
considered recursively. The recursion will end, if a leaf of the tree is reached. In that case the class name given
in that leaf represents the class in which the object has to be classified.

The idea for building up the decision tree is to iteratively find the attribute in the set of attributes of the ohjects
which gives the 'best’ partition of the set of training examples. 'Best’ is defined in terms of the information
gain given by a partition according to the specific attribute.

The basic algorithm has already been extended by Quinlan ([Qui86]) to handle noisy attributes and unknown
attribute values. In the implemented algorithm noise is handled by applying chi-square test for stochastic
independence to the noisy attribute with respect to the class distribution. Unknown attribute values have to
be handled during building of the decision tree and during classification. For building up the decision tree
unknown attribute values are taken into account in the calculation of the information gain.

The algorithm as being implemented also uses windowing over the training set, i.e. a subset of the training
set is chosen at random and the decision tree is built up by uvsing only these examples. After that all other
examples of the training set are classified using this DT. If some of the examples are incorrectly classified, a
selection of these will be added to the window and the procedure will start again. Due to the complexity of the
given training sets, a lot of iterative steps had to be performed.

6.2.2 IDSR

The ID5R. algorithm ([Utg89]) has been developed by P.E. Utgoff as a kind of TDIDT-algorithm which is able
to work incrementally, but results finally, i.e. after all training examples, in the same decision tree as ID3.
"Incremental’ means that the examples can be given one after another. A very easy solution for the problem of
successively given examples would be to generate an ID3 decision tree from scratch with all examples given zo
far. In contrast to that approach, ID3R always uses the decision tree developed so far for integrating the new
example. For that reason the data structure of a node in an IDSR tree has been enlarged by the information
necessary to calculate the information gain function of the attributes,

"If during insertion of the new example the situation arises that the current test attribute is not the one with
the highest information gain, the tree has to be restructured. This is done by investigating all subtrees of the
current node by using the new attribute as the test attribute. In a second step the test attribute in the current
node is exchanged for the attribute in the subtrees.

In our implementation ID5R does not result in exactly the same tree as ID3, even if all examples are given.
First this is caused by the fact that ID5R does not generate NULL-classes, because leaves are only splitted
further, if it is really necessary. Second, if there are several attributes with the same information gain and one
of these attributes is already used as test attribute, then a restructuring of the tree will not be done. It would
be of course also possible to take the first attribute in the list as new test attribute and to restructure the tree

accordingly.

6.2.3 AQR

The AQR algorithm is an implementation of the AQ-family, which has been founded by R. Michalski in 1968.
AQR is a reconstruction of a straight-forward implementation of the basic AQ algorithm and has been described
in [CN89]. The algorithm results in one decision rule for each class. The condition of each rule is called a cover

62 J. Kreuziger, R. Hamann, and W. Wenzel

and represents a disjunction of so-called complexes. Each complex for itself is a conjunction of selectors and
each selector is a basic attribute test (has the attribute one of a set of values, etc.).

For classifying a new object, each rule is checked to see, whether the condition is completely satisfied, i.e. the
example is covered by the rule. If exactly one rule is satisfied, the corresponding class is the classification result.
If several rules are applicable, then the most common class of training examples covered by those rules is used
as result. If none of the rules can be applied, the class that appeared most often in the training set is used as
result.

The decision rules are sequentially built up for the different classes. Starting with an empty cover successively
a seed, i.e. a positive example which is not covered so far is being selected and a star is being generated, which
is a set of complexes that cover the seed but no negative examples. From these complexes the one which is the
hest one according to a user-defined criterion is being chosen and added to the cover as an extra disjunct. The
positive examples that are covered by that additional complex are then deleted from the list of examples. In
our implementation the best complex is the complex that maximizes the number of positive examples that are
covered.

6.2.4 CN2

This algorithm has been developed by P. Clark and T. Niblett ([CN89]). It shall combine the advantages of the
families of TD3- and AQ-algorithms. The classifier resulting from that algorithm is an ordered set of if-then-rules
(decision list). This means that the representation is very similar to AQ, i.e. if ‘complex’ then predict ‘class’,
but the rules have to be checked from top to bottom. If none of the rules applies to a new object, again the
class that appeared most often in the training set will be taken.

The idea of Clark and Niblett was to enable AQ-like algorithms to handle noisy data by also taking complexes
into account that do not fit the positive/negative border accurately. The method is based on the beam-search
method as being used in AQ. During each iteration the algorithm searches for a complex that covers a large
number of examples of one class and only few examples of other classes. The complexes are evaluated by an
evaluation function which determines their predictiveness and reliability. If a good complex has been found,
the examples that are covered, are deleted from the set of training examples. The search for a complex can be
seen as a general-to-specific search with some pruning. During each iteration a set of the best complexes found
so far is being remembered. These are specialized by adding a new conjunctive term or deleting a disjunctive
part of one of the selectors. CN2 evaluates all possible specializations of each complex, which may lead to an
enormous computational effort.

6.2.5 CLASSWEB

CLASSWEB is a combination of the algorithms COBWEB ([Fis87]) and CLASSIT ([GLF89]). These are
methods for conceptual clustering. In contrast to the four algorithms described so far, these use unclassified
examples as input and try to find a concept hierarchy for the examples where the similarity in one concept is
as high as possible and the similarity between different concepts is as low as possible. While COBWEEB only
handles nominal values and CLASSIT only numerical ones, our CLASSWEB algorithm is able to handle bath
types in an integrated way.

For building up a concept hierarchy CLASSWEB uses four different operators to integrate a new example into
the already existing concept hierarchy. These are: 1.) classifying the object into an existing class, 2.) creating
a new class, 3.) combining two classes into a single class and 4.) dividing a class into several classes. Applied
to internal concept nodes these different operators are scored according to category utility and the best one is

Comparison of Inductive Learning Programs 63

chosen.

We have also implemented the so-called cutoff in CLASSWEB. By that parameter the algorithm does not have
to classify each example down to a leaf, but also may decide to stop at some higher level in the hierarchy. Cutofl
is a measure whether an example and a concept class are similar enough to stop at that concept node. If cutoff
is set to zero, the algorithm behaves exactly like the original COBWEB method.

To compare CLASSWEB with those inductive learning algorithms which use classified examples as input,
somehow the class information had to be added to the examples. This was done by handling the class of each
example as an additional attribute. During classification the prediction capabilities of CLASSWED are used,
to determine a class for the unclassified example.

6.3 Results

The following tables compare the performance of the different algorithms on the three problem sets. The time
data given correspond to compiled SUN Lucid Common Lisp 3.0 code on a SUN SPARC station 1+.

8.3.1 Training Time

This following table states the time required for each algorithm on each training set to build up a classifier.

Training Set 1

Algorithm Training Set 2 | Training Set J
1D3 J5.51 154.02 23.04
1D3 no wind. 4.98 T.51 3.74
ID5SR 99.20 407.09 78.91
AQR 4.17 9.45 4.00
CN?2 4.48 T4.04 10.25
CLASSWEB 0.10 1406.47 2013.78 1311.25
CLASSWEB 0.15 B67.47 a77.04 882.09
CLASSWEB 0.20 499,04 646.06 521.21

Time is given in seconds and was averaged over three test runs over each algorithm and each training set.
Remarka:

The ID3-algorithm as implemented uses a 20%-windowing as mentioned above. For the three given problems
this leads to a large number of necessary iterations. That's why there are also results given for ID3 without
windowing (ID3 no wind.).

The CN2-algorithm uses a user-defined threshold value for doing its noise test. This is set to 0.1.

The cutoff-parameter in CLASSWEB was set to 0.10, 0.15 resp. 0.20 in three different experiments.

64 J. Kreuziger, R. Hamann, and W. Wenzel
6.3.2 Classifier Results

First we will give some measurements such as number of nodes, leaves, rules and so on, which will reflect the
complexity of the resulting algorithms. Afterwards some of the resulting classifiers for the different algorithms

and training sets are given,

D3
[Measurement | Training Set 1 | Training Set 2 | Training Set 3
| # nodes 13 66 13
| # leaves 28 110 20
ID3 no windowing
Measurement | Training Set 1 | Training Set 2 | Training Set 3
nodes 32 4 14
leaves 62 110 31
IDSR
Measurement | Training Set 1 | Training Set 2 | Training Set 3
| # nodes 34 B4 14
| # leaves 52 99 28 |
AQR
Measurement | Training Set 1 Training Set 2 Training Set 3
Class 0 | Class 1 | Class 0 | Class | | Class) | Class 1
complexes 30 [40 43 16 20
selectors 109 14 147 187 47 67
CN2
Measurement | Training Set 1 | Training Set 2 | Training Set 3
rules 10 58 24
selectors 13 145 38

CLASSWEB (cut-off = 0.10)

Comparison of Inductive Learning Programs

Measurement | Training Set 1 | Training Set 2 | Training Set 3
concepts 219 305 217
| # nodes 95 137 95
leaves 124 168 122
CLASSWEB (cut-off = 0.15)
Measurement | Training Set 1 | Iraining Set 2 | Training Set 3 |
concepts a7 58 B8
nodes 21 23 26
leaves 36 35 42
CLASSWEB (cut-off = 0.20)
Measurement | Lraining Set 1 | Lraining Set 2 | Training Set 3
concepts 21 26 20
nodes T 10 11
leaves 14 16 18

Training Set 1

ID3

JACKET-COLOR

BODY-SHAFE

1

HEAD-SHAPE

65

11

20

3o
2

HEAD-SHAPE
10

2
3

(=1

HEAD-SHAPE
1
BODY-SHAPE

J. Kreuziger, R. Hamann, and W, Wenzel

k& JACKET-COLOR = 2 & HOLDING =1 & HEAD-SHAPE

HOLDING = 1 & BODY-SHAPE = 2 & HEAD-SHAPE = 1
& JACKET-COLOR = 4 |

& HOLDING = 2 & HEAD-SHAPE = 1 k& JACKET-COLOR

1 & BODY-SHAPE = 2 |
4 & HEAD-SHAPE = 1 & BODY-SHAPE = 2 |

HEAD=-SHAPFE = 1
HEAD=-SHAFE = 1

!
!

&k JACKET-COLOR = 2 &k HEAD-SHAPE = 1 |

BODY-SHAPE = 3 & JACKET-COLOR = 3 &

HEAD-SHAPE = 1

t JACKET-COLOR = 3

IS-SMILING
& HEAD-SHAPE

1 k& BODY-SHAPE = 3 |

BODY-SHAPE = 1

BODY-SHAPE = 1 & JACKET-COLOR = 2
& JACKET-COLOR = 3
& HEAD-SHAPE = 2 & JACKET-COLOR =

BODY-SHAPE = 1

HOLDING = 2 & BODY=-SHAPE = 1

HEAD=-SHAPE = 2

-1
HEAD-SHAPE = 2 & JACKET-COLOR = 3
JACKET-COLOR = 3 & HEAD-SHAPE = 2

4 & HEAD-SHAPE = 2 |
BODY-SHAPE = 3 & HEAD-SHAPE = 2

& BODY-SHAPE = 3 k JACKET-COLOR = 2

HOLDING = 3 & BODY-SHAPE = 1
1 & HEAD-SHAPE = 3 |

4 & HOLDING = 1

k BODY-SHAFE = 2

&t IS-SMILING
& BODY-SHAPE
I

& JACKET-COLOR = 3 & BODY-SHAPE = 2 |

66
a
BODY-SHAPE
10
20
31
4
HEAD-SHAPE
1
BODY-SHAPE
11
2 0
4 0
2
BODY-5HAFPE
10
21
a0
3
BODY-SHAPE
1 NULL
20
31
AQR
BODY-SHAFE = 2
HAS-TIE = 1 &k
I5-SMILING = 1 & HEAD-SHAPE = 1
BODY-SHAPE = 2
JACKET-COLOR = 2 &k HEAD-SHAPE =
JACEET-COLOR =
HOLDING = 3 k BODY-SHAPE = 2 &
HOLDING = 1 & BODY-SHAFE = 3 &
BODY=-SHAFE = 3
HOLDING = 3 &k
HAS-TIE = 2 & TIS-SHILING = 2 &
JACKET-COLOR = 4 & HEAD-SHAPE =
HOLDING = 1 & HEAD-SHAPE = 2 &
HOLDING = 2 & IS-SMILING =1 &
HEAD-SHAPE = 2 & HOLDING = 2 &
I5-SMILING = 1 k& BODY-SHAFE = 1
HAS-TIE = 2 k IS-SMILING = 2 &k
HOLDING = 3 & BODY-SHAPE = 1 &
HOLDING = 2 & BODY-SHAPE = 3 &k
BODY=-SHAPE = 3 & HOLDING = 3 &
BODY-SHAPE = 3 & JACKET-COLOR =
IS-SMILING = 2 &k HOLDING = 1 &
IS-SMILING = 2 & HEAD-SHAPE = 2
HAS-TIE = 2 & HEAD-SHAPE = 3 &
JACKET-COLOR = 2 &k BODY-SHAPE =
HEAD-SHAPE = 3 & JACKET-COLOR =
HOLDING = 2 & JACKET-COLOR = 4
HEAD-SHAPE = 3
HOLDING = 3 &

HOLDING = 3 &
=mm> CLASS '0°

BODY-SHAPE = 1
JACKET-COLOR =
IS-SMILING = 1

IS-SMILING = 2 & BODY-SHAPE = 2 &k JACKET-COLOR
BODY-SHAPE = 2 & HEAD-SHAPE = 3 & JACKET-COLOR

(PL'0'] = 1/2)

k HEAD-SHAPE = 1
1 |

& BODY-SHAPE = 2 & HEAD-SHAPE = 2

|

1

1
1

|
I
4 |

|

Comparison of Inductive Learning Programs

BODY-SHAPE = 2 & HEAD-SHAPE = 2 |

HAS-TIE = 1 & BODY-SHAPE = 3 & HEAD-SHAPE = 3 |
HAS-TIE = 2 & MHEAD-SHAPE = 3 & BODY-SHAPE = 3
=m=> CLASS '1' (P['1'] = 1/2)

DEFAULT ===> CLASS '0° (P['0'] = 1/2)

CN2

JACKET=-COLOR = 1 ===» CLASS '1’

HEAD-SHAPE = 2 & BODY-SHAPE = 3 ===> CLASS '0'
BODY-SHAPE = 1 & HEAD-SHAPE = 3 ===> CLASS 'O’
BODY-SHAPE = 1 & HEAD-SHAPE = 2 === CLASS '0°
BODY-SHAPE = 1 ===3> CLASS °1'

HEAD-SHAPE = 2 ==w> CLASS "1’

BODY=-SHAPE = 2 ===> CLASS *0'

HEAD-SHAPE = 3 ==m> CLASS '1°'

HAS-TIE = 2 ===> CLASS 07

HAS-TIE = 1 ===> CLASS "0’

DEFAULT ===> CLASS '0°

Accuracy
Algorithm Training Set 1 | Training Set 2 | Training Set 3
1D3 100.00 100.00 100.00
ID3 no w. 100.00 100.00 100.00
ID5SR 100.00 100.00 100.00
AQR 100.00 100.00 100.00
CN2 100.00 92.90 100.00
CLASSWEB 0.10 B7.10 69.23 86.39
CLASSWEB 0.15 74.19 69.23 B86.07
CLASSWEE 0.20 66.94 59.76 79.51
Algorithm Test Set 1 | Test Set 2 | Test Set 3
D3 9R.56 67.02 94.44
ID3 no w. 83.24 69.12 95.60
IDER. 79.77 69.23 05.28
AQR 95.88 79.63 B7.04
CN2 100.00 68.98 89,12
CLASSWEB 0.10 T1.76 §4.81 80,79
CLASSWEB 0.15 65.74 B1.57 85.42
CLASSWEB 0.20 62.96 57.18 75.23

6.4 Conclusion

The results of this chapter give a good survey about the possibilities and limitations of the different tested
inductive learning algorithms. Especially it is possible to compare the learning results not only with respect to
accuracy, but also with respect to training time and classifier complexity. Since we mainly used the algorithmsin
the form as they were described in journal articles, they do not necessarily represent the actual version available
to the authors of the original algorithms. Nevertheless the comparison clearly points out, which algorithms are
more useful for domains similar to the Monk’s problems.

