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Abstract 

Attributional calculus (��) is a typed logic system that combines elements of propositional logic, 
predicate calculus, and multiple-valued logic for the purpose of natural induction. By natural induction is 
meant a form of inductive learning that generates hypotheses in human-oriented forms, that is, forms that 
appear natural to people, and are easy to understand and relate to human knowledge. To serve this goal, 
�� includes non-conventional logic operators and forms that can make logic expressions simpler and 

more closely related to the equivalent natural language descriptions. �� has two forms, basic and 
extended, each of which can be bare or annotated. The extended form adds more operators to the basic 
form, and the annotated form includes parameters characterizing statistical properties of bare 
expressions. �� has two interpretation schemas, strict and flexible. The strict schema interprets �� 
expressions as true-false valued, and the flexible schema as continuously-valued. Conventional decision 
rules, association rules, decision trees, and n-of-m rules all can be viewed as special cases of attributional 
rules. Attributional rules can be directly translated to natural language, and visualized using concept 
association graphs and general logic diagrams.  �� stems from Variable-Valued Logic 1 (VL1), and is 
intended to serve as a concept description language in advanced AQ inductive learning programs. To 
provide a motivation and background for �� the first part of the paper presents basic ideas and 
assumptions underlying concept learning.  

Keywords:  Inductive inference, machine learning, natural induction, data mining and knowledge 
discovery, knowledge mining, propositional calculus, predicate logic, many-valued logic, attributional 
calculus 
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1 MOTIVATION 

The explosive growth of databases and information systems world-wide has created a critical 
need for automating processes of minting useful knowledge from available data, and of updating 
it with new data. Computer systems capable of performing such tasks in an effective manner will 
make a vital contribution to almost all areas of human endeavor, including sciences, engineering, 
business, economics, medicine, bioinformatics, agriculture, management, archaeology, and 
defense. This is so because all these areas have been accumulating computer-stored datasets and 
have a need to use them for creating or improving existing knowledge.   

The fast growing field of data mining is concerned with deriving useful patterns from large data 
volumes, typically without engaging much background knowledge and without conducting 
sophisticated symbolic reasoning. Many data mining methods are now available, such as decision 
trees, decision rules, Bayesian nets, support vector machines, nearest neighbors, artificial neural 
nets, etc.  

There is, however, a class of problems complementary to those considered in data mining, 
namely problems concerned with determining useful knowledge from impoverished data---
scarce, uncertain, inconsistent, imprecise, indirectly relevant, and/or erroneous data, which in 
addition may be distributed over space and/or time. The ability to derive useful knowledge from 
such impoverished data is vastly important for a wide range of applications. Such applications 
include early disease diagnosis, illegal activity detection, computer system intrusion detection, 
security breach recognition, fraud detection, terrorist attack prevention, economic decision 
making, industrial espionage, military decision making, and many others.  

When extracting useful patterns from large volumes of data, the main concern is the algorithm’s 
efficiency. When deriving useful knowledge from impoverished data, the main issues are how to 
engage background knowledge about the problem in order to compensate for the data limitations. 
In this case, the system has to be able to determine problem-relevant knowledge, and to use it in 
reasoning about the data.  

To illustrate the trade-off between background knowledge and input data in solving problems, 
consider two questions: 1) approximately how many steps you need to walk from your home to 
buy bread during daytime, and 2) how many ants live in your neighborhood. To answer the first 
question, one usually does not need to collect any new data, because one typically knows the 
location of the nearest food shop, and can estimate the number of steps by simple reasoning. 
Answering the second question, however, would likely require collecting data about ants in the 
neighborhood, because one normally does not have much knowledge about such a topic.  

Clearly, the ability to use prior knowledge in analyzing limited data is crucial for many 
applications. Without such knowledge, a system can only determine regularities among attributes 
and relations already present in the data. It cannot create richer knowledge involving concepts not 
present in the data. Yet, most of the existing machine learning and data mining methods operate 
solely on data; without engaging much background knowledge.  

To be able to handle both types of problems—deriving useful knowledge from very large 
volumes of data as well as from impoverished data—one needs systems capable of efficient 
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reasoning about data using background knowledge.  The development of such systems requires 
an integration of methods of machine learning, data mining, and statistics with knowledge 
representation and symbolic reasoning. 

Regardless of whether knowledge is being derived from large volumes of data or from 
impoverished data, a common issue for both types of problems is the understandability of the 
knowledge created.  In some applications this issue is of minor significance.  For example, it is 
not important for a computer user to understand how the computer recognizes human faces, as 
long as it does so reliably.  In a vast range of other applications, however, computer-generated 
knowledge must not only be accurate, but also understandable, if it is to be used.  A doctor will 
not make an important medical decision on the basis of a computer’s advice if he or she does not 
understand it.  Similarly, a general will not start a battle just because computer said so, but will 
want to understand the reasons for this advice.  

Clearly, humans, especially experts, are very reluctant to employ any machine-generated 
knowledge blindly, even if that knowledge has been shown to be effective in prior experiments.  
Although there has been widespread agreement on this issue for a long time, most of the current 
research in machine learning and data mining has focused primarily on predictive accuracy as the 
main measure of the system’s performance.  For example, it is rare to find an article in a machine 
learning or data mining journal that reports not only the accuracy of knowledge generated from 
data, but also the actual knowledge generated, and an evaluation of its comprehensibility.  In 
short, the issue of understandability of computer-generated knowledge is an under-investigated 
problem that needs more attention. 

To address the issues raised above, that is, to develop a method for generating understandable 
knowledge from data, large or small, one needs a knowledge representation and inference system 
that satisfies three requirements: (1) it represents knowledge in forms easy to understand and 
interpret, (2) it can reason with both data and prior knowledge, (3) it can be efficiently 
implemented for conducting both inductive inference (to generate knowledge) and deductive 
inference (to test and apply knowledge).  The attributional calculus, presented in this paper, aims 
at satisfying these conditions for a limited but important class of problems. 

2 THE CONCEPT OF NATURAL INDUCTION  

To explicitly address problems in developing inductive inference systems with the capability to 
create understandable knowledge, we introduced the concept of natural induction, defined as an 
inductive learning process that strives to generate hypotheses that are both accurate and natural 
for people, and that are easy to interpret and explain (Michalski, 1999).  What form of knowledge 
is “natural”  depends, of course, on the person’s prior training and experience. A mathematician’s 
proof of a theorem, a doctor’s description of a patient’s disease, or an engineer’s design of an 
integrated circuit may be “natural”  to them, but not to a person untrained in their areas.  It is, 
therefore, inherently impossible to develop a universal, prior knowledge-independent measure of 
“naturalness”  of knowledge forms and knowledge understandability.  

One can make, however, a general assumption that “natural”  knowledge representations are akin 
to those in which people typically represent knowledge.  If knowledge concerns a specific 
domain, then natural forms are those used by experts in this domain.  If it is general-purpose 
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knowledge, then natural forms are those widely used by people, such as natural language 
descriptions and visual forms, such as drawings and pictures. 

Clearly, natural language is a foundation for all human knowledge representation, knowledge 
reuse, and exchange.  Although different areas of science have developed special formalisms 
supplementing natural language, for example, mathematical and logical symbols, natural 
language is the glue that bonds all forms together.  In addition to natural language descriptions, 
visual representations are widely used, as they tend to be highly informative and easy to 
comprehend, as reflected by the popular adage “a picture is worth a thousand words”  (in which 
“ thousand” is not be taken literally, but as an indicator of a large number). It is thus not 
unreasonable to desire that new knowledge created by smart computers will ultimately appear in 
the forms used by humans since the beginning of writing over five thousand years ago, such as 
texts, images, documents, publications, and books, and that its authors will be teams of 
cooperating computer programs and people, or perhaps just computer programs. 

At this early stage of research, we assume that the best representations for effectively 
implementing natural induction are those whose expressions are syntactically and semantically 
close to logically equivalent natural language descriptions, and are presentable in easy-to-
interpret graphical forms. 

3 ISSUES IN IMPLEMENTING NATURAL INDUCTION 

As implied above, the basic issue in implementing natural induction is the choice of the 
representation system for expressing generated hypotheses.  A suitable representation system 
needs to balance trade-offs between its expressive power, its efficiency for implementing 
automated induction, and its susceptibility to overfitting.  A highly expressive representation 
system will have many forms and use many operators.  The more operators and forms the system 
contains, however, the exponentially larger is the search space, and thus the more complex is the 
process of inducing descriptions in this space.  If the space of possible representations is large, 
the inductive process is also more prone to data overfitting, that is, to creating hypotheses that fit 
the training data well, but poorly predict new facts.  The idea of natural induction traces its origin 
to the postulate of comprehensibility formulated in (Michalski, 1983, page 94): 

The results of computer induction should be symbolic descriptions of given entities, 
semantically and structurally similar to those a human expert might produce observing the 
same entities.  Components of these descriptions should be comprehensible as single 
“ chunks”  of information, directly interpretable in natural language, and should relate 
quantitative and qualitative concepts in an integrated fashion. 

As mentioned above, the issue of comprehensibility of computer generated knowledge has not 
been given sufficient attention in machine learning and data mining.  Among scant efforts in this 
area are a workshop “Machine Learning and Comprehensibility,”  organized at the 1995 
International Joint Conference on Artificial Intelligence (IJCAI ’95, Workshop 22) and Pazzani, 
Mani and Shankle (1997).  One of the major reasons for the slow progress is the difficulty of 
determining an adequate measure of description comprehensibility. 

To develop a practical and simple system for natural induction, we sought a formal 
representation language that has a relatively high expressive power, but is easy to interpret in 
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natural language, and simple to implement in a computer program.  Our efforts to satisfy these 
criteria have led us to the development of attributional calculus, a logic and representation 
system that combines elements of propositional logic, predicate logic, and multiple-valued logic. 
It is based on our earlier work on variable-valued logic (e.g., Michalski, 1972).  Conventional 
decision rules used in rule learning programs, e.g. CN2 (Clark and Niblett, 1989), or RIPPER 
(Cohen, 1995) are special cases of attributional rules, and so are n-of-m rules (Craven and 
Shavlik, 1996). 

As a description language, attributional calculus can be used to represent any set of entities and 
mappings between them in terms of multi-type, discrete or continuous attributes.  The resulting 
descriptions are compact, and closely correspond to equivalent natural language descriptions.  As 
a logic, attributional calculus facilitates both inductive inference (hypothesis generation) and 
deductive inference (hypothesis testing and application).  It can thus serve as both a simple 
knowledge representation for inductive learning, and as a system for reasoning about entities 
described by attributes.  

The above features make attributional calculus a useful tool for implementing natural induction, 
with applications to machine learning, data mining and knowledge discovery.  Because it 
facilitates both automated and manual knowledge representation, it can also be used for a simple 
form of knowledge mining.  By this, we mean the process of creating human-oriented knowledge 
from data (large or small) that utilizes non-trivial amounts of background knowledge (BK), in 
contrast to data mining, which is typically concerned with discovering patterns in large databases 
without the use of much background knowledge.  In knowledge mining, BK can be general 
common-sense knowledge, as well as specific domain knowledge.  BK may be hand-crafted into 
the system, or created through a previous knowledge mining processes.  BK can be in many 
different forms, but must be amenable to computer manipulation and inference.  Attributional 
calculus is not meant to be a general purpose knowledge representation, but rather a system that 
allows one to represent statements about objects describable in terms of attributes and their 
relationships. 

As mentioned earlier, in addition to natural language descriptions, knowledge representations 
utilizing visual forms are also natural to people. Such forms include graphs, diagrams, tables, 
histograms, networks, maps, flow-charts, schemas, sketches, pictures, 2-D and 3-D models, 
drawings, images and videos. Therefore, research on natural induction also includes the 
development of methods for generating and presenting knowledge in visual forms. To this end, 
we have developed two methods for visualizing attributional calculus expressions, generalized 
logic diagrams (Michalski, 1978a; Wnek, 1995) and concept association graphs (Kaufman and 
Michalski, 2003).   

4 TRANSLATION-BASED VS. PROCESS-BASED APPROACHES  

One may be tempted to propose an approach to natural induction in which inductive inference is 
conducted in a representation system alien to human cognition but convenient computationally, 
and require only that its results be translated to “natural” , human-oriented forms.  We call such 
an approach translation-based.  The translation-based approach appears attractive because it can 
be used with any inductive learning system, as it separates hypothesis generation from hypothesis 
representation.  An example of this approach is work by Craven and Shavlik (1996; 1999) on the 
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TREPAN system for creating decision trees approximating neural networks. The trees can use 
standard attribute-relation-value tests, or m-of-n tests (the latter are a special case of attributional 
expressions with counting attributes—see Section 6). 

While this approach can be useful in some situations, it has intrinsic limitations.  These 
limitations are due to the fact that the representation language used for conducting inductive 
inference, sometimes called a representational bias, has a direct influence on the kind of 
generalizations a system will be able to generate, and then on the selection from among a 
plethora of possible generalizations that can usually be induced from any non-trivial dataset.  

By its very nature, inductive inference is an under-constrained problem; thus the same data may 
beget many different generalizations consistent with it.  The central issue is which generalization 
to choose from a large space of potential hypotheses.  This problem is amplified by the fact that 
if the induction system uses inadequate representation for a given problem, then regardless of 
how large the hypothesis space and how robust the induction algorithm it employs, it will be 
unable to generate a satisfactory generalization.  Although the above argument may appear 
similar to the Sapir-Whorf hypothesis that the language we speak strongly influences our 
thinking (Whorf, 1956), it has additional significance in the case of inductive generalization, due 
to the under-constrained nature of such inference.  

Specifically, the generation of inductive hypotheses from data typically involves many steps at 
which intermediate hypotheses (generalizations) are created and evaluated.  At each of these 
steps, an inductive reasoner must make a decision as to which of the alternative intermediate 
generalizations to explore further, and which to discard (otherwise, the task may become 
computationally prohibitive).  The same generalization expressed in one representation language 
may score high on a given criterion of hypothesis quality (e.g., a measure of simplicity and/or 
comprehensibility), but score low when expressed in another language.  Consequently, the 
process of generalization, and the selection of intermediate and the final inductive hypothesis 
depends on the representation language employed. 

This argument has been convincingly supported by simple experiments reported in (Wnek and 
Michalski, 1992), in which methods that use opaque knowledge representations, such as artificial 
neural nets and classifiers used by a genetic algorithm were unable to correctly learn target 
concepts, even when the training set contained all possible positive concept examples.  In these 
experiments, the target concepts had very simple natural language representations. 

