
ANALYZING AND EXTENDING THE DISTANCE-TO-MEASURE
GRADIENT FLOW USING HIGHER ORDER VORONOI DIAGRAMS

by

Patrick Albert O’Neil
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Mathematics

Committee:

Dr. Thomas Wanner, Dissertation Director

Dr. Daniel Anderson, Committee Member

Dr. Harbir Antil, Committee Member

Dr. Lizette Zietsman, Committee Member

Dr. David Walnut, Department Chair

Dr. Donna M. Fox, Associate Dean,
Office of Student Affairs & Special Programs
College of Science

Dr. Peggy Agouris, Dean, College of Science

Date: Spring Semester 2017
George Mason University
Fairfax, VA

Analyzing and Extending the Distance-to-Measure Gradient Flow

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Patrick Albert O’Neil
Master of Science

George Mason University, 2015
Bachelor of Science

Virginia Polytechnic and State University, 2011

Director: Dr. Thomas Wanner, Professor
Department of Mathematical Sciences

Spring Semester 2017
George Mason University

Fairfax, VA

Copyright c© 2017 by Patrick Albert O’Neil
All Rights Reserved

ii

Dedication

I dedicate this dissertation to all of my loved ones, including Gail and Patrick O’Neil, Brian
O’Neil, and especially Jared Harris. Their relentless support made this possible.

iii

Acknowledgments

Some of the material in Chapter 5 is based on data services provided by the OpenTo-
pography Facility with support from the National Science Foundation under NSF Award
Numbers 1226353 & 1225810.

iv

Table of Contents

Page

List of Figures . vii

Abstract . x

1 Introduction . 1

1.1 Contributions . 2

1.2 Manifold Sampling . 5

1.3 Wasserstein Distances . 8

1.4 Surface Reconstruction . 10

1.5 Distance-to-Measure . 16

1.6 Reconstruction Theory . 22

2 Topological Data Analysis . 29

2.1 Simplicial Approximations . 30

2.2 Homology . 34

2.3 Persistent Homology . 38

2.4 Stability of Persistence Diagrams . 42

3 k-Nearest Neighbor Smoothing . 46

3.1 k-order Voronoi Regions . 48

3.2 The k-Nearest Neighbor Gradient Flow . 59

3.2.1 Local k-Nearest Neighbors Gradient Flow 60

3.2.2 Defining the Flow on the Boundary 63

3.3 Properties of the k-Nearest Neighbor Flow 69

3.3.1 Sliding Motion . 73

3.3.2 Periodic Orbits . 76

3.3.3 Stability of Flow in the Bottleneck Distance 78

3.4 Diffusive Flow . 81

3.5 Flow Diagram . 82

4 Extensions . 87

4.1 Normal Bundle Flow . 88

4.2 Diffusive Flow . 96

v

4.3 Adaptive Flow . 100

4.4 Mahalanobis Flow . 108

4.5 Nearest Neighbor Calculations . 116

5 Applications . 118

5.1 Simple Geometries . 120

5.1.1 Circle . 120

5.1.2 Capsule . 131

5.1.3 Circle in R3 . 137

5.1.4 Sphere . 142

5.1.5 Five-dimensional Sphere . 148

5.2 3D Scanning and LiDAR . 151

5.2.1 Stanford Bunny . 152

5.2.2 Stanford Dragon . 157

5.2.3 LIDAR Data . 160

6 Conclusion . 166

Bibliography . 173

vi

List of Figures

Figure Page

3.1 Going from k = 1 to k = 2 . 50

3.2 Going from k = 1 to k = 2 . 51

3.3 Example with BarG(V) 6∈ V . 58

3.4 kth-order Voronoi diagrams for samples drawn from [0, 1]2 60

3.5 Attractive sliding along the interface ∂Vi ∩ ∂Vj 67

3.6 The barycentric sinks of a point cloud drawn from S1 72

3.7 k-order Delaunay triangulation for samples drawn from [0, 1]2 84

3.8 k-order flow diagram for samples drawn from [0, 1]2 85

4.1 Normal Bundle Flow . 95

4.2 Smoothing without diffusion . 98

4.3 Smoothing with diffusion . 99

4.4 Persistence diagram of smoothed point clouds 99

4.5 Example Point Cloud and P (x) . 104

4.6 Regression line for P (x) . 105

4.7 Adaptivity Coefficients a(x) . 106

4.8 Linear and Quadratic Absolute Difference 107

4.9 Normal bundle flow with and without adaptivity 107

5.1 Point Cloud Sampled from S1 . 121

5.2 Geometric Error Rates for S1 with σ = 0.1 123

5.3 Geometric Error Rates for S1 with σ = 0.075 124

5.4 Geometric Error Rates for S1 with σ = 0.05 125

5.5 Geometric Error Rates for S1 with σ = 0.025 126

5.6 Geometrically Optimal Point Clouds for S1 with σ = 0.1 127

5.7 Topological Error Rates for S1 with σ = 0.1 128

5.8 Topologically Optimal Point Cloud for k-NN Flow 129

5.9 Topologically Optimal Point Cloud for Normal Bundle Flow 130

vii

5.10 Point Cloud Sampled from W . 131

5.11 Geometric Error Rates for Cap(2, 1) with σ = 0.1 133

5.12 Geometric Error Rates for Cap(2, 1) with σ = 0.05 133

5.13 Geometrically Optimal Point Clouds for W 134

5.14 Adaptive Smoothing for Cap(2, 1) with σ = 0.1 135

5.15 Topological Error Rates for Cap(r`, rr) with σ = 0.1 136

5.16 Optimal Persistence Diagrams for Cap(r`, rr) with σ = 0.1 137

5.17 Topologically Optimal Point Clouds for Cap(r`, rr) with σ = 0.1 138

5.18 Sample point cloud drawn from S1 in R3 . 139

5.19 Geometric Error Rates for S1 in R3 with σ = 0.1 140

5.20 Geometric Error Rates for S1 in R3 with σ = 0.05 141

5.21 Geometrically Optimal Point Clouds for S1 in R3 with σ = 0.1 141

5.22 Topological Error for Point Clouds Drawn from S1 in R3 with σ = 0.1 . . . 142

5.23 Topologically Optimal Point Clouds for S1 in R3 with σ = 0.1 143

5.24 Optimal Persistence Diagrams for S1 in R3 with σ = 0.1 143

5.25 Example Point Cloud Drawn from S2 . 144

5.26 Geometric Error Rates for Point Clouds for S2 with σ = 0.1 145

5.27 Geometric Error Rates for Point Clouds for S2 with σ = 0.05 145

5.28 Geometrically Optimal Point Clouds for S2 with σ = 0.1 146

5.29 Topological Error for Point Clouds Drawn from S2 with σ = 0.1 147

5.30 Topological Optimal Point Clouds for S2 with σ = 0.1 148

5.31 Topological Optimal Point Clouds for S2 with σ = 0.1 148

5.32 Geometric error for a point cloud drawn from S5 under the k-nearest neigh-

bors flow . 149

5.33 Geometric error for point cloud drawn from S5 under the normal bundle flow 150

5.34 Noisy Stanford Bunny . 152

5.35 Geometric Error for Stanford Bunny . 154

5.36 Optimal Smoothing for the Stanford Bunny 156

5.37 Noisy Stanford Dragon . 157

5.38 Geometric Error for Stanford Dragon . 158

5.39 Optimal Smoothing for the Stanford Dragon 159

5.40 Granite Island Point Cloud . 161

5.41 Stadium Point Cloud . 162

viii

5.42 Potomac Point Cloud . 163

5.43 Runtime for k-nearest neighbor gradient flow 164

5.44 Runtime for normal bundle gradient flow . 164

ix

Abstract

ANALYZING AND EXTENDING THE DISTANCE-TO-MEASURE GRADIENT FLOW

Patrick Albert O’Neil, PhD

George Mason University, 2017

Dissertation Director: Dr. Thomas Wanner

Point cloud data arises naturally from 3D scanners, LiDAR sensors, and industrial com-

puted tomography among other sources. Most point clouds obtained through experimental

means exhibit some level of noise, inhibiting mesh reconstruction algorithms and topological

data analysis techniques. To alleviate the problems caused by noise, smoothing algorithms

are often employed as a preprocessing step before attempting to reconstruct the sampled

measure. Moving least squares is one such technique, however it is designed to work on

surfaces in R3. As many interesting point clouds naturally live in higher dimensions, we

seek a method for smoothing higher dimensional point clouds. To this end, we turn to the

distance-to-measure function.

In this dissertation, we provide a theoretical foundation for studying the gradient flow

of the distance-to-measure function induced by the empirical measure, as introduced by

Chazal, Cohen-Steiner, and Mérigot. In particular, we find a method for solving the

distance-to-measure gradient flow using higher order Voronoi diagrams. Using this frame-

work, we formulate the gradient flow system as a Filippov system. We are then able to

characterize the dynamics of the system and produce a directed acyclic graph which reflects

these dynamics. Using this diagram, one can follow the directed edges to determine where

points in various regions of the system will flow.

Having established the theoretical foundation for the gradient flow system induced by

the distance-to-measure function, we turn our attention to providing novel modifications

to the system which alleviate some of the shortcomings of the original flow. In particular,

we extend and incorporate some techniques from the field of surface reconstruction. This

produces the normal bundle flow, a new technique for smoothing high dimensional point

clouds. Additionally, we build a method for improving the sampling density of a point cloud

by adding a diffusive term to the flow. This technique has immediate applications to data

obtained from line scanners, where non-uniformity in the sampling can be a major concern.

Next, we reformulate the gradient flow to adapt to the local geometry of the point cloud

in an attempt to preserve high curvature features that may otherwise be smoothed away

during the flow. This involves developing a new method of approximating curvature of a

point cloud in high dimensions. As a final modification, we show that the normal bundle flow

shares a connection with the gradient flow induced by the Mahalanobis distance, a function

commonly used in statistics. With this connection in mind, we develop a generalized version

of the gradient flow which has the Mahalanobis flow and the normal bundle flow as special

cases.

Finally, we analyze the performance of the gradient flow on many different point clouds

obtained through various means. First we analyze the gradient flow system on simple

geometries such as circles and spheres. Then we apply the gradient flow to point clouds

obtained from 3d scanning. These point clouds exhibit much richer geometries and therefore

pose a more difficult smoothing task. Lastly, we look at large LiDAR point clouds and

analyze the computational performance of a couple of the gradient flows we have explored.

Chapter 1: Introduction

There has been substantial research effort (for example, see [52], [28], [33], [49], [39]) con-

cerned with analyzing point clouds drawn from an underlying manifold M of RN . Of

primary focus has been the topological and geometric reconstruction of a manifold from

a point cloud sampled from the manifold. Since most applications of point clouds involve

noisy data collection processes, the points must be assumed to lie near the underlying

manifold instead of on the surface. Therefore, algorithms are desired which produce both

topologically and geometrically accurate results and are robust to varying levels of noise.

One approach to reducing noise is through the use of smoothing gradient flows. In the

continuous case, examples of such gradient flows are mean curvature flow [56], Willmore

flow [7], and Ricci flow [40]. In particular, the mean curvature flow of a surface S is given

by

∂S

∂t
= D∆S

where ∆ is the Laplace-Beltrami operator on the surface S and D is a constant controlling

the speed of the flow. Many approaches to point cloud smoothing construct a discrete

version of the Laplace-Beltrami operator and induce a flow similar to the mean curvature

flow. Inducing such a flow on a manifold will not change the topology of the manifold.

However, since we are dealing with a zero-dimensional subset of Euclidean space, it is

not clear how a gradient flow would affect the geometric and topological nature of meshes

constructed from the point cloud evolving under the flow.

To investigate how a flow changes the topology of a mesh constructed from the point

cloud, we turn to the field of topological data analysis. In particular, we use a topological

descriptor known as the persistence diagram to summarize a point cloud’s topological prop-

erties. Through the use of the stability theorem for persistence diagrams, we see that the

1

gradient flow on the point cloud induces a flow through the space of persistence diagrams.

That is, when we evolve the point cloud, we evolve the persistence diagram in a continu-

ous fashion. This creates so called vineyards, tracking topological changes throughout the

gradient flow. Under this framework, we can begin to ask questions about the convergence

of these gradient flows and whether inducing a gradient flow on a point cloud causes the

persistence diagram of the evolving point cloud to converge to the persistence diagram

associated with the sampled manifold.

In this dissertation, we investigate several gradient flows designed to smooth point

clouds. We build a theoretical foundation for the gradient flow induced by the distance-to-

measure function and introduce novel modifications to this gradient flow. We also present

numerical results concerning the smoothing performance of these flows both in Euclidean

space and in the space of persistence diagrams. Through this analysis, we hope to fur-

ther the understanding of these gradient flows and how they may be applied to noisy and

incomplete data.

1.1 Contributions

Although point cloud smoothing has been a subject of substantial research effort recently,

the primary focus of the developed algorithms has been surface reconstruction. Since this

problem is naturally posed for a 2-dimensional manifold embedded in R3, many of the avail-

able techniques were designed to work in low dimensions and become too computationally

expensive in higher dimensions. When constructing a smoothing algorithm in higher dimen-

sions, it is important to keep computational complexity in mind. In this dissertation, we

analyze a gradient flow based on the so-call distance-to-measure function. Unlike existing

methods, which involve expensive operations such as polynomial fitting, our techniques sim-

ply require one to compute a gradient of the nearest neighbors. This allows the algorithm

to scale better to higher dimensions. Additionally, we build on this gradient flow through

several extensions that are designed to improve the smoothing properties of the system.

In what follows, we build a theoretical foundation for the study of the gradient flow

2

arising from the distance-to-measure function induced by the empirical measure. As shown

by Chazal et al in [14], the distance-to-measure function reduces to a simple k-nearest

neighbor function when the measure in question is the empirical measure. Chazal showed

we can then take the gradient of the k-nearest neighbor function and induce a flow on the

point cloud. Building on Chazal’s work defining this gradient flow, we build a theoretical

framework for studying the flow using higher order Voronoi diagrams, a generalization of

the traditional Voronoi diagram to neighbor sets of cardinality greater than one.

Using the Voronoi structure, we are able to prove a great deal about the k-nearest neigh-

bors gradient flow. For example, we find all the sinks of the system and give conditions for

a Voronoi region to contain a sink. Next, we show that the system has no periodic orbits.

Additionally, we establish the fact that the gradient flow system is a piecewise-smooth dy-

namical system, and in particular a Filippov system. From this, we are able to prove that

the system does not exhibit any sliding motion, a critical result for numerical simulations

of the flow. Furthermore, we are able to construct a flow graph which qualitatively en-

capsulates the dynamics of the system. The flow graph is a directed, acyclic graph which

describes where points in each Voronoi region will travel under the influence of the induced

gradient.

Taking a note from some of the existing surface reconstruction approaches, we then

introduce a modification of the k-nearest neighbors gradient flow which attempts to ap-

proximate the local differentiable structre of the manifold from which the point cloud was

sampled. Specifically, we try to approximate the normal bundle of the manifold around a

point in the point cloud. Such an approach has been used in surface reconstruction prob-

lems and in this work, we extend this technique to higher dimensions. Once the normal

bundle has been approximated, we project the k-nearest neighbor gradient vector field onto

the approximated normal bundle, thus restricting movement of the point cloud to the nor-

mal directions of the sampled manifold. Furthermore, we introduce a novel way to use the

approximated tangent vectors (i.e. those orthogonal to the approximated normal bundle)

to force the point cloud to spread out and avoid clusters forming during the flow, a common

3

problem with the k-nearest neighbor gradient flow.

Since the distance-to-measure function is not the only function used to measure the dis-

tance between a point and a distribution, we also consider the Mahalanobis distance. This

function, often used in statistics, serves a similar purpose to the distance-to-measure func-

tion. Thus, it seems natural to consider what happens to a point cloud under the gradient

flow induced by the Mahalanobis distance. To this end, we introduce the Mahalanobis flow

and investigate some of its properties. To our knowledge, this is the first investigation in

the relevant literature of the Mahalanobis flow.

As it turns out, taking the gradient and projecting it along the approximated normal

vectors induces a gradient flow which holds a strong connection to the flow induced by the

Mahalanobis distance. In particular, comparing the projected distance-to-measure gradient

with the gradient obtained from the Mahalanobis distance, it becomes clear that the pro-

jected distance-to-measure gradient flow is in some sense a differently weighted version of

the Mahalanobis flow. This is due to the fact that the projected distance-to-measure gradi-

ent only permits motion along the approximated normal directions. On the other hand, the

Mahalanobis gradient allows motion in all directions. Thus, while the distance-to-measure

flow attempts to restrict flow along the normal directions, the Mahalanobis flow allows

flow in all directions, but scales the amount of flow in each direction by the corresponding

directional variance.

All of the above described techniques operate on the point cloud in a uniform fash-

ion. However, it is often important to take local information, such as the curvature of the

manifold, into account when evolving the point cloud. Techniques suggested for adaptively

smoothing point clouds often only work in low dimensions because they rely on approx-

imating the medial axis of a point cloud. To approximate this geometric object requires

expensive operations such as the Voronoi diagram or sphere enlarging techniques (which

require computing intersections of spheres). In this work, we introduce a new method for

approximating the local curvature of a high dimensional point cloud. This method is based

simply on distance calculations and one dimensional curve fitting and therefore scales to

4

high dimensions.

Finally, we give numerical results on the effectiveness of the above algorithms. We

investigate the optimal selection of parameters: the neighborhood size k and the run time

of the smoothing. To determine the optimal parameter values, we will use two notions

of error. First, we will determine the geometric error in the smoothed point cloud. That

is, how far do the points lie from the sampled manifold. Second, we will determine the

topological error. That is, if we build a simplicial complex from the evolved point cloud,

how topologically similar is this complex to the sampled manifold? By considering both

notions of error, we will be sure to determine the correct parameter values for both geometric

and topological reconstruction algorithms.

All numerical results in this work are obtained using the GradSmooth C++ library and

the TopoPack python package, both created for this dissertation. GradSmooth smooths

arbitrary dimensional point clouds using either the k-nearest neighbor flow or the normal

bundle flow. It also contains all the modifications we develop in Chapter 4, allowing for

experimentation with combinations of all the approaches. Furthermore, this implementa-

tion is multi-threaded, allowing for large point clouds to be processed quickly. TopoPack

contains routines for topologically and geometrically analyzing the results of the k-nearest

neighbor flow and the normal bundle flow. This package also allows one to analyze a two

dimensional k-order Voronoi diagram and construct a flow diagram from the higher or-

der Voronoi diagram. For all of the persistence diagram calculations, including those in

TopoPack, we utillize Dionysus, a C++ library written by Dmitriy Morozov [41].

1.2 Manifold Sampling

Let M be an m-codimensional manifold in RN with 0 < m < N . The empirical measure νM

on the manifold M as defined in [14] is given by the rescaled volume form on M . Sampling

from the measure νM yields a uniformly dense sampling of the manifold M . When we

encounter multiple submanifolds M1, ...,M` ⊂ RN of varying intrinsic dimension, we can

5

define a measure ν on M = ∪`i=1Mi given by

ν =
∑̀
i=1

λiνMi

where {λi}`i=1 are constants summing to one. Noise can be added to this model by convolv-

ing ν with a Gaussian distribution, that is

µ = ν ?N (0, σ2)

where σ > 0 is a noise parameter known as the standard deviation of the noise.