Another interesting result is the strong impact of parameters on the learning result. Windowing in IDJ influences
classifier complexity, accuracy and training time. In CLASSWEB they are determined very strongly by the
cut-off parameter, which varies only between 0.1 and 0.2 in our experiments, but results in a factor of 3 in
training time and a factor of 10 in classifier complexity.

It also has to be mentioned that some important capabilities of the algorithms have not been tested and compared
by using the given learning problems. These are for example the handling of noise in specific attributes, of costs
for determining attribute values and of unknown attribute values in [D3 and ID5R. The incremental nature
of IDSR. was not really needed in these test cases because all examples were given in advance. The ability to
handle unknown attribute values in AQR, and CN2 was not used either.

Acknowledgement

This research work was performed at the Institute for Real-Time Computer Control Systems & Robotics, Prof.
Dr.-Ing. U. Rembold and Prof. Dr.-Ing. R. Dillmann, Faculty for Informatics, Univessity of Karlsruhe, 7500
Karlsruhe 1, Germany. The work is funded by the "Sonderforschungshereich Kiinstliche Intelligenz” of the
Deutsche Forschungsgemeinschaft.

Bibliography

[CN89] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261-283, 1980.

[Fis87] D.H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2:139-
172, 1987.

[GLF&9] J.H. Geﬁnazi, P. Langley, and D.H. Fisher. Models of incremental concept formation. Artificial
Intelligence, 40:11-61, 1989,

[AW91] R. Hamann and W, Wenzel. Implementation of inductive learning algorithms. Studienarbeit, Institute
for Real-Time Computer Control Systems & Robotics, University of Karlsruhe, 1991, (In German).

[Qui86] J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81-108, 1986,
[Utgl9] P.E. Utgoff. Incremental induction of decision trees. Machine Learning, 4:161-186, 1989,

68

Comparison of Inductive Learning Programs il

6.5 Classification diagrams

(a) Result of ID3 on test set No. 1, Accuracy: 97.7%
(b) Result of ID3 on test set No. 2, Accuracy: 67.4%

@ | @ || m| w|w]w|m]|w]e]w]| @] m]|m]|] ow] k]| # &k alele|w ¥ o s
| @ | @ L IO A O R O E R N N w | ow | o ® ow o
® | # LR] LR ED e o
= #* - - - L a g a
® | » * | »] [y e o
»® * w - L] o [LI a
® | # L LA ¥ e qu
| » * | » * | ® . tou s
(2[efa]m|w|e|e|[a|[w]|»ja|u s | w|a|e|l2|a|n|a ¥ squ w
= # | & | & W oW W ow w | o# | = # | & - L B » = | = -:- M | *au {
= | » * | * * | ® EB S s
L] ® | @ ® | # [£ 141 g
= - e | = - Wl o o #*® T o st
L #* # | = w|| = | # Eﬂg [Fou @t
L ® | # ® | # ¥ G =t
w & - L = * T rqu @et
| o | o | oA | A | o | oW | W | oW | @ @ | @ ® @ o om | om | | o# | o= | ¥ _::L_ se |
[FTeleafw|wlans{aalels|a[s[a[a]o|w[a[a[a]a[s]|= (& - -
in body headl
smiling shaps shaps
J
1 sward | “rl!:.l:l I balloon 1
| Taaketcalar
ved | yellow | grwen | blum | rod | yellew | greew | blue | sed | yellow | grees | blua]
Jrllfl’lr|ir1-|'rli|!|l1:r|:“|ﬁ;|!|.rl-|r|'l!|l|7|l|r‘!l]
E - *® Ill m lﬂ ¥ o1 o
#w| = cl | * OENE =] » N rau rau
* E * ™ =] MK * - ¥y rqu n
= B ==R R w =] = [[» #|#[a]w * ES o ron
o 73 N O 3 2 I O i A el I
[#] (] . ol » [oll+lcal O AR E [s ast a
* all e [a] = O [l # [[=] » O KD au .
|l » ™ Cyl=l =] =|l=li | L[| Cl o . I qu
| Call=] = cl = [[=] = w [[w] HEIENES # | ¥ an an
D :I‘ " * #® || # lll #* ’iE [:l T -::u_. mu
N o o] » ==l Ol el o« [[o] #[[#] [=] - ot -
[=l={=ll=]=[=]3 # [[m] * (] [aes sau
Y = [=] [w] » # # BERE [e a act
N " e [=]l=]={=]M Coffelfull =] = [= . ran ast
Wil owm (] D I R | | E ® | = * D T e <k
clcl . # || = ™ Iiir!'! - . . '
(] w] = clica[=] = [cl = (=] = [e] « |[=] ¥ e .
[| = !El | * E » * E I ae aq
L ks hady head
smiling nhupe shape

J. Kreuziger, R. Hamann, and W. Wenzel

70

No. 1, Accuracy: 32.4%

ID3 on test set No. 3, Accuracy: 94.7%

(a) Result of
(b) Result of IDJOW on test set

i
SRR R IR RERIE
_i -

ra
m:mﬁm“mm_mmi_mm?m_:

i
sl Lol =L bt Lo Lol L Lo L]
HEIEIE] s |10 wlele|n
BEILIE] == s(nis|s
wnls]n wluln|= alalals
wlulale wlnjee wiwln]s
aln|niw SEILIE (SRR LY
x(nn|n alnlnln w w|nln
O«{C0 wlnfnln afa|sln
O=00 *lnfn|= SRR
ARl |« [1L IEAE
wln|n|s |« winlel[]
w n|n]e AEIENE! wln|n|n
2 nin|e YRR alafals

s
il L]

e w]w]n]ninin|a|a]sininjn|ninin]s
Do o]n|e|n|n]n|nln]n|n|s]|n|nin|s|s
w|nlals wlnlnln AEiEE
wle|ele s|n|nfn wfnn|n
wlnln]n aln|s|s #(nn|e
LA B B LR RE N " ninin

: -]

blwe | red | yallow gresn | blue l

Teli=g
flag balloom

amard

Jaskeisaler
blas | red | veilsw | grees |

gress |

| weltaw |

rad

InIvI-Erln|r|=i

Ly) =] rle]cz>

| TR

|:a|-.|;r|n|rll|:r|-I!|H|:|"|

ik
SNSRI RS EEE IR ERIE

3
R R B

hlm_....-
r__ _ﬂ%__.,_.,r__y_ g
*(n #|n |W %
| | » [+ | »|»
sDM_MissiMM_n a|n
U0 a0 O]
[Mn_u_..n w|n
|0 =] [+10[+]* BREAC
| W W w | R]w R WN R R R
N ERE AR AR R AR R AR AR AL AR R AR R L
*|w |] =
* | ® ®|® | W
oo 'nni#m_r *|%
<« T [[Oo i
== “|e {10
mnALE a|n =|+|[0
alaln|w|n|n|alafnfn|n|e|e|n|e]n|sls
slnn|n{nfn|n|n|nn|n|n]n|n|n|n|n|
»| “|e s] w|n
"®|® % L E] L AR}
-Emu- ..”_H__._ ® O=
=|[] " +|[] " *|[]
ajn -_-M_ | n
| ® | = L LIE MK 3
A lwm || n|®]|a]s]|%]|%| % ®|®|%|%]6]|s
_..H»'ﬂﬂlﬂi.i#l‘l#.‘i*’

Tl

Comparison of Inductive Learning Programs

(a) Result of IDIOW on test set No. 2, Accuracy: 69.9%
(b) Result of ID3JOW on test set No. 3, Accuracy: 95.1%

PEE PR Hedsrenlvanddal s vireceleeeeeelss g
lelelelelele el L1 el Lol Lo
T+ =100 =1 1 O [+] e
NoEEE0oONEEGNE 13
m__umn_ a » E # a o | @ A EIEYEY s|s|[Ji= s|s|[]|=
® it .__m__u.- ® al[]» L u.r.“ i n| s (=2|[]= ala|as
w|n wln]e M * " * . li. rlelnlw w|n|n|s Blnnw
slaf] n]e)=]|[l= wwln]nle v NN wiw|nlw wnlwln LRI RS
» [s|nn]s nin-M HH 2EIEAE! e ninn i n|w
" 1 BE . * 1 IEIEE] mnln *inln|w
opEoEEENoNENDE iE
« 10 [O=[=]0 | OO0 [O) 1]
-.D_p_Mﬁ * * £k ain|[Q= slsln|n AEIRIE
* DE_H_,- * _H:H_ O m..._mwm_l,. x| sla|[s IR
Ben wln]e[n]n * wn]n # mn.m“..n_u wlalnln s{=|00 alala]a
_Lﬂ o = | _m— #-_M __.n".l-_. wlw|wlw == ([J[] ® % %%
[M % " w|[0w]=]» -l#u_m Mlh_ wle|n|n a|ue|n an]n|w
(x] [=] [=] [=] [#]| [» M_ | | IE IR wlnfnn wlnlnle
" ITREREE * muau_u i Iluﬂ w|w
ML) O _H_mm_ A1 *|n
||| []l #m.-_.la_ I EIE)] * o - (O =)= [CHCH (]| fn|n|n]n]|a]n|s
H * = = * - m_M RO e o oo fn)m]a|n]n|=
s[=]|] = s|s] |[= (v |[] mMH wlw|n|n LRI * nlnw
w|n w| [=]+][0 |= [« | £ AEIEIE] 1L EIE] ALY
N HD # O 1o Mﬂ #fa|ala L ILAEIE] ILIEAE]
s [| 1] AEIEIE] a|n|n|s A EEE

J. Kreuziger, R. Hamann, and W. Wenzel

(a) Result of ID5R on test set No. 1, Accuracy: 78.9%
(b) Result of IDSR on test set No. 2, Accuracy: 69.0%

T2

WS | N i1l = d=nygdals s 2 gl 2 8 v o
R R e B B
o] s]e =] =]~ <]+ <] E SHEEE g
|n *|w - a|n ...r.t..r“._ Ol = & * M "
(i % BE 1k 31 s{o|00 (0% [2]* oo i»
(O] [=] [=] |=[O0=] [*lele]e]f*|* MM +|0fs| [*]| [* *
oo _H__Hq oo mmu 2] |= #M_U# | || =] |=
s([] o] [«|[Of+]= %] [%]|* HIE win| |=fs]o] =] [*] [*| [*] [*]
=[] M | [= [« |+|O : i a#DM_n“M__H_- sln]nln|{e] |
LR AR R AR AR R A R A R AR AR A LR A .—_n L] ® ’D*‘M .'D'.E'
wlalalafalals|s|a|s|e|e|e]e]e]n]e]e 14 w| =] [s] [|s] |»
w|w al 4] *|n IMM Mn_u_m_u_uM_ i@
s *|# b * | 11 A » G_“_#MD oo 1o
oo M#DMME:G 5] a0 =[n]s]| | w| [s]
o+ 5] =1 | (00 o+ kJEY L SEECEONDENEEEE
oof=[+ “|e «|«|00 mm_.mwm._.. el win| [« [s{s]s] [s] [+]+]*] [*
i =] 5= || ElR s{o|00 1O0 [=|+] O s« |[]
slanlefe|ala|n|a]s|a]n|n|n|nfn|n|e Mn s |+ [*[*]+|O=]C0=] |*]|*[+]Of=
LR RER AR AR R AR AR AR AR AR AR AR AR AR A L hl--.. * L w M' =® * * +*
w|e Y alw Lnul..; «J« (O [Of+]+|+| |O [+]*|O0 (O
®|w ®|e m s |n IR «|«| |0 o |0
wle[=]efa]s] [+]O0= 1 d | | s+ 100 [e[e]*]O0 [*[*]*]*]= s[4
=[] -_H_M_MM o 419 4 » #| |» | |=
.=] [+{O0] [+] [*] [+]|O mm.... s«]0f = [=]*] |O0%] [*{*] (O[]
w| s| [«|00+] [+] [*] |*|O B w|e | [=[=100 (=] [«]«|00 |=
alnfwfwlnfela|afa]alalale|n]nle|luwfe “.... N E o (0
als|w|nfu|els|nfa|s|n|e|n|n|n|n|n|n iR " a

Comparisen of Inductive Learning Programs
(a) Result of [D3R on test set No. 3, Accuracy: 95.1%

94.4%

(b) Result of AQR on test set No. 1, Accuracy

"ww

rew

(TTY

g%

e

(L LY

ast

ast

oat
@

Bead
shapa

qu

(L1

(1

By

(L1

bady
shape

i

w | ®

] -

E

*
*

LI

| # | ® | @ | @

LI

il | | |

*

==

=

ol B | | |]

@ | & | & @

] |

all (|

hallaaw

Eelding
flag

aword

| blam | red | wellow | gresm | biue |

Tacket.colen
Blue | red | yeiow | gresm
Basaiz

|

| yeliow | green

red

4:In‘rlulrI-Irl-]rlnlrlilrrttr'-Ir]llillll'IlI!l-l

SETE R RS RSk
; .wm.
B B
el el Lol L
| % AR L3R
Y L1k} »|®
wn #|® ALY
eln % #(%
L] =[] *|w
= % | e
w n O nyn]s|s]s|s|[[]n]n]=]=
wlo|Ow]s|s|[N0>|s]n]=]=]|s]|s|=]|=]=
«[0] i[E B
O+ oo *[+
n CREY »|n
elw | #|n
oo Lok o B
O = e |
TEIEIEIEIE AL o e]n
wlnln|n|n|s|n|n|n|n|]e n|nnnis]e
O = »|= als
LA LY |
+|[] | %
1k [wlw
1k 1K L
| 1k %
e wnln nle[Jelefe|[Jle|aje]a|n]|xn
w|w ([N w)e|n|{[dfnlejn|ala|ala|n|n]|=