Consequently, an approach based on a post factum translation of “alien”  representations to 
logically equivalent (or approximate) natural forms is fundamentally limited from the viewpoint 
of natural induction.  To overcome this limitation, appropriate cognitive constraints must be 
imposed on the inductive inference process itself.  In other words, such a process should be 
carried out from the outset in a cognitively-oriented representation system.  This is a process-
based approach to natural induction, which has motivated the development of attributional 
calculus.  The Appendix presents an example showing that depending on the representation 
language, different inductive hypotheses are chosen among alternatives.  
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5 ATTRIBUTIONAL CALCULUS VS. OTHER LOGICS 

Before defining Attributional Calculus (��) formally, let us characterize it in general, and relate 
it to other logic systems.  Such an introduction will help the reader to quickly understand the 
motivation behind ��, and its novel features.  Attributional Calculus has two forms, basic and 
extended, each of which can be bare or annotated.  The combination of the forms implemented 
in a learning program indicates its learning capabilities. 

The basic form can be viewed as a propositional logic in which propositional letters (standing for 
sentences or their negations) are replaced by basic attributional conditions.  Such conditions are 
in the form (attribute relation valueset). The extended form adds to the basic form more complex 
conditions, called extended conditions, which involve relations among attributes, compound and 
derived attributes, quantified expressions using counting attributes, and the exception and 
provided-that operators. Attributional conditions, basic and extended, directly correspond to 
simple natural language sentences describing an entity or a set of entities in terms of one or a few 
attributes. 

In attribute-based learning, each example is described by the same attributes.  This limitation is 
overcome in attributional calculus by compound attributes that consist of attributes that apply 
only to a part of the entity.  Derived attributes are functions of original attributes, and are used to 
express relationships that require lengthy and complex descriptions if expressed in terms of 
original attributes.  Derived attributes include counting attributes, max, min, avg, and function 
references (which refer to attributes defined by expressions).  The counting attributes represent 
the number of attributional expressions in a given set, and facilitate the construction of a wide 
range of quantified expressions. By using counting attributes, symmetric logic functions, which 
tend to have very long descriptions, can be greatly simplified (Michalski, 1969). Function 
references are links to arbitrary expressions or procedures that compute the function defining the 
derived attribute. The “exception”  operator is used to express descriptions with exceptions, 
which block the rule if the exception holds. A standard use of such an operator is in censored 
rules that consist of a conjunctive premise and an exception clause.  The “provided-that”  operator 
is used to define preconditions for applying attributional rules.  

The annotated form adds merit parameters to bare (basic or extended) attributional expressions. 
These parameters provide statistical information about the expressions. Such parameters include 
coverage (positive, negative, unique, and flexible), support, confidence, and accuracy gain. 

Attributional calculus expressions can be evaluated using two different interpretation schemas, 
strict and flexible.  The strict schema treats attributional sentences (basic or extended) as binary 
logic expressions, evaluating them either to truth or falsity.  The flexible interpretation schema 
treats attributional sentences as multi-valued logic expressions.  Matching such expressions with 
observational data produces a degree of match (“ truth”) that can be continuous or discrete.  Thus, 
�� becomes a multi-valued logic by a semantic extension, that is, by the way its sentences are 
interpreted. 

�� can also be extended syntactically to a multi-valued logic system, as was done in its 
predecessor, VL1, by introducing constants and redefining its operators (Michalski, 1972).  This 
is not done in �� because expressions in such a system would cease to correspond directly to 
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equivalent natural language sentences. Instead, �� preserves the spirit of natural language in 
which the same sentence can be given different degrees of truth depending on the context in 
which it is evaluated. For example, the sentence “ this ant is big”  may be true in the context of 
other ants, but false in the context of rabbits.  In the following sections, we will first describe �� 
with a strict interpretation, and then discuss various methods of flexible interpretation.   

To provide an easy insight into ��, let us briefly discuss its relationship to three well-known 
logic systems: propositional logic, predicate logic, and multiple-valued logic. Propositional logic 
uses literals (single propositional letters or their negations) to represent declarative natural 
language sentences (i.e., sentences that can be evaluated to true or false). More complex 
expressions are constructed by combining literals by logical connectives, “and” , “or” , “not” , 
“exclusive-or”  and “equivalence”  (Kozy, 1974).  Because literals stand for entire natural 
language declarative sentences, they do not convey information about the structure of the 
sentences they represent.  If there is a relationship between components of different sentences, 
the information about it is lost when the sentences are abstracted into literals. 

From the viewpoint of natural induction, the advantages of propositional logic are that its 
sentences are easy to interpret, and its computer implementation can be very efficient.  Its 
expressive power, however, is too limited for many applications.  The attributional conditions 
introduced in �� significantly extend the representational power of literals in propositional 
logic. 

Predicate logic (first order and higher order) extends propositional logic by adding to it the ability 
to represent structure of sentences, and to quantify its expressions (e.g., Carney, 1970; Kozy, 
1974; Copi, 1982).  The structure and the components of the sentences are represented by multi-
argument predicates and terms.  In first order predicate logic, an expression can be quantified by 
an existential quantifier that postulates the existence of at least one entity in the universe of 
discourse for which the expression is true, or by a universal quantifier that postulates that the 
expression is true for all entities in the universe.  In higher-order logics, the quantification can be 
done not only over entities, but also over the expressions in the lower-order logics. 

Predicate logic provides a formal basis for implementing inductive inference in Inductive Logic 
Programming (ILP).  In ILP, descriptions are ordered sets of logical implications restricted to 
Horn clauses, in which the premise is a product of predicates (conditions), but the consequent 
(head) can have only one predicate.  Practical implementations of ILP employ variants of the 
PROLOG language.  Among the important advantages of ILP are that it has the ability to 
represent and reason with structured objects, and that it facilitates a reuse of knowledge 
represented by PROLOG programs (Lavrac and Dzeroski, 1994; Lloyd, 2003).  Research in IPL, 
done primarily in Europe, has shown, however, that ILP learning programs are less efficient than 
systems employing attribute-based descriptions.  Also, knowledge in the form of PROLOG 
programs can be difficult to understand due to their sometimes complex structure, and due to the 
use of recursion and unification operators that are not “natural”  to most people. 

In many applications, the structure of an object is finite and can be described by an attribute-
based representation.  If the structure is not too complex, its attribute-based representation can be 
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more efficient.  To facilitate building descriptions of structured objects, compound attributes 
have been introduced to �� (Section 6.2).  

The basic form of attributional calculus extends propositional calculus by introducing a 
capability for handling multi-valued attributes, and by directly representing some commonly 
occurring relations among attributes { =, ≠, >, �, <, �} .  Also, unlike propositional calculus and 
first order predicate logic, �� recognizes and takes into consideration in the inductive 
generalization process different types of attributes (see rules of generalization described in 
Michalski, 1983). If all attributes are binary and the extended conditions and additional operators 
are not allowed, the bare (non-annotated) attributional calculus reduces to propositional calculus. 

As its name indicates, attributional calculus is oriented toward creating and reasoning about 
attribute-based (attributional) descriptions, in contrast to predicate logic, which is oriented 
toward structural (or relational) descriptions that can involve arbitrary multi-argument relations 
and functions.  �� can directly express only some, typical relations among attributes. More 
complex relations can be expressed through the mechanism of derived attributes.  Consequently, 
�� does not use standard existential and universal quantifiers that apply to variables in the 
predicate expressions, but rather, it employs a derived attribute, count to express universal, 
existential, and other quantified statements.  Due to such forms, and the operators of “exception”  
and “provided-that” , �� has greater pragmatic representational power for some classes of 
functions than first order predicate calculus, while, at the same time, it is easier to implement and 
interpret in natural language. How to efficiently learn expressions with count attributes is, 
however, an open problem. 

As mentioned earlier, �� statements can be interpreted using a flexible evaluation schema, 
which evaluates them into continuous degrees of match (“ truth”).  If the flexible schema 
evaluates expressions into discrete values (say, k values), �� can be viewed as a multi-valued 
(k-valued) logic (e.g., Rine, 1984). 

Because of additional logic operators, such as internal logic operators, range and exception, 
extended conditions and derived attributes, attributional calculus has greater pragmatic power 
and greater representational power than propositional logic, multiple-valued logic, and, in 
special cases, first order predicate logic. The greater “pragmatic power”  means that an 
attributional representation of any function is simpler or equally complex than a logically 
equivalent representation of this function in another system.  The greater “ representational 
power”  means that the system can represent some functions that other systems cannot. For 
example, unlike propositional logic, attributional calculus can represent functions with 
continuous arguments.  

Summarizing, the most important features of �� from the viewpoint of natural induction 
include its high expressive power (particularly in relation to decision trees and standard decision 
rules), the direct correspondence of its expressions to natural language sentences, the availability 
of both strict and flexible interpretation schemas, and its relatively high efficiency of computer 
implementation of inductive inference (for hypothesis formation) and deductive inference (for 
hypothesis testing and application). 
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6 BASIC CONCEPTS 

6.1 Universe of Discourse 

As mentioned earlier, �� is a logic and simple knowledge representation language for 
implementing inductive, as well as deductive inferences about any entities that can be adequately 
described in terms of attributes, that is, functions that map entities into single discrete or 
continuous domains1.  The entities can be physical or abstract objects, states of objects, 
situations, processes, behaviors, etc.  The set of all entities that are under consideration in a given 
inference process is called the universe of discourse.  

The concept of the universe of discourse is very broad.  The following examples will illustrate its 
scope: people, documents, web pages, computer users, social groups, patients, human diseases, 
drugs, university students, goods in a department store, department stores, customers, behaviors 
of people or animals, rocks, plants, animals, minerals, songs, stocks, countries, cities, restaurants, 
military objects and strategies, images, sounds, chemicals, perfumes, etc.  These examples 
suggest application areas in which natural induction programs based on �� could be useful. 

6.2 Attr ibutes and Their  Types 

A precondition for successful inductive learning about the entities in a universe of discourse is 
the need to start with an adequate set of attributes for describing the entities.  A set of attributes 
is adequate if at least some attributes in it are relevant to the learning problem of interest.  An 
attribute is relevant to the problem if it takes different values for at least some objects of different 
classes. Based on their discriminatory power for objects of different classes, attributes may have 
different degrees of relevance.  The determination of relevant attributes is normally best done by 
an expert who has deep knowledge of the domain of application. 

In many applications, the information about entities is already stored in some database. This 
information may include attributes both relevant and irrelevant to the task at hand, and may 
reside in several relational tables.  In such a case, the information in the database is used to create 
a target data table, which contains information viewed as relevant.  Because it may be difficult 
to determine which attributes are relevant to the given problem and which are not, it is better to 
include in the target data table all attributes that cannot be judged as irrelevant, that is, it is better 
to commit an error of inclusion and than of omission.  This is so because it is easier to detect and 
ignore or remove irrelevant attributes from a dataset than create missing ones. 

For example, in diagnosing diseases, a patient’s name is normally assumed irrelevant. However, 
there can be a situation in which the name is relevant, for example, if the disease occurs mainly 
in patients of certain ethnic background, which may be indicated by their names. The patient’s 
name is not, of course, a cause of the disease, but may correlate with the disease.  The discovery 
of such correlations can provide useful knowledge for medical treatment and disease prevention. 

                                                 
1  Some authors use the term “ features,”  instead of “attributes,”  or consider the two synonymous.  In our terminology, 
features are values of attributes.  For example, an attribute “color”  is not a feature, but its values such as “red”  or 
“blue”  are features.  Similarly, a continuous attribute “weight”  is not a feature of an object, but the statement “ the 
weight is 2 kg”  is. 
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We will assume that in the target data table, attributes correspond to the columns, and individual 
entities to the rows.  The rows contain values of the attributes for each entity.  Rows can thus be 
viewed as descriptions (events or instances) of individual entities.  The attributes in the target 
data table (briefly, data table) span an instance space (or event space) for entities from the 
universe of discourse.  If the universe of discourse is static, each entity is represented by a single 
row in the table, or a single point in the instance space.  If entities change over time, the universe 
of discourse is dynamic, and instances move in the instance space. 

To represent a dynamic universe, the continuous attribute representing time is discretized into 
time instances, or time units.  A dynamic universe can then be represented by a table in which 
each entity is mapped into a collection of rows corresponding to its states at different time 
instances or different time intervals.  An alternative representation is to have an ordered 
collection of data tables, in which each table represents the state of the entities at a given time, or 
during a given time interval.  We thus assume that the starting point of inductive reasoning about 
entities is a target data table describing known entities from the universe of discourse.  The set of 
all entities describable by attributes defined in a data table, e.g., by the fields in the schema of a 
relational database is called the universe of discourse spanned by the data table. 

As mentioned earlier, an attribute is a mapping from a set of entities to an attribute domain, i.e., 
the set of all values the attribute can take when applied to entities in the universe of discourse. 
Such a mapping can be done by a measuring device, human judgment, or some computational 
process.  The structure of the attribute domain determines the type of the attribute.  The attribute 
type defines operations that can be meaningfully performed on attributes of that type.  

Most of the attribute types recognized in �� correspond to well-known measurement scales. In 
addition to the types corresponding to standard measurement scales, such as nominal, ordinal, 
interval, ratio and absolute, attributional calculus also recognizes cyclic, structured, set-valued, 
and compound types.  Here is a list of the attribute types defined in attributional calculus: 

nominal, if  the attribute domain is an unordered set (e. g., “blood type,”   “person’s name”). 

linear, if its domain is a totally ordered set.  Linear attributes are in turn classified into ordinal, 
interval, ratio, and absolute, corresponding to the common measurement scales—see 
Table 1 (for example, a student’s grade is an ordinal attribute, an object’s temperature in 
oC is an interval attribute, an object’s weight is a ratio attribute, and the number of atoms 
in a molecule is an absolute-type attribute). 

cyclic, if its domain is a cyclically ordered set  (for example, hours of the day, days of the week, 
months of the year, signs of the zodiac, time zones, etc.). 

structured, if its domain is a hierarchically ordered set (for example, a type- or generalization-
hierarchy of geometrical shapes, plants, animals, diseases, military ranks, airplanes, etc.). 

set-valued, if its domain is the power set of a base set, and its values are subsets of  the base set.  
Set-valued attributes can be represented by a set of binary attributes.  It is advantageous to 
use set-valued attributes when the base set is very large, but the subsets constituting their 
frequent values are small (for example, “patient’s diseases,”  where the base set contains 
possible diseases, or “ the set of items purchased by a customer,”  where the base set is the 
set of products in the store). 
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compound, if its domain is the Cartesian product of the domains of other attributes. A compound 
attribute is used when an object is characterized by a list of properties of constituent 
attributes typically associated with this object, but without stating their names.  The name 
of the object is used as the attribute name.  For example, “weather”  can be used as a 
compound attribute whose values are lists of properties typically characterizing weather. 
Compound attributes allow �� to create expressions that directly correspond to typical 
natural language descriptions. For example, an expression “weather = sunny & humid”  
corresponds to a natural language statement “ the weather is sunny and humid,”  which is 
more natural for people than “ the weather-type is sunny and the humidity is yes” , a 
standard logic expression. 