Throughout this dissertation, the term point cloud will be used to denote a finite set

X of points in RN for some N > 0 with N < |X | which are in general position. That is,

there exists no hyperplane in RN containing more than N points of X . We consider the

point clouds to be drawn from a manifold M using the measure µ as just constructed. If

σ = 0, then all of the sampled points lie directly on the manifold X. However, if σ > 0,

then the point cloud is noisy and therefore our algorithms must be robust to noise.

Although the point cloud is generated from the probability measure µ, in practice, the

measure µ is unknown. Therefore, we must approximate the measure from a point cloud

X . Suppose X = {x1, ..., xn} ⊂ RN is drawn independently and identically distributed

(i.i.d.) according to some probability measure µ and let µX be the empirical probability

measure on X . That is, for any Borel subset B ⊂ RN , we define

µX (B) =
1

n
|B ∩ X |

This probability measure is often used when infering an underlying distribution since, by

the uniform law of large numbers, µX converges to µ with probability 1 when n → ∞

[14]. The fact that µX converges to µ allows us to approximate the underlying distribution,

6

however we often have a fixed number of samples. Therefore, we seek a way of reducing the

error in our approximation without increasing the sample size. To accomplish this, we will

induce gradient flows which are designed to move the points of X closer to the underlying

manifold which generated the samples.

It is important to note that although many of the methods presented in this work do

not require the probability measure in question to be generated by a manifold, it is often

more intuitive to consider our samples as being drawn in this way. We will make clear

whenever the manifold assumption is required. As we will see, it can be difficult to recover

the geometry of M from the point cloud X , however the topology of M is more readily

discovered.

For some of the error bounds that will be established later, we must make additional

assumptions on the sampling. These assumptions will apply to point clouds sampled from

surfaces in R3 and rely on the notion of local feature size. Before we give the definition of

local feature size, recall that the medial axis of a surface S is the set of all points y ∈ R3

such that the set {z ∈ S : d(y, z) = d(y, S)} has cardinality greater than one.

Definition 1.1. Let S ⊂ R3 be a smooth surface. The local feature size of a point x ∈ S

is given by lfs(x) = d(x,M) where M is the medial axis of S.

As noted in [22], the function lfs(·) is 1-Lipschitz. We can use the local feature size to

approximate the size of geometric features of the surface near a point. In particular, in the

case where S is a sphere of radius r, the medial axis is simply the center of the sphere and

lfs(x) = r for every point x ∈ S. Intuitively, in a region with a large local feature size, we

can perform more substantial smoothing than we can with a smaller feature size, where we

would like to preserve the small features of the data. As we will see, this corresponds to

taking a larger value of h in Equation 1.2 (see page 12) when the local feature size is large,

and taking a smaller value for h when it is small. The following sampling condition is a

noisy version of the sampling conditions found in [9]. This particular form can be found in

[22].

7

Definition 1.2. For a surface S and a point x ∈ R3, let x̃ ∈ S be the closest point of the

surface to x. A point cloud P ⊂ R3 is a noisy (ε, α)-sample of a surface S if the following

hold

(a) For every z ∈ S, d(z, P) < ε lfs(z)

(b) For every p ∈ P , d(p, S) < ε2 lfs(z) where z is the closest point in S to p.

(c) Every point p ∈ P is equipped with a normal vector vp where the angle between vp and

the normal np̃ is less than ε, where np̃ is the surface normal at p̃.

(d) For every x ∈ R3,

|B(x, ε lfs(x̃)) ∩ P | < α

where B(c, r) is the ball of radius r centered at c ∈ R3.

1.3 Wasserstein Distances

Discussing convergence of probability measures requires a metric space setting. Therefore,

we will use the Wasserstein distances, Wp(·, ·), to turn the set of all probability measures

into a metric space. As noted in [8], the metric Wp is also known as the Kantorovich

distance and was introduced as far back as 1958 [34]. The association with Wasserstein

(correct transliteration Vasershtein) is due to a paper by Dobrushin [25], which incorrectly

cited Vasershtein’s paper [54] as the source of the metric. Historical inconsistencies aside,

we will refer to Wp as the Wasserstein metric throughout this paper to remain consistent

with modern literature.

The definition of the Wasserstein distance is rooted in optimal transport theory. In

particular, for two Radon probability measures µ and ν on RN , a transport plan between

µ and ν is a Radon probability measure π on RN × RN , with marginals µ and ν. That is,

for all A,B ⊆ RN , we have π(A×RN) = µ(A) and π(RN ×B) = ν(B). For each transport

8

plan, we can associate a cost Cp(π), and then optimal transport theory is concerned with

finding the transport plan π of least cost. This is made precise in the following definitions.

Definition 1.3. Given p ≥ 1, the p-cost of a transport plan π is defined as

Cp(π) =

(∫
RN×RN

‖x− y‖pdπ(x, y)

)1/p

The Wasserstein distance (of order p), denoted Wp(µ, ν), between two Radon measures

µ and ν on RN with finite p-moment is defined as

Wp(µ, ν) = inf
π
Cp(π)

where the infimum is taken over all transport plans π.

For general Radon measures µ, ν on RN , with finite p-moments, i.e.
∫
RN ‖x‖

pdµ(x) <∞

and
∫
RN ‖x‖

pdν(x) < ∞, we are ensured a finite p-cost for any transport plan π as shown

in [8]. The Wasserstein distance is also symmetric, Wp(µ, ν) = Wp(ν, µ), and Wp(µ, ν) = 0

only if µ = ν. Finally, the triangle inequality is verified in [8]. Thus, the Wasserstein

distance is in fact a metric and hence (P(RN),Wp) forms a metric space over the set of

Radon probability measures P(RN)

As alluded to above, the empirical measure µX on a point cloud X sampled from a

measure µ converges to µ as |X | → ∞ with probability one. The following result shows

that this general convergence statement holds in the Wp norm. This, and the two results

following, can be found in [15].

Proposition 1.4. If a measure µ is concentrated on a compact set, then µX converges

almost surely to µ in the Wp distance as |X | → ∞.

As our model contains a convolution with a noise term, we would like to verify a similar

result holds under the presence of noise. As a first step, we have the following result which

9

relates the convolved measure to the original measure.

Proposition 1.5. If ν : RN → R+ defines a probability distribution with finite p-moment

σp =
∫
RN ‖x‖

pν(x)dx, then

Wp(µ, µ ? ν) ≤ σ

Putting these results together yields a powerful result on the convergence of the empirical

measure of a noisy point cloud, µX , to the underlying generating measure ν.

Corollary 1.6. If we consider the empirical measure µX as described above, constructed

from an underlying geometric measure ν convolved with a Gaussian distribution N (0, σ),

we find that

lim
N→∞

W2(µX , µ) ≤ σ with probability 1

where µ = ν ?N (0, σ).

Therefore, we can bound the distance between the empirical measure, µX , and the

generating distribution µ, by the noise σ present in the model. This implies that the

distance between the measures converges to zero as we reduce the noise, an important,

albeit completely unsurprising, result.

1.4 Surface Reconstruction

As mentioned in the introduction, point clouds are often used to represent surfaces in R3.

In this setting, one seeks to reconstruct the surface of an object from a point cloud which

is assumed to have been drawn from a probability distribution concentrated around the

surface. Such point clouds may be drawn from 3d scanners such as LiDAR systems (which

mesaures distance using laser light), or x-ray computed tomography (which takes x-ray

images at several angles to produce a 3d representation), to name a few examples. Due to the

dimensionality assumptions, many surface reconstruction methods rely on approximating a

normal vector to the surface at each of the sample points. When it comes to constructing the

10

approximating surface, many techniques have been proposed such as radial basis functions

[13], multi-level partitions of unity [44], and natural neighbor interpolation of the distance

function [9]. One technique of particular interest to this work is that of the moving least

squares [4].

The method of moving least squares computes normal vectors and a bivariate polynomial

at each point. The bivariate polynomial is meant to approximate the surface of the object.

Once the polynomial is obtained, the original point cloud is projected onto the polynomials

in the direction of the computed normal, with the goal of reducing the noise inherent in the

sample. Additionally, once one obtains the polynomials, it is straightforward to upsample or

downsample the point cloud by adding or removing points along the polynomial. Of course,

the dimensionality assumptions only come into play with the choice to use a bivariate

polynomial and a single normal vector. To scale the technique to higher dimensions, one

would use a multivariate polynomial and approximate the normal bundle at each point,

instead of just a normal vector. However, fitting a multivariate polynomial becomes difficult

in higher dimensions, as we will see. For now, we will focus on surfaces in R3.

Suppose we have a smooth surface S ⊂ R3 and we have drawn points X = {p1, ..., pn}

from S with some level of noise. The goal of the moving least squares method is to construct

an approximation of S from the points X , which we will denote SX . Given a point r ∈ R3,

we would like to project r down to the surface S, that is we would like to find a point

q ∈ R3 which is approximately the projection of r onto S. The first step is to approximate

a tangent plane to the surface S near the point r. That is, we compute a local plane

H = {x|〈n, x〉 −D = 0, x ∈ R3} with n ∈ R3, ‖n‖ = 1, and D the distance to the origin, by

minimizing a weighted sum of squared distances of the sample points pi ∈ X to the plane

H. In particular, we find H by minimizing

N∑
i=1

(〈n, pi〉 −D)2θ(‖pi − q‖)

11

where θ is a smooth weighting function and q is the projection of r onto H via the normal

vector n. To be precise, we set q = r + tn for some t ∈ R, yielding

N∑
i=1

〈n, pi − r − tn〉2θ(‖pi − r − tn‖) (1.1)

In practice, a Gaussian weight is often used. That is, we set

θ(d) = e−
d2

h2 (1.2)

where h determines how quickly the influence of points decreases with their distance to q.

We will discuss the choice of h shortly, however for now just consider it to be a parameter

of the smoothing algorithm. Finally, define P(r) = q = r + tn to be the local minimum

of Equation 1.1 with the smallest t and local tangent plane H near r. That is, P projects

points onto the approximate tangent plane of S near r.

From here, we compute the bivariate polynomial which approximates the surface S. We

let qi = P(pi) for pi ∈ X and set fi = n · (pi − qi), the height of pi over the tangent plane

Hi. Let g be a bivariate polynomial (whose order is yet to be specified), which minimizes

the weighted least squares error

N∑
i=1

(g(xi, yi)− fi)2θ(‖pi − qi‖) (1.3)

where (xi, yi) represents qi in the local coordinate system specified by H. We define the

surface projection map P, which projects points r onto the approximated surface SX , by

P(r) = q+ g(0, 0)n = r+ (t+ g(0, 0))n. As noted in [5], the map P is in fact a projection

map, which implies that the set and the order of the points we project does not change the

surface. Finally, the approximated surface SX is defined as the set of all points in R3 which

project to themselves under P.

12

To compute the actual projection, we must minimize Equation 1.1, which in general

has many local minima. However, since we are taking the minimum with the smallest t,

we assume the plane must be near r. An iterative scheme is employed in [5], wherein they

start with t = 0 and approximate the normal vector. Thus, the weights θi = θ(‖pi− r‖) are

fixed. Let B ∈ R3×3 be the r-centered weighted covariance matrix, that is B = {bjk} with

bjk =

N∑
i=1

θi
(
pij − rj

)
(pik − rk)

Then using B, we can rewrite Equation 1.1 as the following bilinear minimization problem

min
‖n‖=1

nTBn

whose solution is given by the eigenvector of B corresponding to the smallest eigenvalue of B.

From the solution to this problem, we can see that approximating normals is similar to local

principal component analysis (PCA) where we locally find the directions of greatest variance

and project the data onto these dimensions, thereby performing dimensionality reduction.

Unlike PCA, instead of performing dimensionality reduction on the data, we treat the

direction with least variance as the normal direction. In this sense, scaling up the normal

approximation to higher dimensions is simple: instead of taking the single eigenvector

corresponding to the smallest eigenvalue, we take the m eigenvectors corresponding to the

m smallest eigenvalues, where m is the codimension of the object of study.

Once we have computed the normal vector for t = 0, we fix this vector and minimize

Equation 1.1 with respect to t. As noted in [5], this is a non-linear optimization problem

which could have many local minimia. However, in practice, there is often only one local

minimum when t ∈ [−h/2, h/2] where h is the same smoothing parameter used in Equation

1.2. Therefore, we constrain t to fall within this interval. Then the partial derivative can

13

be computed as

2
N∑
i=1

〈n, pi − r − tn〉
(

1 +
〈n, pi − r − tn〉2

h2

)
e‖pi−r−tn‖

2/h2 (1.4)

and following an iterative minimization scheme as described in [5], the projection P(r)

can be found. With the projection and normal computed, we have the tangent plane

approximation H. From here, we are left with a linear least squares optimatization problem

to compute the polynomial g. This yields a system of linear equations where we have the

same number equations as we have coefficients of g. Of course, for a degree three bivariate

polynomial, this yields a system of 10 equations. However, for a polynomial of degree d

with n variables, we must solve a system of

(
n+ d

d

)

equations. Clearly for high dimensions, this system becomes enormous. Therefore, fitting a

polynomial to represent the surface of an object becomes problematic when we are dealing

with high dimensional data. Later, we will discuss a gradient flow based modification of

this algorithm which works in arbitrary dimensions since its complexity is much lower with

respect to the dimensionality of the underlying manifold.

The above procedure relies on a single parameter, h > 0, in the Gaussian weighting

function. The lower this parameter value, the less smoothing will occur. Obviously, there

are cases where setting h globally does not make sense. For example, suppose our data

consists of two spheres S1 and S2 where the radius of S1 is much smaller than the radius

of S2. Under a global parameter h, we can either set h to apply an appropriate level of

smoothing to S1 or we can set it to appropriately smooth S2 by using a larger value of h.

However, with a large enough value of h, the smaller sphere S1 will collapse toward the

center of S1 since in this case, every point sampled from S1 would contribute a significant

14

amount to the calculation of the tangent plane. This would cause the computed barycenter

to be near the circle’s center. Thus, when the polynomial is fitted, it will run through this

barycenter and hence, through the center of the circle. When the points of S1 are projected

onto the polynomial, they will fall toward the center of the circle.

Such problems suggest an adaptive approach to setting the smoothing parameter h.

Tamal Dey and Jian Sun consider exactly this in their work [22] which uses moving least

squares to approximate the surface, but uses the local feature size, as defined in Section

1.2, to adapt the smoothing parameter h. In particular, for a point x ∈ R3, they take the

weight θp associated with a point p ∈ X to be

ln θp(x) = − ‖x− p‖
2

ρ2ef(p̃)f(x̃)

where x̃ and p̃ are the projections of x and p onto the surface S respectively, ρe controls the

level of smoothing, and the function f , described in a moment, is a smooth approximation

of lfs(·). From the definition, it is clear that larger values of ρe induce greater smoothing.

Turning to the definition of f , since the local feature size depends on the medial axis, it

is not smooth on the surface S. In particular, it fails to be smooth when S intersects the

medial axis of its own medial axis. To overcome this issue, [22] uses the fact that smooth

real-valued functions over smooth manifolds are dense in the family of continuous functions

to construct a smooth approximation f(·) of lfs(·) where for arbitrarily small β, we have

|f(x)− lfs(x)| < β lfs(x)

for all x ∈ RN . The paper goes on to define the surface implictly as the zero level set of

N (x) =
∑
p∈X
〈x− p, vp〉θp(x)

where θp is defined using the adaptive weights. One benefit of this approach is that smaller

15

geometric features will be preserved under the smoothing operation so long as ρe is set

properly. Of course, to use this approach, one needs to compute some approximation of the

medial axis of the surface. In [21], they use the Voronoi diagram to approximate the medial

axis for a surface in R3. Later, in Chapter 4, we will develop a new adaptive smoothing tech-

nique. Instead of using the local feature size of an object, we will approximate the curvature

of the object and set our weights accordingly. The motivation behind this approach is that

for higher curvature regions of the manifold, we would like to use fewer neighbors to ap-

proximate the tangent space. Additionally, since computation of high dimensional Voronoi

diagrams is expensive [50], we will need an approach that works in higher dimensions, with

lower computational complexity.

Although all of the above techniques were designed for surface reconstruction, they can

be applied to high dimensional data using the modifications discussed. However, in doing so,

we are bound to run into computational complexity issues due to the exponential reliance

on the dimension of the data. Therefore, methods for smoothing data and reconstructing

surfaces which scale polynomially with the dimensionality of the data are required. In

Chapter 4 we will develop a smoothing technique that scales much better with the dimension

of the data set. To do so, we will use the normal bundle approximation techniques described

in this section and induce a gradient flow that respects the approximated surface normals.

Since the gradient we introduce is trivial to compute in arbitrary dimensions once the

nearest neighbors are computed, the polynomial fitting issues are completely avoided.

1.5 Distance-to-Measure

Many results in computational geometry use the distance function. Given a compact set

K ⊂ RN , the distance, dK(x), of a point x ∈ RN to the set K is defined in the usual way,

dK(x) = inf
y∈K

d(x, y)

16

Note that the zero level set of dK is simply the set K. Thus, the set dK contains geometric

information about the set K. By considering the sublevel sets of this function, we can

construct the r-offsets of K, denoted Kr, according to the definition

Kr = {x ∈ RN : dK(x) < r}

As just noted, since dK(x) ≥ 0 for all x ∈ RN , the 0-offset, K0, is simply the original set

K. Although the r-offsets contain a great deal of geometric information, they are extremely

sensitive to noise. For example, adding a single isolated point x ∈ RN\K to the set K

will completely change the geometry and topology (adding a new connected component) of

the r-offsets. Therefore, inferring topological and geometric information directly from the

r-offsets fails under the presense of noise. Thus, the traditional distance function is not

ideal for applications involving noisy point clouds. To alleviate these concerns, we turn to

the notion of the distance-to-measure function as defined in [15]. This function is similar

to the distance function, however it is robust to noise. Before we define the distance-to-

measure function, we first present a weaker notion of this distance, aptly referred to as the

pseudo-distance function.

Definition 1.7. Let µ be a probability measure on RN . For m ∈ [0, 1], we define the

pseudo-distance to the measure µ to be the map

δµ,m : x ∈ RN 7→ inf{r > 0 : µ
(
B̄(x, r)

)
> m}

As the name suggests, the pseudo-distance function is not what we would typically

consider a distance function. However, for m = 0, the definition of δµ,m reduces to that

of the distance function to the support of µ. On the other hand, as m approaches one,

we see that δµ,m grows, bounded by the diameter of the support of µ. Of course, since µ

is a probability measure, we can never have µ(B̄(x, r)) > 1 for any radius r. Thus, if the

17

support of µ is all of RN , then δµ,m approaches infinity as m approaches one. We take the L2

average of δµ,m over a range [0,m0] of the parameter m to gain both Wasserstein-stability

and some level of regularity, .

Definition 1.8. Let µ be a probability measure on RN and let m0 ∈ (0, 1]. Define the

distance function to µ with parameter m0 to be the function dµ,m0 : RN → R+ where

d2µ,m0
(x) =

1

m0

∫ m0

0
δµ,m(x)2dm

As before, this function measures distance to an underlying measure, however it now

takes a multi-scale view of the data. Since a point cloud is a zero-dimensional subset of RN

and is therefore inherently of measure zero, this multi-scale property is important as we do

not know the correct scale a priori.

Having defined the distance-to-measure function, we now turn to the stability properties

of dµ,m0 . One of the key benefits of moving to the distance-to-measure function over the

pseudo-distance function is that we now have Wasserstein stability for p = 2 under the L∞

norm as shown in [15].