J. Kreuziger, R. Hamann, and W. Wenzel

(a) Result of AQR on test set No. 2, Accuracy: 79.6%
(b) Result of AQR on test set No. 3, Accuracy: 87.0%

T4

sereselrreensleeneal i SR PR SR FIFR R
.m-.m- = l3 afls sla =
R R B B R SR B B e e
LoD e Lo B Tt 0 o
_H_l ® D ® __,- _Mll_ |.|“_.|.H
» O iam.n iamm er
O« (0 |» | |a mh [Jls]=|= AN (0=
.“. - _H_ﬂ_W_ 2lnfn]n]s m““ EnD# « 000 s(si[]=
winfn]n]n]e * ww. alnln|a alala]a aln(s|w
* A = * % O MM wwwn|n = (00 alninln
SRR ROERE |0 (O] IR wln|n|e e BN ENE
= |0 a - o wlnin|e «|[O=|0 wlwlaln
wiwfa]u] fu] [+] s =] |» |.|“_M
N EEREDRERNEONE SIE
ALY - * * " 5) iHinnn =0 = Ols|=]=
EEEEOROREERCE A EMEEECNNEOEONNODOL
Mine D alun]a nnmm_mh wlmin|n O« = ala|nln
. o (+10 0 k] O E N e Ol =)= wlnlnle
= (=] (=|[0 |00 #um_u_- HH IEIEIE] s[> w([Jn]=
4 ™ wn = 11 aln|a]n alJ»|» AEIEIE
«|0 (O |O= DM_-,: = ..ul_..
J BT a0 11 :
=10 [+ 1000 =] [*l=|*] |* | Ol o« |0N0C s {* =[O0 =] *|*+|0
oo | |0 .mwlr Ofs ||« {CHCHO =0 |Cle|=]=l=|=|(]
=100 |00 (=00 [Of=]=]®|= 0 _._.“.. AL IEE L AEYEAE] slnin|n|n
O |» o 1o mm *n|w|n [« |00 aln|n(n]e
M o (= m = Ol o |4 IEIEAE | w|n e[»|n
ol .||ul.. 2% |n|= AMEIE wnln|e

Comparison of Inductive Learning Programs

(a) Result of CN2 on test set No. 1, Accuracy: 100.0%
(b) Result of CN2 on test set No. 2, Accuracy: 69.0%

@ | w | ||| @ | w | ow | e]w| = MIERERE ® . o# | @ | ® ¥ ren
e | olmw | 2|2l o|n|#|2| @ |« |2|[e|e|[m]e]e]|=w» I [o
PRI ® | » | = 1 I BT
= | # w | | # " agu
@ | # w | o= w | = _r'_ ael
a L * " #* * T‘ et
L ® | W ® | = T (1]
[& | o= L L l; rau
| @ | @ | @ | #jw|m|e|#| 8|0]e|=|l=2 = 'SERERE RE BN BE NN 1 » rqu
- | # # | @ | o | L N I - oo o | o | oW | W @ | @ [wqu
® *® o L] L #*# T act
#* | & #® | 0w ® | W T a8
® | = @ | W | | ¥ fau
Ed -] - £] E] T reu
z| » MNE N i Il
z | = ME NE e qu
2 m | w|®|w|w|e|0|n|n]|=|n|a|s || m|m| w2 | br et
2 | @ | % | m|w| e e|e|la]|e|2|e|00| | == W& n et
H-li body
smiling whape
I award 1 “I'lli';_-i | Balloan !
| red | yellow | green | Bluwa]| red | Tna:iﬁu..n'i:‘- | mine | red | yellow | _geee= | bius I
1rllIvInJ!1nlr|-i!Ll|r|:“|-n:J.-lrlnlrl-jrllLrl-ls'lli
- # (=] # ¥ rou
- | " (=] =] = [= fod
- L] L at *® L] #* ¥ ELTY
[| I] * NEIDED "D | |=] * i i
[=] . * # * | # | * # ™ I e
O . O AEIDE » a|w|[a] 2] » - Lo
= [«1+] O | 3 (=] [f2 Z
|| 0| | | Ol = =Nt | O+ | =l | LT
wlow w|l#] cal === [=] = =] =IEIRE . v san
glgl [=[[e] [els] [#]] |=]= [#] fl=] e |
ol [ollal alal [a] 1= al=] ol 1= L,
glel 1l [=] 10 [+l (O] [= [*] [= [oe
w ol = | = rﬂJ fil #J L] @ L] # D #* E ; | ton
w el = # # ol ===l Ol = cl= o K 1e
#| = w el el =]el=lsy w [lw RIENRE = ¥ 1qu
(][] # w o] = [#] @- .| ® [»]) = | v
[«] * « [« =0=] |l IO =[=T=TOlc * # Ty pr
o 1 3 1 3 D N oo 1= | e
in bady
amiling ihape

J. Kreuziger, R. Hamann, and W. Wenzel

76

(a) Result of CN2 on test set No. 3, Accuracy: 89.1%
(b) Result of CLASSWEB 0.10 on test set No. 1, Accuracy: 71.8%

ge

11111

4

has.

shape

!
aen
FEw

Fl
B

(1=

body
shapa

SaE

»

e
d

25
almlalnlasl=l=]= »|a .

w® | #® | @ | & | .

fDiDl

L

ol N | 0 o |
*®

ol 10 0 o |
* 0O+ 1010

w
[

===

-

| 2 ||l &

®

ool 0 |

L

|

L fom | s

® i) =

#® (@ | & | @@

™

#IDP#
w

-
*

#

#QD#

#®

L

#|® | ® | &

ballsam

Beldieg
fag

aword

red | weilow | geees | blus |

ar
green | wiuwe |

0
|

has.cis

Jaa
Lolydwelyln|rlal]y]sl]y|s|rls]y]l

| rellew

HEd

blus |

| yellow | gress |

-Irl!JrlllrFIIPI-—|

wu
qu

LTy

@et

wat

aet

haad
thape

(1]

qu

g
an

st

Tom

®at

bady
rhaps

]|

SHBHE

SHRHEE

-

smiling

Ly

T TR Ha LT TERR
s iE iE
=[] B s|[afs]=s] [2]+]=|=
O« ifi *[+] |0+
= m wln| o] a] [n]=
O [wlnxfa]xi[]
wlnla|im =000 w]n]n]n]n]|n]n]e]|e=
wlwfn|n|[Jw]m|n|n|n{n]n|n|nf{e]e|e|n
iE oo ik
o od | &= [00
=[] m #_H_M_ % | als
| Mmm_u_u NEAE | =
nE] =[] *|w
1k} » M o= wlwleln|[]e
OO0 = =[O0 s | O w %% |%]s]|s]|»
eln|nls|n|n|n|n|n|{n|{n|n{n|[n|s]{a|n]|n
*|n M__-_u N E 1k
s [efenfealnfn]nfnfe]s
=[] * Muﬂl wlule] [w]e
= |n M”as wla]a]a]n]|n]|=
| wlnlel [s]a]s] [s]s]s
wlula]s ‘Wa: tlufeln]n|n|e
wln OO0 s O L0 m]|m]m]n]n]n]e
____i.-#ﬁu.._u_:sl.m e w|nen]n

Comparison of Inductive Learning Programs

(a) Result of CLASSWEB 0.10 on test set No. 2, Accuracy: 64.3%
(b) Result of CLASSWEB 0.10 on test set No. 3, Accuracy: 80.8%

111111111111
B & 88 o @ Pow U owow o

rrrrrrrrrrrrrrrrrrrrrrrr

na {
[1
i au
o
ou
ng
au
4
i
)
aa
qu
qu
]
ach
o
6t
sat
Fat
hand
hap i
u
u
u
u
u
L
q
q
5
5
q
q
&
al
&
=
&
Bead
hap

53 : 3t
rm_mm_::mmﬁmmmlmmx TLL.:;:_::T:.“:
oLl e L L L L o ol o 0 0
O« [=] {«] [=] [*] [*] [*] [* BIRIE [+] [» 4] *
O[O (4o (o | ool [0 §IE
m_mi wl | _MM » m ﬂ... d | - ala|alafa] |e|e|[]e (|l
« |« |0 |00 (0 = |0 =]+ ,m.lnn =00 = mEY L ww|n|w
mm- % * mm w| |= M_ wm_h n-npm aln|n|s ﬂD.ﬂD-ﬂ_m_.
m * a als - IR E WH “ w|n|n Of=|0 =
EMDMD#DQ * M_m_a1# 41 _._n_-_-_m _-#..#M_ ____s____aM_
oo G oE |3 [EoFoxeEC]gsas
GOEONONCACENOND 111 CTF
0o |0 |0d (o | [+|0 [0 A1
o=l T I=] [¢] [#] |*] [*] [* Eik MR in ik s[H=|n
« [+ (0O (O | [+[O>R]0]0] w“m.,.,mn < l=s] | 10000 | [O]*]*
m_up = * m_m_ * * M_ un.mm..h wn|n|a MR wlnle|n
oBOEOEDECEEERECED 1 FLERFE0Es [oogo
O] O =] Of » -ﬁ_mm: & .m|._ _Wa_m__- ____H_s_mv ___.H______Wﬁn_ﬂ__-
[= - = o] * " *] =
JJoo+0o (o o+ | W4 BELE [+]
o g O 10 MM ala|a]s al= NEARE
MDM_H_M__H_a * M__H_..__ # ml_. wlelw|o|[J0f=]s{=|={0000=|n]|=|=|=|0O
o 1o o o mwu wlw w0 m o T =] n]n]|n]n
M iDm__H_MDs * .W._ua * mu_.n wlnln]n LI IEIRIEIE
a g o 10 MH alw|aln E_U_H_DD (=00 =]=
|] [+1 [=10 (O] [=]O=]0] 41 el nan wlnln|n
11 4 wfuw|els « = |00 IR

No. 2, Accuracy: 61.6%

J. Kreuziger, R. Hamann, and W, Wenzel
5 on test set No. 1, Accuracy: 65.7%

(a) Result of CLASSWEB 0.1
(b) Result of CLASSWEB 0.15 on test set

78

t b P RRR|lrrEErEO|lYEOEOROY OBl SEEEEIEEEEEE]IEEEEEIE
pele el ale o]z e|e e afz e|e o B S P B B
Pl B el bl el Lol
0= || [=lz]z]2]x]=|=]|.h..|n. rtpm_ﬁ s| [s] [=]=]=| [*] [+
Afo IANCECONEE 13 INCEGECEREEEDRE
_H__H_[ﬂl.. Ols| [ele]e]s]x]n]» | -_unm'p_— («] [*]*]» mm
O IEENCECONRE FIBIE NEOECECEREDERE
-__H_M_M alele]| [2]x]e]2]a]x|= HE M.—#:-...__- w| [e]uln] [2]n]=]|»
= O Qele]ele]nlnin BN s || [«] [#|00=]=[=] |+|O0 |»

s nfn|[Qs]s]|snfninfnis|s|s|n|n|s|s Ml_.. ’m- * _H___H_w _UD____.-H
slnla|a 0 s]w]n|n|s]s]|s|s]|n|s|s]|= IMIr o 1o o 10
Ol » oo B als J | - [sfnfx] =] |=[e]o]a]s] |#[s]=]=]"]
R Ol = s« 1+ A1 4 | |= " « Of={ 0 a |
Cl» [»] + | ool 11 s+ 1=+ M P 10| [*] =] [*[*]+] [=[*]*]*]*

s [=]+]+]+ = wlw|[» m...u.lm..m..m“m a] (=] |[= _-MD « [0 (O
O= _H__UM wfln] [n]w hammm_h wfnin|n]s|a]s|n]n]n]n]n]n]|n]n]n]n]=
a|n(a]s sfls|sn|n|sfn|n]au]als]n H wiwlw| [O [=|=]=]=|* =0 |0
el [Q=e|0Is|n]sln|n|n]n|s]s]a|n]s 11 O :“M_i -D-m lﬁ_m_#_m_
w n|w|e|[Jafe|n|s 2|nla|ela|n|a|als I..u.l.., * M m E * o i= a (o
Of+] [+l w0 x| [=]sele]n]=]+ il | e o] [als]s]| |+|O[s]*[=] |*|O[x]%[+]
r..!nMM sl 5| CIEE]s il o (o ilE
_H__H—H M m__H_n afafa]n]n]n]n o | m an _-_..I._#_-.M #_:I._”M_-M
= a Ol = ﬂ:ﬂ.tri# ml.w.]r s| |0 O 10
s 0[=] [+l mRgoooooonn B (] [s[s]+] [+|D=100*] |*[D[=]=[>]
® % sl [elefa]elsls]|s ElI M a| e O 1O
b At It Il Bl B A A N 1 A AT A R A AL < | 1 _MJ MM_.D el x| [0 [

79

No. 1, Accuracy: 63.0%

Comparison of Inductive Learning Programs

(a) Result of CLASSWEB 0.15 on test set No. 3, Accuracy: 85.4%

(b) Result of CLASSWEB 0.20 on test set

feeefroofe ez 2fs o] a|e s o H P B B B B R
bl Lol el el Lol
[+] [+]=] . [+ BIFIERER OEEECHED Oo
i|ERGONENNCEEO0NoNNDOE

e w]w I IR f| - N E] M _H_DMM =[]
Of =100 » Ol =100 = == i ML: e B O=[=] [«] [«]=]=|00
aln|w|w]a wn|n|w TIEIE mm_h 0= = Dﬂ ([
N EIEIE] s|s|0)= s|s|[]» ml_r x|n] w O] [=]*[x]x]*|O
m:#nm_ alals|n MEIEIE 41 s e OO = (0= OO0 | e {CR === 0
(Wi w BRI E LIEIERE] Iu_,lr o o oo oo oo e e e
. IERGE iE i
o [5 : SIENEE go | Bl [[[+[D
MEIEIES e[w|= w| [%|= .ml. = 0= M =|[]
w|n|aln wln]n|w wln|n|n .u_.._.,m_n_.u._.. = O« s m_u_n_
aln|u]w ALY wiw|n|n mm_mm_mm Of= _M_ OOl * oo
wln|n|n OO = sle|[]= :mh “|n O = %] al=|[]
wln|n]n ala|als MEIEIE] J1 | |0+ D (OO = f 0= (OO0 | OO = | OOf = |
= (=[] (=[] aatam_ |.m wniw]| m|o] |0e]n|n|n|e|xe-
O . A1 |0 <] 00+] [+ oo
wfafaln * 1L " w|n M.” O = M_ O 1k} [*]*]|=
wlw e w00 %)== {0000 === 0] mh = M_ * ninE NE M#_H_
wnlw|n([Jala|s|s|n|[]a|s|s|s|s|s[] o] 9] - % ﬂuutnﬁm slnfsfe]=|[]
s n|n|n ln|n|n SIEIEIE] uMm Ol M_ »|=] |+ s w| [
4u#nas¢iDDn:“tnpm MM | alajaja | w|s]n]s]s]|n]n]s|n
(a|a|n wle|s|e slelele] [Jl wln|[Jlxl=|0=(0=|0s|0]s|s|s|+|«|00
4 P P _M_*ﬂun n_-_-M_ ||u_|.... i wufnlnfn|[a([Jn|s]s]|=|s|ss|s]|s