The classification of attributes into nominal, ordinal, interval and ratio was introduced by 
Stevens in 1946. The interval, ratio and absolute attributes are called quantitative (also, metric or 
numeric); nominal, ordinal, cyclic, and structured attributes are called qualitative (or non-metric 
or symbolic). The “structured”  and “cyclic”  types were introduced by Michalski (1978b) to 
facilitate processes of generalizing/specializing descriptions using attributes with domains 
defined by these types. The compound attribute is a new idea introduced in this paper. 

Table 1 provides a summary of attribute types, corresponding attribute domains, and invariant 
transformations.  By an invariant transformation is meant a transformation of the attribute 
domain that does not cause any loss of information conveyed by attribute values.  

TYPE/SCALE                   DOMAIN    INVARIANT TRANSFORMATION 
Nominal/categor ical  unordered  set                  isomorphic 
Structured             par tially ordered set     node-type dependent 
Set-valued   par tially ordered set   isomorphic 
Ordinal                   totally ordered set      monotonic 
Cyclic                                 cyclically ordered set   monotonic-cyclical 
Interval   totally ordered set    linear : y’= a + by 
Ratio    totally ordered set                   ratio:  y’= ay 
Absolute   totally ordered set    none  
Compound   depends on the type 
     of constituent attributes       

 Table 1:  Types of attributes recognized in Attributional Calculus. 

Simple examples will help to explain the above attribute types.  Suppose that the domain of a 
nominal attribute “color”  is { red, blue, yellow} .  By isomorphically mapping this domain to any 
other three-element set, e.g., { czerwony, niebieski, zolty} , we can use attribute color with new 
values without any loss of information, as long as the mapping is applied consistently. 
Meaningful statements involving such variables use “equal”  and “not-equal” , e.g., color = red, or 
color � blue. All the standard logical operations apply to such statements, such as negation, 
logical disjunction, logical conjunction, exclusive-or, and equivalence.  If one maps the domain 
to a set of numbers, e.g., { 1, 2, 3} , these numbers serve only as labels, and cannot be 
meaningfully used in arithmetical operations. 
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In structured attributes, the partial order is defined by a generalization hierarchy (a.k.a. type or is-
a hierarchy) in which every parent node represents a more general concept than its offspring 
nodes. Examples of such hierarchies include shapes, geographical names, plants, animals, etc.  
Figure 1 presents an example of a possible domain of the structured attribute “shape.”  

 

 

 

 

 

 

 

Figure 1:  The structured attribute “shape” and its domain.  

In addition to operators applicable to nominal attributes (attribute = value, attribute � value), 
operators applicable to structured attributes include structure-based generalization, 
specialization, and modification.  The generalization operator, climb-tree(A, V, k), replaces value 
V  in a description involving attribute A by a more general value located k levels up in the 
generalization hierarchy for this attribute. For example, climb-tree(shape, obtuse, 1) replaces 
value obtuse by triangle in a statement involving the attribute shape. 

The operator descend(A, V, k) is a non-deterministic specialization operator that replaces value V 
by one of the values located k levels down from V.  The value is selected among alternatives 
either randomly or algorithmically.  For example, the operator descend(shape, triangle, 1) may 
randomly generate the value right triangle as an instance of a triangle.  Finally, the operator 
select-sibling(A, V) is a generate-alternative operator that replaces V  by one of its sibling values 
in the hierarchy (again, the value can be selected randomly or algorithmically).  For example, 
select-sibling(shape, square) may produce “ rhombus.”   As the above examples show, structured 
attributes facilitate operations of description generalization, specialization, and modification. 

The domain of ordinal (or rank) attributes is a totally ordered discrete set.  For example, a course 
grade, (A, B, C, D or F) is a rank attribute.  A discretized continuous attribute is also an ordinal 
attribute.  For example, the range of a continuous attribute “blood pressure”  can be discretized 
into { 1, 2, 3} , where “1”  stands for ” low”, “2”  stands for “normal”  and “3”  stands for “high” .  If 
we perform a monotonic transformation of this domain into <3, 59, 70>, where “3”  corresponds 
to “ low”, “59”  to “normal” , and “70”  to ‘high” , the numerical order of the values remains the 
same; we can therefore use the new domain without any loss of information, since values of 
ordinal attributes only convey information about the order, and not about the magnitude. 

Operators applicable to ordinal attributes include not only those applicable to nominal and 
structured attributes, but also relational operators, <, �, >, �, and the range operator, denoted by 
“ ..” , which defines a range of values.  For example, if the domain of an ordinal attribute 
“strength”  is { very_weak, weak, medium, strong, very_strong,  mighty_strong} , we can write, 

Shape 
 

 
          curved                             triangle                         quadrangle                        polygon                                     

 
 

   circle    ellipse        right     obtuse    acute     square    rectangle                   pentagon    hexagon    

                                                                            rhombus           irregular               multilateral. 
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strength > medium, to say that the value of strength is greater than medium, or  strength = weak 
.. very_strong, to say that the value is between weak and very strong, inclusive.   

Set-valued attributes are useful for describing situations in which values of interest are small 
subsets of a large domain, called the base set.  For example, the attribute itemset is a set-valued 
attribute whose values are sets of goods purchased by a customer in a department store.  
Individual customers usually purchase only a very small subset of goods available in a 
department store (the latter is the base set).  The domain of set-valued attributes is a lattice. 

A set-valued attribute can be formally replaced by a set of binary attributes, each corresponding 
to a single element in the base set.  Such a representation may not be practical, however, because 
it would have to include as many binary variables as there are elements in the base set (which can 
be a very large set), while the number of binary variables with value 1 would typically be small.  
Values of set-valued attributes can be used as operands in set-theoretic operations, such as union, 
product, and set-difference, and in set-theoretic relations A ⊆ B, A ⊂ B, A ⊄ B, A ∩ B =  ∅.  For 
example, given statements itemset=A1 and itemset=A2, one can make statements such as 
itemset=A1∪ A2, itemset=A1 ∩ A2, or itemset= A1-A2. 

Cyclic attributes are like rank variables, but assume that the last value is followed by the first 
value in their domain.  The operators >, �, < and ≤ do not apply to these attributes, but the range 
operator “ ..”  does.  Cyclic attributes are used to describe cyclically occurring phenomena, e.g., 
days of the week or months of the year. Thus, one can write: day_of_week = Wed..Mon.  

Interval attributes characterize quantities on a scale in which “0”  is arbitrary, and express counts 
of some arbitrary units. For example, the temperature can measured on the Celsius scale (oC), 
where “0”  denotes the temperature of freezing water, and “100”  denotes the temperature of 
boiling water, or the Fahrenheit scale (oF), which is related to the Celsius scale by a linear 
function:  toC = 5/9 (toF  - 32), where toC and toF are temperatures measured on the Celsius scale 
and the Fahrenheit scale, respectively. Any other linear transformation of the domain will not 
change the meaning of the temperature measurement, as long as it is applied consistently.  

In addition to the previous operations, interval attributes are also amenable to operators “+”  and 
“ -“ .  For example, one can say that the difference between the temperature today, t1, and 
yesterday, t2, is ∆t oC = t1

 oC – t2
 oC, which can be equivalently expressed as F(∆t oC) = F(t1

 oC) –  
F(t2

 oC),  where F(toC) denotes temperature in oF equivalent to temperature in oC. The 
multiplication and division are not invariant operators for interval attributes.  For example, F(3 *  
toC)  �  3 *  F(toC)). Thus temperatures measured in oC or oF can be meaningfully added or 
subtracted, but not divided or multiplied. For example, if the temperature in a room rose from 
35oF to 70oF, it does not mean the room is twice as hot. 

Values of ratio attributes represent counts of some predefined units, as in interval attributes, but 
zero is not arbitrary; rather, it denotes the absolute minimum value. Units can be, for example, 
kilograms or pounds for a weight attribute, inches or centimeters for a length attribute, etc.  
Different units are related by a multiplication coefficient.  In addition to all the previous 
operators, ratio attributes can be also be used in all arithmetic and algebraic operations. Absolute 
variables represent counts of some items in a set (e.g., the number of people in a building). There 
have no units; and no transformation is allowed.  Absolute attributes are amenable to all 
operations to which ratio attributes are.   
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Compound attributes have been introduced to concisely describe objects or situations 
characterized by constituent attributes, which are applicable only to these objects.  Values of 
compound attributes are internal conjunctions of values of constituent attributes.  For example, 
attributes applicable to describing a house can be the number of bedrooms, the size of the 
kitchen, of the backyard, etc. To describe individual bedrooms, other attributes are needed, e.g., 
the length and width of the bedroom, the number of windows, and the closet size.  In attributional 
calculus, the attributes related only to the bedroom would be combined into one compound 
attribute called “bedroom.”  Using the attribute bedroom, one can make a statement:  bedroom = 
20’  long & 13’  wide & 3 windows & large_ closet. 

In addition to regular values, every attribute domain is also assumed to contain three meta-values. 
These values represent possible responses to questions requesting the attribute value for a given 
entity, specifically: “don’ t know” (denoted by “?”), “not applicable”  (denoted by “NA”), and 
“ irrelevant”  (denoted by “* ” ).  The meta-value “don’ t know” is given to an attribute whose value 
for a given entity is unknown for whatever reason; for example, it has not been measured or has 
not been recorded in the database.  “NA” is given to an attribute that is not applicable to a given 
entity.  For example, the attribute “ the number of pages”  is not applicable to a chair in the library, 
but is applicable to a book.  The attribute “ the person’s shoe size”  can be viewed irrelevant to the 
problem of determining the person’s education level.  This is indicated by assigning to it the 
meta-value “* ” .   

Because the attribute type is associated with operators applicable to them, the attribute type is 
useful in conducting inductive inference. By applying generalization rules according to the 
attribute type, an inductive generalization process can produce more plausible generalizations, 
and, by avoiding implausible generalizations, can also be more efficient.  The types and domains 
of attributes are parts of the background knowledge about the given inductive generalization 
problem.  A collection of inductive generalization rules applicable to statements with attributes 
of different types was presented in (Michalski, 1983). 

6.3 Event Space and Concept Space 

Let � denote the universe of discourse, and � the set of attributes applicable to entities in � and 

considered relevant to the problem of interest.  A vector of values of attributes from � (or, 
equivalently, a vector of attribute-value pairs) describing some entity (an object, a situation, a 
process, etc.) is called an event.  The entity described by an event is called an instance. When it 
leads to no confusion, the terms “event “and “ instance”  are used interchangeably.  The set of all 
possible events, �(�, �), or briefly, �, is called the event space (instance space or representation 

space) spanned over � for the universe �. 

The event space is thus determined by the Cartesian product:   

���� � = �1 x �2 x ….x �n (1) 

where �1, �2,…, �n are domains of attributes in �.����



 

 

15 

An arbitrary event--a point in the representation space--may represent just one entity, a group of 
entities, or no entity from the universe of discourse �.  If all attributes in � are discrete, � is 
finite; otherwise, it is infinite.   

A concept can be viewed as any set of entities that is treated as a single unit in reasoning. The 
entities belonging to the concept are called concept instances.  Among the possible reasons for 
combining entities into concepts are their similar appearance (e.g., the concept of a “circle”), 
their common function (e.g., the concept of “chair”  or “ food”), or their similar role or behavior in 
a larger system (e.g., the concept of a “planet” , an “electron” , or an “employee”).  Concepts are 
typically given names, so that they can be referred to easily.  Given an event space for a universe 
of entities, concepts are represented as subsets of that space. 

In concept learning, only a limited set of instances of a concept is typically known.  Concept 
instances that are available for learning are called training examples, and represented as pairs 
<instance, concept name>, where the concept name is a name given to the concept, or a symbol 
identifying the concept.  Concept names are assigned by a teacher, or, generally, by an “oracle”  
that already knows the concept. 

Concepts to be learned are called target concepts, and subspaces corresponding to them in the 
instance space are called target concept representations, or, simply, target concepts, when this 
causes no confusion.  Target concepts may potentially contain an infinite number of instances, 
and their boundaries in the representation space may be subjective and context-dependent.  
Think, for example, of all possible instances of the concept “ face”  or “animal.”    

In learning a single concept, the training examples that represent instances belonging to the 
concept are called positive examples (concept examples), and those not belonging to the concept 
are called negative examples (counterexamples).  The ultimate goal of learning is to create an 
accurate target concept description. Because the training set is typically only a subset of the target 
concept, in practice, all that a learning system can do is to seek a good approximation of it. 

A learned description is called a complete training set [ target]  description if it describes all 
positive training examples [all target concept instances], and possibly also some other examples. 
A description is called a consistent training set [ target]  description if it describes no negative 
examples [no non-target instances]. A description is called consistent and complete (CC) training 
set [target] description if it describes all positive training examples [all target concept instances], 
and no negative examples [no non-target instances]. The latter definition assumes that the 
training set does not have inconsistent (ambiguous) examples, that is, examples that can be both 
positive and negative.   

A description is called an approximate training set [ target]  description if it partially violates one 
or both of the completeness and consistency criteria.  The set of all CC training set descriptions is 
called the version space; the set of all approximate training set descriptions is called an 
approximate version space.  Because concept instances are perceived through the values of the 
attributes characterizing them, a concept defines a subarea of the event space spanned over these 
attributes. Concept learning can be thus characterized as determining a description defining this 
subarea.  If an event falls into this subarea, it is recognized as an instance of the concept. 
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Let � denote a set of concepts to be learned. Typically, � is a set of concepts without any 
particular order, for example, a set of alternative decisions to be taken in a given situation.  In 
some applications, � can be a totally ordered set (e.g., ranks of universities), or a partially 
ordered set (e.g., a hierarchically ordered set of diseases).  Therefore, it is convenient to view D 
as the domain of an output attribute, y, which is assigned a type depending on the learning 
problem.  A so-defined output attribute can be an input attribute for another concept learning 
problem.  The training set for � is a set of pairs { event, concept} , which link an instance with 
the concept it belongs to.  This training set can be viewed as a function:  

 ft: �  �   �  ∩  { * }  (2) 
where “* ”  is assigned to events not specified in the training set (“don’ t know”).  Learning 
concepts from � means developing a description in a given language characterizing a mapping: 

 f:  �  �  � (3) 

The mapping (3) asserts that every event in � belongs to some concept in �.  To assure that this 

assumption is always correct, � should include a value representing “none of the other 
concepts.”  

A training set typically assigns values from � to only a small subset of �; hence there are many 
instances to which ft assigns the value “* ” .  The space of all functions specified by (2), i.e., the 
set of all completely or incompletely defined functions mapping events into concepts is called the 
concept mapping space spanned over the given event space, denoted CM(�).  For illustration, 
Figure 2 visualizes an event space spanned over binary variables, x1 and x2, and the training data 
for a very simple concept. Each cell represents one combination of attribute values. Cells marked 
by 0, 1, or *  represent negative, positive or undetermined concept examples, respectively.  

 

 
Figure 2:  A visualization of a very simple event space and training events. 