Theorem 1.9. If µ and ν are two probability measures on RN and 0 < m0 ≤ 1, then

‖dµ,m0 − dν,m0‖L∞(RN) ≤
1
√
m0

W2(µ, ν)

Note that this dependence scales with the reciprocal of
√
m0. In particular, as we send

m0 → 0, we see that the upper bound approaches infinity and the strength of this statement

disappears.

For the point cloud case, combining this theorem with Corollary 1.6 gives the following

estimate relating the functions of µX , the uniform distribution of X , and the generating

18

measure µ.

Corollary 1.10. Let X ⊂ RN be a noisy point cloud drawn from a probability measure

µ = ν ? N (0, σ) and define µX to be the uniform distribution of X . Then we have the

following estimate

lim
|X |→∞

‖dµX ,m0 − dµ,m0‖L∞(RN) ≤
1
√
m0

σ

From this estimate, we see that for fixed 0 < m0 < 1, the difference between dµX ,m0 and

dµ,m0 , as we grow the sample size of the point cloud X , approaches a multiple of the noise

inherent in the model. This is to be expected since µX converges to µ = ν ?N (0, σ).

Furthermore, we can deduce regularity results from the definition of dµ,m. In particular,

we see that the function is Lipschitz and the square of the function is 1-semiconcave. First,

we remind the reader of the definition of semiconcave functions, as given in [12].

Definition 1.11. Let A ⊂ Rn be an open set. We say that a function u : A → R is

semiconcave with linear modulus if it is continuous in A and there exists C ≥ 0 such

that

u(x+ h) + u(x− h)− 2u(x) ≤ C|h|2

for all x, h ∈ RN such that [x− h, x+ h] ⊂ A. The constant C is called a semiconcavity

constant for u ∈ S.

As the name implies, semiconcave functions are related to concave functions. Addi-

tionally, they are almost C2 in the sense made precise below. We can further classify

semiconcave functions with the following proposition from [12].

Proposition 1.12. Given u : A→ R with A ⊂ RN open and convex, and given C ≥ 0, the

following are equivalent:

(a) u is semiconcave with linear modulus in A with semiconcavity constant C;

19

(b) u satisfies

λu(x) + (1− λ)u(y)− u(λx+ (1− λ)y) ≤ 1

2
Cλ(1− λ)|x− y|2

(c) The function x 7→ u(x)− 1
2C|x|

2 is concave in A;

(d) There exist two functions u1, u2 : A→ R such that u = u1 +u2 where u1 is concave and

u2 ∈ C2(A) and satisfies ‖D2u2‖∞ ≤ C, where D2u2 is the Hessian of u2;

(e) For any v ∈ Rn such that |v| = 1, we have ∂2u
∂2v
≤ C in A in the sense of distributions,

i.e. ∫
A
u(x)

∂2φ

∂v2
(x)dx ≤ C

∫
A
φ(x)dx

(f) u can be represented as u(x) = infi∈I ui(x) where {ui}i∈I is a family of functions in

C2(A) such that ‖D2ui‖∞ ≤ C for all i ∈ I.

From the above definitions, we gather that d2K is semiconcave on RN . This is proven in

[12], where the authors observe that

d2K(x)− ‖x‖2 = inf
y∈K
‖x− y‖2 − ‖x‖2 = inf

y∈K
‖y‖2 − 2〈x, y〉

by the definition of dK . Hence, since the infimum of linear functions is concave, by Propo-

sition 1.12 we see that d2K must be semiconcave. Furthermore, it is semiconcave with

semiconcavity constant 2. In [12], the authors also establish that dK is semiconcave on

RN\K. Thus, since the distance function is semiconcave, we naturally desire the distance-

to-measure function to exhibit semiconcavity as well. In fact, this will be a requirement for

functions classified as distance-like, which we define in Section 1.6.

Of course, the square of the distance-to-measure function, d2µ, satisfies property (c) and

20

is therefore semiconcave with linear modulus as pointed out in [15]. Property (e) shows

that semiconcave functions are those functions whose second weak derivaties are bounded

above (to be contrasted with concave functions whose second derivatives are nonpositive).

Furthermore, [12] includes the following useful result.

Theorem 1.13. A semiconcave function u : S → R is locally Lipschitz continuous in the

interior of S.

As noted above, the square of the distance-to-measure function is semiconcave. We

include this result from [15] which establishes that the square of the distance-to-measure

function is in fact 1-semiconcave and describes some of the implications. Of particular

interest to our focus is the result describing the gradient of d2µ,m0
. For this equation,

we will need to define the set Rµ,m0(x), which is the set of all submeasures, µx,m0 , with

µx,m0(RN) = m0 and such that

supp(µx,m0) ⊆ B̄(x, δµ,m0(x)) and µx,m0

∣∣
B(x,δµ,m0 (x))

= µ

Note that in the first condition, the support is contained within the closed ball B̄(x, δµ,m0(x))

while in the second condition, we restrict the measure µx,m0 to the open ball B(x, δµ,m0(x)).

We see in [15] that |Rµ,m0(x)| = 1 if and only if

∣∣∣supp
(
µ
∣∣
∂B(x,δµ,m0 (x))

)∣∣∣ ≤ 1

We are now ready to state the semiconcavity results.

Corollary 1.14. The function d2µ,m0
is 1-semiconcave. Moreover:

(i) d2µ,m0
is differentiable at a point x ∈ RN if and only if the suppport of the restriction

of µ to the sphere ∂B(x, δµ,m0(x)) contains at most one point.

21

(ii) d2µ,m0
is differentiable almost everywhere in RN with gradient defined by

∇xd2µ,m0
=

2

m0

∫
h∈RN

[x− h]dµx,m0(h)

where µx,m0 is the only measure in Rµ,m0(x).

(iii) The function x ∈ RN 7→ dµ,m0(x) is 1-Lipschitz.

The distance-to-measure function has proved useful for many applications since it is

robust to noise, a common issue in manifold reconstruction. As we will see later, when

we treat each point in the point cloud as a Dirac mass and use the empirical measure

on the point cloud, the distance-to-measure function simplifies to a k-nearest neighbor

function. For now, we stick with the general notion of distance-to-measure function and

use this function to reconstruct manifolds from noisy point clouds, the details of which are

presented in the next section.

1.6 Reconstruction Theory

Given a point cloud X sampled from some underlying measure µ, let K be the support

of µ. We would like to infer the topology of K from the point samples in X . To do

this, we turn to the reconstruction method described by Chazal et al. in [15]. The theory

presented in Chazal’s work gives conditions for when the sublevel sets of the distance-

to-measure function induced by µX , i.e. dµX ,m0 , are homotopy equivalent to the offsets,

Kr = {x ∈ RN : dK(x) < r}, of the support of µ.

The results in this section provide important motivation for the work that follows in

this dissertation. In particular, we are interested in the connection between the distance-to-

measure function and our ability to reconstruct the measure from which a given point cloud

was sampled. For our purposes, we are concerned with two probability measures µ and µ′

where we view µ as a geometric measure on some subset of RN and µ′ as the empirical

22

measure associated with a point cloud noisily drawn from µ. In this setting, the ultimate

result of this section is a condition for when the r-sublevel sets of dµ′,m0 and the offsets,

Kη = {x ∈ RN : dK(x) < η}, are homotopy equivalent, for appropriate values of r and η.

The condition for homotopy equivalence is based on the Wasserstein distance, W2(µ, µ
′),

between the measures µ and µ′. Thus, if the two measures µ and µ′ are close, then the

sublevel sets and the offsets will be homotopy equivalent. As we saw in Section 1.2, if µ has

Gaussian noise, the distance W2(µ, µ
′) is bounded, in the limit, by the standard deviation

σ of the Gaussian noise component of µ, where µ = ν ?N (0, σ). We also saw in Section 1.5,

when the two measure µ and µ′ are close in the Wasserstein sense, the associated distance-

to-measure functions will be close. Hence, when we attempt to induce a gradient flow which

minimizes the distance-to-measure value of the points in a point cloud, we are effectively

attempting to improve our ability to reconstruct the original sampling measure µ.

In this section, we review the reconstruction results of [15] for a more general class of

functions, which exhibit properties similar to the traditional distance function dK . This

class of functions is referred to as the distance-like functions. All of the results in this

section are established in [15].

Definition 1.15. A function ϕ : RN → R is called a distance-like function if the following

hold.

(a) ϕ ≥ 0

(b) ϕ2 is 1-semiconcave

(c) ϕ(x)→∞ as |x| → ∞

Let ϕ be a distance-like function. Since ϕ2 is 1-semiconcave, we can construct the

gradient vector ∇xϕ, defined for almost all x ∈ RN as shown in [12]. In analogy to the

r-offsets defined earlier, for a distance-like function ϕ, we let ϕr denote the r-sublevel set

of ϕ. That is,

ϕr = ϕ−1([0, r])

23

Many of the results in reconstruction theory rely on geometric measurements of the data.

We recall the following definitions from [15].

Definition 1.16. Let ϕ be a distance-like function.

(a) Let x ∈ RN such that

ϕ2(x+ h) ≤ ϕ2(x) + 2α|h|ϕ(x) + |h|2 ∀h ∈ RN

with α ∈ [0, 1]. Then x is an α-critical point.

(b) If x ∈ RN is a 0-critical point, it is simply called a critical point. Additionally, ϕ(x) is

a critical value.

(c) Given r ∈ [0,∞), the weak feature size of ϕ at r, denoted wfsϕ(r), is the maximum

s > 0 such that there are no critical values of ϕ between r and r + s.

(d) The α-reach (α ∈ (0, 1)) of ϕ, denoted reachα(ϕ), is the maximum r such that

ϕ−1((0, r]) contains no α-critical points.

A few consequences of the above definitions are established in [15]. For starters, since

ϕ is a distance-like function and ϕ2 is 1-semiconcave, we see that

‖∇xϕ‖ = inf{α ≥ 0 : x is α-critical}

Additionally, from the definitions alone it is concluded in [15] that the α-reach of ϕ is always

bounded below by the weak feature size of ϕ at 0.

With the notion of α-critical points established, we can now establish the first result

concerning the sublevel sets, {ϕr : r ∈ [0,∞)}. In particular, the following lemma estab-

lishes when two sublevel sets ϕr1 and ϕr2 are isotopy equivalent. Recall, two topological

spaces X and Y are isotopic (or isotopically equivalent) if X can be continuously deformed

to Y , where there always exists a homeomorphism between the (deformed) X and Y . From

24

the definitions we see that isotopy is a stronger condition than homotopy, since a homotopy

does not require the homeomorphism assumption.

Lemma 1.17. Let ϕ be a distance-like function and r1 < r2 be two positive numbers such

that ϕ has no critical points in the subset ϕ−1([r1, r2]). Then all the sublevel sets ϕ−1([0, r])

are isotopic for r ∈ [r1, r2].

We can establish a result for the weaker notion of homotopy equivalence when we place

certain restrictions on the weak feature size of two distance-like functions as well as their

difference under the L∞ norm.

Proposition 1.18. Let ϕ and ψ be two distance-like functions, such that

‖ϕ− ψ‖L∞(RN) ≤ ε

Suppose also that wfsϕ(r) > 2ε and wfsψ(r) > 2ε. Then for every 0 < η ≤ 2ε, the offsets

ϕr+η and ψr+η have the same homotopy type.

This tells us that when the distance-like functions are close in the L∞ sense, we can find

offsets which are homotopically equivalent. However, we also see that the distance required

between ϕ and ψ for this result to hold depends on the weak feature sizes of ϕ and ψ. This

is not surprising since the topology of offsets can change drastically when the weak feature

size is small.

Turning our attention to critical points, we see that when two distance-like functions

are close in the L∞ sense, the critical points cannot be too far apart. The condition

‖ϕ− ψ‖L∞(RN) occurs frequently, hence we will call ϕ and ψ ε-close when this holds.

Proposition 1.19. Let ϕ and ψ be two distance-like functions with ‖ϕ−ψ‖L∞(RN) ≤ ε (i.e.

let ϕ and ψ be ε-close). For any α-critical point x of ϕ, there exists an α′-critical point x′

of ψ with

‖x− x′‖ ≤ 2
√
εϕ(x) and α′ ≤ α+ 2

√
ε

ϕ(x)

25

We are now ready for the first reconstruction theorem. Given two distance-like functions,

we would like to know how close these functions need to be in the L∞ sense to ensure the

sublevel sets ϕr and ψr are homotopy equivalent for small enough r. As it turns out, we

require a bound on the α-reach of one of the distance-like functions.

Theorem 1.20. Let ϕ and ψ be two ε-close distance-like functions with

reachα(ϕ) ≥ R

for some α > 0. Then for any r ∈ [4ε/α2, R − 3ε] and 0 < η < R, the sublevel sets ψr and

ϕη are homotopy equivalent provided

ε ≤ R

5 + 4/α2

Now we turn our attention to the special case of the distance-to-measure function.

Since distance-to-measure functions are distance-like functions, all the previous results hold.

However, we can take the results a step further due to the additional constraints on the

distance-to-measure function. We begin with some definitions describing the growth of a

measure.

Definition 1.21. Let µ be a measure and let f : R+ → R+ be a nondecreasing positive

function such that for every point p ∈ supp(µ), and every ε > 0, we have

µ(B(p, ε)) ≥ f(ε)

where B(p, ε) is the ball of radius ε centered at p. Then f is called a uniform lower bound

on the growth of µ. The measure µ has dimension at most k if there exists a constant

26

C(µ) depending on µ such that for sufficiently small ε,

f(ε) = C(µ)εk

is a uniform lower bound on the growth of µ.

In the following proposition, the function dS is the distance to the set S defined in the

traditional way. Here, we see how the distance-to-measure function dµ,m0 relates to the

distance function dS where S is the support of µ.

Proposition 1.22. (a) If S = supp(µ) is compact, then dS is the uniform limit of dµ,m0

as m0 → 0.

(b) If µ has dimension at most k > 0, then

‖dµ,m0 − dS‖ ≤ C(µ)−1/km
1/k
0

Now let µ be a probability measure with compact support K ⊂ RN and let dK : RN →

R+ be the distance function to K, that is

dK(x) = inf
y∈K
‖x− y‖

Given another probability measure µ′, we have

‖dK − dµ′,m0‖L∞(RN) ≤ ‖dK − dµ,m0‖L∞(RN) + ‖dµ,m0 − dµ′,m0‖L∞(RN)

≤ C(µ)1/km
1/k
0 +

1
√
m0

W2(µ, µ
′)

where we have used the triangle inequality, Proposition 1.22, and Theorem 1.9. Then

combining this inequality and Theorem 1.20 yields a useful corollary.

27

Corollary 1.23. Let µ be a measure and K its support. Suppose that µ has dimension

at most k and that reachα(dK) ≥ R for some R > 0. Let µ′ be another measure, and

let ε be an upper bound on the uniform distance between dK and dµ′,m0. Then for any

r ∈ [4ε/α2, R − 3ε], the r-sublevel sets of dµ′,m0 and the offsets Kη, for 0 < η < R, are

homotopy equivalent, as soon as

W2(µ, µ
′) ≤

R
√
m0

5 + 4/α2
− C(µ)−1/km

1/k+1/2
0

Thus, we have conditions for when the offset Kη and the r-sublevel sets of dµ′,m0 are

homotopy equivalent. In particular, we require the Wasserstein distance for p = 2 to be

smaller than some function which depends on our choice of α, the α-reach of dK , k, and

the distance between dK and dµ′,m0 .

28

Chapter 2: Topological Data Analysis

As the quantity of available data increases exponentially, increasing efforts are being made to

make sense of this massive deluge of data. For geometric data, and in particular point cloud

data, the field of topological data analysis has arisen as a means to systematically quantify

topological aspects of a data set. Methods in this field seek to determine the topology of

a given geometric data set using tools from algebraic topology. The focus on topological

characterizations is important because many of these data sets are inherently noisy and

thus present problems for algorithms attempting to determine geometric information from

the data.

In this section, we will outline some of the basics of topological data analysis. In

particular, we will establish the definitions of persistent homology, a tool which allows us

to characterize the homology of a simplicial complex built from a point cloud. What makes

persistent homology useful is the homological characterization is multiscale. That is, instead

of obtaining a topological description of the data at a particular scale, we can see how the

topology changes as we vary the scale. This proves useful since we often do not know the

inherent scale of the data.

For our purposes, we will use topological data analysis and persistence diagrams to de-

termine the topological accuracy of a point cloud, after we apply our smoothing algorithms.

In particular, if we noisily sample a point cloud from a manifold whose topology is known

to us, and then we apply our smoothing algorithms, how does the topology of a manifold

constructed from the smoothed point cloud match the topology of the sampled manifold.

29

2.1 Simplicial Approximations

Complex shapes are hard to analyze mathematically. Furthermore, most continuous shapes

cannot even be represented on a computer and therefore provide little room for computa-

tional analysis of the shape directly. Therefore, one often represents topological spaces using

approximations in the form of complexes. Of particular interest, due to their simplicity,

are simplicial complexes. These complexes consist of simplices of varying dimensions. A

k-simplex is a k-dimensional polytope which is the convex hull of k+ 1 affinely independent

points. To form a simplicial complex, one must ensure that the intersection of two simplices

of the complex is another (lower dimensional) simplex of the complex.

Simplicial complexes have found a wide range of applications in mathematics, including

applications in algebraic topology, computational geometry, and the numerical analysis of

partial differential equations. Here, we will create simplicial complexes from point cloud data

and treat the resulting complex as an approximation of the underlying geometric measure.

Many of these methods can be classified under the field of computational topology. First,

we give some examples of common simplicial complexes arising from analyzing point clouds.

Maybe the most straightforward method of constructing a simplicial complex from a

set of points is to form what is known as the Čech complex of a point cloud X . This

complex, whose definition is given in [26], will be denoted ČechX (r). First, let Bx(r) denote

the closed ball of radius r > 0 centered at x ∈ RN . Given some threshold r > 0, the

n-simplex σ = (p0, ..., pn) formed from the points p0, ..., pn ∈ X , is contained in ČechX (r)

if and only if the closed balls of radius r centered at the points p0, ..., pn have non-empty

intersection. That is,

ČechX (r) =

{
σ ⊂ X :

⋂
p∈σ

Bp(r) 6= ∅

}

An important point to make here is that for 0 < r1 < r2, we will have Bx(r1) ⊆ Bx(r2)

for all x ∈ X and so ČechX (r1) ⊆ ČechX (r2). When we turn to the notion of filtrations,

this property will be crucial. All of the other simplicial complexes presented in this section

30

will share this property. The simplicial complex ČechX (r) is actually the nerve of the balls

{Bx(r) : x ∈ X}. Recall the definition of the nerve of a covering: given a covering U = {Ui}

of a topological space X where I is an index set, the nerve of the covering U is the set of

all finite subsets J of I such that ⋂
j∈J

Uj 6= ∅

Studying the nerve of the union of closed balls and studying the union itself are the same

up to homotopy type due to the nerve theorem, which is given in [26].

Theorem 2.1. Let F be a finite collection of closed, convex sets in Euclidean space. Then

the nerve of F and the union of the sets in F have the same homotopy type.

Although the Čech complex can be used to accurately respresent the homotopy type

of the offsets X r, in practice one must consider all subcollections of the points in X . This

can be expensive for large point clouds. A simplification of the Čech complex can be found

by forming the Vietoris-Rips complex, denoted VRX (r). This construction allows us to

simply consider pairs of points. Explictly, we define

VRX (r) = {σ ⊆ X : diamσ ≤ 2r}

where

diamσ = max
p,q∈σ

‖p− q‖

Given a simplex σ ∈ ČechX (r), we must have Bp(r) ∩ Bq(r) 6= ∅ for every p, q ∈ σ and

in particular, this means ‖p − q‖ ≤ 2r for every p, q ∈ σ. Therefore, we have ČechX (r) ⊆

VRX (r). Furthermore, we can establish a containment in the other direction if we increase

the radius of the Čech complex enough, as proved in [26].