No. 3, Accuracy: 75.2%

J. Kreuziger, R. Hamann, and W. Wenzel

of CLASSWEB 0.20 on test set No. 2, Accuracy: 37.2%

(b) Result of CLASSWEB 0.20 on test set

(a) Result

80

EEEERIEEEERIIEREEE] L iieiiElErErEbR|EYEOEROEGE
R R faleofe o|e i]e g|e afe o]z 23 5] 3
el el e el DLl Ll
= * wfle|wlaln]n|a|a]n]nfnin [ln_iln. 4 _M_M * E
o [0 [od [0 | [Oog |o siE B
win[afn[s]n[s]s]sle]s]s[s]+]>]2]* I ILIEIE wlnfaln]s] |n|e]|n|n
o [oxd-| [+ o[- 41 9|4 [O0dd | |[ogdo | [0goo
o [s]l e fe] e [+ [=[=]2]2] = [=]2]2] [#] Aol [els|o]os] [sle]e]e[s] |#]s]s]=]*]
.m-. O _H_M_#_.tl_-:#.ruﬁm.-m: M_m wlelnfa O« |00 #s-_.__Ml..
i O (o o 10 O« |« o1 wln|ninfs] [w]|=|n|n]> __-.._.__a_M
o0 [F]+[=]0 11 g 0-lo0 | [+[o00
[=]=]= _H_iaau.ujnf_-_._i- o - m.ﬂ_ - m M *
o |0 (od [0 [oo g 13 ol .
MM_#QHW_#_M_.ts #lalw|sjulninin ..ml__. LR R R ivlum LARARA R
o 1o [0+ o [[d+] [0 |64l [<[oog [[odod | <[00
Ma...w_.l.i (Diwfelele] el Qnllxf=]> mh.m..m..ulq :taam -.w#rm s|sfsinf=] |
o g (1o (O <0 D -m.m s[A=lals] [=]00f*|* 0|0
o [o [od [d [(oo o A FEFFECE R
oo (e |3 FosoE oo [HasoE
oEREEGREEENEREE 113 g :
O[O O[O 11 A
EM_#..D_ || |= O] | mh elwlnin |00« {={=|= |00
oeaEENCEoE R IEIEBEERNEEEEEEEERORRRE
u.__UM__H_ O+« (O Ol |+ mmr s|n|an rpniM w nlnlnls
+]00] 10 |0 (O MM wlw|nla|s]s|[H0fw]» IEIEIE
O 10 D_IH_. 41 1 wlw|nln sln|n|nfn] |m|u|n|n
m _M .|..|n|r 0= N |- ala|n|n

Chapter 7

Documentation of Prism — an
Inductive Learning Algorithm

Stefan F. Keller

Al-Lab, Institute for Informatics, University of Zuerich, CH-8057 Zuerich

81

82 5. Keller
7.1 Short Description

PRISM was invented by Jadzia Cendrowska (1987). Based on Quinlan's induction algorithm 1D3, PRISM pays
attention to maximizing he information gain for a single value of an atribute in contrast to [D3 which tries to
minimize the average entropy for an attribute-value pair.

7.2 Introduction

The decision tree output of ID3 algorithm is one of its major weaknesses. Not only can it be incomprehensible
and difficult to manipulate, but its use in knowledge based systems frequently demands irrelevant information
to be supplied. We argue that the problem lies in the induction algorithm itself and can only be remedied
by radically altering the underlying strategy. The resulting algorithm, although based on [D3, uses a different
induction strategy to induce rules which are modular in the sense how they are constructed. This approach
avoids many of the problems associated with decision trees.

7.3 PRISM: Entropy versus Information Gain

The main cause of the problem described above is either that an attribute is highly relevant to only one
classification and irrelevant to the others, or that only one value of the attribute is relevant.

There can be shown that while in the construction process of a decision tree although e.g. the entropy of -
a distinct branch d1 has been reduced to 0, the entropy of the other branch has actually increased to some
higher entropy-measure. Attribute d would be chosen by [D3 because it minimizes the average entropy of the
training set, or alternatively, it maximizes the average amount of information contributed by an attribute to
the determination of any classifiaction.

In order to eliminate the use of irrelevant values of attributes and attributes which are irrelevant to a classifica-

tion, an improving algorithm needs to maximize the actual amount of information contributed by knowing the
VALUE of the attribute to the determination of a specific classification.

7.3.1 Maximizing the information gain

So, the task of an induction algorithm must be to find the attribute-value pair, ax, which contributes the most
information about a specified classification, dn, i.e. for which I(dn | ax) is maximum.

This can be done in the following way: Let S be the data set; first find the ax for which p(dn — ax) is
maximum. Lets call the choosen attribute c2 (=attribute c, value 2). Repeat now the process on a subset of 3
which contains only those instances which have value 2 for attribute c until there are all instances removed.

7.3.2 Trimming the tree

The remaining "branches” are not yet labelled, so the next step in the induction process is to identify the best
rule of the set of instances which are not examples of the first rule. This is done by removing from 5 all instances

Documentation of Prism — an Inductive Learning Algorithm 83

cuﬁtaining this rule and applying the algorithm to the remaining instances. If this is repeated until there are no
instances of class d1 left in S, the result is not a decision tree but a collection of branches. The whole process
can then be repeated for each classification in turn, starting with the complete training set, S, each time.

The final output is an unordered collection of modular rules, each rule being as general as possible, thus ensuring
that there are no redundant terms.

THe following assumptions have been made about the training set:

the classifications are mutually exclusive

there is no noise, i.e. each instance is complete and correct

e each instance can be classified uniquely
+ no instance is duplicated
s the values of the attributes are discrete

the training set is complete, i.e. all possible combinations of attribute-value pairs are represented

-

Given that the assumptions above hold, the algorithm produces a complete set of correct rules.

7.4 The Basic Algorithm

If the training set contains instances of more than one classification, then for each classification, dn, in turn:

Step 1:
calculate the probability of occurence, p(dn — ax), of the classification dn for each attribute-value pair ax,

Step 2: .
select the ax for which p(dn — ax) is a maximum and create a subset of the training set comprising all the
instances which contain the selected ax,

Step 3:
repeat Steps 1 and 2 for this subset until is contains only instances of class dn. The induced rule isa conjunction
of all the attribute-value pairs used in creating the homogeneous subset.

Step 4:
remove all instances covered by this rule from the training set.

Step 5:
repeat Steps 1-4 until all instances of class dn, have been removed.

When the rules for one classification have been induced, the training set is restored to its initial state and the
algorithm is applied again to induce a set of rules covering the next classification. As the classifications are
considered separately, their order of presentation is immaterial. If all instances are of the same classification
then that classification is returned as the rule, and the algorithm terminates.

B4 5. Keller

7.5 The Use of Heuristics

Opting for generality [: [f there are two or more rules describing a classification, PRISM tries to induce the most
general rule first, Thus PRISM selects that attribute-value pair which has the highest frequency of occurence
_in the set of instances being considered.

Opting for generality II: When both the information gain offered by two or more attribute-value pairs is the
same and the numbers of instances referencing them is the same, PRISM selects the first.

7.6 General Considerations and a Comparison with ID3

A rule will not be induced by PRISM if there are no examples of it in the training set, but this applies to all
induction programs. Even human beings cannot be expected to induce rules from non-existent information.

The accuracy of rules induced from an incomplete training set depends on the size of that training set (as with
all induction algorithms) but is comparable to the accuracy of a decision tree induced by ID3 from the same
training set, despite the gross reduction in number and length of the rules.

The major difference between ID3 and PRISM is that PRISM concentrates on finding only relevant values of
attributes, while [D3 is concerned with finding the attribute which is most relevant overall, even though some
values of that attribute may be irrelevant. All other differences between the two algorithms stem form this: [D3
divides a training set into homogeneous subsets without reference to the class of this subset, whereas PRISM
must identify subsets of a specific class. This has the disadvantage of slightly incresed computational effort, but
the advantage of an output in the form of modular rules rather than a decision tree.

7.7 Implementation

Version: 0.9

Status: Experimental

Language: Common Lisp

Authors: Lindsey Spratt (spratt@hawk.cs.ukans.edu), Spring 1990,
modified by Stefan F. Keller (keller@ifi.unizh.ch), Summer 1991.

References

- Cendrowska, Jadzia (1987); PRISM: An algorithm for inducing modular rules, in: Int. Journal of Man-
Machine Studies, Vol. 26, Nr.1,2,4, Vol.27, Nr.2,3 4.

- Cendrowska, Jadzia (1988); PRISM: An algorithm for inducing modular rules, in: B.R.Gaines & J.H.Boose
(eds.), Knowledge Acquisition for Knowledge-Based Systems, Academic Press, 253-274.

Documentation of Prism - an Inductive Learning Algorithm

7.8 Results on Running PRISM on the MONK’s Test Sets

TEST PLATFORMS:
Mae: Macintosh Allegro Commen Lisp 2.0b2, Macintosh Ilei, dAMB memory
Sun: Franz Allegro Common Lisp 4.0.1, Sun spare,/320, 24MB memory

TEST SET 1:

No. of trainig-examples: 124

No. of test-examples: 432

No. of rules induced: 29

Covered test-examples: 86Mac run time: 80.14s, 85.10s, 80.43s, 81.10s, 80.05s
Sun run time: 23.30s, 22.80s, 23.50s, 23.12s, 23.08s

Average run time on Sun: 23.16s

TEST SET 2:

No. of trainig-examples: 169

No. of test-examples: 432

No. of rules induced: 73

Covered test-examples: 7T3Mac run time: (409.26s)

Sun run time: 121.50s, 122.50s, 120.75s, 122.18s, 121.00s
Average run time on Sun: 121.58s

TEST SET 3:

Na. of trainig-examples: 122

No. of test-examples: 432

No. of rules induced: 26

Covered test-examples: 90Mac run time: (59.63s)
Sun run time: 16.77s, 17.00s, 16.63s, 16.60s, 17.30s
Average run time on Sun: 16.86s

85

86

7.8.1

{RULE-1
(If
(THEN

(RULE-2
(1F
(THEN

5. Keller

Test Set 1 — Rules

{({jackeat_color 1}})
{class 1))

{(head_shape 3} (bedy_shape 3}))
(class 1}))

(RULE=-3
(IF ((helding L) (body_shape 2) (head_shaps 2}))
{THEN {class 1}})

(RULE~-4
(IF {(body.shape 1} (head_shape 1)})
(THEN (class 1}))

(RULE-E
{IF ((body_shape 2} (head_shape 2)})
(THEN {(class 1}})

(RULE-&
(IF ({head_shape 1} {jacket_color 4} (body_shape 3}}}
(THEN {class 0)))

(RULE-T
{IF {(jacket_color 2) (holding 27 (has_tis 2)))
{THEN (claes 0)))

(RULE-8
{IF {{jacket_color 3) {(has_tie 1) (holding 3)})
(THEN {(class 0)))

{RULE-9

{IF {{jacket_color 3) (helding 2} (head_shapae 1) (has_tie 2}))

(THEN (class 0))}

(RULE-10
(IF ((jacket_color 2) (head_shape 1) (body_shape 3)})
(THEN (class 0)))

(RULE-11
{IF ((jacket_color 4) (body_shape 1) (head_shaps 2)))
{THEN {class O))}}

(RULE-12
(IF ({jacket_color 3} (has_tie 1) (body_shapa 3)))
(THEN (class 0)}}}

(RULE-13

(IF ({jacket_color 3} (has_tie 1) (head_shaps 2} (body_shaps 1}))

(THEN (class 0}))
(RULE-14

(IF ({jacket_color 2) {is_smiling 2) (helding 3} (body_shapes 1))}

(THEN (class 0))) .
(RULE-15
(IF ((head_shape 1) (bedy_shape 2) (is_smiling 2)))
(THEN (cla=zs 0)})
(RULE-16

(IF ((jacket_color 3) (is_smiling 2) (head_shaps 2} (body_shape 311}

(THEN (class 0)))
(RULE-1T

(IF ((jacket_color 2) (is_smiling 2) (hesd_shaps 2) (body_shape 1))}

(THEE (clasa 0)))

(RULE=18
(IF ({jacket_color 4) (head_shape 1) (is_smiling 1))}
({THEE {(class 0)))

(RULE-1%
(IF ({jacket_color 2} {holding 2) (body_shape 3})})
(THEN (class 0}))

{RULE-20
(IF ({{jacket_coler 3} {(body_shape 2) (head_shape 1}})}
(THEN (class 0)))

(RULE-21
(IF {{jacket_color 2} (body_shape 2) {(head_shape 1}}}
(THER {class 0)))

(RULE-22

Decumentation of Prism — an Inductive Learning Algorithm

(IF ((jacket_celor 4) (is_smiling 1} (body_shape 2) (head_shapa 3)))
(THEN (class 0)}}

(RULE-23
(IF ((jacket_coler 3} (head_shape 3} (body_shaps 1))}
(THEN (class 0))}

(RULE-24
{IF ({jacket_coler 2} (head_shaps 3} (body_shape 1))}
(THEN (class Q)))

(RULE-285
(IF ((jmcket_color 3) (holding 1} (head_shape 3} (body_shaps 2)))
(THEN (class 0)))

(RULE-128
(IF (({jacket_color 4) (holding 3) (has_tie 1} (head_shaps 3}}}
(THEN {(claas 0}))

(RULE=-2T
(IF ((holding 3) (jacket.color 4) (is_smiling L) (body_shape 3) (head_shaps 2)})
({THEY (class 0)))

(RULE-28
(IF ((jackat_coler 3) (body_shaps 1} (haad_shaps 1))}
(THEN (class 0)))

{RULE-29
(IF ({jacket_coler 2} (is_smiling 2) (holding 3) (has_czie 1)3}
{THEN (class 0)))

7.8.2 Test Set 2 — Rules

(IF (({holding 1) {jacket_celor 1} {has_tie 1))}
(THEN {(class Q)})

(IF ((jacket_color 4) (body_shaps 1} (has_tie 1)))
(THEW (class Q)}}

(IF ((head_shape 1) (holding 1) (is_smiling 1))
(THEN {class Q)})