Figure 3 visualizes the concept space spanned over this representation space (i.e., the set of all 
completely or incompletely defined functions of the attributes). The visualization method used 
here employs the Generalized Logic Diagram (GLD; Michalski, 1978a, Wnek, 1995). The event 
space in Figure 2 is spanned over two binary attributes x and y, whose values are assigned to 
rows and columns, respectively. Each cell represents one combination of attribute values (one 
instance or event). Cells marked by a “1”  represent positive examples of a concept, and the cell 
marked by a “0”  represents a negative example.   
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Each assignment of values 0, 1, or *  to cells in the diagram in Figure 3 represents one 
instantiation of function (2).  There are 32n different instantiations, where n is the number of 
attributes.  In this case the concept space thus has 81 points. The cell marked by E represents the 
training data defined in Figure 2 (vector 1, 0, * , 1), and cells A and B represent two different 
generalizations of the training data.  In Figure 3, attributes p1, p2. p3, and p4 represent cells in 
Figure 2, and the values 0, 1, and *  represent values assigned to the cells by a function. 
 
  
 

 

 

 

 

 

 

 

 

 

 

 
 

“A” and “B” represent assignments of 0 and 1, respectively, to * in the representation space. 
Figure 3: A visualization of the concept space spanned over the instance space in Figure 2. 

6.4 Descr iption space 

The objective of concept learning is to create descriptions delineating subspaces in the event 
space that represent concepts to be learned. To learn a concept description, one needs to use a 
description language.  A great variety of concept description languages have been used in 
research in machine learning and data mining.  Among the most common are decision trees, 
decision rules, predicate logic, support vector machines, Bayesian nets, semantic nets, and 
frames.  Given a description language and a representation space, there can usually be many 
different descriptions of the same concept. 

Let � be a description language and CM(�) the concept mapping space that maps � into � ∩ 

{ * } . The set of possible descriptions in � of functions in the concept mapping space is called the 

description space for � in �, and denoted ��(�, �).  For example, if � is the language of 
decision trees, then the set of all possible decision trees describing all functions in the concept 
mapping space for � is the description space DS(�, ���	
	� � ����
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Concept learning can thus be viewed as a process of traversing a description space, starting with 
a description of the training data and ending with a description of the target concept to be 
learned.  The fundamental difficulty of concept learning is that determining a description of a 
target concept from a partial concept description given by the training data is an under-
constrained problem. Therefore, there can be many ways to generalize the training data, and each 
such generalization can be represented in many ways in a given description language. 

A typical solution to this problem is to determine a description of a complete function in the 
concept mapping space that is consistent (or nearly consistent) with the training data and satisfies 
some extra-logical criterion.  In symbolic learning, such a criterion may be to determine the 
simplest description in the given language.  In support vector machines, it may be a maximal 
margin hyperplane (Scholkopf and Smola, 2002). 

6.5 An I llustration of Hypothetical Concept Descr iptions 

To illustrate the ideas presented above, let training events be vectors of four binary attributes x, 
y, z and w, and the description language be propositional rules. The training set for learning is 
presented in the event space illustrated by the diagram in Figure 4a. Pluses and minuses denote 
positive and negative concept examples, respectively. 

Different hypothetical concept descriptions learned from the training data are visualized in 
Figures 4b, 4c and 4d. Each shaded subarea in a diagram represents one propositional decision 
rule. A set of the rules shown in a diagram represents a concept description.  Concept 
descriptions presented in Figures 4b, 4c and 4d represent hypothetical generalizations of the 
training data in Figure 4a. 

Using the diagrams, one can write down propositional rules expressing S1, S2, and S3: 
S1: ���� <=  ~x~y, ���� <= xz, ���� <= x~yw   

S2:���� ���� <=  ~x~z~w, ���� <=  xyzw, ���� <= z~w, ���� <= x~zw, ���� <= x~yw 

S3:���� ���� <= ~x~w, ���� <= z~w, ���� <=  xw 

Descriptions S1 and S2 represent significantly different concepts. Descriptions S2 and S3 
represent exactly the same concepts, but differ significantly in complexity (measured by the 
number of rules and literals).  It is not clear how to choose between S1 and S3.  S3 is a little 
simpler than S1 in terms of the number of literals (6 versus 8), but this difference does not mean 
that S3 will be more correct than S1 when applied to new data.  Using rules of logic, one can 
show the logical equivalence between S2 and S3, but such a process can, in general, be very 
complex and time-consuming, especially when there are many attributes.  Finding the 
equivalence between two expressions or determining the minimum expression of a logic function 
is NP-hard. 

The above example shows that even a very simple training set can yield significantly different 
generalizations, and that descriptions of exactly the same concept in the same representation 
language can vary significantly in complexity. 
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              a) Visualization of training data                               b) Concept description S1 

 

               (c) Concept description S2               (d) Concept description S3 

Figure 4: Training data and different generalized descriptions. 

6.6 Learning Error  

Given an event space � spanned over attributes �, let ��(e), e ∈ �, denote a target concept 

description (i.e., the correct concept description).  ��(e) represents a mapping of � into { 0,1} , 

where “1”  means that e is a member of the target concept and “0”  that it is not.  Let ��(e)�denote 

the learned concept description, which is a mapping of � into { 0,1} , where “1”  means that e 

satisfies the learned description, and “0”   that e does not satisfy it.  Let P(�) be a probability 

distribution of events in �.  It tells us how frequently we see different events e from �.����

When an event e ∈ � is seen, the probability that ��(e) will assign to it an incorrect concept is: 

 pError(e) =  p(��(e) � �� (e)) (4) 
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The learning error of the learned concept description ��(e), denoted lError, is thus: �

 lError =  �  pError(e) / |�|   =   �  p(��(e)  �  ��(e)) / |�| (5) 
                                                      P(�)                              P(�) 

where |�| denotes the size of the event space. 

6.7 Relevance and Adequacy Cr iter ia for  the Attr ibute Set 

It is well-known that the success of concept learning is crucially dependent on the attributes used 
in the formulation of the problem (e.g., Bongard, 1967; Liu and Motoda, 1998).  If these 
attributes are irrelevant for the learning task, no method will be able to learn a correct concept 
description.  For example, if the task is to learn a distinction between excellent students and other 
students, and the attributes are the length of the student’s nose and the color of the student’s 
notebook, then it will be impossible to learn a reliable description, except perhaps for a very 
unusual situation. 

In order to get a better insight into this issue, let us classify attribute sets into different types.  If 
every entity from the universe of discourse, �, maps into a unique point in the instance space, �, 

spanned over an attribute set �, then � is called isomorphic; otherwise, it is homomorphic for �.  

For example, if � is a set of patients, and each patient can be uniquely described in terms of 

attributes in �, then � is isomorphic for that universe. 

If an attribute set, �, maps different (non-intersecting) concepts into disjoint subsets of the 

instance space, then the instance space spanned over � is called consistent, otherwise, it is called 
inconsistent.  If the instance space is consistent, it is always possible to create a consistent and 
complete (CC) concept description with regard to a training set (given a sufficiently expressive 
description language).  Such a description classifies instances of the training set perfectly, but 
may not correctly classify unseen instances.  If the instance space is inconsistent, it is impossible 
to learn a CC concept description.  In such cases, only approximate descriptions can be learned. 

An isomorphic attribute set always spans a consistent instance space. A homomorphic attribute 
set may span either a consistent or an inconsistent instance space.  If it always maps entities of 
different concepts into different points in the space, then the space is consistent (Figure 5).  If it 
maps some entities of different concepts into the same points in the space, then the space is 
inconsistent (Figure 6). 

Attribute sets can be classified on the basis of how relevant they are for the learning task (the 
concepts to be learned), and how adequate they are for the learning method used, or, more 
precisely, for the description language employed in the method.  The first question concerns the 
relevance criterion, and the second concerns the adequacy criterion for the attribute set.  If we 
make the simplifying assumption that both criteria are strict, that is, an attribute set either 
satisfies or does not satisfy them, there are potentially four combinations of answers. 

Only three are meaningful: 1) the attribute set is relevant for the learning task and adequate for 
the method employed, 2) the attribute set is relevant but inadequate, and 3) the attribute set is 
irrelevant and inadequate.  There cannot be an attribute set that is irrelevant but adequate. 
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����

Figure 5:  A homomorphic attribute set �1 spanning a consistent instance space. 

  

Figure 6:  A homomorphic attribute set �2 spanning an inconsistent instance space. 

To explain these criteria, let � denote a set of target concepts (the domain of an output attribute), 
and M denote a learning method to learn these concepts. The method M may employ, for 
example, simple rule-based or decision tree description languages (which draw axis-parallel 
hyper-rectangles in the instance space), support vector machines (which draw hyper-planes in a 
transformed instance space), or some other representation system. 

In concept learning, there is a distinction between target concepts, �, and training sets for them, 

�tr.  The goal of learning is to induce a description of target concepts from their training sets. Let 

us assume that � consists of disjoint concepts, that is, concepts that do not have common 

instances, and � consists of intrinsic attributes, that is, attributes capturing measurable aspects of 
concept instances, rather than arbitrary labels or names assigned to instances. 

An attribute set � is called intrinsically relevant for � (or �-relevant) if it consists of intrinsic 

attributes, and representations of concepts from � do not intersect in the �-spanned instance 

space.  An attribute set � is called perceptibly relevant���� (or �tr-relevant) if representations of 
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training sets of concepts from � do not intersect in the �-spanned space�� If in the above 
definitions the concept representations partially intersect, the term “ relevant”  is replaced by 
“partially relevant” .   

An intrinsically relevant attribute set may include some irrelevant attributes, but it must include 
also some relevant ones for learning concepts in �. An attribute set is called irreducibly 
intrinsically relevant, if none of its subsets is intrinsically relevant. 

Note that an attribute set can differentiate between instances of different concepts, but may be 
useless for creating concept descriptions if it contains non-intrinsic attributes.  For example, the 
attribute “patient’s name” in a dataset of liver cancer patients identifies each patient, and thus 
discriminates between liver cancer and non liver cancer patients, but is useless for diagnosing the 
liver cancer.  This is so because it is a non-intrinsic attribute, as its values are not measurable 
properties of patients. 

Given a learning method M and a set of target concepts �, an attribute set is called adequate for 

M if it is intrinsically relevant for �, and the description language used by M is “adequate”  for 
describing boundaries between concepts in the representation space.  The word “adequate”  is not 
precise, but it means here that the description of the concept will not be “overly”  complex 
(according to some reasonable measure of description complexity). To explain this subjectively 
defined concept, suppose the concept boundary is a circle, and the method can only draw axis-
parallel rectangles in the instance space.  To describe the concept, the method will have to use a 
large number of tiny rectangles.  We call such a method not adequate for this learning problem.  

Note also that an attribute set may be relevant for the training set, but irrelevant for the target 
concept.  Given a learning problem, defined by the training examples expressed in terms of the 
original attribute set �, one usually does not know if the given attribute set is intrinsically 
relevant; one may only determine if it is perceptibly (fully or partially) relevant.  When defining 
an original attribute set for concept learning, it is thus important to define at least a perceptibly 
relevant attribute set.  If this is impossible, then concept learning has to employ statistical or 
other methods for learning in inconsistent event spaces (e.g., Duda and Hart, 1973; Michalski 
and McCormick, 1972; Pawlak, 1991).  

To illustrate the ideas introduced above, consider target concepts ”Odd-sum” and “Even-sum”, 
defined as “sets of integers whose binary representation contains an odd number of “1s”  and  an 
even number of “1s” , respectively.  Assume that training sets of both concepts consist of decimal 
numbers, and that all “Odd-sum” integers happen to be written in red, and all “Even-sum” 
integers happen to be written in blue.  Assume also that most “Odd-sum” integers in the training 
set are typed using the Arial Narrow font, and the most of the “Even-sum” integers are typed using 
the �� �	� � �� � � � � �	�	� �  font.  

The attribute set �1 � { x1, x2, x3, …, xn} ,  where xi  are digits in the binary representation of the 
integers, is both intrinsically and perceptibly relevant to the learning problem, because concept 
representations and training set representations of the concepts do not intersect in the space 
spanned over �1 (unless there are errors in the data). The set �2 = { font_color}  is perceptibly 
relevant, but is not intrinsically relevant, because in some future concept instances, colors may 
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not be correlated with the concepts.  The set �3 = { font_type}  is partially perceptibly relevant but 

not intrinsically relevant.  The union of the three attribute sets, � = {�1 ∪ �2 ∪ �3}  is both 
intrinsically and perceptibly relevant. 

Attributes such as “ the parity of integers in the decimal system,”  “ the number of decimal digits,”  
“ the size of the digits,”  “ the type of ink used to type numbers down,”  etc. are not intrinsically 
relevant, and likely not perceptibly relevant (if their values do not have a strong accidental 
correlation with the concepts).  Suppose that the chosen learning method M expresses concept 
descriptions in the form of atomic rules, defined as logical conjunctions of conditions: attribute 
= value.  For the problem presented above, a learning system may create a set of rules:  

 { If font_color = red, concept = Odd-sum; If font_color = blue, concept = Even-sum}  (6) 

These rules in (6) would perfectly differentiate between instances of two concepts in the training 
set, and might also perform relatively well in classifying any future concept instances if the font 
color remains sufficiently correlated with the concepts.  In this case, the attribute “ font_color”  is 
adequate for the given method.  

Suppose now that the training set did not include the attribute font_color, but rather the attribute 
set �1 � { x1, x2, x3, …, xn} , as defined above. Given that the training set is finite, the method 
would still find a set of atomic rules that differentiate training examples of both concepts, but the 
description would be quite complex in terms of the number of rules, and would likely not work 
well on future examples.  Therefore, the attribute set �1 is inadequate for the method, though it is 
relevant for the target concepts. 

If the learning method M also has the ability to sum-up the binary digits, and to determine the 
parity of the sum, the concept description could then be quite simple. For example, if the method 
could construct a new attribute �’  =  Parity(Sum(x1, x2, x3, …, xn),  whose value is 1 if the parity 
of the sum of binary digits xi is odd, and 0 if it is even, it could then generate the concept 
description: 

                  If �’  = 1, then concept = Odd-sum; If �’  = 0, then concept = Even-sum  (7) 

The attribute set {�’ }  is thus relevant for the target concepts, and adequate for the method. 

Suppose now that M uses a representation language of decision trees.  In this case, the attribute 
set �1�is neither �-adequate  nor �tr–adequate; �2 is not �-adequate, but it is �tr-adequate, �3 is 

not �-adequate, but it is approximately �tr-adequate, and the attribute set { x1, x2, x3, …, xn, �’ }  
is relevant for target concepts and for training sets, and adequate for the method. 