Lemma 2.2. Let X be a point cloud and let r ≥ 0. Then

VRX (r) ⊆ ČechX (
√

2r)

31

We can use the Čech complex and the Vietoris-Rips complex to construct a simplicial

complex from a point cloud X . However, for densly populated regions, we will get very high

dimensional simplices. One way to avoid such high dimensions is to consider the d-skeleton,

Kd, of a simplicial complex K, which is simply the restriction of K to only include simplices

of dimension d or less. Alternatively, we can avoid high dimensional simplices altogether.

For a point cloud X , the Voronoi diagram of X is defined to be the collection V1(X) =

{Vx : x ∈ X} of sets Vx where a point y ∈ RN is contained in Vx if and only if

‖x− y‖ ≤ ‖z − y‖ ∀z ∈ X , z 6= x

That is, a Voronoi region Vx corresponding to the site x is the set of all points in RN closer

to x than any other point of X . From this definition, it is clear that the boundary of these

regions is the medial axis as introduced in Section 1.2. There are several algorithms to

compute the Voronoi diagram including Fortune’s algorithm [27], Lloyd’s algorithm [36],

and the Bower-Watson algorithm [55]. By uniformly sampling a region of Euclidean space

and constructing the Voronoi diagram, one can construct a fairly uniform decomposition of

the space.

From the definition of the Voronoi diagram, every point of RN is either in a Voronoi

region Vx for some x ∈ X , or it is in the boundary of several Voronoi regions. In the

latter case, it is clear that the point actually lies on the medial axis of the point cloud.

Therefore, the sets in V1(X) form a covering of RN . The nerve of this covering is known

as the Delaunay triangulation, Del(X), of X [20]. This triangulation can be seen as

the dual of the Voronoi diagram. Note that because we assume our point cloud X is in

general position, the maximum dimension of any simplex in the Delaunay triangulation is

N , the dimension of X . The geometric realization of the Delaunay triangulation is used for

a variety of of applications including automatic mesh construction, terrain modelling, and

analyzing sampling density. Later, we will discuss a generalization of the Voronoi diagram,

the k-th order Voronoi diagram, and with it, a generalized Delaunay triangulation.

32

Although the Delaunay triangulation is useful for many point clouds, the unbounded

nature of the Voronoi regions can cause problems for some data sets. For example, suppose

we sampled two lines in R2 given by `1 = {(x,−1) : x ∈ R} and `2 = {(x, 1) : x ∈ R}. In

the Delaunay triangulation, many edges will exist between points sampled from `1 and `2.

This is because the medial axis of `1 ∪ `2 is given by the line ` = {(x, 0) : x ∈ R}, and so

Voronoi regions generated from points in `1 will terminate adjacent to regions generated

from points in `2. This would yield a fully connected simplicial complex, which clearly does

not reflect the topology of the set `1 ∪ `2 from which the points were sampled.

The above example suggests we should bound the Voronoi regions so that we avoid such

issues. Therefore, define Rx(r) = Bx(r) ∩ Vx. The α-complex at resolution r, as defined

in [26], is given by

AlphaX (r) = {σ ⊆ X|
⋂
u∈σ

Ru(r) 6= ∅}

In the previous example, which emphasized the problem with using the Delauny triangula-

tion, by setting α = 1/2, the α-complex of a point cloud sampled from `1 ∪ `2 will properly

reflect the topology of the generating lines since no points from `1 will be close enough

to points from `2 to cause an edge to be formed. Note that the nerve of AlphaX (r) is

isomorphic to a subset of the Delaunay triangulation since Ru(r) ⊆ Vu for every u ∈ σ

and every σ ⊆ X . Additionally, we have the desired property that for r1 ≤ r2, we have

AlphaX (r1) ⊆ AlphaX (r2).

For all of the above complexes, we have a single parameter, r, which controls the scale

of the simplicial complex. As we send r to zero, eventually the complexes simply consist

of 0-simplices formed by the original points in the point cloud X . Increasing the value of

r, we were able to form chains of simplicial complexes. In particular, for r1 ≤ r2, we saw

ČechX (r1) ⊆ ČechX (r2), VRX (r1) ⊆ VRX (r2), and AlphaX (r1) ⊆ AlphaX (r2). When we

specify a sequence 0 = r0 ≤ r1 ≤ r2 ≤ ... ≤ rm, then the induced inclusions on the simplicial

complexes form what is known as a filtration of the simplicial complex. That is, if we let

Ki denote one of the simplicial complexes discussed in this section with r = ri, then we say

33

that the sequence

∅ = K0 ⊆ K1 ⊆ K2 ⊆ ... ⊆ Km

forms a filtration of Km. Since there are only finitely many simplices in all the discussed

simplicial complexes, there are only a finite number of parameter values at which the simpli-

cial complex changes. After discussing homology in the next section, we will use filtrations

in Section 2.3 when we discuss persistent homology, which tracks how the topology of a

simplicial complex generated from a point cloud changes as we increase the scale parameter

r.

2.2 Homology

Let X be a topological space. When investigating the topology of X, two tools are often

employed, homotopy and homology theory. While homotopy offers more information about

the topology of X, homology yields faster algorithms. In fact, some problems in homotopy

theory, such as determining whether two triangulated 4-manifolds are homotopic, are un-

decidable. Despite offering less information than homotopy theory, the fact that homology

provides computationally tractable algorithms makes homological considerations far more

appealing. In this section, we lay out the basics of homological algebra for the case of a sim-

plicial complex. A more thorough introduction can be found in the second part of Munkres’

topology book [43] and an even more thorough treatment can be found in Rotman’s text

on homological algebra [48]

A triangulation of X is a simplicial complex, K, together with a homeomorphism, h,

from the simplicial complex K to the topological space X. Due to the homeomorphism,

studying the topology of K is equivalent to studying the topology of X. In this section,

we will explicitly construct homology on the simplicial complex K, and all of our notation

will reflect this dependence. However, because the triangulation comes equipped with a

homeomorphism, it is natural to consider the homology groups of a topological space X

without regard to the specific simplicial approximation K. Therefore, in other sections, we

34

will often use the notation Hp(X) to refer to the homology groups of X despite the fact that

the homology groups are computed on the simplicial complex K instead of the space X.

Given two p-simplices σ1 and σ2 in K, we can formally define the sum of σ1 and σ2 (over

a field of coefficients F), which we denote aσ1 + bσ2 where a, b ∈ F . We can extend these

sums linearly when considering more than two p-simplices. Such formal sums are referred

to as p-chains. For the current application, we will only consider sums with coefficients 0

or 1, that is we choose our field of coefficients F to be Z2 = Z/2Z.

Let Kp denote the set of all p-simplices of K. Then given two p-chains

c1 =

|Kp|∑
i=1

aiσi, c2 =

|Kp|∑
i=1

biσi

with ai, bi ∈ Z2, we define addition component-wise,

c1 + c2 =

|Kp|∑
i=1

(ai + bi)σi

The set of all p-chains with addition as defined above forms an abelian group, known as

the p-th chain group of K, denoted Cp(K). When discussing homology, one must specify

the chain groups, and homomorphisms between the chain groups. For our situation, we

must define maps which take us from p-chains to (p − 1)-chains. Since the boundary of

a p-simplex is in fact a (p − 1)-chain, it seems natural to use this property when forming

the boundary homomorphism, ∂p : Cp → Cp−1. The homomorphism ∂p maps a p-chain

c to the (p − 1)-chain ∂p(c) defined as the formal sum of all codimension-one faces of the

p-simplices of σ. That is, for a p-simplex σ = (v0, ..., vp), which is itself a length one p-chain

35

and hence a member of Cp, we define

∂p(σ) = ∂p((v0, ..., vp)) =

p∑
i=0

(v0, ..., v̂i, ..., vp)

where v̂i denotes the absence of a vertex. Since we are working with Z2 coefficients, we

do not need to worry about the orientation of a simplex, and hence are left with a simple

formula for the boundary. We then define the boundary map acting on an arbitrary p-chain

c = σ1 + ...+ σk with σi ∈ Kp for 1 ≤ i ≤ k as

∂p(σ1 + ...+ σk) = ∂p(σ1) + ...+ ∂p(σk)

Putting the chain groups and the boundary homomoprhisms into a sequence, we obtain

what is known as a chain complex,

...
∂p+2−−−→ Cp+1(K)

∂p+1−−−→ Cp(K)
∂p−→ Cp−1(K)

∂p−1−−−→ ...

Note that at some point the complex will terminate since eventually we will reach the chain

group C0, consisting of 0-simplices. Additionally, since we are dealing with complexes of

finite dimension, the sequence will terminate in the other direction as well, in the sense that

the chain groups will become trivial when p exceeds the dimension of the complex.

Next, define Zp(K) = ker ∂p and Bp(K) = im ∂p+1. We refer to Zp and Bp as the p-th

cycle group and p-th boundary group of the simplicial complex, respectively. In order

to form the so called homology groups of K, we must have for any p > 0 and any c ∈ Cp(K),

∂p ◦ ∂p+1(c) = 0

36

To see that this is in fact the case, let (v0, ..., vp+1) be some simplex in Kp+1 and note that

∂p ◦ ∂p+1(v0, ..., vp+1) = ∂p

(
p∑
i=0

(v0, ..., v̂i, ..., vp+1)

)
=

p+1∑
i=0

p+1∑
j=0,i 6=j

(v0, ..., v̂i, ..., v̂j , ..., vp)

Each (p − 1)-simplex in the final sum appears twice and no (p − 1)-simplex appears only

once. Since we are working with F = Z2 as our field of coefficients, the addition is carried

out modulo 2 and therefore, ∂p ◦ ∂p+1(c) = 0. Thus, if c ∈ Bp(K), then by definition there

exists c′ ∈ Cp+1 such that ∂p+1(c
′) = c. However, this implies ∂p ◦ ∂p+1(c

′) = ∂p(c) = 0 and

so c ∈ Zp(K). Thus, we see that Bp(K) is a subset of Zp(K) for every p. It is in fact a

normal subgroup and so we can form the quotient group

Hp(K) = Zp(K)/Bp(K)

known as the p-th homology group of K. The assumption that F = Z2 ensures Hp(K)

defines a vector space over Z2. The dimensions of these vector spaces are known as the

Betti numbers of K. That is, the p-th Betti number, βp, is defined as

βp = rankHp(K)

The Betti numbers reflect the number of p-dimensional holes in the simplicial complex K,

and by association, the number of p-dimensional holes in the topological space X. For

small dimensions, one can informally think of β0 as the number of connected components

of K, β1 as the number of 1-dimensional holes in K, and β2 as the number of voids in

K. Interestingly, the Betti numbers are connected to the Euler-characteristic through the

following formula,

χ(K) =
∑
p≥0

(−1)pβp

37

Connecting this with the simplicial complexes described in Section 2.1, given a simplicial

complex K, of the type discussed, with a small enough scale parameter r, the zeroth Betti

number β0 will simply be the size of the generating point cloud X and the other Betti

numbers will be zero. As we grow the scale parameter, some edges and higher dimensional

simplices will be formed. Thus, as we grow r, the Betti numbers will change. We can track

these changes using the notion of persistent homology, discussed in the next section.

2.3 Persistent Homology

The field of persistent homology has been around for almost 30 years, however it has gained

substantial popularity over the past decade. Although homology allows us to rigorously

investigate the topological structure of simplicial complexes, it only operates on a single

simplicial complex. In the case of point clouds, this requires us to fix a scale parameter

r and build a simplicial complex at this scale. However, since the point cloud consists of

zero dimensional points in RN , it is not immediately clear what serves as an appropriate

value for the scale parameter. Furthermore, the topological characteristics of the simplicial

complexes change as we vary r. Noise in the point cloud may cause features to appear at

one scale and then abruptly disappear at a slightly larger scale. The key point here is that

while noisy features will come and go, more stable features of the data should persist over

larger ranges of the scale parameter r. We make this notion rigorous in this section.

Consider a real valued continuous function f : X → R on a topological space X. We

define the sublevel set Xr = f−1(−∞, r] for any r ∈ R similar to our definition in previous

sections. Clearly, the definition tells us that for any r < s we have Xr ⊆ Xs. By specifying

a sequence 0 = r0 < r1 < ... < rm−1 < rm = ∞, we can induce a filtration, F , of X given

by

F := X0 ⊆ X1 ⊆ ... ⊆ Xm−1 ⊆ Xm = X

where for notational simplicity, Xi = Xri . The inclusions at each level of the filtration

induce homomorphisms on the level of homology, Hk(Xi) → Hk(Xi+1). Depending on our

38

choices for the sequence {ri}mi=0, the topology of the sublevel sets may change as we move

along the induced filtration F . In particular, the homology groups may change. We capture

this notion more precisely in the following definition from [29].

Definition 2.3. Given a topological space X and a function f : X → R, the value a ∈ R

is a homological regular value of the function f if there exists ε > 0 such that for each

pair x, y ∈ (a− ε, a+ ε) with x < y, the inclusion

f−1(−∞, x] ↪→ f−1(−∞, y]

induces isomorphisms on all the homology groups, that is

Hp(f
−1(−∞, x]) ∼= Hp(f

−1(−∞, y])

for all p and each acceptable pair x, y. A number a ∈ R is a homological critical value

of f if it is not a homological regular value of f . A function f is called tame if it has a

finite number of homological critical values and all the homology groups Hp(Xr), for every

r ∈ R, have finite rank.

Looking closer at the homomorphisms induced by the inclusions, for r < s we have the

map

hr,sp : Hp(Xr)→ Hp(Xs)

which relates the homology of the sublevel sets Xr and Xs. In particular, any homology

class appearing in the kernel of the homomorphism hr,sp exists in the homology group of Xr

and ceases to exist in the homology group of Xs. On the other hand, classes in the image

of hr,s persist as we increase the scale parameter from r to s. This notion of persistence,

allows us to define the persistent homology groups, which track the topological features

which presist as we vary the scale parameter r.

39

Definition 2.4. Let hr,sp denote the homomorphism between the p-th homology groups in-

duced by the inclusion map, as defined above. The p-dimensional persistent homology

group of f is defined as

Hr,s
p = imhr,sp

The corresponding p-th persistent Betti numbers are the ranks of the persistence

groups,

βr,sp = rankHr,s
p

When one considers a filtration of the topological space X as described above, we often

write the persistent homology groups and the persistent Betti numbers using indices instead

of the real values r, s. That is, we will denote the p-dimensional persistent homology group

between Xi and Xj by H i,j
p and the p-th persistent Betti numbers will be denoted by βi,jp .

Given a tame function f , we can enumerate the homological critical values as a1 <

a2 < ... < am along with a0 = −∞ and am+1 = ∞. We then pick intermediate values,

bi ∈ (ai, ai+1) and induce a filtration from the sequence b0 < b1 < ... < bm. For the rest of

this section, we will let F := X0 ⊆ X1 ⊆ ... ⊆ Xm = X be the induced filtration. By the

definition of homological critical values, we know that the homology of the sublevel sets Xr

does not change over the interval (ai, ai+1) for any 0 ≤ i ≤ m. Therefore, this filtration

captures the changes in homology for all the sublevel sets.

We can be more concrete about the persistence of individual homology classes. Let

σ ∈ Hp(Xi) be a homology class present in the filtration at step i. We say that σ is born

at Xi if σ 6∈ H i−1,i
p . That is, a homology class is born at step i of a filtration if it exists in

Hp(Xi), but is not the image of some class in Hp(Xi−1). Similarly, for a class σ born at Xi,

we say that σ dies at Xj if hi,j−1p (σ) 6∈ H i−1,j−1
p but hi,jp (σ) ∈ H i−1,j

p . That is, σ is born at

step i and dies at step j if the class σ merges with an older homology class going from j− 1

to j. The difference, rj − ri, between the birth (ri) and death (rj) of a homology class σ is

called the persistence of σ. When a homology class σ is born but never dies, we say that

40

the class persists forever and has infinite persistence.

Since we can associate a birth and (possibly infinite) death to every homology class of the

space X under a given filtration, we can form what is known as the persistence diagram,

denoted Dgmp(f), of X with respect to the function f . The persistence diagram of a

topological space X with an associated filtration F , is a multiset of points in R× (R∪{∞}).

In particular, for every homology class σ which is born at some step of the filtration,

we associate σ with the point (b, d) in R × (R ∪ {∞}) where σ is born at b ∈ R and

dies at d ∈ R ∪ {∞}. Under this construction, the vertical distance from (b, d) to the

diagonal gives the persistence of σ. We take the collection of all such points (one for each

homological class in Hp(X), allowing for multiplicity), and denote these points by the set

P = {(b1, d1), ..., (bm, dm)} where m is the number of homology classes in Hp(X). Now let

b∗ = maxi bi and d∗ = maxi di. Let the diagonal of R2 be denoted by ∆ = {(x, x) : x ∈ R}

and let ∆̃ represent the diagonal ∆ intersected with some bounded domain [0, r1] × [0, r2]

where r1 � b∗ and r2 � d∗. We use the bounded diagonal instead of the full diagonal

because of compactness issues (in practice this assumption is inconsequential). Then the

collection P ∪ ∆̃ is called the persistence diagram, Dgmp(X), of X. We will sometimes use

the notation Dgmp(F) to denote the persistence diagram of X when we wish to make the

dependence on the filtration specific. The reason for including all points along the bounded

diagonal is technical and will be made clear in the next section. For now, we justify their

inclusion by noting that these points have zero persistence and are therefore topologically

trivial.

We can be more precise about the multiplicity of a point in the persistence diagram.

If we let µi,jp denote the number of independent p-dimensional homology classes which are

born at Xi and die at Xj , then we have the following useful formula for the multiplicity,

which is shown in [26],

µi,jp = (βi,j−1p − βi,jp)− (βi−1,j−1p − βi−1,jp)

41

Using this formula, one can prove the following lemma, stating that the persistence diagram

encodes all the information about the homology groups. It is worth noting that Edelsbrun-

ner and Harer refer to this result as the Fundamental Lemma of Persistent Homology

in [26].

Lemma 2.5. Let ∅ = K0 ⊆ K1 ⊆ ... ⊆ Km = K be a filtration of K. For every pair of

indices 0 ≤ k ≤ l ≤ m, and every dimension p, we have the following equivalence,

βk,lp =
∑
i≤k

∑
j>l

µi,jp

2.4 Stability of Persistence Diagrams

In practice, point clouds are often obtained through noisy processes. One of the key ad-

vantages of considering the topology of the point cloud over studying its geometry is that

many topological properties are robust to small perturbations of the data. Considering the

fact that persistence diagrams capture topological properties of the point cloud, it should

come as no surprise that persistence diagrams exhibit stability as well. In this section,

we discuss the stability of persistence diagrams. Using the stability result, we can show

that persistence diagrams evolve continuously under continuous gradient flows. How these

diagrams evolve is captured in what is known as the vineyard, introduced in [18], of the

flowing point cloud.

To begin, we will define two notions of distance which will be useful throughout the

remainder of this dissertation. Recall that for two sets X,Y of points in RN , the Hausdorff

distance between X and Y , denoted dH(X,Y) is defined as follows,

dH(X,Y) = max

{
sup
x∈X

inf
y∈Y
‖x− y‖∞, sup

y∈Y
inf
x∈X
‖x− y‖∞

}

Of course, the Hausdorff distance between two sets can be infinite for unbounded sets.