(IF {{jacket_color 4) (body_shapa 3) (is_smiling 2)}}
(THEN {class O)}))
(RULE=E
(1F ((jacket_coler 3) {is_smiling 2) (helding 2) (has_tia 2}}}
(THEN (class 0}})
(BULE-6
(IF ((has_tie 1) (head_shape 1) (is_smiling 1))})
{THEN (class 0)}})
{RULE-T
(IF ((holding 1) (head_shaps 1) (has_tia 1))}
(THEN (class 0}))
(RULE-8
(IF ({head_shape 2) (has_tis 2) (body_shaps 2) (is_smiling 2)})
{THEN {(class 0})})
{RULE-3
(IF ({jackat_color 1} (is_smiling 1)} (body_shape 1}))
{THEN (class 0})}
{RULE-10
({IF ((jacket_celor 3} (is_smiling 2} C(helding 3) (has_tie 2}})
(THEN {(class Q})}}
{RULE-11
(IF {((helding 1} (jacket_color 1) (is_smiling 1))}
(THEN {class Q)}}
{RULE-12
(IF (({is_smiling 2} (jackat_color 2) (body_shape 2}})
(THEN (class 0)})"

48 5. Keller

(RULE-13
(IF ({jacket_color 3) (has_tie 1) {body_shaps 1)

(THER (class 0}})

(RULE-14
(IF {{jacket_color 1} (head_shaps 1) (body_shape 1333
(THEN (class 0))})

(RULE-15
{IF ((head_shapa 2) (holding 2) (jacket_coler 411)

(THEN (class 0)})

(RULE-18
(IF {{jacket_coler 3) (head_shape 3} (body_shape 3} (has_tia 1}}}
(THEN (class 0)))

(RULE-LT
(IF ({head_shape 2} (holding 2} {(body_shaps 3) (jacket_coler)}
(THEN (class Q)}} :

(RULE-18
(IF (({holding 3) (is_smiling 2) (jacket_coler 4) (has_tie FAND]
(THEX (claas ©))})

(RULE=19
(IF ((jacket_celer 1) (is_smiling 1} (has_tie 1))}

(THEN (class 0))}}

(RULE-20
(IF ((jacket_color 3) (head_shape 2) (is_smiling 2} (helding 2)})
(THEN (class 0)))

{RULE-21
(IF {({jackat_color 3) {head_shape 2} {has_tis 2} (heolding 2)))
(THEN (class 0))) '

(RULE=22
(IF ({jackat_color 3) (head_shapa 3} {(body_shape 2) (has_tie 2) (holding 3)2)
({THEN {class 0)})

(RULE=23
(IF {{holding 1) (is_smiling 1} (has_tias 1)))

(THEN (class 0}})

(RULE-24
(IF ((holding 3} (is_smiling 2) (head_shape 2} {jacket_coler 21J)
(THEN {clasa Q}))

(RULE-25
(IF (({jacket_celer 1) (haad_shaps 1) (is_smiling 1))}

(THEN {class 0})})

(RULE-26 ;

(IF ({is_smiling 2) (holding 3} (bedy_shaps 3} (jacket_celor 3)))
(THEN {class Q)))

(RULE=-2T
(IF ((head_shapa 3) (body_shaps 3} {(jacket_color 2}})

(THEE {(class Q1))

({RULE-28
(IF ((body_shapa 1)} (jacket_coler 1) (has_tis 1}))

(THER {clasa 0}))}

(RULE-29
(IF {((jacket_celor 3} (head_shaps 2) (holding 2} (body_shapa 3))}
'(THEN (class 0)))

(RULE-30
(IF ((helding 1) (body_shapa 1) (is_smiling 1))}

{THEN {(class 0)})})

(RULE-31
(IF ((body_shape 2) (jacket_color 3) (has_tie 2} (is_smiling 2))}
(THEN (class 0)))

(RULE-32
(IF ((holding 3) (is_smiling 2) (jacket_color 2) (has_tie 2) (head_shapa 3}})
{THEN (class 0)})

{RULE-33
(IF ((body_shaps 2} (helding 3) (jacket_color 1) (head_shape 1)} (has_tis 1}})
{THEN (class 0)))

{RULE=-34 -
(1F {{jacket_color 3} (hslding 3) (head_shaps 2) (has_tis 2) (body_shape 2}})
(THEN (class 0)))

(RULE-235
(IF ({jacket_color 2} (is_smiling 1) (body_shaps 2}})

Documentation of Prism — an [nductive Learning Algorithm

(THET (class 1))}
(RULE=38
(IF ({jacket_coler 2} {body_shaps 1) {head_shaps 3} (is_smiling 1))}
(THEN (class 1))}
{RULE-37
(IF ({holding 3) {body_shape 3) (jacket_celor 1}))
(THEN (clasa 1)))
(RULE-38
(IF ((jacket_color 2) (body_shapa 1) (is_smiling 2) (has_tis 1)}}
(THEN (clasa 1))}
(RULE-39
(IF ({jacket_color 3} (is_smiling 1) (has_tis 2} (body_shaps 1}})
(THEF {class 1)))
(RULE-40
(IF {{body_shaps 2} {jacket_color 4) (is_smiling 1) (has_tie 2)})
(THEN (class 1}))
(RULE-41
(IF ((jacket_coler 3) (body.shaps 2) (head_shaps 1) (has_ris 2) (is_smiling 1))}
(THEN (class 1)})
(RULE-42
{IF {{body_shape 3} (jacket_coler 2) (helding 3) (head_shapa 1)))
(THEN (class 1))}
(RULE-43
(IF ((head_shape 2) (has_tie 1) (body_shape 3) (jacket_color 4)))
{THEN (class 1)}})
{RULE-44
{IF ((head_shape 2) {has_tie 1) (body_shape 3) {(holding 1) (is_smiling 21))
(THEN (class 1))}
{RULE-45
(IF {{holding 2) (jacket_coler 1} (is_smiling 2}})
(THEN {(class 1))}
(RULE-46
(IF ({jackst_color 3) (holding 1)} (has_tie 2} (body_shaps 1})}
{THEN (eclaas 1)))
(RULE-47
(IF ((holding 3} (has_tie 1) {body_shape 2} (jacket_color 3} (is_smiling 2)})
{THEN (class 11))
(RULE-48
{IF ((has_tis 2) (body_shaps 1} (jacket_coler 2) (helding 2)}}
(THEN {clasa 1})})
{RULE-4%9
(IF ((has_tie 2) (body_shape 1) (jackat_coler 2) (is_smiling 2) (holding 1)}}
{THEN (class 1}}}
{RULE-50
{IF ((hotding 3) (jacket_color 1) (is_smiling 2) (head_shape 31))
(THEN (class 1}))
{RULE-51
{IF ((jacket_color 3) (is_smiling 1) (head_shape 2} (holding 2} (has_tis 113}
(THEN (clasa 1)})
{RULE-52
(IF ({has_tie 2) (head_shapa 1) (jacket_coler 2} (helding 2)))
(THEN (class 1}))
(RULE-53
(IF ({body_shape 2} (jackst_color 4} (has_tis 1} (head_shaps 1}})
(THEN (class 1)))
{RULE-54
(IF ({has_tie 2} (head_shapa 1) {jacket_colar 4) (body_shaps 1))}
(THEN (class 1)))
(RULE-G5
(IF ({jackat_color 3) (holding 1) (has_tie 2} (is_smiling 1} (head_shape 3}}}
{THEN {(class 111}
(RULE=58
(IF ((holding 3) {jacket_color 2) (is_smiling 1) (head_shaps 2))}
(THER (clasa 1))}
(RULE-5T
{IF (({body_shape 2} (has_tis 1) (jacket_celer 3) (helding 3) (head_shape 1)}}
(THEN (class 1)})
(RULE-58

89

a0 5. Keller

(IF ({has_ties 2) (head_shape 1) (holding 3) (jacket_color 2)}}
(THEN (clasa 1))}
{RULE-5%
(IF ({body_shaps 2) (has_tie 1) (jacket_color 4) (is_smiling 2} (holding 2)})
(THEN (class 1)})
(RULE-60
(IF ({has_tis 2) {body_shape 3} (head_shape 1} (holding 3}})
(THEN (clasa 1}))
(RULE-41
(IF ({jacket_coler 3) (head_shaps 1} (has_tie 2) (body_shaps 3}
(is_smiling 1) (holding 2}1)
(THEN (class 1)1}
(RULE-62
(IF ((body_shups 2} {jacket_color 1) (is_smiling 2) (haa.tie 2}})
{THEN {class 1))}
{RULE-&3
(IF {(jacket_color 3) (holding 1) (has_tis 2} (body_shape 3) (is_smiling 2}})}
(THEN {(class 1}))
(RULE-84
{IF {({body_shape 2) (has_tie 1} (jacket_color 3} (is_smiling 1) (head_shape 1)))
(THEN {class 1))}
(RULE-65
(IF {(head_shaps 3) (jacket_color 4} (holding 2} (has_tis 2}))
(THEN {class 1))}
(RULE-68
(IF ((jacket_coler 1) (head_shape 2} (is_smiling 2) (has_tie 2)))
(THEN (class 1}})
(RULE-8T
(IF ((bedy_shape 2) (head_shaps 3) (is_smiling 1} (helding 211}
(THEN (class 1)))
(RULE-58
(IF {((body_shapa 2) (has_tie 1) (holding 3) (is_smiling 2) (jacket_coler 4)))
(THEN (class 1}))
(RULE-59
(IF ((jacket_celer 3) (holding 1) (has_tie 2) (is_smiling 1) (head_shape 21))
(THEN (class 1)))
{RULE-TO
(IF ((head_shape 3) (jacket_color 3} (has_tis 1) (helding 3}
(THEF (class 1)))
(RULE-T1
(IF ((hesd_shapa 3) (jacket_color 4) (holding 1) (has_tie 2}))
{THEN (class 1)))
(RULE-T2 .
(IF {(body_shaps 2) {(has_tie 1) (is_smiling 2) (fjacket_coler 3} (helding 1}))
(THEN {class 1))
(RULE-T3
(IF {{jacket_color 1} (holding 3} (head_shaps 2) (body.shape 2})}
(THEN (claass 1}))

7.8.3 Test Set 3 — Rules

(RULE-1
{IF (({bady_shapa 2) (jackat_coler 1)))
{THEN {(claas 1))}
(RULE-2
{IF ({jackat_color 2) (body_shapa 1)1)
(THEN (clasas 1)))
(RULE-3
(IF ({body_shaps 2} (jacket_color 2} (head_shaps 1}}}
(THEN (clasa 1)))
(RULE-4
(IF ({jacket_color 3} (helding 1) (body_shape 1))}

Documentation of Prism - an Inductive Learning Algorithm

(THEF {(class 1))}
{RULE-5
(IF {{body_shaps 1) {jacket_caler 1))}
{THEN {(class 1))}
{RULE-& i
(IF ({jacket_color 3) (body_shape L} (has_tias 21)}
(THEN (class 1)))
{RULE-T
(IF {({body_shaps 2) {jacket_color 2) (has_tis 2}))
(THEN (class 1))}
(RULE-8
(IF {({jacket_color 3) (holding 1)} (body_shaps 3)))
{THER (class 1))}
(RULE-9
(IF ({jacket_coler 3) (body_shaps 1) (ia_smiling 2}))
(THEN {class 1}})
(RULE=10
{IF (({jacket_color 3) (body_shaps 2) (is_smiling 2)))
(THER (class 1}})
(RULE-11
(IF ((jacket_color 3) (head_shape 2) (is_smiling 1}1)
{THEN (clasa 1))}
(RULE-12
{IF {(body_shapa 2} (head_shape 1) (has_tie 2) (ia_smiling L))}
(THEN (class 1)})
(RULE-13
(IF ((head_shape 3) (holding 1) (is_smiling 1) (body_shapa 3)})
(THEN (class 1)))
(RULE-14
(IF {({jacket_color 4) (has_tie 1))}
(THEN (class 0)))
(RULE-15
(IF ({jacket_color 4) (hasd_shaps 1))}
(THEN (class 0}))
(RULE-18
(IF ({body_shape 3) (is_smiling 2)))
{THEN (class 0)))
(RULE-1T
{IF {{jacket_color 4) (holding 3}1)
(THEN (class ©))}
(RULE=-18
{IF ({(bedy.shaps 3} (holding 3}))}
(THEN (class O)}}
{RAULE-19
(IF (({jacket_color 4) (body_shaps 1))}
(THEN (class 0)))
(RULE-20
{IF ((body_shape 3) (holding 2)))
(THEN (clams 0)))
{RULE-21
{IF ({facket_color 4) (body_shape 2}}}
(THEN (clasa 0}))
{RULE-22
(IF ((body_shaps 3) (head_shapas 1}))
(THEN (clasa 0)})
(RULE-23
(IF ((facket_coler 3) (is_smiling 1) (head_shaps 1) (body_shapa 1})}
(THEN (class 0)))
({RULE=-24
(IF ((jacket_coler 3) (helding 3} (head_shape 2} (body_shapa 2)})
{THEN {(class O)))
(RULE-25
(IF ((helding 2) (has_tis 1) (is_smiling 1) (body_shape 2) (head_shape 2)))
(THEN (class 0)))
(RULE-286
(IF {{jacket_color 3) (holding 2} (head_shaps 1}}}
(THEN (class ©})})

91

92 5. Keller

7.9 Classification diagrams

(a) Result of PRISM on test set No. 1, Accuracy: 86.3%
(b) Result of PRISM on test set No. 2, Accuracy: 72.7%

| % | @ | w|@m|fw || ®| =)@ |=|®| &= &|&® @ W R ® | ® | ® ¥ ou raw
& #* E " i L] - "] o * E E - - - - - - L] » E] *® L] (11 [T
| = w | o * | @ ER au 5. rau
@ | & " | o *® | # | n nam | o
e 7] | » R A [st | | o
* | » w | = * | = -] . st | | e
L E_] E] #® | @ U L]] [:J [_"‘_l: z [N | Y
E] R K » rau iy
W o | @ | o | | @ | @ | @ | o® | @ | @ | @ | ow | ow | @ | @ | & | #| x| ®|#|2 & = T m_u *au
L] L] L] L L - E * ® # & * L]] L] L] L] i * * ® £ * = T qu igu
» [« CIET TCICTET = » GGG« e [ETIET ER
A e =] » t[z]] | = [][] N acr gy
L _'_ | | T _; # | @ L7 ¥ T wat
® | #® " | o TIITN| # | # T ln_ rou g
| #» | w = EIEE [[=R o
#® | # E E L il || L'_J i_"'J #* | @] ¥ l:l N qu st
| @ [| oW | o | o | oW oW | @ W om | R | | R oW L ¥ L el
w = £ 3 » E - - * E o - - w L] . o £ £ * = *® # a & 'T aat aat
in body hewd
smiling dhape haps
| smerd | “r;i;_“ | ballsas |
| rad | wenaw | grees | biue | red I- pljl::hlj-“,:::n | bBlus | red | _yeilow | gresm | blaw]
|ylnIrl-lrllIrl-lrl-!ri:“J_h;I-Ir!l!!JlIrInlzl-la'J-J
F a * - [m " # ; i | reu
[=] =] i[#] Ta] = (=] . | #] » O [|- rau tou
L] L] L * L] - r LT [ETY
» (] [|HIEEX[=] #* w1 * | # # = BN rou
* - T E - t] ¥ nct
G EN Tel Tl = CI=ICN 1] [Tefel==Ic] o I
: #* D D M #* k] ¥ ¥ [T g
B * =] » e[l 0 * O O I [ree -
- # * BRI [#[xla] » w [fa] ¥ | i
gl (=] le] I= * (=] _1[=] .
I 2 2 = A B £ 3 1221 R I e
L] T w || #® D o || #* # |l @ [ach gm
| = = a lﬂ " # E ¥ (L agt
ClleT = * " # | » [*][O cl= *|m O = S - it
- # - w|wf[afafe]=]= B IL] . il *] ¥ ige sst
* E * E E - El u E] - * m] T _.-q; By
al =1 (=] 16Nl (gl (Gif«] |3 [l B
u = D * | || W] m = P set
ll:l'i:" ng -?-?- t‘-‘:-