As illustrated in the above example, an attribute set may be relevant for the target concept, but 
not adequate for the method. In such cases, areas in the original instance space representing 
individual concepts have boundaries that are difficult to describe using the given representation 
language. For example, if the target set forms a rhombus in the instance space, then the attribute 
set spanning the instance space is inadequate for methods that “speak”  in terms of axis-parallel 
rectangles.  In this case, one needs either to apply a method for which the attribute set is 
adequate, or span the instance space over different attributes. 
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An attribute set can become adequate if the method can generate additional, derived attributes, 
which are functions (arithmetic, logical, or other) of the original ones.  The problem of 
generating adequate derived attributes is a topic in constructive induction (e.g., Bloedorn and 
Michalski, 1998). Specifically, constructive induction methods aim at discovering derived 
attributes that span an instance space in which concept boundaries are much more regular than in 
the original space.  Figure 7 illustrates the relationship among the Universe of Discourse, 
Original Representation Space and Derived Representation Space2. 

Derived attributes can be characterized by their order. The first order derived attributes are 
functions of the original ones (zeroeth order). Such functions may be, for example, linear 
functions of numerical attributes (as in principal component analysis), any arithmetic functions of 
numerical attributes, logical expressions involving nominal attributes, Fourier transforms, 
wavelet functions, etc.  The kth order attributes are functions of sets of attributes among which 
there is at least one of (k-1)th order. 

 Figure 7:  The universe of discourse and original and derived instance spaces. 

7 DEFINITION OF ATTRIBUTIONAL CALCULUS  

Attributional calculus is a modification and extension of the variable-valued logic one (VL1), a 
form of multiple-valued logic (Michalski, 1972; 1974).  It is defined by its syntax, semantics, 
cognitive constraints, and an evaluation schema.  It is not just one fixed system, but has several 
forms. The more advanced the form, the richer the representation system, but the more difficult it 
is for implementing inductive inference. 

The concept of “cognitive constraints”  is novel in the definition of a logic system, and is 
introduced in order to reflect the objective of attributional calculus to serve as a representation 
system for natural induction. An attributional calculus system is a 4-tuple: 

 <syntax, semantics, cognitive constraints, evaluation schema> (8) 

                                                 
2  Some authors call the original event space an input space, and the derived representation space a feature space.  
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The syntax specifies formally correct �� expressions. The �� semantics depends on the 

interpretation schema.  �� can have many interpretation schemas.  

The following sections describe individual components of the definition of attributional calculus. 
We start with the basic syntactic and semantic construct called an attributional condition. 

7. 1 Attr ibutional conditions 

The basic representational unit of attributional calculus is attributional condition (or selector), 
which roughly corresponds to a simple sentence in natural language that describes an entity or a 
group of entities in terms of one, or at most few attributes.  A selector relates one or more 
attributes to their values or other attributes. A general form of a selector is:  

[L rel R], 
where:  

L (the left side or referent) contains an attribute, or a group of attributes with the same domain. 
Attributes from the group are joined by “&”  or “v” , called internal conjunction and disjunction, 
respectively.  L can also utilize one of the standard derived attributes: count, max, min, and avg.    

R (the right side or reference) is an expression specifying a value or a subset of values from the 
domain of the attribute(s) in L. If the subset contains values of a nominal attribute, they are 
joined by the symbol “v”  (called internal disjunction); if the subset contains consecutive values 
of a linear attribute, they are represented by joining the extreme values by operator “ ..” , called 
range. R can also be an attribute with the same domain as the attribute or attributes in L. 

rel is a relational symbol from the set:  { =, ≠, >, �, <, �} .  Relational operators { =, ≠}  apply to all 
types of attributes. Relations { >, �, <, �}  apply only to linear attributes. 

Brackets [ ] can be written as (), or omitted if their omission causes no confusion.  If brackets are 
used, the conjunction of two selectors is usually written as their concatenation.  If an attribute, x, 
is binary, the condition [x = 1] can be written simply as the literal x, and [x= 0] as the literal ~x. 
Thus, if attributes are binary, attributional conditions reduce to propositional literals. An 
attributional condition is called basic if its left side, L, is a single attribute, the relational symbol 
is one of {  =  >   �  <   � } , and the right side, R, is a single value; otherwise, it is called extended.   

Attributional conditions are interpreted in the context of the entity (object, situation, etc.) to 
which they are applied.  They can have a strict (propositional) interpretation, or flexible (or 
multi-valued) interpretation.  In the strict interpretation, [L rel R] is said to be satisfied by the 
entity (or evaluates to true) if L  is in relation rel to R for that entity. 

In the multi-valued interpretation of an attributional condition, [L rel R] is said to be satisfied or 
matched by the entity to degree α (or, simply, to evaluate to a degree α) if for that object L is in 
relation rel to R with the degree α, according to a given flexible evaluation schema (Section 9). 

Examples of attributional conditions with their strict natural language interpretation are presented 
below. An underlying assumption behind these conditions is that they all refer to entities in the 
given universe of discourse.  For completeness of attributional calculus, constants True and False 
are also viewed as attributional conditions. 
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Basic conditions (selectors):  

[x1 = 1],  alternatively, x1  (The value  x1 is 1)  

[x1 = 0],  alternatively, ~ x1   (The value  x1 is 0) 
                   The alternative notations assume that x1 is binary.   

[color = red]    (The color is red) 
[length < 5” ]    (The length is smaller than 5 inches) 

[temperature ≥ 32° C]   (The temperature is greater than or equal to 32° C) 
[tools={ mallet, knife} ]                       (The tools are mallet and knife)  
[price= ?]    (The price is unknown) 
[no_of_eyes =  NA]    (The attribute “number of eyes”  does not apply) 
[patient’s_name = * ]   (The patient’s name is irrelevant) 

Extended conditions 

[color =  red v blue v green]             (The color is red, blue or green) 

[blood-type  ≠ A]               (The blood type is not A) 
[length= 4..12]    (The length is between 4 and 12, inclusive) 

[color ≠ green]    (The color is not green) 
[height > width]   (The height is greater than the width) 
[height v width � 3 m]  (The height or the width is smaller than 3 m) 
[height & width  � 7 cm]  (The height and width are both at least 7 cm)   
[height & width <  length]  (Both the height and the width are smaller than the length) 
[weather = sunny & humid]  (The weather is sunny and humid) 
[count(x1=3, x3 <13, x4=2..4) =1]     (Among the conditions x1=3, x3 <13, and x4=2..4, exactly 

one is  true)  

The “weather”  is a compound attribute. The last example involves the derived attribute “count”  
(see Section 7.3).  Operators “v”  and “&”  when applied to non-binary attributes or to their values 
are called internal disjunction and conjunction, respectively. 

As can be seen from the examples above, attributional conditions are easy to interpret and easy to 
translate into equivalent natural language statements.  Basic conditions relate an attribute to one 
value from the attribute domain.  They express conditions on subsets of attribute values, and can 
be easily generalized by applying internal disjunction in the case of nominal attributes, the range 
or relation operator in the case of linear attributes, and the climbing-generalization-tree operator 
in the case of structured attributes (Michalski, 1983). 

7.2 Syntax and Semantics of Attr ibutional Calculus Sentences 

The syntax and semantics of attributional calculus are defined by the following rules specifying 
well-formed formulas (WFFs); the semantics using the strict interpretation scheme is defined in 
parentheses). 
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1. An attributional condition is a WFF.    

2. If S is a WFF, then ~S is a WFF (If S is true, then ~S is false, and vice versa).  

A negated condition, ~S, can be represented by appropriately changing the relation in the 
condition. Thus, ~[x = a] is equivalent to [x  � a], and  ~[x > a] is equivalent to [x � a]. 

3. An assignment statement [N :=  S] is a WFF  (N is assigned an expression S). 

Here, N is a derived attribute and S is a WFF or a reference to an externally computed 
arbitrary function.  The symbol “ :=”  is called the assignment operator.  If S is a WFF, 
then N is a derived attribute whose domain is the same as the domain of the WFF.  The 
domain of N depends on its interpretation.  If the WFF is strictly interpreted, then the 
domain of N is { true, false} .  If the WFF is flexibly interpreted, then its domain depends 
on the method of interpretation (Section 9). 

If S is a reference to an external function, the domain of the function is the domain of N. 
The assignment statement makes it possible to use arbitrary functions inside of 
attributional expressions.      

4. If S1 and S2 are WFFs, then: 

S1 & S2 Conjunction:  Both S1 and S2 are true. 

S1 ∨  S2   Disjunction:  S1 or S2 or both are true. 

S1 => S2   (alternatively written S2 <= S1) Implication: If S1 is true then S2 is true; 
otherwise, S2 is unknown. 

S1 <=> S2 Equivalence: S1 and S2 are both either true or false. 

S1 ∨ S2 Exclusive-or:  Either S1 or S2 is true, but not both. 

S1 |_ S2 Exception:  It can be of two types, strong and weak. The weak exception 
states that S1 true if S2 is false, otherwise S1 can be true or false. The 
strong exception states that S1 is true unless S2 is true, in which case S1 is 
not true. Logically, the weak exception is equivalent to the or (∨) operator, 
and the strong exception to the exclusive-or operator (∨). Statistically, 
however, the exception operators differ from the logical exclusive-or and 
or.  The exception operators are used only when the ratio of the frequency 
with which S1 is true in the data to the frequency with which S2 is true is 
high, that is, when it exceeds the exception threshold. To distinguish 
between the weak and the strong exception operators, the first is denoted 
by “ |_”  and the second by ||_.   

S1 |--   S2      S1 is true provided that S2 is also true, otherwise is not.  This operator is 
equivalent to the equivalence operator logically, but not statistically.  It is 
used when the ratio of the frequency with which S1 is true to the frequency 
with which S2 is untrue is high, that is, exceeds the provided-that 
threshold. 
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[Count(S1, S2,…Sn)  rel  R]  The count statement, asserting that the number of true 
statements in the list (S1, S2, …, Sn) is in relation rel to R, where rel  and  
R  are defined as in attributional conditions.           

are WFFs. 

Note that unlike all other operators, operators |_ and |-- express not only logical but also 
qualitative statistical information. The form of attributional calculus that uses only basic 
attributional conditions is called basic; if it also uses extended conditions, then it called extended.      

7.3 Count Expressions 

The derived attribute count has been introduced to attributional calculus in order to simplify 
expressions of a class of logic statements that can be very complex and opaque if expressed using 
classic operators. It represents a special mapping of attributes to a derived attribute that is built-in 
to the attributional calculus. A general form of the count attribute is: 

 count(S) (9) 

where S is a set of attributional statements, and the “count”  stands for the number of statements 
in S that are true. Attributional statements that use the count attribute are called count 
expressions. While in the general case S can contain arbitrary attributional expressions, in the 
typical use S contains only attributional conditions.  Below is an example of an attributional 
condition with the count attribute: 

 count(rev1 = pos, rev2 = pos, rev3 = pos, rev4 =pos)  � 3 (10) 

which evaluates to True if at least three reviews among the four { rev1, rev2, rev3, rev4}  are 
positive. 

Let X be a non-unit subset of attributes with the same domain selected from X� the set of all 
attributes describing an instance.  If S consists of attributional conditions involving attributes 
from X, related by rel to the same referent R, then one can write:  

 count{ X: REL R}  (11) 

where REL is a relation from the set: { EQ, NEQ, GT, EGT, ST, EST} , and R is defined as in the 
selector. The symbol EQ means equal, NEQ – not equal, GT – greater than, EGT – equal or 
greater than, ST- smaller than, and EST – equal or smaller than.  These symbols are used in the 
argument of the count attribute to avoid confusion with the relation in the selector.  For example, 
expression (10) can be alternatively written as: 

 count(REVs EQ pos)  �  3 (12)                            

where REVs is the set of reviews{ rv1, rev2, rev3, rev4} . 

As another example, consider the statement  

 count(X:  ST 5) = 2 (13)     

This statement says that “ the number of attributes from X that take value smaller than 5 in an 
instance is equal to 2. 



 

 

29 

The domain of the count attribute is: { 0, 1, 2, …, max-1} , where max is the cardinality of the set 
of statements in (9), or of the set of variables in (11). 

If the relation rel holds for all the statements in (9) or all attributes in (11), then one can write 

 { S: REL R}  = all   or   { X: REL R}  = all, respectively (14) 

The count attribute is used in the same way as other attributes to create attributional conditions. 
The count attribute can be used to express an existential and universal quantification over 
attributional conditions.  Assume, for example, that X = { x1, x2, x3, x4, x5, x6} , where all xi have 
the same domain, and the predicate EQ(x, v) states that attribute x takes value v.   

The existentially quantified expression: 

 ∃ x ∈ X,  EQ(x, v) (15) 

can be written in attributional calculus as: 

 count(X, x EQ v)  ≥ 1 (16) 

and expressed in natural language as “ the number of variables in X with value v is greater or 
equal to 1.”  The universally quantified expression:  

 ∀x ∈  X,  EQ(x,  v) (17) 

can be written in attributional calculus as: 

 count(x EQ v) = all (18) 

In addition to existential and universal quantification, the count attribute allows one to express 
many other forms of quantification over attributional conditions that do not exist in the 
conventional predicate logic.   

For example:  

count(X: EQ 4 v 5) > 2  means the number of variables in X with value 4 or 5 is greater than 2.  

count(X: GT 5) = 2..4 means the number of variables in X greater than 5 is between 2 and 4. 

count([x=1][y>4], [color=red v blue], [z=2..5]) = 2 means that among: 
[x=1][y>4], [color=red v blue], and [z=2..5], two and only two statements are true. 

The count expressions are useful in many application domains.  For example, it is not uncommon 
in medicine that a specific disease is indicated when a patient has a number of symptoms greater 
than some threshold. The n-of-m relations are special cases of count expressions.  They state that 
n of m binary attributes are true in a description (e.g., Sebag, 1999).  An n-of-m relation is used as 
a whole description, while in ��, count expressions can be combined with other expressions. 

As described above, conditions involving a count operator subsume existential and universal 
quantifiers over attributional descriptions of entities.  For example, the statement: “ If two or 
more conditions from among [x1=2], [x2=4], and [x5 > 1] are true and x6 is between 2 and 6, 
then d is greater than 4”  is expressed as: 

 [count{ x1 = 2, x2 = 4, x5 > 1}   �  2][x6 = 2..6]  � [d > 4] (19) 
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The next example illustrates an applicability of count expressions in medicine (courtesy of Dr. P. 
Koutrovalis). To classify the severity of prostate cancer, three risk factors have been identified:  

Factor 1:  PSA  � 10 ng/ml  (“PSA” measures the amount of prostate specific antigen) 
Factor 2:  Gleason’s � 7 (“Gleason’s score” measures the degree of abnormality of cancer cells)  
Factor 3:  Stage � T2b   (“Stage” measures the level of disease development) 

Using these factors, patients are classified into four general categories representing increasing 
severity of the disease: Category 1-No factors present, Category 2-One factor present, Category 
3-Two factors present, and Category 4-All three factors present.  These categories can be 
described formally in attributional calculus in a straightforward manner: 

count(PSA  � 10 ng/ml, Gleason’s � 7, Stage � T2b)  = 0   �   category = 1 

count(PSA  � 10 ng/ml, Gleason’s � 7, Stage � T2b)  = 1   �   category = 2   

count(PSA  � 10 ng/ml, Gleason’s � 7, Stage � T2b ) = 2   �   category = 3 

count(PSA  � 10 ng/ml, Gleason’s � 7, Stage � T2b)  = 3   �   category = 4   

The count expressions are also useful for simply expressing symmetric Boolean logic functions. 
Such functions tend to have the longest expressions in terms of standard logic operators 
(Michalski, 1969).   By using a count attribute, expressions of these functions are very simple. 