42

Additionally, when X and Y are not closed, we may run into problems where dH(X,Y) = 0

even though X 6= Y . For example, if X = (0, 1) and Y = [0, 1], then dH(X,Y) = 0, yet

clearly X 6= Y . However, on the space of non-empty compact subsets of RN , the Hausdorff

distance is in fact a metric and thus we can use the Hausdorff distance to define a metric

space on this set of sets. Next, we recall the related notion of the bottleneck distance

dB(X,Y) between X and Y .

dB(X,Y) = inf
γ

sup
x∈X
‖x− γ(x)‖∞

where the infimum is over all bijections γ : X → Y and ‖ · ‖∞ is the `∞ norm on RN . From

the definitions above, it is clear that dH(X,Y) ≤ dB(X,Y).

Of course, persistence diagrams are multisets consisting of pairs (b, d) ∈ R2 along with

the bounded diagonal ∆̃. Since finite point sets and the bounded diagonal ∆̃ are compact,

their union will be compact. It is obviously also non-empty since ∆̃ 6= ∅. The choice of

including the bounded diagonal ∆̃ in the definition of the persistence diagram should now

be clear. We bounded ∆ to ensure compactness and we included ∆̃ so that we can use the

bottleneck distance on persistence diagrams X = Dgmp(f1) and Y = Dgmp(f2) where X

does not have the same number of homology classes as Y (recall we must form bijections

between X and Y). Given these considerations, we can use the bottleneck and Haussdorff

distances as metrics on the space of persistence diagrams.

As it turns out, when two functions on a triangulable space are close (in the L∞ sense),

the resulting persistence diagrams will be close as well. This is critical as it demonstrates

that persistence diagrams are robust to small perturbations in the underlying data. To see

this, we turn to the key stability theorem from [17].

Theorem 2.6. (Stability Theorem) Let X be a triangulable space and let f, g : X → R

be two continuous and tame functions. For any dimension p ≥ 0, the bottleneck distance

between the persistence diagrams Dgmp(f), Dgmp(g) is bounded above by the L∞ distance

43

between f and g, that is

dB(Dgmp(f),Dgmp(g)) ≤ ‖f − g‖L∞(RN)

Since dH(X,Y) ≤ dB(X,Y) for every pair of multisets X,Y , the result above holds

for Hausdorff distances as well. Of particular interest to the present work, if we evolve a

point cloud using a gradient flow, the persistence diagrams will evolve continuously. That

is, given a point cloud X = {x1, ..., xn} and a smooth function E : RN → R, we can define

a gradient flow using the following system


dui
dt

= −∇E(ui)

ui(0) = xi

for 1 ≤ i ≤ n. This gives us a collection of point clouds F = {Xt : t ≥ 0} where Xt =

{ui(t) : 1 ≤ i ≤ n}. For each time t ≥ 0, we can compute the persistence diagram Dgmp(ft)

where ft : RN → R is defined by ft(y) = d(y,Xt). This yields a collection of persistence

diagrams Dgmp(F) = {Dgmp(ft) : t ≥ 0}. The stability theorem tells us that since Xt

evolves continuously, the function t 7→ Dgmp(ft) is continuous as well. In particular,

dB(Dgmp(ft),Dgmp(fs)) ≤ ‖ft − fs‖∞

Since each persistence diagram is a multiset in R2, and these multisets are close in the

sense above, we can treat the persistence diagrams from F as being embedded in R3 where

the third dimension corresponds to t ∈ R. Since the multisets evolve continuously, when

stacked, the points form so-called vines. Taken together, the stacked persistence diagrams

form what is known as a vineyard.

44

From the stability result above, if we can get bounds on ‖ft−fs‖L∞(RN), we can provide

an upper bound on the distance between the persistence diagrams at time t and at time

s. Since E was assumed to be smooth, will will have ‖ft − fs‖L∞(RN) → 0 as t → s and

therefore we will have dB(Dgmp(ft),Dgmp(fs)) → 0 as t → s. This confirms that under

continuous gradient flows, the resulting persistence diagrams will evolve continuously.

In this dissertation, we will be interested in the difference between two point clouds

in a topological sense. That is, given two point clouds X and Y, we wish to measure the

difference between X and Y using persistence diagrams. To this end, we will let Xr and Yr

be the α-complexs induced by X and Y, respectively, at resolution r. That is,

Xr = AlphaX (r) Yr = AlphaY(r)

Then choosing values 0 = r1 < r2 < ... < rm−1 < rm = ∞ and 0 = q1 < q2 < ... <

qk−1 < qk = ∞ corresponding to midpoints of the homological critical values of X and Y

respectively (as described in Section 2.3), we can induce the filtrations

FX := Xr0 ⊆ Xr1 ⊆ ... ⊆ Xrm

and

FY := Yq0 ⊆ Yq1 ⊆ ... ⊆ Yqk

Next, we take the corresponding p-dimensional persistence diagrams, Dgmp(FX) and Dgmp(FY),

and use the bottleneck distance between these persistence diagrams to describe the p-

dimensional topological error, EpT (X ,Y), between X and Y. That is, we set

EpT (X ,Y) = dB(Dgmp(FX),Dgmp(FY))

where dB is the bottleneck distance. This error function will come up in Chapter 5 when

we explore numerical results related to the gradient flows discussed in this dissertation.

45

Chapter 3: k-Nearest Neighbor Smoothing

In this chapter, we present several methods of smoothing high dimensional point clouds

using gradient flows designed to reduce the noise present in point clouds sampled with

noise. The technique we develop is modeled after work done by Chazal et al in [14], where

the authors introduce a gradient flow based on the distance-to-measure function. However,

unlike the adhoc approach taken by Chazal, we present this gradient flow in a systematic way

and provide a theoretical framework for its study. Using this framework, we are able to fully

characterize the dynamics of the system. Furthermore, we introduce novel modifications

to the flow which improve the smoothing behavior of the system. Through the use of the

gradient flow based smoothing algorithm and the modifications we present, we aim to get

better reconstruction results.

Smoothing point clouds is a common preprocessing step when analyzing point clouds.

Often, if left unchecked, the noise present in a point cloud will corrupt the ensuing analysis.

The benefits of smoothing using the gradient flows we discuss in this chapter are numerous.

For starters, they are relatively easy to compute. Additionally, since we are inducing a

flow, the level of smoothing can be naturally defined using the run time of the gradient

flow. That is, the longer we let the flow evolve, the more smoothing we impose on the point

cloud. The primary motivation behind the techniques presented in this section is the desire

to reduce the overall distance-to-measure exhibited by the point cloud. In particular, we

will evolve the points to reduce their distance-to-measure.

As we will show, when we take the measure µ to be the empirical measure of a point

cloud, the distance-to-measure function dm,µ is simply a quadratic k-nearest neighbors en-

ergy function. Since we can define this function everywhere in a continuous fashion, it is

natural to induce a gradient flow on the point cloud and move the points according to this

flow, thereby reducing their distance to the measure µ. This gradient flow will be referred to

46

as the k-nearest neighbors gradient flow for reason which will become obvious. A straight-

forward advantage of this approach over other smoothing algorithms is that computing the

gradient and flowing along the gradient are inexpensive operations. The most expensive

part of this process is computing the nearest neighbors, however this is an unavoidable

problem for most smoothing algorithms. Since this operation is the most costly, in the

next chapter we will discuss ways of improving the complexity of the algorithm by using

space partitioning algorithms when determing the nearest neighbor sets. The result is a

fast algorithm for reducing the noise of a point cloud.

This method is not without its flaws. As we will see, the induced gradient flow causes

points to cluster together when the points are allowed to evolve for a long time. In this

chapter, we will discuss a simple method to help alleviate this issue. Later, in the next

chapter, we will build a more sophisticaed approach which approximates the normal space

of a high dimensional manifold in a method similar to the moving least squares method

discussed in Section 1.4. We will then project the computed gradient onto this normal space.

This technique provides improved smoothing performance over the method presented in this

chapter. However, before we can build the more advanced technique, we must understand

the k-nearest neighbors gradient flow.

To provide a systematic theoretical framework for the k-nearest neighbors gradient flow,

we must first introduce the higher order generalization of the Voronoi diagram. These

higher order Voronoi diagrams provide a natural setting for investigating k-nearest neighbor

problems. From this construction, we will be able to characterize many qualitative aspects

of the gradient flow. In particular, we will identify conditions for all the sinks of the

flow, we will find some positively invariant sets, and we will show there are no periodic

orbits induced by the flow. Additionally, we will construct a flow diagram which fully

describes the qualitative dynamics of the k-nearest neighbors gradient flow. Unfortunately,

this construction will be computationally expensive and we will therefore be required to

restrict the examples we present to two dimensions. However, the results will be valid and

stated for arbitrary dimensions.

47

3.1 k-order Voronoi Regions

Voronoi diagrams have found applications in a wide variety of areas such as astronomy, robot

navigation, and machine learning (see [45] for specific examples). While the traditional

Voronoi diagram considers the nearest neighbor of a point, our problem will require us to

consider the k-nearest neighbors of a point, for k ∈ N with k > 1. Applications of higher

order Voronoi diagrams are nearly as numerous as the single nearest neighbor version.

For example, k-nearest neighbors classification in machine learning becomes trivial once

the higher order Voronoi diagram is constructed. Additionally, with the construction of a

third order Voronoi diagram, determining the three closest radio towers from a given point

becomes trivial as well.

Given a point cloud X and a point x ∈ RN , let NNk
X (x) denote the set of k-nearest

neighbors of x, where k < n = |X |. That is, we order the points x1, ..., xn ∈ X such that

‖x− x1‖ ≤ ... ≤ ‖x− xn‖ and set r(x) = ‖x− xk‖. Then we define

NNk
X (x) = {xi ∈ X : ‖x− xi‖ ≤ r(x)}

Note that the k-nearest neighbor set, as defined above, can contain more than k points of

X . These points will be of interest to us throughout the dissertation. From this definition

of NNk
X (x), generalizing the definition of the Voronoi diagram to the kth-order Voronoi

diagram is straightforward, as seen in the following definition.

Definition 3.1. Let X ⊂ RN be a point cloud. For u ∈ RN , let NNk
X (u) denote the set of

k-nearest neighbors of u, as defined above. If we have |NNk
X (u)| = k, then we define

V k(u) = cls
(
{v ∈ RN : NNk

X (v) = NNk
X (u)}

)

where cls(A) is the closure of a set A. For u ∈ RN , we call V k(u) the kth-order Voronoi

region centered at u. The points u ∈ RN for which |NNk
X (u)| 6= k lie on the boundary of

48

a kth-order Voronoi region. We call the set

V k(X) = {V k(x) : x ∈ RN such that |NNk
X (x)| = k}

the kth-order Voronoi diagram of X . Given a kth-order Voronoi region V and a point

x ∈ int(V), we call NNk
X (x) the generators of V , denoted gen(V). Finally, since for

y ∈ V k(x) with |NNk
X (y)| = k we have V k(x) = V k(y), we must take this set to be defined

without multiplicity.

By the definition of a k-order Voronoi region V ∈ V k(X), we see that the definition

of gen(V) does not depend on the particular choice of x ∈ int(V). This is because for all

x, y ∈ int(V), we have NNk
X (x) = NNk

X (y) by definition. Thus, gen(V) is well defined. For

points u ∈ RN such that |NNk
X (u)| 6= k, we know that for any kth-order Voronoi region V

with gen(V) ⊆ NNk
X (u), the point u will lie on the boundary of V , that is, u ∈ ∂V . We

define the kth-order Voronoi skeleton of X to be

∂V k(X) =
⋃

V ∈V k(X)

∂V (3.1)

Clearly for k = 1, the definition of V k(X) reduces to that of the traditional Voronoi diagram.

From the definition, there are obviously at most

(
|X |
k

)

kth-order Voronoi regions, however in practice most of these will be empty sets. Also, if

the point cloud X is finite, the kth-order Voronoi diagram must contain a finite number of

regions in RN (since the kth-order Voronoi regions are convex, as we will soon see). Thus,

since we only consider finite point clouds in this dissertation, the intersection in Equation

49

V u

(a) V 1(X)

u

(b) Decomposition of V

Figure 3.1: Going from k = 1 to k = 2

3.1 will be of a finite number of closed sets. Hence, ∂V k(X) will be closed as well.

Note that the kth-order Voronoi regions can be constructed recursively. Specifically,

given a set X = {x1, ..., xn}, suppose we can calculate the (k− 1)th-order Voronoi diagram,

that is V (k−1)(X) = {V1, ..., Vm} where m is the number of Voronoi regions in V (k−1)(X).

For a given 1 ≤ i ≤ m, recall that any point v ∈ int(Vi) has the same k − 1 nearest

neighbors set, NNk−1(X) = gen(Vi). To begin constructing V k(X), we compute the 1st-

order Voronoi diagram on the set X\ gen(Vi). Suppose the resulting 1st-order regions are

denoted W i
1, ...,W

i
mi for some mi ∈ N. By intersecting each W i

j with Vi, we can decompose

Vi into subregions, where for each region, every point in the region has the same k-nearest

neighbors. To see this, let x, y ∈ int(W i
j ∩ Vi). Then x, y ∈ int(Vi) and so they must have

the same k−1 nearest neighbors, specifically gen(Vi). However, we also have x, y ∈ int(W i
j)

and so the nearest neighbor of x and y in the set X\ gen(Vi) must be the single element of

gen(W i
j). Therefore, both x and y have the same nearest k neighbors.

This process is illustrated in Figure 3.1, where the left hand figure shows the first order

Voronoi diagram for a set of 4 points. We wish to decompose the region V , generated by

the black point u, into subregions corresponding to the k = 2 nearest neighbors of u. The

edges of the first order Voronoi diagram are shown as black solid lines. To decompose V ,

we first compute the first order Voronoi diagram on the point cloud X\{u}, as shown by

the black solid lines in Figure 3.1b. In this figure, we have made the edges of the k = 1

50

V1 V3

V2

u

(a) V 1(X)

V1 V3

V2
W1

W2

u

(b) Decomposition of V

Figure 3.2: Going from k = 1 to k = 2

order Voronoi diagram dashed so it is clear that the two diagrams are overlayed.

We then intersect this diagram with the region V . The result of this operation is shown

in Figure 3.2a. After the intersection, the subregions V1, V2, and V3 are formed. Each of

these regions will consist of points sharing the same two nearest neighbors. Of course, we

have only decomposed the region V and we will have to repeat this procedure for every

region in the first order Voronoi diagram.

Following the procedure outlined above for each Vi ∈ V k(X), we have a set of regions

in RN denoted

A = {Vi ∩W i
j : 1 ≤ j ≤ mi, 1 ≤ i ≤ m}

where V 1(X\ gen(Vi)) = {W i
j : 1 ≤ j ≤ mi} is the 1st-order Voronoi decomposition of RN

using the points in X\ gen(Vi). Note that this decomposition is not exactly V k(X) since

adjacent regions in V (k−1)(X) may be decomposed in such a way that they have adjacent

subregions with the same k neighbors. For example, suppose V1, V2 ∈ V (k−1)(X) such

that gen(V1) = {x1, ..., xk−1} and gen(V2) = {x2, ..., xk} are adjacent Voronoi regions in

V (k−1)(X) with two disagreeing generators (i.e. x1 ∈ V1 but x1 6∈ V2 and xk ∈ V2 but

xk 6∈ V1). When the two regions V1 and V2 are intersected with the first order Voronoi

diagrams of X\ gen(V1) and X\ gen(V2) respectively, the resulting decompositions of V1

and V2 may contain adjacent subsets where the k-nearest neighbors are {x1, ..., xk} in both

51

subsets. Therefore, to finish the construction, one needs to search the adjacent regions in

A and perform a union whenever the k-nearest neighbor sets of the adjacent regions are

in agreement. This issue is illustrated in Figure 3.2b. Here, we see that the regions V1

and W1 will actually contain the same k = 2 nearest neighbors. Thus, we would need to

take the union of these two regions. Through the above discussion, we have established the

following.

Theorem 3.2. The kth-order Voronoi diagram of a point cloud X can be constructed re-

cursively from the lower order Voronoi diagrams of X .

Note that while the above recursive algorithm will produce a higher order Voronoi

diagram, it is by no means an efficient approach. Obviously, to construct a kth-order Voronoi

diagram following this approach, one must first construct all the lower order diagrams.

Certainly, a fast first order Voronoi diagram algorithm would be desired to implement this

algorithm, however a method which skips this recursive construction would be desireable.

Furthermore, at each step of the recursion, we need to compute a first order Voronoi diagram

for every Voronoi diagram already constructed. Therefore, the computational complexity

of this algorithm will be exceptionally high. There are in fact much more efficient methods

for constructing higher order Voronoi diagrams. Examples of such algorithms are given in

[16], [6], and [35].

Now that we know of a few ways of constructing the higher order Voronoi diagrams, we

put aside their construction and begin discussing their properties. We first need to recall a

few definitions for convex polytopes.

Definition 3.3. A subset C ⊂ RN is a bounded convex polytope if it is the convex hull

of a finite set of points in RN .

As it turns out, Voronoi diagrams are collections of bounded and unbounded convex

polytopes. When discussing convex polytopes, two representations are employed in the

literature, the vertex representation and the intersection of half spaces representation. The

vertex representation only applies for bounded convex polytopes. Since Voronoi diagrams

52

contain unbounded polytopes, we will need the half space definition as well. Recall that

a half space in RN can be represented using linear inequalities. For example, all points

x = (x1, ..., xN) ∈ RN such that

a1x1 + a2x2 + ...+ aNxN ≤ c

for constants c, ai ∈ R (1 ≤ i ≤ N). Of course, one such inequality produces a convex set

and so the intersection of two of these half spaces will also be convex. Doing this a finite

number of times produces a convex polytope under the half space representation.

Definition 3.4. Let A = (aij) ∈ Rm×N be a matrix and let b ∈ Rm. Then a (closed)

convex polytope is the set of solutions to the system of linear inequalities

Ax ≤ b

Of course, unlike the vertex representation, this definition can result in unbounded

convex polytopes. Although this work is not concerned with substantial convex analysis,

we will need one additional tool for some later results.

Definition 3.5. Given a convex set C ⊂ RN , the recession cone of C, denoted reccC,

is the set of all directions d ∈ RN such that all rays eminating from points in C in the

direction d remain in C. That is

reccC = {d ∈ RN : ∀x ∈ C,∀λ ≥ 0 : x+ λd ∈ C}

Obviously for bounded convex sets the recession cone is trivial, i.e. recc(C) = {0}.

However, not all unbounded convex sets have non-trivial recession cones. As an example,

take the sets

A = [0, 1]× [0,∞)

B = [0, 1)× [1,∞) ∪ [0, 1]× [0, 1]

53

Here, we have recc(A) = {(0, y) : y ≥ 0} while recc(B) = {0}. As noted by Alexander

Schrijver in [51], the recession cone has the following equivalent definition for a convex

polytope C satisfying Ax ≤ b,

recc(C) = {x ∈ RN : Ax ≤ 0}

The following lemma is also from [51] and will be useful in a later section.

Lemma 3.6. A closed, convex polytope C is bounded if and only if recc(C) = {0}.

Of course, the set B defined above is not a counter example to this lemma since it is not

closed.