93

Documentation of Prism — an Inductive Learning Algorithm

Result of PRISM on test set No. 3, Accuracy: 90.3%

ballosn

flug

Tackaicalor
grasn

yallow |

Talfiag

LT

| blum | ewd | yellaw | geeem | blue |

red | yellew | green | blme | ved |

rI-IyllIrI-Irltl

Aanatie
gl =@ ¢ la |z |s]

|:-1!I:fll|rl-llr[-Lrl-|

Tih
I‘I““nﬁ‘d—lll'n—.llll‘“h
T EEEEREY S F T ORISR

Fi
R R

-

&

L
Lol e e]]

& |
S AENENEY % |[]= wn|n]n]n]
Olef-f= =00 = NN
a|neln IR AEIEIE
" wlnln (Il e awf]-]
slels|s aln|s|s ww|n|w
IR wlw|n|n e
s |
el
aa|n|n winl]w alsnin|s|a
HESIEE EE an|w|nis
wlwfnn IR ala|n|n
e n|n ia_ﬂ_._mm_ a|= [7]
EIEIE 1 EIEIE * nfn|w
M1EIEIE wln|n|n wlnln|n
s
g .
wlw o n|nlw|n]n|n|s|a|n|n|n|n|n|el=
_Us-#a#H_atiimﬁﬂmplﬂ
IR _—s#sm #lw|e|wle]
= ma
www|% #fwleflee) (wpal-]{-]|=
=
alnln|n wlw|nlw-] [ajn|s|e]s
—
wln|nln e #fuln|als

94

5. Keller

Chapter 8

Cobweb and the MONK Problems

Yoram Reich!
Douglas Fisher!

T Engineering Design Research Center, Carnegie Mellon University, Pittsburgh PA 15213
£ Department of Computer Science, Vanderbilt University, Nashville, TN 37235

95

a8 Y. Reich, and D. Fisher
8.1 CoBwWEB: A brief overview

This chapter describes the results of applying a variant of the CoBWEB system (Fisher, 1987a] called ECOBWEB
(Reich, 1991; Reich and Fenves, 1991) to the MONK problems.}

CosweB differs significantly from other systems described in this report. Most notably, the system is unsu-
pervised: it does not assume that observations are preclassified (e.g., as positive or negative examples of some
concept). Rather, the objective of a clustering system such as CoBWEB is to discover ‘useful or ‘interesting’
categories in a set of observations. COBWEB is also incremental like ID4 (Schlimmer and Fisher, 1986), its de-
scendents, and AQ15 (Michalski, Mozetic, Hong, & Lavrac, 1978), which were described earlier. Observations
are not processed em masse, but are processed as they are presented to the system.

In particular, COBWEB is an incremental concept formation system that creates hierarchical classification trees
over a stream of observations. COBWEB operates on examples described by a list of attribute-value pairs. If
examples are classified a priori as in supervised systems, and included in an object’s description, then this
classification is simply treated as another attribute.?

Unsupervised clustering systems are guided by some ‘internal’ metric of quality - some categories must be pre-
ferred over others. In COBWEB, a classification is ‘good’ if an observation's features can be guessed with high
accuracy, given that it belongs to a specific (discovered) class. For example, the standard biological classes of
mammals, reptiles, birds, stc. are deemed good because knowing that an animal is a mammal (for example) al-
lows many high-confidence predictions about its features (e.g., has-hair, varm-tlooded, bears-living-young,
ete.). CoOBWEB makes use of a statistical function that partitions a set of examples into mutually-exclusive classes
C1,Ca,...,Cn- The function used by COBWER is category utility (Gluck & Corter, 1985):

Ti=1 P(Cy) T T, PlAi = Vi5lCh)? = T, T PAi = Wy)?

n

(8.1}

where Cy is a class, A4; = Vj; is a property-value pair, P(z) is the probability of z, and n is the number of
classes. The first term in the numerator measures the expected number of property-value pairs that can be
guessed correctly by using the classification. The second term measures the same quantity without using the
classes, Thus, the category utility measures the increase of property-value pairs that can be guessed above the
guess based on frequency alone. The measurement is normalized with respect to the number of classes.

When a new example is introduced, COBWEB tries to accommodate it into an existing hierarchy starting at the
root. The system performs one of the following operators:

1. expanding the root, if it does not have any sub-classes, by creating a new class and attaching the root
and the new example as its sub-classes;

2. adding the new example as a new sub-class of the root;
3. adding the new example to one of the sub-classes of the root;
4. merging the two best sub-classes and putting the new example into the merged sub-class; or

5. splitting the best sub-class and again considering all the alternatives.

1In that reference the name ECOBWEB is not used. A larger system that includes it, called BRIDGER, is discussed.

?(ine way of testing the abilities of an unsupervised system like COBWED s to see if o priori known classifications can be
‘rediscovered” in the data. This can be informative for purposes of benchmarking a clustering system, but as Fisher and Pazzani
{1991) point out, it is of limited utility.

Cobweb and the MONK Problems 97

If the example has been assimilated into an existing sub-class, the process recurses with this class as the top of
a new hierarchy, COBWEB again uses category utility to determine the next operatar to apply.

CoBWEB makes predictions using a mechanism similar to the one used for augmenting the hierarchy by new
examples but allowing only operator 3 to apply. CoBWEB sorts a partial example description down the hierarchy
to find the best host for the partial description. The best host is a leaf node (i.e., a training example) that is
used to complete the partial description. It is important to note at this point that the performance task used to
evaluate CoBWEB and other unsupervised systems (e.g., AUTOCLASS) is different from the performance task for
supervised systems. In the latter case, a set of learned rules is used to predict membership relative to an a prior
known set of classes. In clustering systems, prediction accuracy is measured relative to all descriptive attributes
~ how well does the classification scheme support prediction of any unknown attribute value? CoBWEB seeks
to improve classification along all attributes, not simply the single dimension of ‘class membership®. Moreover,
the system's strategies for classification and prediction bear interesting relationships to other systems. Notably,
CoBWEB sifts objects down trees like ID3 and related systems, but does so based on the object’s known values
along many attributes at each node in the tree. Thus, COBWEB is a polythetic classification system, not a
monothetic classification system like [D3, which classifies objects based on their value along a single attribute
at each decision node.

8.2 ECOBWEB

This section briefly reviews variants on some of COBWEB's mechanisms that are tested within Ecoswes.

8.2.1 Characteristics prediction

Initial versions of COBWEB sorted observations to a leaf of a classification tree. At this point predictions about
the new object’s missing values were made, by appealing to this ‘best matching’ leaf’s (i.e., a previously-seen
observation) attribute values. However, this strategy can ‘overfit’ the data, in much the same way that overfitting
occurs in supervised systems that maintain overly-specific (i.e., idiosyncratic) rules for class prediction. In the
characteristics prediction method ECOBWEB sorts a partial description in the same way as CoBWEBR does (i.e.,
using the category utility function to select the class that is the best host for the partial description). The
only difference between the current and CoBWEB’s operation is that if ECOBWEB encounters a characteristic®
property-value pair that is missing from the partial description, it assigns it to the partial description. If the
characteristic is the class attribute, the classification process can terminate. Similarly intented methods were
also investigated in Fisher (1988), though we will only experiment with ECOBWEB's strategy here.

8.2.2 Hierarchy correction mechanism

A characteristic of both supervised and unsupervised incremental learning systems is that the rules and/or
classification schemes that are developed depend on the order in which training data is encountered. This is best
demonstrated in experiments reported by Fisher et al (1991); they tested different orderings and characterized
some as ‘best-case’ orderings (i.e., those leading to ‘good’ classification schemes), and others as ‘worst-case’
orderings. A primary research objective is to mitigate ordering effects in incremental systems.

In EcCoBWEB, a hierarchy-correction scheme was designed to mitigate some of the order effects introduced in

3Characteristics are property values that satisfy: P{A; = V,;[C)) > threshold and P(Ci|A; = Vi;) > threshold, where threshold
is a pre-determined fixed value. ;

o8 Y. Reich, and D. Fisher

CoBWEB's incremental learning operation. The scheme follows three steps. First, properties that are deemed
critical by a domain expert are manually selected as ‘triggers’. Second, the hierarchy is traversed top-down.
. Each class with a characteristic property value that differs from a characteristic in one of the class’ ancestors, is
removed along with its subtree from the hierarchy. Third, the examples at the leaves of all the removed subtrees
are reclassified into the hierarchy. The process can iterate several times until no change of the hierarchy is

obtained.

A second mechanism was designed to generate an ordering of examples that will result in a better classification
hierarchy than the classification generated by random ordering of examples (e.g., Fisher et al, 1991). There
are several variants of this technigue. A simple and promising one used by ECOBWEB is created by following
the next three steps until the training example set is exhausted. First, calculate the property-value pairs that
are most frequent in the examples that were already learned. This can be easily done by locking at the root
of CoBWEB's classification hierarchy. Second, find an example, in the training examples that have not been
learned, that is most distant from the frequent description calculated in the first step. Third, use this example
as the next training example.

8.2.3 Information utlity function

ECOBWESB uses the usual category utility function in its operation. In addition, it allows the use of an alternate
measure of category quality function. In this function the term P(4; = Vi;|Cs)? in Equation 8.1 is replaced
by P(A; = Vi;|Ci)log P(A; = Vij|Ci). This measure was also developed by Gluck and Corter (1985), and has
similar, though not identical, biases in the classes that are favored.

8.3 Results

Upon examining the concepts in the MONK problem, it is clear that CoBWEB will encounter difficulties in
learning them. For example, consider the first concept:

(head shape = body shape) or (jacket_color = red)

involves relations between different attributes. Fisher (1987b) notes that prebabilistic classification trees con-
tain all the information for calculating correlation probabilities between attributes. This, however, requires
using multiple paths of the hierarchy for making ‘ideal’ predictions. CoBWER, however, makes predictions by
ascending in a single path to a leaf node and uses the classification of this leaf to make predictions. Variants of
CoBwEeB that descended multiple paths would undoubtedly perform better in this domain.

Secondly, it is important to note that CoBWEB and ECOBWEB are unsupervised systems. The intent of these
systems in tasks like data analysis is to discover classes that are interesting and important for purposes of
predicting all unknown attribute values; discovered categories can then be examined by human analysts to help
them search for the interesting aspects on a new domain. It is difficult to imagine a set of rules that imply
less natural and less informative categories from the standpoint of most data analysis tasks than those in the
MONK suite of problems. Thus, while these problems represent extreme cases that are useful for benchmarking
supervised systems, their utility for evaluating unsupervised systems is limited. Nonetheless, CoBwEB and its
descendents have been evaluated in terms of prediction accuracy. These problems can be used to highlight
some of the differences between supervised and unsupervised systems, and the limitations of using unsupervised
systems in cases where supervised systems are more appropriate (i.e., in those cases where a priori classes are

Cobweb and the MONK Problems 99

known and the focus of prediction).*

Table 8.1 provides the results of EcoBweR on the MONK's problems. Each of the entries was calculated
by running 10 experiments with random orderings of the training examples. The average and the standard
deviation of the runs are provided.

Table 8.1: Results of EcopwEgs

Prediction method #1 #2 #3

Ave. STD | Ave. STD | Ave. STD
leaf prediction 0.718 0.042 | 0.674 0.028 | 0.682 0.031
leaf prediction 0.633 0.020 | 0.686 0.026 | 0.681 0.038
with hierarchy correction
leaf prediction with 0.732 0.030 | 0.660 0.038 | 0.676 0.018

ordering (most distant)
characteristic prediction | 0.672 0.027 | 0.674 0.037 | 0.665 0.057
characteristic prediction | 0.674 0.036 | 0.651 0.053 | 0.683 0.033
with hierarchy correction
Leaf prediction 0.827 0077 [0.713 0.026 | 0.680 0.020
information utility i

Qverall, ECoBWEB’s performance on this database is inferior to the performance of the other programs. It
should be noted that neither the hierarchy correction scheme nor the ordering scheme are sufficient to mitigate
order effects; for example, in some of the runs performance as good as 98.8% accuracy were observed for problem
#1. No such performance levels were observed, on the other hand, for problems #2 or #3. Figure 8.1 shows one
of the classification trees generated from the training examples of the first problem. Similar trees are generated
for the other problems as well. The most characteristic attribute is the class. The rest are not so important
at the top level. This is probably one of the reasons for the inferior performance of CoBWEB. In particular,
the hierarchy shows that the characteristic prediction always stops at the first classification level since it finds
a characteristic value of the class attribute at that level.

Class description (# of EXa: 124)
Property Value P(vicl)

has_tie 2 0.548

is_amiling 1 0.524

class 1 0.500

body_shape 3 0.379

head_shape 1 0.363

helding 3 0.347

jacket_color 4 0.274
Clasa description (# of EXa: 63) Class description (# of EXs: 61)
Property Valus P(v[cl) P{cllwv) Property Value P(vlel) P(cllv)
class o 0.984 1.000 class 1 1.000 0.934
has_tia 2 0.57T1 0.529 is_smiling 1 0.5587 0.523
head_shape 1 0.508 0.T11 has_tie 2 0.535 0.471
iz_smiling 2 D.508 0.542 jacket_color 1 0.475 1.000
holding 2 0.381 0.616 head_shape 3 0.426 0.703
jacket_color 4 0.366 0.676 holding 1 0.426 0.861%
body_shapa 3 0.349 0.46B body_shapa 3 0.410 0.532

Figure 8.1: Two top levels of the classification hierarchy of the first problem

*There are also other differences in the biases used to select the MONK problems, and the biases that motivate CoBWEB's
design. For example, CCBWEB's use of probabilistic, polythetic elassification is either not exploited by or in sharp contrast to the
representation biases implicitly behind the MONK problems.