7.4 Other  Standard Der ived Attr ibutes 

In addition to count attributes, �� also recognizes other standard derived attributes. Let x ∈ X, 

�(x) be the domain of x, and X ⊆ �, where � is the set of all attributes in an instance (event). 
Here are standard derived attributes: 

|x| expresses the number of values in �(x), if �(x) is finite. If �(x) is infinite, then |x| = ∞.  

x+ and x- express, respectively, the next and the previous value of x in �, if � is totally or 

cyclically ordered.  If � is a hierarchically structured domain, then x+ is the parent of 
the value x, and x- is a child of x. Thus, if selector x- = A is satisfied, if any child of x 
is A. If � is an unordered set (x is a nominal attribute), then x+ and x- are elements in 

� different from x. Thus, selector x+ = A is satisfied if x ≠ A.    

min_x  and max_x  express, respectively, the minimum and the maximum values of x in �.   

max_X, min_X, and avg_X express the maximum, minimum and average, respectively, of values 
of attributes defined in X in an instance.  Attributes listed in X must have the same 
linearly ordered domain.  In the case of attribute avg_X, the domain the attributes in X 
must be metric.  For example, if a concept instance is: 

 (x1=red & x2=3 & x3=6 & x4=4 & x5=tall & x6=9 & x7 =8,  and X = {x2, x3, x4, x6, x7) 

then max_X =9, min_X =3 and avg_X = 6.  

sum_X and prod_X  express the arithmetic sum and the product, respectively, of attributes in X. 
These derived attributes also apply only to metric attributes.  
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diff_X and ratio_X, where X = {xi, xj}, and xi, xj are two attributes selected from X, measure the 
difference (xi – xj), and the ratio (xi / xj). The diff_X attribute applies to attributes of type 
interval, ratio and absolute. The ratio_X applies to attributes of ratio and absolute types. 

A question arises as to how to determine the set X.  Determining X that yields highly relevant 
new derived attributes is a problem by itself.  A search for the “best” X may be done by using 
heuristics drawn from the domain knowledge or by experimentation.  Because X must satisfy 
restrictions as to the types of attributes in it, and typically will be rather small, the “best” X can 
be determined by an exhaustive search. 

The reasons for introducing the above derived attributes to �� are that they may lead to both 
simple and understandable inductive hypotheses that, if expressed using conventional logic 
operators, would be very complex and difficult to understand.  The book by Liu and Motoda 
(1998) provides a review of methods concerned with construction of attributes. 

7.5 Important Cases of Attr ibutional Descr iptions 

Attributional descriptions are ordered sets of attributional calculus expressions that describe an 
entity, and set of entities, or relations among entities in terms of their attributes. To make this 
definition sufficiently general, the term “entity” includes here any objects, as well as concepts, 
decisions or classes assigned to these objects. The attributes may be directly measurable on the 
entities, or derived from the measurable ones.  This section defines selected forms of attributional 
descriptions that are of particular importance for natural induction.  

A conjunction of attributional conditions is called a conjunctive description, or a complex.    

For example, an attributional description of my “favorite house” may be: 

[Loc=in _ forest] & [Color=white v brown] & [#Bedrooms=4..5] & [School_quality � good] & 
[Backyard=large&private] & [Distance-to-work-H & Distance-to-work-W � 5miles] & 

 [LocDrgDlrs=prsn] & [Shops-work ∨  Shops-home � 3miles] & [count(shops) >1] (20) 

The attribute “Backyard” is compound, with constituent attributes “size” and “privacy_level”.   
The attributes “Distance-to-work-H” and “Distance-to-work-W” measure the distance from home 
to workplace for the husband and for the wife, respectively. The last condition means: “The 
location of drug dealers who operated in the local area is prison.” 

A disjunction of complexes is called a disjunctive description or disjunctive normal form of 
attributional calculus.  As known from formal logic, a disjunctive description can describe any 
subset of the event space, so it can characterize every possible concept in terms of the attributes 
spanning the event space.  

An expression:  

 Premise   =>   Consequent (21)  

where Premise (also called Condition) and Consequent (also called Decision or Action) are 
conjunctive descriptions, is called an attributional rule. An attributional rule can also be written 
in the opposite direction of implication, that is,    

 Consequent <= Premise (22) 
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Here is an example of an attributional rule:                                             

[Weather=warm & sunny] & [Have_partner] => [Play = tennis] 

The term “weather” is used the example as a compound attribute, the term “Have_partner” as a 
binary attribute, and the term “Play” as a multi-valued attribute, whose values are different games 
one can play.  

An attributional rule in which all conditions (selectors) are basic is called basic.  If a premise in a 
rule (21 or 22) includes one or more conditions that themselves are attributional rules, then such 
a rule is called an implicative attributional rule.  

To distinguish between the “external” implication that links the rule premise with the rule 
consequent, and the “internal” implication within the rule premise, the external implication is 
denoted by =>, and the “internal” implication by  ->.  Note that the internal implication is not a 
logical implication in the classic sense, but rather a strong connection, indicating that if the left 
side is satisfied, the right side must be as well for the rule to fire. 

 Here is an example of a simple implicative rule: 

[Have_partner] & (weather=warm -> outdoor-court=available) & 
(weather=cold -> indoor-court=available)  => [Play=tennis] 

Implicative rules can succinctly represent a description that otherwise would be more 
complicated and less understandable. Consider, for example, the problem of learning concept, C, 
represented by the positive and negative examples in Figure 8. 

Figure 8:  Training data used for illustrating an implicative rule.   

To describe concept, C, one needs five basic decision rules: 
x=0 & z=1 => C;   
x=0 & z=2 => C;  
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x=1 & z=1 => C;  
x=1 & z=2 => C; 
x=1 & y=1 => C  

two standard attributional rules: 
x = 0 v 1 & z = 1 v 2 => C;   
x = 1 & y =1 => C 

and just one implicative attributional rule: 
x = 0 v 1 & ( z = 3 -> y  = 1 ) => C  

An expression:    

 Premise => Consequent |_ Exception (23)  

where Premise, Consequent  and Exception are complexes, is called a censored attributional 
rule (or a rule with an exception clause). Here |_ denotes the weak exception operator, and such a 
censored rule is read, “If Premise is true, then Consequent is true, except when Exception is 
true, in which case Consequent may or may not be true.” 

This weak form of a censored rule is different from the strong form, introduced in (Michalski and 
Winston, 1986), which assumes the strong exception operator. In a strong censored rule, 
Consequent is false when Exception is true. The reason for using the weak exception operator in 
(23) is that weak censored rules are much simpler to implement, and learning and applying them 
is much easier.  

Censored rules can also be written in the opposite direction of implication, that is,  

 Consequent <= Premise |_ Exception (24) 

Here is an example of a censored rule:  

[Weather=nice] & [Have_partner] => [Play = tennis] |_ [Class-CLD873 = still-to-prepare] 
 
From the logical viewpoint, a weak censored rule can be re-written into:  

 Premise & ~Exception => Consequent (25) 

and a strong censored rule can be re-written into  

 Premise &  ~Exception  =>  Consequent 
 Premise &  Exception  =>  ~Consequent (26) 

Censored rules have, however, also statistical aspect, that is, are used only for describing 
situations in which a rule: Premise => Consequent holds very frequently (represents a strong 
pattern), but in some cases, defined by the Exception, does not hold. Specifically, a censored rule 
is used when the ratio of the frequency of satisfying the Premise to the frequency of satisfying 
the Exception is greater than the exception threshold.  Figure 9 illustrates an advantage of using 
censored rules. 
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Figure 9:   A training set for illustrating censored attributional rules. 

To describe concept C represented by positive examples, three standard �� rules are needed:    

x=0v1 & z=1 & y=1 =>  C;       x=0 & z= 1 =>  C;       x=0v1 & z=2  => C 

Using the exception operator, only one censored rule is needed:   

x=0v1 & z =1 v 2  =>  C  |_  x=1 & z=1 & y=0 

An expression: 

 Premise => Consequent |-- Precondition (27)  

where Premise, Consequent  and Precondition are complexes, is called a preconditioned 
attributional rule (or a rule with provided-that clause).  Analogously to weak and strong 
censored rules, there are also weak and strong preconditioned rules.  A weak preconditioned rule, 
as shown in (27), is interpreted, “If Premise is true, then Consequent is true, provided that 
Precondition is true; if Precondition is false, then the truth-status of Consequent is unknown.  In 
the case of a strong preconditioned rule, if Premise is true and Precondition is false, then 
Consequent is false as well.   The reason for using the weak precondition operator in (27) is that 
weak preconditioned rules are much simpler to implement, and learning and applying them is 
much easier.  

A preconditioned rule can also be written in the opposite direction of implication, that is, 
Consequent <= Premise |- Precondition.  

From the logical viewpoint, a preconditioned rule can be re-written into: 

 Precondition & Premise => Consequent (28) 

A strong preconditioned rule can be re-written as two rules: 
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 Precondition & Premise => Consequent (29) 

 ~Precondition & Premise => ~Consequent (30)  

Here is an example of a (weak) preconditioned rule: 

[Weather=warm & sunny] & [Have_partner] => [Play=tennis] |-- [Class-CLD873=prepared] 

As do censored rules, preconditioned rules have also a statistical property.  They are used only 
when the ratio of the frequency of satisfying the Precondition to the frequency of satisfying the 
Premise is below a precondition rule threshold.    

If a set of attributional rules (standard, censored or preconditioned) all have the same 
Consequent, it is then called a ruleset.  If the Consequent in a ruleset states a concept name, the 
ruleset is called a concept description.  A ruleset can be transformed into a logically equivalent 
single implicative statement whose Premise is a disjunction of the Premises of the rules in the 
ruleset.  The precondition operator can also be applied to a ruleset, which case we have a 
preconditioned ruleset: 

 {Premise => Consequent}   |--    Precondition (31) 

A preconditioned ruleset provides a mechanism for expressing a concept description which 
consists of attributional rules that have one or more common conditions. 

An attributional rule in which the Consequent defines a decision or action to be assigned to a 
situation satisfying the Premise is called a decision rule. For example, [price=low] & 
[quality=satisfactory] => [decision=buy]. 

An attributional rule in which the Consequent is a conjunction of two or more attributional 
condition is called a multihead rule; otherwise it is called a single-head rule.  Multihead rules 
characterize situations in which the truth of the Premise implies the truth of several consequent 
conditions. 

A collection of rulesets is called a classifier (or a ruleset family) if the Consequent of the rules in 
the ruleset spans all the values in the domain of an output attribute (all the concepts in a set of 
concepts to be learned).  For example, if the domain of an output attribute is a set of diseases, 
then a collection of rulesets for all the diseases in the set is a classifier. 

A collection of ruleset families for two or more decision attributes from the same database, with 
associated background knowledge (definitions of attribute types, rulesets parameters, and related 
information) and an associated data (e.g., the training and testing sets) is called a knowledge 
system. 

7.6 Cognitive Constraints 

In standard formal logics, such as propositional calculus or predicate logic, there is no constraint 
regarding the length of expressions or the number of times any logic operator can be repeated in 
an expression. Because the main objective of attributional calculus is to provide a 
representational system to support natural induction, some constraints need to be introduced. 
Clearly, natural language sentences need not only to be grammatical, but also to satisfy some 
constraints on their length and structure if they are to be understood. 
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To this end, the definition of attributional calculus includes, in additional to syntax and 
semantics, also constraints on the complexity of its descriptions, called cognitive constraints. 
These constraints reflect preferences and limitations imposed on the descriptions in order to 
make the logically natural language expressions appear natural to people, and easy to interpret 
and understand.  A precise definition of such constraints cannot be formulated because different 
people have different cognitive capabilities, thus such constraints would need to be tailored to 
each individual.  Therefore, this section provides only general ideas on how such constraints can 
be introduced into attributional calculus in order to implement natural induction. 

Cognitive constraints are defined by parameters limiting the number of repetitions of different 
operators in a single attributional expression. These parameters include: 

A. Conjunction_limit, which defines the maximum number of conditions allowed in a 
conjunctive description.  For example, Conjunction_limit = 5. 

B. Internal_conjunction_limit, which defines the maximum allowed number of items (variables 
or values) joined by an internal conjunction in an attributional condition.  A reasonable constraint 
may be, for example, Internal_conjunction_limit = 4. 

C. Disjunction_limit, which defines the maximum number of conjunctive descriptions allowed in 
a single disjunctive description.  For example, such a constraint may be Disjunction_limit = 3. 

D. Internal_disjunction_limit, which defines the maximum number of attributes or values that 
can be linked by internal disjunction in an attributional condition.  For example, such a constraint 
may be Internal_disjunction_limit = 4. 

E. Implication_limit, which defines the maximum number of statements that can be linked by an 
implication operator in a single expression.  For example, if Implications_limit = 2, expressions 
will be limited to attributional rules. 

F. Equivalence_limit defines the maximum number of statements that can be linked by an 
equivalence operator in a single expression.  For example, such a constraint may be 
Equivalences_limit  = 2. 

G. Exception_limit, which defines the maximum number of statements that can be linked by an 
exception operator. 

The above constraints need to be interdependent.  If one constraint is satisfied by a significant 
margin, another constraint may be relaxed, and the other way around.  Also, it is known from 
research in cognitive science that humans have preferences regarding different operators.  For 
example, people usually prefer a conjunctive description over a disjunctive one.  They also prefer   
statements asserting some property than negating it. For example, the condition color = red is 
viewed as cognitively simpler than color ≠  red.  Such preferences can be modeled by assigning 
different conceptual complexity to different operators. 

To reflect the above considerations, there may also be a constraint imposed on the total 
complexity of a single expression.  The complexity of an expression is defined by a function: 
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Complexity =  a * Conjunction_count + b * Internal_Conjunction_count +  
 c * Disjunction_count  + d * Internal_Disjunction_count + 

            e * Implication_count  +  f * Equivalence_count + g * Exception_count (32)                                              

where Conjunction_count, Internal_Conjunction_count, …, Exception_count denote the number 
of statements connected by conjunction, internal conjunction, …, exception operators, 
respectively, and coefficients a, b, c, d, e, f  and g reflect estimates on the “cognitive cost” of 
these individual operators in an expression.  Such estimates can be determined experimentally to 
fit the preferences of given users.  