We are now ready to turn our attention back to Voronoi diagrams and prove that the

first order Voronoi diagram consists of convex polytopes. We will then extend this result to

higher order Voronoi diagrams.

Theorem 3.7. Let X ⊂ RN be a point cloud. Then V 1(X) is a set of convex polytopes.

Proof. Let X = {x1, ..., xn} and let xi ∈ X . For each xj ∈ X with i 6= j, consider the Voronoi

diagram induced by the set {xi, xj}, denoted Vij . Let H i
j = {u ∈ RN : d(u, xi) ≤ d(u, xj)}

be the region of this diagram corresponding to points closer to xi than xj . Clearly, Vij

bisects the domain with a hyper-plane, creating two half spaces H i
j and RN\H i

j . Now

notice that the set H i
1∩H i

2∩ ...∩ Ĥ i
i ∩ ...∩H i

n is in fact the Voronoi region, V 1(xi), about xi

(here, Ĥ i
i denotes the absence of H i

i from the intersection). To see this, suppose u ∈ V 1(xi).

Then u is closer to xi than any point in {x1, ..., x̂i, ..., xn}. That is, d(u, xi) ≤ d(u, xj) for

all j 6= i. Therefore, u is in H i
j for all j, and so u ∈ H i

1 ∩ ... ∩ Ĥ i
i ∩ ... ∩ H i

n. Conversely,

suppose u ∈ H1∩ ...∩ Ĥ i
i ∩ ...∩Hn. Then d(u, xi) ≤ d(u, xj) for all j 6= i and so u ∈ V 1(xi).

Therefore, V 1(xi) = H1 ∩ ... ∩ Ĥ i
i ∩ ... ∩ Hn. Finally, since V 1(xi) is an intersection of a

finite number of half-spaces, V 1(xi) is a convex polytope. Since i was chosen arbitrarily,

the result holds for all the Voronoi regions.

54

This convexity result gives us much more than simply convexity in the case of 1st-order

Voronoi diagrams, since the recursive algorithm can be employed to construct higher order

diagrams. Here, we establish the critical result that Voronoi regions in higher dimensional

Voronoi diagrams are convex polytopes. This will be important when analyzing the forth-

coming gradient flow since trajectories under this flow will be shown to be piecewise straight

lines in the Voronoi regions.

Theorem 3.8. Let X ⊂ RN be a point cloud. Then the k-order Voronoi diagram of X is

a set of convex polytopes.

Proof. Let V k(X) be the k-order Voronoi diagram of a point cloud X and consider a k-order

Voronoi region V ∈ V k(X) with generators x1, ..., xk ∈ X . Any point x ∈ V is closer to

the points x1, ..., xk than any other generator y ∈ X . Consider the subsets Xi ⊂ X for

1 ≤ i ≤ k, where Xi = X\{x1, ..., x̂i, ..., xk} and x̂i denotes the absence of xi. Then for

the first order Voronoi diagram V 1(Xi), the Voronoi region Vi, with generator xi, is convex

by Theorem 3.7. Additionally, the region Vi consists of all points whose distance to xi is

less than or equal to the distance to any other point in X\{x1, ..., xk}. Doing this for every

1 ≤ i ≤ k yields a set of convex polytopes {V1, ..., Vk}. Since each Vi is convex, the set

V1 ∩ ... ∩ Vk is also convex. We claim V1 ∩ ... ∩ Vk = V , and so V is convex.

To see this, let x ∈ V1 ∩ ... ∩ Vk. Then since x ∈ Vi for each 1 ≤ i ≤ k, we know

the distance from x to xi is less than or equal to the distance between x and any point in

X\{x1, ..., xk}. Since this holds for every 1 ≤ i ≤ k, we know

max
1≤i≤k

d(x, xi) ≤ min
y∈X\{x1,..,xk}

d(x, y)

Thus, we must have x ∈ V and so V1 ∩ ... ∩ Vk ⊆ V . Conversely, if x ∈ V , then by the

definition of a Voronoi region, for any 1 ≤ i ≤ k, we know the distance from x to xi is less

than or equal to the distance from x to any point in X\{x1, ..., xk}. Hence, we have x ∈ Vi

for all 1 ≤ i ≤ k. Since this holds for any 1 ≤ i ≤ k, we see that x ∈ Vi for every 1 ≤ i ≤ k.

55

Thus, x ∈ V1 ∩ ...∩ Vk and so V ⊆ V1 ∩ ...∩ Vk. Therefore, we have V = V1 ∩ ...∩ Vk. Since

V was an arbitrary k-order Voronoi region in the Voronoi diagram of X , we see that all

Voronoi regions in the diagram must be convex.

Note that unlike the 1st-order Voronoi regions, a kth-order Voronoi region with k > 1

can be empty. This will happen when the regions {Vi}ki=1, as defined in the proof, do

not intersect. The following result is not surprising, but worth stating explicitly as it

characterizes when a higher order Voronoi region can be empty.

Lemma 3.9. Let X ⊂ RN be a point cloud. A kth-order Voronoi region V generated by

gen(V) = {x1, ..., xk} ⊂ X has nonempty interior if and only if there exists a point x ∈ RN

and r > 0 such that the open ball B = B(x, r) centered at x of radius r contains gen(V),

but B ∩ (X\ gen(V)) = ∅.

Proof. First suppose there exists x ∈ RN and r > 0 such that gen(V) ⊆ B(x, r) = B but

B ∩ (X\ gen(V)) = ∅, then the nearest neighbors of x are precisely the points in gen(V),

i.e. NNk
X (x) = gen(V). Thus, x ∈ V and so V is nonempty. Furthermore, we must have

x 6∈ ∂V since if x is in ∂V then it lies on some Voronoi face. Since any point on a Voronoi

face of V k(X) has an ambiguous nearest neighbor set, we know that x must lie within the

interior of V and hence V has non-empty interior.

Conversely, pick a point x in the interior of V such that u 6∈ gen(V). Then NNk
X (x) =

gen(V). Define

RI = max
y∈gen(V)

‖x− y‖ and RE = min
u∈X\ gen(V)

‖x− u′‖

Note that RI > 0 since x 6∈ gen(V). Also note that RI < RE since gen(V) = NNk
X (x) and

|NNk
X (x)| = k (since x ∈ int(V)). Then pick

r ∈ (RI , RE)

56

Since the set NNk
X (x) is well defined (i.e. |NNk

X (x)| = k), we know ‖x − z‖ > r for any

z ∈ X\ gen(V). Thus, B(x, r) ∩ (X\ gen(V)) = ∅. On the other hand, gen(V) ⊆ B(x, r) by

our choice of r (since r > RI). Hence, B(x, r) satisfies the requirements of the lemma and

thus the lemma is proved.

Every Voronoi region V in the Voronoi diagram is a convex polytope as shown in Theo-

rem 3.8. Using this fact, we know that the regions are simply connected and in particular,

we can compute the barycenter of the polytope, V . However, since each polytope has a set

of generators, we can define another notion of the barycenter of V , by taking the barycenter

of the generators. The distinction between these two types of barycenters will be important

later on, so we state some definitions now and give an example to emphasize how the two

notions of barycenters differ.

Definition 3.10. For a k-order Voronoi region V generated by {x1, ..., xk}, let BarG(V),

called the generator barycenter, be the barycenter of {x1, ..., xk}. That is,

BarG(V) =
1

k

k∑
i=1

xi

On the other hand, we will denote the barycenter of the convex polytope V , if it exists, by

BarP (V) and refer to this as the polytope generator of V . That is,

BarP (V) =

∫
RN xIV (x)dx∫
RN IV (x)dx

where IV is the characteristic function of V and the integrals are taken coordinate-wise.

This integral will not converge for unbounded polytopes and hence BarP (V) will not always

exist.

It is important to note that while the polytope barycenter of a kth-order Voronoi region

V is always contained in V , the generator barycenter of a kth-order Voronoi region V need

57

not belong to V when k > 1. This is obviously quite different than 1st-order Voronoi

diagrams, where the single generator (and hence also the generator barycenter) is contained

well within the Voronoi regions. This condition will be very important in what follows,

when we find fixed points of the k-nearest neighbors flow. The next example highlights how

this condition can arise.

-1 0 1 2 3 4 5 6 7

BRBL

Figure 3.3: Example with BarG(V) 6∈ V

Example 3.1. Consider Figure 3.3 and let X = {0, 5, 6, 7} ⊂ R with k = 3. When

k = |X | − 1, the k-order Voronoi diagram is known as the furthest point Voronoi

diagram. This is because we are really partitioning the space into regions where every

point in a region has the same furthest point. Using this fact, we know there will be

two 3-order Voronoi regions V1, V2 induced by gen(V1) = {0, 5, 6} and gen(V2) = {5, 6, 7}

respectively. We can compute the generator barycenters

BarG(V1) =
1

3
(0 + 5 + 6) =

11

3

BarG(V2) =
1

3
(5 + 6 + 7) =

18

3
= 6

In the figure we let BL = BarG(V1) and BR = BarG(V2). We can find the point of separation

between V1 and V2 by noticing that if x ≥ 3.5, then x will be closer to 7 than it will to 0.

Hence, we have

V1 =

{
x ∈ R : x ≤ 7

2

}
and V2 =

{
x ∈ R : x ≥ 7

2

}
58

and so BarG(V1) 6∈ V1 while BarG(V2) ∈ V2. In this case, since the two regions V1 and V2

are unbounded, neither has a polytope generator.

It should be clear from the definitions that the kth-order Voronoi diagram depends

heavily on the value of k. Different values of k can produce wildly different higher order

Voronoi diagrams. As we will see in this dissertation, the choice of k requires careful thought

as the gradient flow we induce later in this chapter depends on the particular value of k.

In the next example, we show how two different values of k produce two quite different

diagrams.

Example 3.2. Here we will present the first part of an ongoing example. We have generated

a point cloud X of 10 points sampled from [0, 1]× [0, 1] at random, we then computed the

third and fifth order Voronoi diagrams. The diagrams V 3(X) and V 5(X) are shown in

Figure 3.4. In these diagrams, the original points of X are shown as black dots and the

lines correspond to the Voronoi edges. Note the difference between the two diagrams. Also,

notice that there are many regions which do not contain any of the original points. There

are also areas of the diagram with many small, densely packed regions. As we will see, these

regions result in very jittery and seemingly chaotic trajectories, however their behavior can

be completely determined.

3.2 The k-Nearest Neighbor Gradient Flow

In this section, we will introduce the k-nearest neighbor flow and investigate some of its

properties. The goal of introducing this flow is to reduce the noise in a point cloud and

to reduce the influence of outliers on manifold reconstruction techniques. While many

smoothing techniques simply remove outliers, our technique will move the outliers to less

noisy positions. Therefore, we will not reduce the number of points in the sample and will

use every point, as best we can. Additionally, since the k-nearest neighbor flow is a gradient

descent based algorithm, the complexity of the algorithm will be tied to the complexity of

computing the gradient, which only depends linearly on the dimensionality and size of

59

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

(a) k = 3

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

(b) k = 5

Figure 3.4: kth-order Voronoi diagrams for samples drawn from [0, 1]2

the neighborhood (i.e. k). Of course, computing the neighborhood itself is a quadratic

operation when performed näıvely since it requires the computation of the distance matrix.

Thus, this step dominates the computational complexity of the gradient flow procedure. To

address this, we will discuss the use of space paritioning algorithms to decrease the overall

complexity of the gradient flow. However, we leave this modification to a later chapter.

3.2.1 Local k-Nearest Neighbors Gradient Flow

Let X be a finite point set with |X | = n. We begin by observing that the definition of

the distance-to-measure function under the empirical measure is equivalent to a k-nearest

neighbors energy function EkX : RN → R defined as follows,

EkX (x) =
1

k

∑
y∈NNkX (x)

‖x− y‖2 (3.2)

To see this, we set µ = µX in Definition 1.8 of the distance-to-measure function dµ,m0 ,

where m0 ∈ R is some positive mass parameter and µX is the empirical measure . That is,

60

for any Borel set B ⊆ RN , we have

µX (B) =
1

n
|B ∩ X |

As the definition of the distance-to-measure function relies on the pseudo distance function

δµX ,m(·) we first turn to Definition 1.7. Using the empirical measure µX , we have

δµX ,m0(x) = inf
{
r > 0 : µX (B̄(x, r)) > m0

}
= inf

{
r > 0 :

1

n
|B̄(x, r) ∩ X | > m0

}

= inf
{
r > 0 : |B̄(x, r) ∩ X | > m0n

}

Suppose for some r, |B̄(x, r) ∩ X | > m0n. Then there exist points x1, x2, ..., xj ∈ X , for

some j > m0n, such that xi ∈ B̄(x, r) for i = 1, ..., j. Hence, if we set j = dm0ne, then the

pseudo distance-to-measure function simplifies to a jth-nearest neighbor query on X . That

is, δµX ,k/n(x) is the distance to the jth-nearest neighbor of x. Also, since |B̄(x, r)∩X | ∈ N,

we know the map m0 7→ δµX ,m0 is constant for all m0 ∈
(
j
n ,

j+1
n

)
. Therefore,

d2µ,m0
(x) =

1

m0

∫ m0

0
δµ,m(x)2dm =

1

m0n

m0n∑
j=1

δµ,j/n(x)2 =
1

k

∑
y∈NNkX (x)

‖y − x‖2

where k = dm0ne. Thus, we have d2µ,m0
(x) = EkX (x) as desired.

For the remainder of this section, we will fix k and forget about the parameter m0 since

specifying m0 yields a value for k. Additionally, in our notation for EkX , we will suppress

the explicit dependence on k and simply write EX .

For a point u ∈ RN , we can calculate the distance-to-measure under the empirical

61

measure µX using the k-nearest neighbor formula above. If we wanted to move the point

u so that we reduce its distance-to-measure µX , then we would want to move opposite the

gradient of EX . This is the idea behind the k-nearest neighbors gradient flow.

First, note that the gradient is given by

∇EX (u) =
2

k

∑
y∈NNkX (u)

(u− y) (3.3)

where NNk
X (u) is the set of k-nearest neighbors to u. This can be computed directly from

the definition of the distance-to-measure under the empirical measure. However, it can

also be obtained from the gradient in Corollary 1.14. Note that ∇EX is discontinuous

across the k-order Voronoi faces in general, since the neighbors determining the gradient

will change. It is undefined on the faces (since NNk
X is undefined on the faces). We will

discuss the flow’s behavior along the boundary later. Additionally, we will only consider

trajectories intersecting with codimension one Voronoi faces since lower dimensional Voronoi

face intersections occur with measure zero and will therefore only occur with synthetic

and pathological point clouds. Note that although the co-dimension one Voronoi faces

have measure zero in the ambient space RN , the set of initial points whose trajectories

intersect these faces does not have measure zero in the space of trajectories. For now we

will only consider the behavior of trajectories within higher order Voronoi regions, leaving

the definition of gradient flow across the Voronoi skeleton for later.

Definition 3.11. Given a kth-order Voronoi region V ∈ V k(X), we induce a gradient flow

on V as follows. For every x ∈ int(V), we define u : [0, Tx) → RN for some Tx > 0, such

that 
du

dt
= −∇EX (u)

u(0) = x

(3.4)

62

We then set

ϕ`(x, t) = u(t) ∀(x, t) ∈ V × [0, Tx) (3.5)

and call the resulting system, the local k-nearest neighbor flow. We choose Tx such

that ϕ`(x, t) ∈ V for all t ≤ Tx. That is, once the trajectory u(t) intersects the boundary

∂V , we terminate the flow.

Note that using the above system, we can induce a single trajectory for each point in X

and track its evolution under the local flow. In particular, we set

X `t = {ϕ`(x, t) : x ∈ X}

However, for the purpose of computing nearest neighbors, we will always use the original

points in the point cloud X . That is, when computing ∇EX (u(t)) for some time t ≥ 0, we

use the nearest neighbors from the point cloud X `0 = X instead of the point cloud X `t . While

it is certainly possible to compute nearest neighbors using X `t , doing so results in strong

clustering behavior as the points continually flow toward one another. As we will see, using

X `0 to compute nearest neighbors for the flow still induces some clustering, however using X `t

makes the effect far more pronounced. Furthermore, it is obviously more computationally

expensive to update the nearest neighbors at every iteration since any spatial indexing

scheme would require updating the index at every step.

3.2.2 Defining the Flow on the Boundary

In this section, we address the behavior of the flow along the Voronoi faces. In the pre-

vious definitions of the k-nearest neighbor flow, we have only described the flow locally,

constrained to a single k-order Voronoi region. Here, we will extend the flow across regions

by investigating the behavior of the gradients across the boundary.

Given a k-order Voronoi diagram, V k(X), recall that ∂V k(X) denotes the skeleton

of the diagram. The issue with defining the flow along ∂V k(X) is the discontinuity of the

63

gradient across these boundaries. This is a consequence of the nearest neighbor set changing

as we cross from one region to another. As we will now see, extending the gradient flow

system of Equation 3.5 across the skeleton of the k-order Voronoi diagram naturally results

in a Filippov type system. With this in mind, we define the gradient along ∂V k(X) in a

manner consistent with Fillipov systems.

We will follow the nomenclature of M. di Bernardo et al. and their discussion of

piecewise-smooth dynamical systems (see [24]). First, note that the local gradient flow

system described by Equation 3.5 comes close to satisfying the definition of a piecewise-

smooth flow as defined in [24], and reproduced below.

Definition 3.12. A piecewise-smooth flow is given by a finite set of ordinary differential

equations defined on sets Si ⊂ RN ,

ẋ = Fi(x, µ), for x ∈ Si

where ∪iSi ⊆ RN and each Si has a non-empty interior. The intersection Σij := S̄i ∩ S̄j

is either an RN−1-dimensional manifold included in the boundaries ∂Sj and ∂Si, or is the

empty set. Each vector field Fi is smooth in both the state x and the parameter µ, and

defines a smooth flow Φi(x, t) within any open set U ⊃ Si. In particular, each flow Φi is

well defined on both sides of the boundary ∂Si.

To see the connection with our gradient flow, note that we can take the sets {Si} to be

the finitely many k-order Voronoi regions V ∈ V k(X). For this section, we let m = |V k(X)|

and index the k-order Voronoi regions so that for each V ∈ V k(X), there exists i ∈ {1, ...,m}

such that Vi = V , to better match the notation in [24]. Returning to the definition, our

system is certainly smooth within any k-order Voronoi region V and if we extend the

gradient to any open set U ⊃ V , it will clearly remain smooth, afterall the gradient is

simply a vector directed toward BarG(V). Unlike the above definition, our system does not

utilize any parameters µ, however this does not change the conclusion that our gradient

64

system almost defines a piecewise-smooth gradient flow.

A non-empty boundary Σij between two k-order Voronoi regions Vi, Vj ∈ V k(X) will be

referred to as a switching manifold. Of course, the switching manifolds will be piecewise-

smooth as well, given they are the faces of convex polytopes. In what follows, as in the

reference work [24], we will only consider codimension one switching manifolds. This is

justified since the set of points whose trajectories intersect switching manifolds with codi-

mension greater than one is a null set.

To characterize the smoothness of a piecewise-smooth dynamical system, M. di Bernardo

et al. use the concept of degree of smoothness. In the following definition, reproduced from

[24], and the next, we will continue to use the notation of M. di Bernardo (i.e. the notation

from Definition 3.12). After presenting the definitions, we will switch back to our notation.