8.4 . Summary

In sum, we have applied EcoeweB to the MONK problems. This system is unsupervised, and thus results
should be interpreted carefully. Our experiments show that the system does not perform as well as supervised
alternatives. This highlights the distinction between supervised and unsupervised systems and the different
performance tasks that should be used to evaluate systems of each paradigm.

Bibliography

[Fisher, 1987a] Fisher, D. H. (1987a). Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2(7):138-172.

[Fisher, 1987b] Fisher, D. H. (1987h). Knowledge Acquisition Via Incremental Concepiual Clustering. PhD
thesis, University of California, Irvine, CA. Available as Technical Report 87-22, Information and Computer
Science, University of California, Irvine.

[Fisher, 1989] Fisher, D. H. (1989). Noise-tolerant conceptual clustering. In Proceedings of the Eleventh In-
ternational Joini Conference on Artificial Intelligence, Detroil, MI, pages 825-830, San Mateo, CA. Morgan
Kaufmann.

[Fisher et al, 1891] Fisher, D., Xu, L., Carnes, R., Reich, Y., Fenves, 5., Chen, J., Shiavi, R., Biswas, G., &
Weinberg, J. (1991). Selected Applications of an Al Clustering Technique to Engineering Tasks. Technical
Report 91-07, Computer Science, Vanderbilt University, Nashville, TN.

{Fisher and Pazzani, 1991] Fisher, D. H. (1991). Computational models of concept learning. In Fisher, D. H.J
Pazzani, M. J., and Langley, P., editors, Concept Formation: Knowledge and Ezperience in [Unsupervised
Learning, pages 3-44, San Mateo, CA. Morgan Kaufmann.

[Gluck and Corter, 1985] Gluck, M. and Corter, J. {1985). Information, uncertainty, and the utility of cate-
gories. In Proceedings of the Seventh Annual Conference of the Cognilive Science Society, [rvine, CA, pages
283-287, San Mateo, CA. Academic Press,

[Michalski, Mozetic, Hong, and Lavrae, 1978] Michalski, R. 5., Mozetic, I., Hong, J., and Lavrac, N. (1978). The
Multipurpose Incremental Generation of VLI Hypotheses: the underlying methodology and the description of
programs ESEL and AQI1 Technical Report 867, Computer Science, University of Illinois, Urbana.

[Reich, 1991] Reich, Y. (1991). Building and Improving Design Systems: A Machine Learning Approach. PhD
thesis, Department of Civil Engineering, Carnegie Mellon University, Pittsburgh, PA. Available as Technical
Report EDRC 02-16-91.

[Reich and Fenves, 1991] Reich, Y. and Fenves, S. J. (1991). The formation and use of abstract concepts in
design. In Fisher, D. H. J., Pazzani, M. ., and Langley, P., editors, Concept Formation: Knowledge and
Ezperience in Unsupervised Learning, pages 323-353, San Maieco, CA. Morgan Kaufmann.

[Schlimmer and Fisher, 1986] Schlimmer, J. and Fisher, D. (1986). A case study in incremental learning. In
Proceedings of the Fifth National Conference on Artificial Inielligence, Philadelphia, PA, pages 496-501, San
Mateo, CA. Morgan Kaufmann.

100

Chapter 9

Backpropagation on the MONK’s
Problems

Sebastian B. Thrun

Carnegie-Mellon University, School of Computer Science, Pittsburgh, PA 15213
e-mail: Sebastian. Thrun@es,cmu.edu

101

102 5.B. Thrun
9.1 Introduction

This paper briefly describes the results of the plain backpropagation algorithm [1] obtained an the three MONK's
problems. Backpropagation is a function approximation algorithm for multilayer feed-forward perceptrons based
on gradient descent. Conversely to many symbolic learning algorithms, backpropagation learns functions by
nonlinear Li-approximations. This technique has been successfully applied to a variety of real-world problemns
like speech recognition, bomb detection, stock market prediction etc.

Although multilayer networks represent continuous functions, they are frequently restricted to binary classi-
fication tasks as the MONK's problems. In all three cases we used the following architecture: There were
17 input units, all having either value 0 or | corresponding to which attribute-value was set. All input units
had a connection to 3 (first MONK's problem), 2 (second problem) or 4 (third problem) hidden units, which
itself were fully connected to the output unit. An input was classified as class member if the ocutput, which
is naturally restricted to (0, 1), was > .5. Training took between ten and thirty seconds on a SUN Sparc Sta-
tion for each of the three problems. On a parallel computer, namely the Connection Machine CM-2, training
time was further reduced to less than 5 seconds for each problem. The following results are obtained by the
plain, unmodified backpropagation algorithm. These results reflect what an unexperienced user would obtain
by running backpropagation on the MONK'’s problems.

| training epochs | accuracy
MONK's # 1 390 100%
MONK’s # 2 20 L00%

MONK's # 3 190 i 93.1%

However, in the third training set, the error did never approach zero in all runs we performed, which indicated
the presence of noise-and/or a local minimum. This important observation led us to refine the results for the
third problem using weight decay® [1,2]. This wideley used technique often prevents backpropagation nets fram
overfitting the training data and thus improves the generalization. With weight decay o = 0.01 we improved
the classification accuracy on this third set significantly and, moreover, the concept learned was the same for
all architectures we tested (i,e, 2, 3, or 4 hidden units).

| training epochs | accuracy

MONK's # 3 with weight decay | 105 | 97.2%

Backpropagation with weight decay learned the correct concepts for the first two MONK's problems again
with 100% aceuracy. These classification results clearly demonstrate the appropriatenes of the backpropagation
algorithm on problems as the MONK's problems.

References

{1] Rumelhart, D. E. and McClelland, J. Parallel Distributed Processing. Vol [+ IT, MIT Press 1930

[2] Chauvin, Y. Dynamic Behavior of Contrained Backpropagation Networks. In Advances in Neural Information
Processing Systems 2. Morgan Kaufmann Publishers, 1990.

'In our implementation, weight decay was realized by minimizing the complexity term o - 1{2 o+ Z ﬂ*] in addition te
!-h.e conventional Lo-error term over the tru.mng set. Here o i & constant factor, wi; denotes the mn;ht fmm unit § to unit 1. and
#; the threshold (bias) of umnit 1.

Backpropagation on the MONK's Problems 103

9.2 Classification diagrams

(a) Results of BACKPROP (with/without weight decay) on test set 1, Accuracy: 100.0%
(b) Results of BACKPROP (with/without weight decay) on test set 2, Accuracy: 100.0%

2 % | # | #|®| #|®]|w|[m][m]|w|2|a|o|o|o|e| |0 | = = ¥ rau
| oW | @R om | W # L B L] L A LI A N L] rou]
| N @ | » e [wan: | sua
| @ " # | = iF i | cou
* L L] £] * E : ¥ T4 rau
#* | W L *® | ..-_ L4 rou
la|m | = ME r . P
Ed E &* *® k. L L] reu Ty
s w =] x| 2w | w|m|m|m] | m|w|w|n|]|e]s][w][n]e]= S e -
] # | & | & | = L] C I BN TR R I N L W oW | W #® | = & (119 s
LA ® | = - w ¥ agy g
® T £ ® L3 ® | @ T st T
* " - L - L] ¥ rou Bk
@ | oW - L] LN [LT ack
* | * 2| * | * T [T act
e
& | W AW L L] LT weh
#® | ¥ | W M I EEEEAEEERERE R RE AE A B B BE BE NE R NE N E T sy (2]
L EEE N A IR AR EE A E A R N N B N T LE L]
in body himad
smiling shaps ahape
| swnrd 1 hn‘:l.“ | ballson |
| red | yeliow | green | blue | red | mlhl:‘:“f“::u | biwe | red | yellew | gresn | blue |
Jrl-lr!llrlnirl-|:rlnIrl:“j_“:llirl-IrI-Irf-Irinlrll|
¥ cam [
L] L] * L] FT ram T
* * » . » e ean . .
* - - » | = *] L # £ _h._n u ey
L] & #* L - # .r_ T row
| - » » ® | # # » ® | # # - n act rau
! #* L L *. L L ¥ rau rqu
* * * | # » » | # * - T - aqu
" » » e | o» ™ - ® | = # » Fr S 1qu
L " #* *® " T qu *qu
» * * * | # # - .| #* # # [y =t -
L *# #* *® * B e u
E] [L] #* E L] ¥ roun sen
L L » - W oW *® - a rau act
- L] L #* - LI * E _;-— (LT Py
& | @ o L] " L] -l- T set
- L L L] L - o L L] ¥ el wal
| W L] L L L] L] act act
s bady huad
amiling rthaps vhape

104

S5.B. Thrun

(a) Results of BACKPROP without weight decay on test set 3, Accuracy: 93.1%

(b) Results of BACKPROP with weight decay on test set 3, Accuracy: 97.2%

LET
=

gw

LET]

1y

agy

ot

:i|Eor|% oy|e i|e ¥ oz|t if¢ §
Lol el
LILIEIE) + =[] ___w#.

B EIEE] BEXN winn
alex]s s|%n *|n|n
tin|n|s =[] #|%n|n
wln|n|a L IR
#|n|n|n AE1E] AR
LIEREE] O+ |
O-[d+| | [O+[o wle]
*n|nlw SEIE tiwin
LIRIEIE =[] LAESE
LIRIE L] *|%|n AEIE
IEIELE) 5w w%|w
sinla|s|O0 =000 ===

R l={=|C0CNO =100 =000 =]

% |n]n LIE1E] glnln

% |n|n 1LY SE1E]
a|n|n|n *|nln #n|w
w|nlelw | n|w wlwln

balls on

helding
Aag

Jachebcolor

Blue | ved | wellow | grees | blue I

geeen |
L= T
| = |yl w]l yle|vrle]sl=s]y|n|yjn|yls|vr]eolyr]lalyrlnilyl]

I rellow |

red

blas

| yellaw | geesn

red

. |

L

P

Foi

LT
rau

| ome

ach

ach

rau

U

aqu

Fou

U

qu

n

AR ERE LALIEIE] LALAE
w|n "% LIEIEIE] LIEIE]
L AEAEAE LIEIEIL] AR}
LSRR RS E AR AR AR AR AR
H#ii LRI R} LI IE
LALAERES LALIEIE] LARAE]
LIRS IL] LIRS L] aln|w
LILIESE] ESE IR IR
LILAESE] LIRS Biw|w
LIEIESE] LRI TE] LIRS E]
LR AR L] LIEIEE] LIEIE]
A% %|n LIRS LIESE]
LAEREIL)] LI EIE] LIEIE]
LR IR L) # nla|w IR
LIRS L E] e |w % LAR A R)
LAERESE] LIRS E] AL]
LALIRIE] EIEIEIRT LSRR
 ww|w W fw]w LIETL]

och

Backpropagation on the MONK's Problems

9.3 Resulting weight matrices

MOMNKS's problem # 1: weights and biases

: to-node

from-node hidden1 hidden2 hidden_3 output
input (head.shape round) -6.503145 0.618412 -1.660409
input 2 (head_shape square) 1.210703 1.939613 2.972592
input 3 (head_shape octagon) 5156444 -3.597301 -1.266992
input.4 (bodyshape round) -G.692434 2.129635 -2.032242
input 5 (body shape square) 6.457639 0.864312 4.260765
input 6 (bodyshape octagon) || 0.225053 -2.428088 -1.839603
input.7 (is.smiling yes) 0.086995 0.131133 0.053480
input.8 (is_smiling no) -0.011828 0.135277 0.107302
input.9 {helding sword) -0.076848 0.459503 ° -0.008368
input_10 (holding balloon) -0.016940 0.151738 0.148955
input_11 (holding flag) -0.087298 0.196521 0.023534
input. 12 (jacket_color red) 5.735210 4.337359 -0.865479
input_13 {jacket_color yellow) | -2.257168 -1.4103T6 0.494681
input_14 (jacket_color green) -2.232257 -1.109825 0.382717
input_15 (jacket_color blue) -1.T10642 -1.452455 0.479513
input_16 {has_tie yes) -0.100696 0.434166 0.2T648T
input_17 (has_tie no} -0.111667 0.131797 0.310714
bras 0.486541 0.142383 0.52537T1 |
hidden_1 9.249339
hidden 2 3.639T15
hidden .3 | -9.419991
bias | -3.670920

MONKS’s problem # 2: weights and biases

to-node

from-node hidden 1 hidden 2 | output
input.l (head shape round) -4.230213 3.637149
input 2 (head shape square) 1.400753 -2.577242
input 3 (head_shape octagon) 1.479862 -2.492254
input 4 (bodyshape round) -4 363966 3.835199
input_5 (body shape square) 1.154510 -2.347489
input_§ (bodyshape octagon) || 1.542938 -2.227530
input_7 (is_smiling ves) -3.396133 2.984736
input.8 (issmiling no) 1.868955 -2.094535
input.9 (holding sword) -4.041057 4.239548
input 10 {holding balloon) 1293933 -2.195403
input.11 (holding flag) 1.160514 -2.2T2035
input.12 (jacket.color red) -4.462360 4.451742
input_13 {jacket_color yellow) 0.T4928T -1.BG0545
input.l4 [jacket_coler green) 0.640353 -1.T27654
input_15 (jacket_color blue) 1.116349 -1.332642
input.16 (has.tie yes) -3. 773187 3.290757
input 17 (has_tie no) 1.786105 -3.296139
bias -1.075762 -0.274980
hidden_1 =11.038625
hidden .2 -9.448544
bias 5.031385

106 5.B. Thrun
MONEKS's problem # 3: weights and biases (without weight decay)
to-node

from-node hidden1 hidden.? hidden.3 hidden .4 output
input_l (head shape round) || 0.277334 -0.673423 -0.345308 0.121908
input 2 (head shape square) 1.750524 1.150119 0.098689 0.329486
input_3 (head shape octagon) || -1.328410 0.941278 0.059910 0.017674
input.d (bodyshape round) -3.4668T0 -0.02278T 0.222484 0.214138
input.5 (body_shape square) || -2.460825 3.088668 -0.021681 0.235819
input.6 (bodyshape octagon) || 6.622062 -3.396938 0.125944 -0.134328
input_7T (is_smiling yes) 1.615026 0.224221 -0.31T908 -0.594920
input_8 (is_smiling no) =1.433791 -0.183452 -0.326339 0.361663
input 9 (holding sword) -0.780008 -0.7TE6334 0.0T2768 0.50T106
input.10 (holding balloon) 0.733%84 -0.260836 0.004670 0.422573
input_11 {holding flag) 0.415208 1.410443 -0.023262 0.325766
input_12 (jacket_color red) -1.263737 1324415 0.025837 0154449
input.13 (jacket.color yellow) | -1.896538 1.518800 0.351912 0.044775
input_14 (jacket color green) -0.432256 -0.183302 0.057546 -0.058255
input.15 (jacket.color blue) 5.090627 -3.446529 0082472 0.131738
input16 (has_tie yes) 0.897500 -0.7173589 0.314088 0.099872
input.17 (has.tie no) -0.502348 0.954327 -0.074583 -0.339295
bias 0.364889 0.248641 -0.484047 -0.227007
hidden.1 -11.548968
hidden 2 6.567443
hidden_3 -0.117112
hidden .4 -0.064650
bias 0.191083