The above cognitive constraints are imposed on the results of inductive inference (descriptions, 
hypotheses, rules, patterns). An expression that satisfies the cognitive constraints is called 
admissible, otherwise, it is called inadmissible.  An inadmissible description can be transformed 
to a logically equivalent set of admissible descriptions by applying the name assignment 
transformation rule:  

Any admissible description within an inadmissible description can be replaced by a name 
(binary attribute) assigned to it.  The name and the admissible description to which it is assigned 

are then added to the body of the attributional description. 

Let us explain the application of this rule to an inadmissible expression.  An attributional 
description was defined as an ordered set of attributional expressions.  When replacing a part of 
an inadmissible expression by its name, it is assumed that a pair consisting of the name and the 
expression assigned to it will follow the expression in which the name is used.  

For example, let us assume Conjunction_limit = 5, and that we have an inadmissible conjunctive 
description: 

 A & B & C & D & E & F & G & H & I (33) 

where A, B, ..., I are attributional conditions. 

Applying the name assignment transformation rules, the expression (33) can be transformed into 
the following admissible description:  

 A & B & C & D & J,  J := E & F & G & H & I (34)  

The description (34) is read:  

“A and B and C and D and J, where J is E and F and G and H and I.” 

Another transformation would yield: 

 <A & B & C & J & K, J:= D & E & F;  K:= G & H & I > (35) 

As one can see, a given inadmissible description can be transformed to many different admissible 
descriptions. An advisable strategy is to seek an admissible description with the minimum 
number of expressions.  In a similar fashion, one can transform an inadmissible description using 
other operators into an admissible one. 
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8 EXPRESSIVE POWER OF ATTRIBUTIONAL RULES 

Let us now characterize the class of functions that can be described by attributional calculus.  Let 
x1, x2,  …, xn, be input attributes, and �1,  �2, …, �n  be their domains, respectively; let y1, y2, 

…, ym be output attributes, and �1, �2 , �3, …, �m  be their domains, respectively.  Let us first 
assume that all input and output attributes are discrete and finite.  

Theorem 1 

Every mapping:  

 f:    �1 x �2 x �3 x … x �n  ----> �1 x  �2 x �3 x … x �m (36) 

where x denotes the Cartesian product, can be expressed by a set of attributional rules, 
specifically, by a family of rulesets. 

Proof 

Since output domains are discrete, the Cartesian product �1 x �2 x �3 x … x �m is also 

discrete. Assume that �o
 = �1 x �2 x �3 x ….x �m.  The function (36) can then be represented 

as: 

 f:    �1 x �2 x �3 x … x �n  ----> �o (37) 

�1 x �2 x �3 x … x �n defines a finite instance space, which is partitioned by the function f 

into a finite number, |�o|, subspaces.  Each subspace corresponds to one value of �o, and can be 
described by an attributional ruleset that maps that subset into that value.  A family of rulesets 
representing each value from �o represents function (37). QED 

Theorem 2 

Every mapping:  

 f:    �1 x �2 x �3 x … x �n  --->  {0,1} (38) 

can be represented by a single implicative attributional rule. As shown before, such a mapping 
can be represented by an attributional ruleset. If at least one rule in this set is satisfied by an 
event, then the value “1” is outputted, otherwise the value “0”.  A set of attributional rules with 
the same consequent is logically equivalent to a disjunctive normal form (DNF), that is, a 
disjunction of premises (complexes) of the rules from the ruleset. It is known from logic that for 
every DNF expression there exists a logically equivalent conjunctive normal form (CNF), that is, 
a conjunction of disjunctions of selectors.  Consider one such disjunction: 

 (S1 ∨ S2 ∨ S3 ∨ … Sk) (39) 

where S1, S2, S3, … ,Sk are selectors.  Using the equivalence (A => B) <=> (~A ∨ B), and de 
Morgan’s Law, ~(A ∨ B) <=>  ~(A&B), the expression (31) can be transformed into: 

 (~S1 ~S2 ~S3 … -> Sk) (40) 

By transforming all disjunctions in the CNF to implications (40), we get a single attributional 
implicative rule. QED 
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Let us now assume that some input variables are continuous, that is, that some domains �1, �2, 

�3, ..., �n are infinite.  In this case, the set �1 x �2 x �3 x �n is infinite.  The function (38) 
cannot be exactly represented by a family of attributional rulesets, but can be approximated by it. 
A straightforward way to do this is to discretize all continuous attributes, so that their domains 
will be finite, which will bring us to the previous case. 

Such a discretization of continuous attributes can be avoided if the task is to learn a description 
of the function (38) from a finite number of instances.  If the number of instances is finite, then 
one can create a consistent and complete generalization of them in the form of a family of 
attributional rulesets.  This can be done by mapping the finite set of instances into subspaces 
whose boundaries are specified by ranges of attribute values.  Such ranges are represented in �� 
using the range operator “..”,  defined in attributional calculus. 

Due to a rich repertoire of easy to interpret forms and operators, �� can not only represent any 
function (28), but represent it concisely and understandably.  Each such representation can be 
directly translated to natural language. 

9 ��������  INTERPRETATION SCHEMAS 

The previous sections discussed attributional calculus with a strict (binary) interpretation schema, 
which treats �� expressions as either true or false.  Specifically, it evaluates them to a value 
from the set {0, 1}, where “1” stands for “True” and “0” for False.  While such an interpretation 
has advantages, in some situations it is preferable to evaluate them flexibly, as multi-valued or 
continuously-valued expressions (descriptions).  Instead of declaring that an expression is true or 
false, a flexible evaluation assigns to it a degree of truth, or a degree of match between the 
description and the event.  A flexible interpretation can be particularly advantageous when �� 
expressions are used as concept descriptions.  For example, if a concept description is an 
attributional conjunction characterizing the concept, then its flexible interpretation is related to a 
model of human concept representation (Medin, Wattenmaker, and Michalski, 1988). 

Let us start with a definition of an �� interpretation schema. Given an event e (an example, an 

instance, or a model) and an �� description D, an interpretation schema produces a degree of 
match, DM(e, D) ∈ [0,1], between the event and the description.  If an interpretation schema 
evaluates expressions solely into the end-points of the interval [0,1], then it is called strict; if it 
evaluates expressions into the whole interval, it is called flexible.  An interpretation schema is a 
combination of methods for interpreting �� selectors and operators. 

This section presents several alternative �� interpretation schemas. Because the primary goal of 
this paper is to present attributional calculus as a tool for natural induction, we focus here on 
interpretation schemas for �� expressions that are of primary importance to this application, 
specifically, selectors, rules, rulesets, and ruleset families (classifiers).  The described schemas 
define methods for determining a degree of match between an event and a concept description. 
To classify an event, a degree of match between the event and all candidate concept descriptions 
is determined, and the highest degree of match indicates the concept.  When a strict match 
schema is used, it is sufficient to determine only the description that strictly matches the event. 
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When a concept description is in the form of an ordered family of rulesets, rulesets are evaluated 
sequentially, and the first ruleset that is matched indicates the concept. 

A question arises as to what to do when two or more concept descriptions are matched with the 
same or similar degrees.  In the AQ learning methodology, such concept descriptions are output 
as alternative concept descriptions (Michalski and Kaufman, 2001). 

Let:  e be an example or instance to be matched against a ruleset 
RS be a ruleset, and R1  R1,  R2  , …,  Rm be individual rules in this set 
FRS be a classifier, defined by a family of rulesets RS1, RS2 , …,  RSr 
P be a premise (conjunctive expression) in a rule 
S be a selector (condition) in a rule 
C be a consequent in an attributional rule, for example, an assignment of a concept or a 
decision class to the given output variable 
p, n denote the total number of positive and negative examples, respectively, that are 
covered by a single rule, Ri, in a ruleset 
P, N denote the total number of positive and negative examples, respectively, in the training 
set for a concept 

As mentioned above, to assign a concept (generally, a rule’s consequent) to an event, one needs 
to determine the “best” match between the event and the rulesets in the classifier.  When using a 
strict interpretation schema, the consequent of the ruleset with the match of 1 (perfect match) is 
assigned to the event, without the need for evaluating other rulesets.  This feature is an important 
advantage of a strict interpretation schema.  To apply such a method, the descriptions of different 
concepts must be logically disjoint (the case in which they intersect is considered later). 

When a flexible interpretation schema is used, degrees of match between the event and all 
rulesets in the classifier need to be computed.  The event is assigned the concept indicated by the 
ruleset with the highest degree of match.  In some applications, a different cost is assigned to 
different types of errors or misclassification.  For example, the cost of not recognizing an early 
stage of cancer is much greater than the cost of erroneously diagnosing the cancer.  In such 
applications, the minimum misclassification cost should be used as a criterion for assigning a 
decision. 

Let us assume that we want to determine a degree of match, DM(e, RS), between an example, e, 
and an attributional ruleset, RS, that is one of the rulesets in a classifier.  To do so, a rule 
interpretation schema needs to know the degree of match, DM(e, Ri), between the event e and 
each rule in RS, and then to aggregate these degrees into one DM(e, RS) degree of match. To 
know DM(e, Ri), the schema has to compute degrees of match, DM(e, Sj) between the event, e, 
and selectors, Sj, in each rule Ri, and then aggregate them into one value. 

An �� interpretation schema must thus define methods for determining the following degrees of 
match: (1) DM(e,S), between an event, e, and selector, S, in a rule, (2) DM(e, R), between an 
event, e,  and rule R, and (3) DM(e, RS), between an event, e, and ruleset, RS.  It must also 
define a method ASSIGN(e, FRS) for  assigning a concept (generally, asserting a rule’s 
consequent) to the example e using classifier FRS. 
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Let us now consider different methods for computing the above degrees. 

Selector  Interpretation Methods:  Methods for computing DM(e, S)   

     1. CSI (“Strict selector interpretation”)    

DM(e, S) = 1 if the event e matches selector S strictly, as described in  Section 7.1), 
otherwise 0.  This method can be applied to all types of attributes.  Figure 10 illustrates 
the CSI method for a selector in which a metric attribute is assigned the range of values:  
x =  a..b. 

 

Figure 10:  An illustration of a strict method for selector interpretation.         

     2. FSI (“Flexible selector interpretation”)   *Default method* 

For nominal attributes, FSI works the same way as the strict method.  For metric 
attributes, instead of sharp borders of attribute ranges in selectors, more gradual (“fuzzy”) 
boundaries are used.  This is so because in many applications, sharp borders are not 
justified.  For example, if the likely time of occurrence of a plant disease is described by a 
selector [time = August..September], it would be unreasonable to reject the possibility of 
this disease being detected on July 31.   

There can be many ways of smoothing (“fuzzyfying”) sharp borders of attribute ranges in 
selectors.  A computationally simple way (used as default in ��) is to assume that the 
degree of match, DM, decreases linearly with the distance from the end point(s) of a 
range. If a selector defines an inequality relation, e.g., x ≤ a, only one endpoint (here, “a”) 
needs to be made gradual, because the other one is the end of the attribute domain. To 
consider a general case, assume that S is [x = a..b], where a, b are not the extreme values 
of the attribute domain. 

Then DM(e, S) = 1 if the attribute in question in event e takes a value between a and b, 
inclusive; otherwise the degree of match is f(d), where f is a monotonically decreasing 
function of d, the distance of the value of the attribute in e to the nearest the endpoint (a 
or b). As a default, f is assumed to be a linear function whose slope, controlled by a 
parameter k, depends on the width of the range.  Specifically, the slope is 1/δ, where δ = 
|b - a| / k (Figure 11). 

a                                    b                  x 

DM 
     1 
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Figure 11:  An illustration of the degree of match function for the selector x=a..b, defined by a 
flexible interpretation schema. 

Rule Interpretation Methods:   

1. SC (“Standard conjunction”)  

DM(e, R) = 1 if all selectors in R are matched strictly, that is, for all selectors, Si, in the 
premise of rule R, DM(e, Si ) = 1; otherwise DM(e, R) = 0.         

2. MIN (Minimum of selector degrees of match) 

DM(e, R) = Min(DM(e, Si)) over the selectors Si in the premise of rule R.  The method is 
applicable with a flexible selector evaluation schema. 

3. MIN-w   (Minimum of weighted selector degrees of match) 

In this method, each selector in the rule’s premise is assigned a weight p / (p+n), where p 
is the number of positive training events satisfying the selector, and n is the number of 
negative events satisfying the selector.  Although the method can be applied with a strict 
or flexible selector interpretation method, the flexible method is assumed by default.  
When a flexible selector interpretation method is used, the selectors’ degree of match is 
multiplied by the selector’s weight.  

DM(e, R) is the minimum of the weighted degrees of selector matches by the selector 
weights.   

This method is more computationally costly than MIN, because determining all of the p 
and n values may be computationally costly if the training dataset is very large. 

4. PROD (Product of selector degrees of match)  

DM(e, R) = ∏(DM(e, Si) over the selectors Si in rule R.  The method is applicable to a 
flexible selector interpretation schema. 

5. AVG (Average of degrees of selector match) 

DM(e, R) is the average of the degrees of match, DM(e, Si), between event e and 
selectors  Si in the rule.  If all selectors are evaluated strictly, DM(e, R) is the ratio of the 
number of selectors satisfied by the event e to the total number of selectors in the premise 
of  R. 

DM 

  a                                b           x 
δ                                         δ 

1       2    ……….        k 
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6. AVG-W (Average of weighted selector degrees of match) 

This method is similar to AVG, but it multiplies the degrees of selector match by selector 
weights (defined as p / (p+n)), analogously to the MIN-W schema. 

DM(e, R)  is the average of the degrees of selector matches multiplied by the selector 
weights.  

This method is applied with a flexible selector interpretation. 

Ruleset Interpretation Methods   

1. SD (“Standard Disjunction”) 

This method interprets a ruleset as a logical disjunction of the premises of the rules in the 
ruleset.  If the premise of at least one rule in ruleset RS is strictly satisfied by event e, 
then DM(e, RS) =1, otherwise, it is 0. 

2. MAX (“Maximum of the degrees of rule match”) 

This method interprets a ruleset to the maximum of the degrees of match of rule premises, 
that is, DM(e, RS) = MAX(DM(e, Ri) 

3. PSUM (“Probabilistic sum of the rules’ degrees of match”) 

This method interprets a ruleset to the probabilistic sum of the degrees of match of its 
rules, that is, DM(e, RS) = PSUM(DM(e, Ri)).  The PSUM is computed iteratively 
according to the rule:  PSUM(d1, d2) =  d1 + d2 – d1d2. 

4. AVG (“Average of the degrees of the rule match”) 

This method interprets a ruleset into the average of the degrees of match of its rules, that 
is, DM(e, RS) = AVG(DM(e, Ri). 

As mentioned earlier, an �� interpretation schema is defined by a combination of methods for 
selector, rule, and a ruleset interpretation. In the above, we described two selector interpretation 
methods, six rule interpretation methods, and four ruleset interpretation methods; thus, there are 
potentially 48 �� evaluation schemas.  