Definition 3.13. The degree of smoothness at a point x0 in a switching set Σij of a

piecewise-smooth ordinary differential equation is the highest order r such that the Taylor

series expansions of Φi(x0, t) and Φj(x0, t) with respect to t, evaluated at t = 0, agree up

to terms of O(tr−1). That is, the first non-zero partial derivative with respect to t of the

difference [Φi(x0, t)− Φj(x0, t)]|t=0 is of order r.

The above definition describes the smoothness of the system at a single point. Since we

are concerned with defining the gradient flow vector along all of ∂V k(X), we need another

definition. To further characterize the smoothness, we can use the following definition from

[24].

Definition 3.14. A switching set Σij is said to be uniformly discontinuous in some

domain D if the degree of smoothness of the system is the same for all points x ∈ Σij ∩ D.

We say that the discontinuity is uniform with degree m if the first non-zero partial

derivative of Fi − Fj evaluated on Σij is of order m − 1. Furthermore, the degree of

smoothness is one if Fi(x)− Fj(x) 6= 0 for x ∈ Σij ∩ D.

From the above two definitions, we see that our switching sets Σij = Vi∩Vj have degree

of smoothness one. This is due to the fact that, in general, the gradients ∇Ei and ∇Ej

65

corresponding to Vi and Vj respectively, do not agree on Σij . When dealing with systems

having switching sets with degree of smoothness one, care must be taken when defining the

gradient along the switching sets. This is because the gradients on either side of a switching

set may be inducing flow in opposing directions. Piecewise-smooth flows exhibiting degree

of smoothness one are called Fillipov systems.

Defining the gradient along the switching manifolds becomes important in Filippov

systems. In this work, we follow Filippov’s convex method. To utilize Filippov’s convex

method, we must define the sliding region, Σ̂ij of the switching manifold Σij = ∂Vi∩∂Vj .

First, let ηx denote the normal vector of the codimension one hyperplane ∂Vi ∩ ∂Vj . In

particular, we choose the normal vector which points into Vi. Let Ei(x) and Ej(x) be the

gradient EkX (x) as defined for Vi and Vj respectively (i.e. induced by gen(Vi) and gen(Vj)).

Then we can define the sliding region, Σ̂ij of the switching manifold Σij to be

Σ̂ij = {x ∈ Σij : 〈ηx,∇Ei(x)〉 · 〈ηx,∇Ej(x)〉 < 0}

Thus, points in the sliding region Σ̂ij consist of points where the gradients on either side of

Σij point into different k-order Voronoi regions.

For points x ∈ Σij\Σ̂ij , the definition of the gradient is straightforward since both

gradients point into the same k-order Voronoi region. In particular, we will just follow the

flow and if a trajectory leaves V1 and enters V2, then we define the gradient on ∂V1 ∩ ∂V2

to be the gradient induced by the generators of V2 (i.e. gen(V2)). However, on Σ̂ij , we

define the gradient ∇EkX (X) to be a convex combination of the gradients on either side of

∂Vi ∩ ∂Vj . Thus, for a point x ∈ Σ̂ij , we set

∇EkX (x) = (1− α(x))∇Ei(x) + α(x)∇Ej(x) for all x ∈ Σij (3.6)

66

We then define α : RN → R as in [24], setting

α(x) =
〈ηx,∇Ei(x)〉

〈ηx,∇(Ei − Ej)(x)〉

This choice of α(x) causes the gradient ∇EkX (x) to lie orthogonal to ηx. This is illustrated

in Figure 3.5, which shows the resulting gradient (red arrow) for two regions Vi and Vj

which exhibit attractive sliding along the interface.

In [24], Bernardo et al. show that the above definition of Σ̂ij is identical to the following,

Σ̂ij = {x ∈ Σij : 0 ≤ α ≤ 1}

There are two modes of sliding which can occur in the sliding region. Recall that in the

region Vi (resp. Vj), the induced flow follows the vector field given by −∇Ei (resp. −∇Ej).

Note that if 〈ηx,−∇Ei〉 < 0 and 〈ηx,−∇Ej〉 > 0, then the the system exhibits attractive

sliding at the point x, since ηx was chosen to point into Vi. Conversely, if 〈ηx,−∇Ei〉 > 0

and 〈ηx,−∇Ej〉 < 0, then the system exhibits repulsive sliding at x.

Vi

Vj

-∇Ei(x)

-∇Ej(x)

Figure 3.5: Attractive sliding along the interface ∂Vi ∩ ∂Vj

Repulsive sliding does not pose any problems evolving the point cloud in forward time

since these interfaces cannot be reached in forward time and the probability that a point in

the point cloud starts on the interface between two k-order Voronoi regions is zero. On the

67

other hand, attractive sliding is important since regardless of whether a point starts on the

interface, it may be drawn to the interface, at which point it will begin sliding. If points

can slide along an interface, then two points can enter the sliding regions at different points

and exit the sliding region at the same point. Thus, trajectories are not well defined in

reverse time. However, as we will see in the next section, attractive sliding does not occur

for any point cloud undergoing this flow. Repulsive sliding, on the other hand, does occur.

In fact, repulsive sliding regions provide the unstable regions of the gradient flow system.

In particular, an repulsive sliding region acts as a separatrix, with points on opposing sides

following entirely different trajectories.

Now that we have all we need to define the gradient flow system almost everywhere in

RN , we put off analyzing the sliding region dynamics in favor of updating our definitions

and notation.

Definition 3.15. To define the trajectory u(t) for a point x ∈ RN , we solve the following

differential equation. 
du

dt
(t) = −∇EX (u(t)) t > 0

u(t) = x t = 0

(3.7)

where ∇EX follows the form given in Equation 3.3 if x 6∈ Σ and the form given in Equation

3.6 when x ∈ Σ. Next, we let

φ(x, t) = u(t) (3.8)

where u is the trajectory defined above for a given x ∈ RN . Given a point cloud X, we

define

Xt = {φ(x, t) : x ∈ X} (3.9)

for all t ≥ 0.

As we increase t, every point in the point cloud will move in the direction which min-

imizes its distance-to-measure. For the remainder of the dissertation, we will drop the

68

notation φ` and X`
t in favor of φ and Xt respectively. The local gradient flow has served its

purpose and we are now interesed in analyze the entire flow as defined on RN .

3.3 Properties of the k-Nearest Neighbor Flow

The gradient flow system in Equation 3.8 will be the bedrock of the rest of this work. In

what follows, we will introduce many novel modifications of this gradient system which

have not been applied in this context previously. In doing so, we will improve the overall

performance of the algorithm. Despite these modifications, the underlying gradient based

flow will remain largely the same. We will therefore spend some effort analyzing this system.

In the remainder of this chapter, we will find the solutions of the above equations and

describe a flow diagram which completely encapsulates the dynamics of the system.

To start, we will determine the fixed points of the k-nearest neighbor flow. As it turns

out, these points are easy to determine using the k-order Voronoi diagram. However, with-

out the diagram, the process becomes computationally expensive. Therefore, computing

these fixed points in higher dimensions is intractable. However, we will present a simple

theoretical procedure to do so. We can easily conclude a new result giving necessary and

sufficient conditions for a Voronoi region to be a positively invariant set of the k-nearest

neighbor flow given in Definition 3.15.

Proposition 3.16. Let V k(X) be the k-order Voronoi diagram for a finite point cloud

X ⊂ RN . Under the gradient flow induced by Equation 3.7, a region V ∈ V k(X) is a

positively invariant set if and only if its interior contains the barycenter of its generators.

That is

ϕ(x, t) ∈ V ∀x ∈ V, t ≥ 0 ⇔ BarG(V) ∈ int(V)

Proof. Let gen(V) = {x1, ..., xk} be the k generators of V . Since all the points of V have

the same k-nearest neighbors, we can solve the gradient flow exactly for all x ∈ V , until the

69

trajectory leaves V of course. In particular, for any x ∈ V we have

dux
dt

= −2

k

k∑
i=1

(ux − xi) = −2ux +
2

k

k∑
i=1

xi = −2ux + 2 BarG(V)

which has the solution

u(t) = BarG(V) + c1e
−2t

Thus, if u(0) = x ∈ V , we have x = BarG(V) + c1 and so c1 = x − BarG(V). This yields

the solution

u(t) = BarG(V) + (x− BarG(V))e−2t

= xe−2t + (1− e−2t) BarG(V)

= xλ(t) + (1− λ(t)) BarG(V)

(3.10)

where λ(t) = e−2t. This solution is valid so long as u(t) stays in V . Note that λ(t) ∈ (0, 1]

for t ∈ [0,∞). Therefore, {u(t)}t≥0 is simply a line segment from x to BarG(V). Since both

x and BarG(V) are in V by assumption, and V is convex by Corollary 3.8, the region V

must contain the entire line segment and so we have u(t) ∈ V for all t ≥ 0. Thus, the region

V is a positively invariant set of the flow.

The converse is straightforward. Suppose that a k-order Voronoi region V ∈ V k(X) is

a positively invariant set. Then for any point x ∈ V , we have ϕ(x, t) ∈ V for all t ≥ 0. We

know the trajectory of x must begin at x and follow a straight line (by the above derivation

of a trajectory’s solution), ending at BarG(V). Since ϕ(x, t) ∈ V for all t ≥ 0, we know the

line stays within V . Finally, since V is closed, we must have the end points of the trajectory

line are contained in V as well. Thus, BarG(V) ∈ V as desired.

In what follows, we will often refer to the condition BarG(V) ∈ V as the barycentric

sink condition. Using this language, a generator barycenter is a sink of the gradient flow

70

system if and only if it satisfies the barycentric sink condition. We refer to such barycenters

as barycentric sinks. Note that we have also proved something more general about

trajectories under the gradient flow defined in Equation 3.7: a point in RN flows towards

the generator barycenter of the Voronoi region containing the point. This of course happens

until the point encounters the boundary of the Voronoi region. We will soon address the

flow’s behavior on the boundary of a Voronoi region, but first we state a lemma which follows

immediately from the previous proof and the fact that ϕ is smooth within the interior of

the Voronoi regions.

Lemma 3.17. Given a point x ∈ int(V), for some Voronoi region V ∈ V k(X), there

exists τ > 0 such that ϕ(x, t) ∈ V for all t < τ . Furthermore, for any x ∈ V , the set

{ϕ(x, t) : t < τ} is a line segment from x towards BarG V .

The previous results immediately lead to another new theorem which characterizes the

sinks of the gradient flow system. Furthermore, we can use the barycentric sink condition

to determine some positively invariant sets of the flow. Recall, a set M is positively

invariant under the flow φ : RN × R → R if for all x ∈ M , we have φ(x, t) ∈ M for any

t ≥ 0.

Theorem 3.18. Let X ⊂ RN be a finite point cloud and let V k(X) be the corresponding

k-order Voronoi diagram. Let

S(X) = {V ∈ V k(X) : BarG(V) ∈ V }

and let

B(X) = {BarG(V) : V ∈ S}

Then all sets in S are positively invariant sets of the gradient flow defined in Equation 3.7

and B is the ω-limit set of the gradient flow system given by Equation 3.8.

In Figure 3.6, we show a sample point cloud drawn noisily from the unit circle S1. The

generator barycenters which act as sinks of the k-nearest neighbor gradient flow induced on

71

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) Original Point Cloud

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) Barycentric Sinks

Figure 3.6: The barycentric sinks of a point cloud drawn from S1

this point cloud are shown in Figure 3.6b. In this figure, the fifth-order Voronoi diagram is

shown in gray. The points of B(X) are shown in red. Notice that there are some areas of

R2 where the barycentric sinks are quite dense. This will lead to clustering when the point

cloud evolves according to the k-nearest neighbor gradient flow.

While the above theorem provides us with some positively invariant sets, the system

contains much larger positively invariant sets. To fully determine these sets, we will need to

build a flow diagram in the next section. From this, we will be able to determine the regions

of stability for each accumulation point in B. It is important to note that this theorem makes

clear that the final positions of all points in X under the gradient flow defined by Equation

3.7, are contained in B. Of course, not every point in B will be approached by a point in

X , however these barycenters can be of interest themselves as we will see later.

Next, we introduce the concept of the regional travel time, R(x), for a point x in a

Voronoi region V , defined to be the time it takes the point x to escape V . That is

R(x) = sup{τ > 0 : ϕ(x, t) ∈ V,∀t < τ} (3.11)

Furthermore, we can define the regional travel time R(V) for a Voronoi region V ∈ V k(X),

72

to be

R(V) = sup{R(x) : x ∈ V }

Of course, for a k-order Voronoi region V satisfying the barycentric sink condition, i.e.

BarG(V) ∈ V , we will have R(x) = ∞ for all x ∈ V . On the other hand, if BarG(V) 6∈ V ,

then R(x) <∞ for all x ∈ V .

3.3.1 Sliding Motion

As previously discussed, we are primarly interested in the attractive sliding motion case.

For a point x on a sliding set Σij , we know that the gradient from Vi pushes x toward

BarG(Vi) and the gradient from Vj pushes x toward BarG(Vj). For attracting motion to

occur, the vector from x to BarG(Vi) must be in an opposing direction to the vector from x

to BarG(Vj). Note that since both Vi and Vj are convex polytopes, the intersection of their

boundary must be a subset of some hyperplane L. Thus, if we let Hi (resp. Hj) denote the

half space of RN separated by L and containing int(Vi) (resp. int(Vj)), then for attractive

sliding motion to occur, we must have BarG(Vi) ∈ Lj and BarG(Vj) ∈ Li. Note that if

BarG(Vi) ∈ Li and BarG(Vj) ∈ Lj , then we have repulsive sliding motion at x and if the

barycenters are in the same half-space (that is Hi or Hj), then there is no sliding motion

at all. We can now prove the following important theorem.

Theorem 3.19. The gradient flow system described by Equation 3.8 does not exhibit any

attractive sliding motion.

Proof. For sake of contradiction, suppose that the interface between Vi ∈ V k(X) and Vj ∈

V k(X) exhibits attractive sliding motion. Since the interface ∂Vi∩∂Vj between two k-order

Voronoi regions is a codimension one hyperplane (Vi and Vj are convex polytopes), we can

extend the interface to decompose RN into two regions Hi and Hj , such that Vi ⊆ Hi and

Vj ⊆ Hj . Following our procedure in the previous section, we define ηx to be the normal

vector to ∂Vi∩∂Vj at the point x ∈ ∂Vi∩∂Vj pointing into Vi, and thus into Hi as well. Of

73

course, the normal direction of ∂Vi∩∂Vj is constant along ∂Vi∩∂Vj (due to ∂Vi∩∂Vj being

a subset of a hyperplane), therefore, we will simply write η when referring to ηx. Given a

point x on an (N − 1)-dimensional subset of ∂Vi ∩ ∂Vj , we have

ri = max
y∈gen(Vi)

‖x− y‖ = max
z∈gen(Vj)

‖x− z‖ = rj

To see why this is true, suppose without loss of genreality that ri < rj . Then there exists

z ∈ gen(Vj) such that ‖x − y‖ < ‖x − z‖ for all y ∈ gen(Vi). Since there are k points in

gen(Vi), the point z cannot be one of the k-nearest neighbors of x, contradicting the fact

that x ∈ Vj . Thus, we can let

Gi = {y ∈ gen(Vi) : ‖x− y‖ = ri}

Gj = {y ∈ gen(Vj) : ‖x− y‖ = rj}

Note that since x was chosen to be on an (N − 1)-dimensional subset of ∂Vi ∩ ∂Vj , it must

be on the relative interior of ∂Vi ∩ ∂Vj . Additionally, we must have |Gi| = |Gj | = 1 and

Gi ∩Gj = ∅. This can be seen immediately from the recursive construction of the k-order

Voronoi diagram. During its construction, all Voronoi faces in the k-order Voronoi diagram

arise as bisecting hyperplanes (between two points). This is due to taking the intersection

of a lower order Voronoi region with a first order Voronoi diagram, which itself consists of

bisecting hyperplanes. Hence, all Voronoi faces in V k(X) arise as bisecting hyperplanes.

Finally, since x lies on an (N − 1)-dimensional subset of ∂Vi ∩ ∂Vj , it cannot lie on the

intersection of two or more bisecting hyperplanes. Thus, the sets Gi and Gj must consist of

a single point each, in particular the points for which ∂Vi∩Vj act as a bisecting hyperplane.

For the system to exhibit attractive sliding motion at the point x ∈ ∂Vi ∩ ∂Vj , we must

have

〈η,−∇Ei(x)〉 < 0 and 〈η,−∇Ej(x)〉 > 0

74

Since Gi and Gj each consist of a single element, we can let Gi = {y} and Gj = {z} with

y 6= z. By definition, since every point other of gen(Vi) and gen(Vj) are closer to x than the

points y and z are to x, we must have that the sets gen(Vi) and gen(Vj) intersect in every

element except y and z. That is,

gen(Vi) ∩ gen(Vj) = {c1, ..., ck−1}

where ci ∈ X\{y, z} for every 1 ≤ i ≤ k − 1. Now define

B =
1

k − 1

k−1∑
i=1

ci

and notice that

BarG(Vi) =

(
k − 1

k

)
B +

1

k
y

BarG(Vj) =

(
k − 1

k

)
B +

1

k
z

That is, BarG(Vi) and BarG(Vj) are both convex combinations of B with y and z, respec-

tively. Now by the assumption that Σij exhibits sliding motion, we must have BarG(Vi) ∈ Hj

and BarG(Vj) ∈ Hi. We also know y ∈ Hi since points of Vi are closer to y than they are

to z. Then since BarG(Vi) ∈ Hj is a convex combination of B and y ∈ Hi, we must have

B ∈ Hj following from the fact that Hi is also convex. However, we also have z ∈ Hj and

since BarG(Vj) ∈ Hi is a convex combination of B and z ∈ Hj , we must similarly have

B ∈ Hi. The only way this can occur is if B ∈ Hi ∩ Hj . But then if B ∈ Hi ∩ Hj , any

convex combination of B with a point from int(Hi) will fall in Hi and not in Hj . Thus we

have come to a contradiction since we assumed BarG(Vi) ∈ Hj . Therefore, we cannot have

attractive sliding motion.

This is an important result for the numerical implementation of the k-nearest neighbor

75

flow. Suppose that this result did not hold and that the system did exhibit attractive sliding

motion. Then once a trajectory encountered a sliding set exhibiting attractive sliding,

we would need to calculate α(x). However, this requires we know the normal vector η

which in turn requires that we have computed the kth-order Voronoi diagram. This is

extremely computationally expensive in high dimensions. Therefore, any accurate numerical

implementation would have poor computational performance in high dimensions. As it turns

out, attractive sliding does not occur and repulsive sliding is only relevant for points which

start on the boundary of two kth-order Voronoi regions since no other points will flow onto

a switching set exhibiting respulsive sliding. Since the skeleton of the kth-order Voronoi

diagram has measure zero, these points will occur with probability zero when using data

sampled with noise.

3.3.2 Periodic Orbits

For a smooth function F : RN → R, the gradient flow induced by F is given by

dx

dt
= −∇F (x)

and it is a well known fact that this system does not have any periodic orbits. One can see

this through simple computation. If such a periodic orbit did exist, then we would have

x(0) = x(T) for some T > 0 and so F (x(0)) = F (x(T)). Thus,

0 = F (x(T))− F (x(0)) =

∫ T

0

dF (x)

dt
dt =

∫ T

0
∇F · dx

dt
dt = −

∫ T

0

∥∥∥∥dxdt
∥∥∥∥2 dt < 0

which is a contradiction and hence such an orbit cannot exist.

For our problem, while the function EX is continuous, it is not a smooth function since

it has a discontinuous gradient along the Voronoi faces. However, we can still establish the

following.