MONKS'"s problem # 3: weights and biases

{with weight decay)

to-node
from-node hidden_1 hidden.2 output
input_1 (head shape round) -0.029477 -0.008986
input 2 (head shape square) -0.376094 -0.364778
input 3 (head shape octagon) || -0.051924 -0.028672
input_4 (body.shape round) 0.991798 0.991750
input.3 (body shape square) 1.03117T0 1.027T08
input_§ (body_shape octagon) || -1.284263 -1.279808
input.7 (is_smiling yes) -0.303940 -0.314212
input 8 (is_smiling no) -0.216766 -0.221040
input_9 (holding sword) -0.064305 -0.052110
input_10 {holding balloon) -0.257165 -0.243988
input_11 {holding flag) -0.131509 -0.122790
input.12 (jacket_color red) 1.001415 1.004192
input_13 (jacket_color yellow) || 0.898066 0.896860
input_14 (jacket_color green) 0.670929 0.673218
input.15 (jacket_color blue) -1.280272 -1.2T2798
input_16 [has_tie yes) -0.354472 -0.355268
input.17 (has_tie no) 0.040873 0037327
bias -0,319686 -0.343492
hidden.1 1.762523
hidden_2 1.759077
bias -1.501492

Chapter 10

The Cascade-Correlation Learning
Algorithm on the MONK’s Problems

Scott E. Fahlman

Carnegie Mellon University, School of Computer Science, Pittsburgh, PA 15213
e-mail: Scott.Fahlman@es.cmu.edu

107

108 : S5.E. Fahlman

Outputs
o] o]

Output Units s
s
Hidden Unit 2

Hidden unit 1 2
al®

Inputs O
s
Sl

+1 =

Figure 10.1: see text for details

10.1 The Cascade-Correlation algorithm

Cascade-Correlation [Fahlman, 1990] is a supervised neural network learning architecture that builds a near-
minimal multi-layer network topology in the course of training Initially the network contains only inputs,
output units, and the connections between them. This single layer of connections is trained (using the Quickprop
algorithm [Fahlman, 1988]) to minimize the error. When no further improvement is seen in the level of error,
the network’s performance is evaluated. If the error is small enough, we stop. Otherwise we add a new hidden
unit to the network in an attempt to reduce the residual error.

To create a new hidden unit, we begin with a pool of candidate units, each of which receives weighted connections
from the network's inputs and from any hidden units already present in the net. The outputs of these candidate
units are not yet connected into the active network. Multiple passes through the training set are run, and each
candidate unit adjusts its incoming weights to maximize the correlation between its output and the residual
error in the active net. When the correlation scores stop improving, we choose the best candidate, [reeze its
incoming weights, and add it to the network. This process is called “tenure.” After tenure, a unit becomes a
permanent new feature detector in the net. We then re-train all the weights going to the output units, including
those from the new hidden unit. This process of adding a new hidden unit and re-training the output layer is
repeated until the error is negligible or we give up. Since the new hidden unit receives connections froem the cld
ones, each hidden unit effectively adds a new layer to the net. (See figure 1.)

Cascade-correlation eliminates the need for the user to guess in advance the network’s size, depth, and topology.
A reasonably small (though not minimal) network is built automatically. Because a hidden-unit feature detector,
once built, is never altered or cannibalized, the network can be trained incrementally. A large data set can be
broken up into smaller “lessons,” and feature-building will be cumulative.

Cascade-Correlation learns much faster than backprop for several reasons: First only a single layer of weights
is being trained at any given time. There is never any need to propagate error information backwards through
the connections, and we avoid the dramatic slowdown that is typical when training backprop nets with many
layers. Second, this is a “greedy” algorithm: each new unit grabs as much of the remaining error as it can. Ina
standard backprop net, the all the hidden units are changing at once, competing for the various jobs that must
be done—a slow and sometimes unreliable process.

The Cascade-Correlation Learning Algorithm 109

10.2 Results

For all these problems [used the standard Commeon Lisp implementation of Cascade-Correlation on a Decstation
3100. This code is public-domain and is available to outside users via anonymous FTP. Contact sef@cs. cmu. adu
for details,

I used the same parameters in all of these tests. Here is the printout of those parameters:

| S1igOff 0.10 WtHng 1.00 WiMul 1.00
OMu 2.00 OEps 1.00 ODcy 0.0000 OPat 20 OChange 0.010
IMu 2.00 [Eps 1.00 IDey 0.0000 IPat 15 [Change 0.030

Utype :GAUSSIAN Otype :SIGMQID RawErr NIL Pool 8
{train 100 100 10}

Monk #1:

After 95 epochs, 1 hidden unit: 0 Errors on training set. 0 Errors on test set.
Elapsed real time: 5.11 seconds

Monk #2:

After 82 epochs, 1 hidden unit: 0 Errors on training set. 0 Errors on test set,
Elapsed real time: 7.75 seconds

Monk #3:

After 259 epochs, 3 hidden units: 0 Errors on training set. 40 errors on test set {i.e. accuracy 95.4%).
Elapsed real time 12.27 seconds.]

Training and test-set performance was tested after each output-training phase. The minimum test-set error
was observed after the initial output-training phase, before any hidden units were added. {Not surprising, since
with no noise this problem is linearly separable.) Using any sort of cross-validation system, this is where the
algorithm would stop.

At that point, the results were as follows:

Training: 7 of 122 wrong:

Head: RND Body: AND Smile: ¥ Holding: SWD Jacket: GRN Tie: Y Output: T
Head: RND Body: SQR Smile: ¥ Holding: BAL Jacket: GRN Tie: Y Crutput: T
Head: SQR Bedy: SQR Smile: ¥ Holding: BAL Jacket: YEL Tie: Y Qutput: T
Head: SQR Body: S3QR Smile: ¥ Holding: FLG Jacket: GRN Tie: N Cratput: T
Head: SQR Body: OCT Smile: Y Holding: SWD Jackst: GAN Tie: Y Outpue: NIL
Head: OCT Body: OCT Smile: ¥ Holding: SWD Jacket: GRN Tie: N Cutpue: NIL
Head: OCT Body: OCT Smile: ¥ Holding: SWD Jacket: BLU Tie: Y Output: MIL

Test: 14 of 432 wrong:

110 S.E. Fahiman

Head: RND Body: OCT Smile:
Head: RND Body: OCT Smile:
Head: RND Body: OCT Smile:
Head: RND Body: OCT Smile:
Head: SQR Body: SQR Smile:
Head: SQR Body: SQR Smile:
Head: SQR Body: OCT Smile:
Head: SQR Body: OCT Smile:
Head: SQR Body: OCT Smile:
Head: SQR Body: OCT Smile:
Head: OCT Body: OCT Smile:
Head: OCT Body: OCT Smile:
Head: OCT Bedy: OCT Smile:
Head: OCT Body: OCT Smmile:

Holding: 5SWD Jacket: GRN Tie: Y Output: NIL
Holding: SWD Jacket: GRN Tie: N Crutput: NIL
Holding: SWD Jacket: GRN Tie: Y Cutput: NIL
Holding: SWD Jacket: GRN Tie: N Qutput: NIL
Holding: BAL Jacket: GRN Tie: ¥ Cutput: NIL
Holding: FLG Jacket: GRN Tie: Y Outpue: MIL
Holding: SWD Jacket: GRAN Tie: Y Outpue: NIL
Holding: 3WD Jacket: GRN Tie: N Quetput: NIL
Holding: SWD Jacket: GRN Tie: ¥ Output: NIL
Holding: SWD Jacket: GRN Tie: N Qutput: NIL
Holding: SWD Jacket: GRN Tie: Y Cutput: NIL
Holding: SWD Jacket: GRN Tie: N Cutput: NIL
Holding: SWD Jacket: GRN Tie: Y Output: NIL
Holding: SWD Jacket: GRN Tie: N Output: NIL

ZER A ZZ A FE

So on the test set, performance is 96.7%

By turning up the QUTPUT-DECAY parameter to 0.1 {an odd thing to do, but sometimes useful when the
training set is too small for good generalization), we can do a little better. After the initial output-training
phase:

Training: 8 of 122 wrong:

Head: RND Body: RND Smile: ¥ Holding: SWD Jacket: GRN @ Tie: Y Cutput: T

Head: RND Body: SQR Smile: ¥ Holding: BAL Jacket: GRN Tie: Y Cutput: T

Head: 3QR Body: 3QR Smile: ¥ Holding: BAL Jacket: YEL Tie: Y Output: T

Head: SQR Body: SQR Smile: ¥ Holding: FLG Jacket: GRN Tie: Y Output: T

Head: SQR Body: SQR Smile: ¥ Holding: FLG Jacket: GRN Tie: N Output: T

Head: SQR Body: OCT Smile: ¥ Holding: SWD Jacket: GRN Tie: Y Qutput: NIL
Head: OCT Body: OCT Smile: ¥ Holding: SWD Jacket: GRN Tie: N Output: NIL
Head: OCT Body: OCT Smile: ¥ Holding: SWD Jacket: BLU Tie: Y Qutput: NIL

Test: 12 of 432 wrong:

Head: RND Body: OCT Smile: ¥ Holding: SWD Jacket: GRN Tie: Y Oueput: NIL
Head: RND Body: OCT Smile: ¥ Holding: SWD Jacket: GRN Tie: N Output: NIL
Head: RND Body: OCT Smile: N Holding: 5WD Jacket: GRN Tie: Y Oueput: NIL
Head: RND Body: OCT Smile: N Holding: SWD Jacket: GRN Tie: N Qutput: NIL
Head: S3QR Body: OCT Smile: Y Holding: SWD Jacket: GRN Tie: Y Output: NIL
Head: SQR Body: OCT Smile: Y Holding: SWD Jacket: GRN Tie: N Output: NIL
Head: SQR Body: OCT Smile: N Holding: SWD Jacket: GRN = Tie: ¥ Output: NIL
Head: SQR Body: OCT Smile: N Holding: SWD Jacket: GAN Tie: N OQutput: NIL
Head: OCT Body: OCT Smile: ¥ Holding: 5SWD Jacket: GRN Tie: ¥ Cutput: NIL
Head: OCT Body: OCT Smile: ¥ Holding: 5WD Jacket: GRN Tie: N Cutput: NIL
Head: OCT Body: OCT Smile: N Helding: SWD Jacket: GRN Tie: Y Qutput; NIL
Head: OCT Body: OCT Smile: N Halding: SWD Jackst: GRN Tie: N Output: NIL

Score on test set: 97.2%

We can see here what the problem is: All the bad test-set cases are Green and holding a sword, so they should
be true. But this positive value is not strong enough to offset the negative weight from Octagonal body.

In the training set, there are only two examples showing the green-sword combination overpowering an octagonal
body, and that is apparently not enough to make the point. There are 11 cases showing that octagonal/sword
should be negative and B cases showing that octagonal/green should be negative.

If we switch the training and test set, we see how easy it is to solve this problem in the absence of noise and

small-sample fluctuations.
Switching the training and test set: After 16 epochs and 0 hidden units:

Training: 0 of 432 wrong. Test: 6 of 122 wrong,.

Head: RND Body: RND Smile: ¥ Holding: SWD Jacket: GRN Tie: Y Output: T
Head: RND Body: SQR Smile: ¥ Holding: BAL Jacket: GRN Tie: Y Qutput: T
Head: 3QR Bedy: SQR Smile: ¥ Holding: BAL Jacket: YEL Tie: Y Cutput: T
Head: SQR Body: SQR Smile: ¥ Holding: FLG Jacket: GRN Tie: ¥ Cutput: T
Head: SQR Body: SQR Smile: ¥ Holding: FLG Jacket: GRN Tie: N Output: T
Head: OCT Bady: OCT Smile: ¥ Holding: 3WD Jacket: BLU Tie: ¥ Oueput: NIL

These, I believe, are exactly the noise cases deliberately inserted in the original training set. Note that three of
these noise cases are

Square/Square/Yes = NIL (when T is correct)

This explains the other two error cases observed in the first run of this problem. If we look at square,/square/yes
cases in the training set, NIL cases outnumber T cases, 5 to 3.

Bibliography

[Fahlman, 1988] Fahlman, S. E. (1988) “Faster-Learning Variations on Back-Propagation: An Empirical Study”
in Proceedings of the 1988 Connectionist Models Summer School, Morgan Kaufmann,

[Fahlman, 1980] Fahlman, 5. E. and C. Lebiere (1988) “The Cascade-Correlation Learning Architecture” in D.
5. Touretzky (ed.), Advances in Neural Information Processing Systems 2, Morgan Kaufmann.

111

S5.E. Fahlman

112

10.3 Classification diagrams

97.2%

{a) Training set #3 first run, Accuracy: 96.8%

(b} Training set #3 second run, Accuracy

#au
LT

act

Bot

agi

set

heud
thape

LT

et

rew
Ll

rau

rou

Hu

set
sl

mady
shape

¥

i 1
smiling |

I
|
L

#®

]

*

@ | @

®

##Dl

I

#® | # | &
»

*®
-

| @ | & | m

L I R

-

LN

L

fag Baidloon

Tolding

award

rad | yellow | gresn | blue i

3

|

Tasie
la | 7 | &)

jnckelcoler

3

Ls et Felelalyls]

Ly ln)ylsjyplnlyls]ylsliesy

3k
SRR IEEE R IRREERIEE
L3
RN
z
Jelele el
LRI IR AR TR LA R R
B W% ® W LAE AL R R
LRI RS K | AR AR K
IR “lwlw JEIEIE
lanln LIEIE LIRIL
ala|ns IEIE LILIE
IEIEIE] LIEE ILIEIL)
AEIEI R nl IEIEI R
% w|w LA AR LA A L)
wn|nlw LIRIE LILIEIE
LRI IR wiw|s]s
AR AT] LA LA
wiww|w DD |||+ |00« 00
wlwinfo|[R N=l=|=|«|[0A=]s|=|+|00
LA AR AR LAR AR I AEAERES
® k| k% AR LI E B E]
SEIEYEY EIE] LIRIEAE]
LA 3R B LN LEE A E]