Some of these combinations amount to logically equivalent �� schemas.  For example, when a 
strict selector interpretation method is used, then the SC (standard conjunction) and the MIN 
methods for rule interpretation are equivalent.  When SC is used for rule interpretation, then the 
SD (standard disjunction) and the MAX methods for ruleset interpretation are equivalent. 

Below are four basic �� interpretation schemas. The first (default), third and fourth are flexible, 
and the second is strict. 

1. Basic Flexible Interpretation Schema (BFIS)—used as default for  ��������. 

BFIS is defined by the following combination of methods: 

Selector interpretation: FSI (Flexible selector interpretation) 
Rule interpretation:  MIN (Minimum of the selector degrees of match) 
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Ruleset interpretation  MAX (Maximum of the rule degrees of match) 

2. Str ict Interpretation Schema (SIS) 

SIS interprets attributional calculus expressions as binary logic expressions (as in Section 7.2).  It 
is defined by the following combination of methods: 

Selector interpretation: CSI (Strict selector interpretation) 
Rule interpretation:  SC (Standard conjunction) 
Ruleset interpretation:  SD (Standard disjunction) 

3.  Weighted Interpretation Schema (WIS) 

WIS is defined by following combination of methods: 

Selector interpretation: FSI (Flexible selector interpretation) 
Rule interpretation:  MINW (Minimum of weighed selector degrees of match) 
Ruleset interpretation  MAX (Maximum of degrees of matches) 

4. Probabilistic Interpretation Schema (PIS) 

PES is defined by following combination of methods: 

Selector interpretation: FSI (Flexible selector interpretation) 
Rule interpretation:  PROD (Product of selector degrees of match) 
Ruleset interpretation:  PSUM (Probabilistic sum of degrees of rule matches) 

Given an event, e, and a ruleset, RS, an �� interpretation schema generates a degree of match, 
DM(e, RS), between the event, e, and the ruleset, RS.  When the event is to be assigned a 
concept (or a decision class, a value of an output attribute, or generally, a rule consequent) from a 
set of candidate concepts, the degrees of match between the event and the rulesets for all 
candidate concepts (defined in the family of rulesets, FRS) are computed, and used for making 
such an assignment.   

Let us define methods for making this assignment, that is, methods that given an event, e, and a 
classifier FRS, assigns to it a rule consequent. 

1. MaxMatch (Maximal degree of match) 

MaxMatch(e, FRS) assigns to e the consequent of a ruleset, RS ∈ FRS, for which the degree of 
match, DM(e, RS) is maximum.   

If the ruleset interpretation schema is strict (CSI) and rulesets in FRS are logically disjoint, then 
the consequent of the first ruleset that matches strictly the event is selected for output.  There is 
no need for matching the event against other rulesets.  

If more than one ruleset matches the event with a similar degree of match, then there are two 
ways to handle this: 

(1)  The example is assigned the concept that has the highest prior probability among the 
alternative concepts, based on the prior frequency of concepts (decisions, in general, 
consequents). 
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(2)   The example is assigned multiple concepts, the concepts specified by the equally matched 
rules. Such an assignment is the most appropriate in two cases: 

a)  The output variable is set-valued.  The matched rulesets generate a set of values to be 
assigned to the output variable. Such a situation exists, for example, when a value of a set-valued 
variable represents a tool that can be applied to a given problem, and a set of such values 
represents all tools needed to do the job. 

b)  The output variable is single-valued, but one does not want to force a single decision on an 
example that similarly matches different rulesets, but prefers to assign to it a list of alternative 
assignments.  Such assignments can then be reduced to one by obtaining more information about 
the example and using more specific rulesets.  This latter method is fairly typical in human 
decision making. 

2. MinCost(e, FRS), assigns to e the consequent of a ruleset in FRS that represents the 
minimum error cost. This method is used when different costs are assigned to different decisions. 

10 ANNOTATED ATTRIBUTIONAL CALCULUS 

Previous sections described a bare form of attributional calculus, which consists solely of logic-
style expressions. When learning concept descriptions from examples, it is useful to annotate the 
induced hypotheses in terms of numerical parameters characterizing them. Because natural 
induction is concerned with learning attributional rules and ruleset families, we will focus our 
attention to such expressions. 

An annotated attributional rule has been defined as: 

 Premise  => Consequent:  Annotation (41)  

where Premise and Consequent are complexes (conjunctions of attributional conditions), and 
Annotation is a list of parameters characterizing the rule and possibly other relevant information. 
There can be many useful parameters characterizing attributional rules and attributional rulesets. 
Here we will limit ourselves to several basic ones.   The basic parameters are: 

Support (or positive coverage) defined as the probability, p(Premise | Consequent/SIS) 
expressed as percentage, and estimated by the ratio of the number of positive training events that 
strictly confirm the rule to the number of all positive examples.  The number of examples that 
strictly confirm the rules is computed by applying the SIS (Strict Interpretation Schema).  

Negative support (or negative coverage) defined as the probability p(Premise | 
~Consequent/SIS) 

Flexible support(T) (or flexible positive coverage), defined as the probability p(Premise | 
Consequent/BFIS), expressed as a percentage, and estimated by the ratio of the number of 
positive training events that match the rule with a degree of match equal or greater than T to the 
total number of positive examples.  The degree of match is computed by applying BFIS (Basic 
Flexible Interpretation Schema). 
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Confidence, defined as p(Consequent | Premise & SIS)--the probability, expressed as a 
percentage, of Consequent if Premise is strictly satisfied by an event, i.e., when the rule is 
evaluated by the SIS Interpretation schema. 

Flexible confidence, defined as the probability, p(Consequent | Premise & BFIS), expressed as 
a percentage, of Consequent if Premise is flexibly satisfied by an event, i.e., when the rule is 
evaluated by BFIS (Basic Flexible Interpretation Schema).  This probability is estimated by 
using a training set of examples. 

Training Confidence, defined as the probability p(Consequent | Premise & SIS, TS), expressed 
as a percentage, of Consequent if Premise is satisfied by an event from the training set TS using 
the strict interpretation schema (SIS).  

Note that if p and n are numbers of positive and negative examples strictly covered, and P and N 
are total numbers of positive and negative examples in the training set, then: 

Support, briefly, Supp, is p/P  

Negative support, briefly, NegSup, is  n/N   

Confidence, briefly, Conf, is p/(p+n) 

In addition to the above parameters, other parameters and rule characteristics can be included in 
the rule Annotation, depending on the specific implementation of the natural induction program. 
It can also be useful to annotate individual selectors in the rule, for example, by such parameters 
as p and n, which express the strict positive and negative coverage of the selector. 

To give an example of an annotated attributional rule, and to illustrate the expressive power of 
��, let us consider a concept description expressed as a natural language decision rule:   

 If x1 is less than or equal to x2, x3 differs from x4, and x3 is red or blue, then concept C. (42) 

Using mathematical operators, rule (42) can be re-represented as: 

 If x1 � x2 , x3 � x4, and x3 is red or blue, then concept C. (43) 

Let us suppose that attributes xi, i=1,2,3,4 are all binary. To represent rule (43) as a decision tree, 
one would need a tree with 26 nodes and 20 leaves. To represent this rule using conventional 
decision rules (that employ only basic conditions), one would need 12 rules. 

Suppose now that attributes xi are five-valued. In this case, representing (43) would require a 
decision tree with 810 leaves and 190 nodes, or 600 conventional decision rules. 

The need for such a complex representation of a relatively simple relationship demonstrates a 
major limitation of these representational formalisms.  

Using attributional calculus, rule (43) can be represented as: 

 x1 � x2  &  x3 � x4 & x3= red v blue => Concept= C (44) 

which closely resembles (43), and could be easily translated to natural language rule (42). 
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Obviously, this example was specially constructed to illustrate ��’s advantages, but it does 

point out some important properties of attributional rules.  In a computer implementation of �� 
as a representation language for natural induction, a rule annotation can include more 
information than the basic parameters listed above, and there can also be similar annotation of 
individual selectors.  In a system for natural induction it may be also advantageous to output 
rules not in the formal syntax of annotated calculus, but in a more natural form, easy to interpret 
and understand.  For example, such an output might be in the form of a table: 

[Concept is C] if: 
 Supp NegSup FSup Conf FConf TCon Pos Neg   
x1 � x2,, and 60% 7% 66% 56% 59% 61% 1200 350 
x3 � x4 , and 56% 11% 60% 46% 49% 50% 1120 550 
x3= red or  blue 58 % 5% 60% 58% 51% 55% 1160 250 
          RULE 54% 3% 68% 87% 100% 100% 1080 150 
 
Additional annotation:  
Total number of positive examples:  P = 2000     
Total number of negative examples: N = 5000   
The number of uniquely covered examples:  u = 980 
Rule quality: Q = .9 
Ambiguous examples:   (pointers to examples covered also by rules in other rulesets)  
Exceptions:    (pointers to examples of other classes that satisfy the rule) 
Positives covered:   (pointers to positive examples strictly covered by the rule) 
Flexibly covered:   (pointers to all positive flexibly covered examples)  

where:  

Supp stands for Support 
NegSup stands for Negative Support 
FSup stands for Flexible Support 
Conf stands for Confidence 
FCon stands for Flexible Confidence 
TCon stands for Confidence on the training set 
Pos is the number of positive examples covered strictly by the rule 
Neg is the number of negative examples covered strictly by the rule  

If P and N are the total numbers of positive and negative examples in the training set, 
respectively then: 

Supp =  pos / P 
NegSup = neg / N   
Conf = pos / (pos + neg) 

In the table above, annotations are assigned not only to the whole rule, but also to individual 
selectors. The table presents an easy to interpret representation of an attributional rule with 
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annotations assigned to it.  Such a rule representation has been used (approximately) in VINLEN, 
a multistrategy system for learning, data mining, and decision support being developed in the 
GMU Machine Learning and Inference Laboratory (Kaufman and Michalski, 2003).  

11 SUMMARY 

Attributional calculus is a logic and a representation system that combines aspects of 
propositional logic (by applying propositional operators to selectors), predicate logic (through the 
count and compound attributes), and multiple-valued logic (though flexible interpretation and 
multiple-valued logic operators). �� is specifically intended to support the development of 
natural induction systems that strive to hypothesize human-oriented descriptions from data.  

�� provides a formal representation for inductive learning of descriptions that: 

1. are compact, and easy to understand and interpret  

2. can be simply and directly translated to natural language 

3. are gradually generalizable through the internal logic operators and structured attributes 

4. include compound attributes, a new type of attribute that permits the system to associate 
attributes with a specific object  

5. include count attributes that permit the system to express simply a large number of different 
quantified statements 

6. can be relatively efficiently implemented in a computer program.  
 
The above features make Attributional Calculus particularly attractive for such areas as machine 
learning, data mining and knowledge discovery, knowledge mining, and inductive databases. 
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APPENDIX 

Effect of the Representation Language on the Choice of Hypothesis in Inductive Learning 

This Appendix provides a simple illustration of the importance of representation language in 
inductive inference. Suppose that an inductive system is learning concept z, and has to choose 
between two competing hypotheses, A and B, which cover the same training examples, denoted 
by  “+”  and “ -“ , as shown in the diagram in Figure A1.  The small digits in the lower-right corner 
of each cell denote the number of positive literals in the expression corresponding to the cell.  
Hypotheses A and B are illustrated in Figures A2 and A3, respectively.  
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Figure A1:  Training examples. 

 

 

 

                                       +                                                                                                          

 

 

 

Figure A2:   Hypothesis A. 
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Figure  A3:   Hypothesis B. 
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Hypotheses A and B, if expressed in propositional logic, are:  

 A:   z   <=   x~yw   � �� ��� ~�yw (A1) 

 B:   z   <=   x~yw   � �xy~w   � ~�yw (A2) 

While expressions (A1) and (A2) are legal both in propositional and attributional calculus, in the 
latter language they can be alternatively represented using a count attribute: 

  A:  z  <=   [count(x,y,w)  ≥  2] (A3)                                                         

 B:  z  <=   [count(x,y,w)  =  2] (A4)  

These expressions can be validated by observing the small numbers in the corners of the cells in 
Figure A1.  Expression (A3) states that if there are two or more attributes in { x, y, w}  that take 
value  “1”  in an example, then the example is assigned class z. Expression (A4) states that if 
there are exactly two attributes in { x, y, w}  with value “1,”  then the example is assigned class z.  

Hypotheses A and B can also be expressed using logically equivalent decision trees.  
    

           

A:       If y=0, then 
               if x=0 then ~z, else 

 if w=0 then ~z 
 else z  

else: 
               if x=1 then z, else 
                           if w=1, then z 
 else ~z (A5) 
 

B:       If y=0, then 
               if x=0 then ~z, else 

 if w=0 then ~z 
 else z  

else: 
               if x=1 then 

if w=0 then z, 
else ~z 

     else: 
                           if w=1, then z 
 else ~z (A6) 

                      

Note that the decision trees (A5) and (A6) appear to be significantly more difficult to understand 
and represent mentally than corresponding attributional calculus expressions (A3) and (A4).   
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The decision trees (A5) and (A6) are represented graphically in Figures A4 and A5, respectively.  
In these trees, the left branch stemming from each node is assigned value 0, and the right branch 
is assigned value 1 of the attribute assigned to the node. 

 

Figure A4:  A decision tree representing hypothesis A. 

 

Figure A5:  A decision tree representing hypothesis B. 

As one can see, the decision tree in Figure A5 is somewhat more complex that decision tree in 
Figure A4. The one in Figure A4 has five nodes and six leaves, and the one in Figure A5 has six 
nodes and seven leaves.  

Expressions (A1), (A3) and (A5) representing hypothesis A are all logically equivalent, as are 
expressions (A2), (A4), and (A6) representing hypothesis B.  Because they all are complete and 
consistent with regard to the training data), the question arises as to which hypothesis from each 
pair { A1, A2} , { A3, A4} , and { A5, A6}  would be selected by learning programs using these 
description languages.  When two hypotheses are both consistent and complete with regard to the 
training data, an extra-logical criterion needs to be applied.  In inductive learning, a typical such 
criterion is hypothesis simplicity, often called “Occam’s razor” :  If two hypotheses explain the 
data, choose the simpler one.  

It should not be controversial to assume that the hypothesis (A1) is simpler than (A2), because it 
has fewer literals; that hypothesis (A3) is more complex than (A4), because a relational operator 
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is more complex than the equality operator; and that (A5) is simpler than (A6), because it has 
fewer nodes and leaves.  Thus, programs using propositional calculus and decision tree 
representations would select hypothesis A, and a program using attributional calculus might 
select hypothesis B.  Choosing hypothesis A or B thus depends on the representation language 
used by the learning program.  This example thus demonstrates that using different hypothesis 
representation languages can lead to generating different hypotheses from the same training data. 
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