76

Theorem 3.20. The k-nearest neighbors flow defined by Equation 3.8 does not have any

periodic orbits.

Proof. Let x ∈ RN and let φ(x, ·) : R→ RN denote the solution to the gradient flow system

of Equation 3.8 with initial point x. Suppose for sake of contradiction there exists s > 0

such that

φ(x, s) = φ(x, 0) = x

As we increase t from 0 to s, the trajectory φ(x, t) may intersect Voronoi faces of the k-order

Voronoi diagram. Suppose the trajectory φ(x, ·) intersects m Voronoi faces, F1, ..., Fm, of

the k-order Voronoi diagram at times 0 < t1 < ... < tm < s, i.e. we assume φ(x, ti) ∈ Fi for

each i ∈ {1, ...,m}. For simplicity, let tm+1 = s. Note that in the intervals Ii = (ti, ti+1),

the function EX (·) is smooth. Thus, we have the following

0 = EX (x)− EX (x) = EX (φ(x, s))− EX (φ(x, 0))

=
m∑
i=1

EX (φ(x, ti+1))− EX (φ(x, ti)) =
m∑
i=1

∫ ti+1

ti

dEX
dt

(φ(x, t))dt

(3.12)

However, letting u(t) = φ(x, t), we have

dEX
dt

(φ(x, t)) = ∇EX (u(t)) · ∂u
∂t

(t) = −∇EX (u(t)) · ∇EX (u(t)) = −‖∇EX (u(t))‖2 < 0

for all t ∈ Ii and each i ∈ {1, ...,m}. Thus, we see that the right hand side of Equation

3.12 must be strictly less than 0. This contradicts the assumption that EX (φ(x, s)) −

EX (φ(x, 0)) = 0 and hence we cannot have φ(x, s) = φ(x, 0). Therefore, there cannot be

any periodic orbits arising from the gradient flow system defined by Equation 3.8.

Theorem 3.20 shows the gradient flow system defined by Equation 3.8 contains no peri-

odic orbits. Having this theoretical result in hand means it will come as no surprise that the

77

flow diagrams we produce later in Section 3.5 also exhibit no periodic orbits. This is also

an important result given our stated goal of reducing noise in point clouds. If the gradient

flow system of Equation 3.8 did exhibt periodic orbits, then we would have a difficult time

determining optimal stopping times since the algorithm would not converge.

3.3.3 Stability of Flow in the Bottleneck Distance

Inducing a gradient flow on a point cloud moves the points around the ambient space

and will therefore change the topological nature of any complexes constructed from the

evolving point cloud. We would like to be able to track these changes. Of course, we can

do this through the use of persistence diagrams. As the point cloud evolves, so too do the

persistence diagrams. Stacking up the persistence diagrams yields a vineyard. Since the

gradient flow induces a continuous motion of the points in the cloud, it seems natural that

the persistence diagrams will flow continuosly as well.

We would like to apply Theorem 2.6 to prove the stability of the persistence diagrams.

Of course, to apply this result to the distance function, we first need to know that the

distance function is in fact tame. The following lemma results from the fact that X is a

finite point cloud. It is established in [42] by Elizabeth Munch.

Lemma 3.21. The distance function dX is tame for any finite point cloud X ⊂ RN .

Thus, we see that the persistence diagrams generated by two distance functions are

close if the distance functions themselves are close, in the L∞ sense. Putting these results

together, we can prove a new result establishing the stability of the persistence diagrams

generated by the distance function during the point cloud flow. The following theorem

follows immediately from Theorem 2.6.

Theorem 3.22. Let E(u) denote the k-nearest neighbor function. Define φ(x, t) as in

Equation 3.8. Let Xt = {φ(x, t) : x ∈ X} for all t ≥ 0 and let Dgmp(Xt) denote the

78

p-dimensional persistence diagram induced by the distance function dXt. Finally, let

Ks
t = max

x∈X
‖φ(x, t)− φ(x, s)‖

Then for any t < s, we have

dB(Dgmp(Xt),Dgmp(Xs)) ≤ Ks
t

Proof. First note that both distance functions dXt and dXs are tame by Lemma 3.21. Thus,

they both satisfy Theorem 2.6 and so

dB(Dgmp(Xt),Dgmp(Xs)) ≤ ‖dXt − dXs‖∞

Therefore, we only need to prove that ‖dXt − dXs‖∞ ≤ Ks
t . To see this, fix a point u ∈ RN

and let

x1 = arg min
x∈X

‖φ(x, t)− u‖

Similarly, let

x2 = arg min
x∈X

‖φ(x, s)− u‖

Then we know ‖φ(x1, t)− u‖ ≤ ‖φ(x2, t)− u‖ and so we have

dXt(u)− dXs(u) = ‖φ(x1, t)− u‖ − ‖φ(x2, s)− u‖ ≤ ‖φ(x2, t)− u‖ − ‖φ(x2, s)− u‖

Similarly, we know ‖φ(x2, s)− u‖ ≤ ‖φ(x2, t)− u‖. Hence, we have

dXs(u)− dXt(u) = ‖φ(x2, s)− u‖ − ‖φ(x1, t)− u‖ ≤ ‖φ(x1, s)− u‖ − ‖φ(x1, t)− u‖

79

Now suppose dXt(u) ≥ dXs(u). Then we have

|dXt(u)− dXs(u)| ≤
∣∣∣∣‖φ(x2, t)− u‖ − ‖φ(x2, s)− u‖

∣∣∣∣ ≤ ‖φ(x2, t)− φ(x2, s)‖

by the reverse triangle inequality. On the other hand, if dXt(u) ≤ dXs(u), then we have

|dXs(u)− dXs(u)| ≤
∣∣∣∣‖φ(x1, t)− u‖ − ‖φ(x1, s)− u‖

∣∣∣∣ ≤ ‖φ(x1, t)− φ(x1, s)‖

again by the reverse triangle inequality. Therefore, if we set

M(x) = max {‖φ(x1, t)− φ(x1, s)‖, ‖φ(x2, t)− φ(x2, s)‖}

we have

|dXt(u)− dXs(u)| ≤M(x)

But of course M(x) ≤ Ks
t . Therefore, we have

|dXt(u)− dXs(u)| ≤ Ks
t

Since this holds for every u ∈ RN , we must have

‖dXt − dXs‖ ≤ Ks
t

Hence, by the Stability Theorem, we have the desired result, i.e.

dB(Dgmp(Xt),Dgmp(Xs)) ≤ ‖dXt − dXs‖∞ ≤ Ks
t

This proof tells us that as we evolve a point cloud following the k-nearest neighbor

80

gradient flow, the peristence diagrams associated with Xt at each time t > 0 will evolve

continuously. Thus, the vineyard of the point clouds Xt will evolve continuously.

3.4 Diffusive Flow

One issue that arises from the gradient system described by Equation 3.8 is that points will

tend to cluster together under the flow. This happens when points in X flow toward the

same barycenter. One obvious way to lessen this effect is to terminate the flow before the

points get too clustered together. Another approach is to add some diffusion to the system.

In particular, we would like to push points away from each other when they get too near.

We can do this by adding a diffusive term to our gradient system. That is, we modify the

system to become 
du

dt
= −∇EX0(u) + λ∇EXt(u) t > 0

u(0) = x t = 0

(3.13)

where λ ∈ [0, 1] and

φλ(x, t) = u(t)

where u is the solution to Equation 3.13 with initial condition x. We can then set

Xt = {φλ(x, t) : x ∈ X}

The trick here rests in computing the second gradient (i.e. ∇EXt(u)) using the current

nearest neighbors (i.e. NNk
Xt(u), using points from Xt) instead of the original neighbors

from X0. As the points approach one another and begin clustering, the distance-to-measure

function induced by the empirical measure on the evolved point cloud Xt, that is µXt , will

increase. Thus, by introducing the gradient of EXt with opposite sign of the first gradient

term, points will push against their nearests neighbors. The repulsivity parameter λ is used

to control how much repulsion is exhibited by the points.

81

Although this does prevent the points from clustering, there is a more sophisticated,

efficient, and effective method, presented in the next chapter, which is based on the surface

reconstruction work presented in Section 1.4. In this technique, we will approximate the

normal bundle of the underlying manifold. In the process, we also approximate the tangent

bundle. While we use the normal bundle to reduce the noise and perform the smoothing,

we can imagine applying this diffusive flow in the tangential directions obtained via the

tangent bundle approximation. This would cause points to spread out along the surface

of the inferred manifold. Often, for example with 3d line scanners, this behavior can be

strongly desired.

3.5 Flow Diagram

From the analysis conducted so far, we have been able to say quite a lot about the gradient

flow system introduced in Equation 3.8. We have determined the trajectories within Voronoi

regions, found some positively invariant sets, discovered all the fixed points, and shown

there are no periodic orbits. Using this information, we would like to encapsulate all of

these dynamics into a single, finite structure. The result will be a directed graph upon

which we can perform traditional graph analytics. To accomplish this, we will introduce

the notion of the k-order Delaunay triangulation Dk(X) of a set X . We will then find

a subgraph of Dk(X) and orient the edges so that the k-nearest neighbor gradient flow is

qualitatively described. All constructions and results concerning the flow diagram are novel,

as applied to this gradient flow system. First, we start with a well known generalization of

the Delaunay triangulation.

Definition 3.23. Let V k(X) be the k-order Voronoi diagram of a finite point cloud X ⊂

RN . We define the k-order Delaunay triangulation Dk(X) to be the graph whose

vertices correspond to Voronoi regions in V k(X), and where an edge exists between two

regions V1, V2 ∈ V k(X) whenever V 1 ∩ V 2 6= ∅.

Therefore, the kth-order Delaunay triangulation is the dual graph of the kth-order

82

Voronoi diagram. It is important to note that this definition of the kth-order Delaunay

triangulation differs from the definition sometimes given in the literature, for example by

Gudmundsson et al in [30]. In that work, the authors define the higher order Delaunay

triangulations to be a class of triangulations. In particular, they relax the notion of the

Delaunay triangulation by requiring that for each triangle in the triangulation, the circle

passing through the vertices of the triangle contains at most k points of the generating point

cloud X . Therefore, there is an entire class of higher order Delaunay triangulations of any

given order. In contrast, our definition extends naturally from the duality of the first order

Voronoi diagram and the traditional Delaunay triangulation.

Example 3.3. We now expand upon Example 3.2 where we computed the third and fifth

order Voronoi diagrams of a point cloud X sampled randomly from [0, 1]2. In particular,

we compute the third and fifth order Delaunay triangulations of X . We show the result

in Figure 3.7. Here, we still show the Voronoi diagram using black lines, but also show

edges in the higher order Delaunay triangulations as red, dotted lines. Instead of showing

the original points of X , we are now showing the vertices of the Delaunay triangulations.

For this, we take the vertex of a region V ∈ V k(X) to be the generator barycenter if

BarG(V) ∈ V and we use the polytope barycenter, BarP (V), otherwise. It is important to

note that the bounds of the image were chosen to highlight the behavior near the sampled

region [0, 1]2. Many of these higher order Voronoi regions are in fact unbounded.

As we noted earlier, if a Voronoi region V satisfies the barycentric sink condition, that is

if BarG(V) ∈ V , then any trajectory begining in V will forever remain in V . However, if a

region does not satisfy this condition, all trajectories will eventually exit V . Although every

trajectory in V will flow towards the generator barycenter of V , BarG(V), the trajectories

may not move to the same region once departing V . To determine where the trajectories

go upon exiting the region V , we need to concept of a polyhedral pyramid.

Definition 3.24. Given a point x ∈ RN and an N -dimensional polytope σ, we define the

polyhedral pyramid, Cσ(x), from x to σ to be the union of all line segments from x to

83

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

(a) k = 3

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

(b) k = 5

Figure 3.7: k-order Delaunay triangulation for samples drawn from [0, 1]2

points in σ. That is,

Cσ(x) = {λy + (1− λ)x : λ ∈ [0, 1], y ∈ σ}

Since the kth-order Delaunay triangulation connects all adjacent kth-order Voronoi re-

gions, we would like to subset this graph and only maintain edges upon which trajectories

will actually flow. Furthermore, we would like to orient the edges to respect the directional-

ity of this flow. For any region V ∈ V k(X), either we have BarG(V) ∈ V or BarG(V) 6∈ V .

In the former case, Proposition 3.16 tells us we should not have any flow lines leaving V

since all trajectories are trapped within V . On the other hand, if BarG(V) 6∈ V , then as

shown in the proof of Proposition 3.16, any point x ∈ int(V) will flow towards BarG(V)

under the gradient flow for some positive time R(x). The point will follow this trajectory

until it reaches a boundary and enters a new region. Therefore, for Voronoi regions V with

BarG(V) 6∈ V , we must determine into which adjacent regions the points in V will flow. We

can determine this information using the polyhedral pyramid from BarG(V) to V , that is

CV (BarG(V)).

Definition 3.25. The k-nearest neighbor flow diagram, F k(X), is a directed graph

84

with vertices given by regions in V k(X) and edges defined as follows: For any edge (V,W)

in Dk(X) where V,W ∈ V k(X) and BarG(V) 6∈ V , we include a directed edge from V to

W in the graph F k(X) if W ∩ CV (BarG(V)) 6= ∅.

From this directed multigraph, what we refer to as a flow diagram, it is possible to

capture much of the dynamics of the gradient flow system defined in Equation 3.8. Given

any x ∈ RN , one finds the corresponding Voronoi region containing x, and then follows the

flow lines in F k(X) to the final sink at which point the trajectory falls forever toward that

sink. Of course, any kth-order Voronoi region may contain multiple flow lines eminating from

the region. Therefore, the flow lines constitute a multivalued map. Once we have a finite

graph structure, we can perform a variety of graph based analytics to further investigate

the system. For example, we can compute the number of cycles, which we know will be

zero based on the results of Theorem 3.20. We can also compute the number of connected

components and determine the possible regions of attraction.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

(a) k = 3

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

(b) k = 5

Figure 3.8: k-order flow diagram for samples drawn from [0, 1]2

Example 3.4. Once again, we continue the example given in Examples 3.2 and 3.3. In

this example, we show the flow diagram for the point cloud X sampled from [0, 1]2. The

results are shown in Figure 3.8. In this figure, the vertices of the Delaunay triangulation

are shown in either red or green, with the red vertices corresponding to sinks. The arrows

85

indicate the direction of flow from green vertices to either green or red vertices. Note that

no flow lines emanate from the red vertices (sinks). It is important to note that the bounds

of the image were chosen to highlight the behavior near the sampled region [0, 1]2 and that

some flow lines are not visible because of this restriction.

86

Chapter 4: Extensions

In this chapter, we present several novel modifications to the distance-to-measure gradient

flow. These modifications are motivated by issues that are often encounted when smoothing

using the system described in Chapter 3. To begin, we discuss the normal bundle flow in

Section 4.1. This technique involves approximating the normal bundle of the manifold from

which a point cloud was sampled. Then, when smoothing the point cloud, the k-nearest

neighbors gradient vector is projected into the approximated normal space. This has the

effect of reducing the amount of clustering present in the evolving point clouds.

In the process of approximating the normal space around a point, we are also approx-

imating the tangent space. This has the benefit of allowing us to induce diffusion of the

point cloud along the tangent space, further reducing clustering of the points in the point

cloud. This modification is also useful for point clouds obtained from line scanners, which

scan an object in lines. The process leaves visible streaks where points were sampled, with

regions void of any samples in between the scanned line. We present this diffusive technique

in Section 4.2.

One of the assumptions we have made throughout our discussion thus far is that a noisy

point cloud requires the same level of smoothing throughout the point cloud. Of course, for

many real world examples, this assumption does not hold. Thus, we require a method for

adapting the gradient flow based on the local geometry of the point cloud. To this end, in

Section 4.3, we design a novel technique for adding adaptivity to the k-nearest neighbors

gradient flow. This method relies on approximating the local curvature around a point and

adjusting the value of k to reflect the degree of curvature. In particular, for high curvature

regions, we lower the value of k in an effort to preserve the high curvature feature. This

technique builds on our normal and tangent bundle approximations.

Although the normal bundle flow arose from the gradient of the distance-to-measure

87

function, it actually shares an interesting relationship with another gradient flow, this time

induced by the Mahalanobis distance. The Mahalanobis distance is a function often used in

statistics to measure the distance between a point and a probability distribution. Since the

distance-to-measure function also provides a method for describing the distance between a

point and a probability distribution, it comes as no surprise that these two functions induce

related gradient flows. In Section 4.4, we discuss this relationship and explicitly show how

these two flows differ.

Finally, we close the chapter with a short discussion on the method we employ for finding

the k-nearest neighbors in an efficient manner. Since the nearest neighbor computation

dominates the computational complexity of our algorithms, it is important that we employ

a fast and scalable technique for computing the nearest neighbors. In Section 4.5, we discuss

our use of the k− d tree data structure and suggest other approaches which would provide

additional speed increases, at the cost of accuracy.

4.1 Normal Bundle Flow

As we saw in the previous chapter, while the k-nearest neighbor flow described by Equation

3.8 evolves a point cloud toward the underlying sampled manifold according to the distance-

to-measure function, the flow tends to cause many points to cluster together. To alleviate

these concerns, we discussed adding a diffusive term to the gradient flow in Section 3.4.

Another approach which avoids point clustering is to approximate the normal bundle of

the underlying manifold and then project the k-nearest neighbor flow onto this normal

bundle. Therefore, we only allow points to move toward the manifold in the direction of

the approximated normals.

The work in this section is based on the ideas presented in Section 1.4. However, in the

reference paper for that section (i.e. [4]), the authors only discuss approximating normal

vectors and tangent planes for a two-dimensional manifold in R3. Here, we generalize

their approach to arbitrary dimensions and arbitrary dimensional manifolds. Thus, instead

of approximating a normal direction and a tangent plane, we approximate the normal

88

space and tangent space. Since we compute this approximation at every point of the point

cloud, we are effectively approximating the normal and tangent bundles. In this section, we

incorporate the normal bundle approximation method with the gradient flow system. This

provides a novel improvement to the existing gradient flow.

Thus far, we have not required many assumptions concerning the underlying probability

distribution from which we sample the point cloud X . However, in this chapter, we will re-

quire that the underlying distribution is supported on a manifold. This requirement comes

about due to the additional structure implied by the normal and tangent bundles. On the

other hand, no such structure was required for the k-nearest neighbor flow of Chapter 3.

To be precise, we assume a uniform measure νM whose support is on some d-dimensional

compact manifold M . We then convolve this measure with a noise measure ζ, often taken

to be an N dimensional Gaussian distribution. Recall that we defined this sampling proce-

dure more rigorously in Section 1.2. Under this convolution assumption, one can consider

implementing a deconvolution procedure, as the authors did in [10], to reduce the influence

of the noise distribution ζ. Here, we will instead use the point cloud sampled directly from

the convolved measure and attempt to reduce the noise present in the point cloud through

a modified version of the k-nearest neighbor flow.

Since we are assuming an underlying manifold structure, we can utilize the concept of

the normal and tangent bundles of the manifold. Consider a point x ∈M sampled directly

on the manifold (i.e. with no noise). If we were to move this point, a perturbation in

any of the tangential directions at x would cause the distance between the point and the

manifold to only increase slightly, if at all (the point may simply be relocated to another

position on the manifold). However, if we perturb the sample in a normal direction, then

we introduce a great deal of noise compared to the tangential perturbation. Therefore, our

primary concern will be reducing the noise present in the normal directions. Moving points

along the tangent bundle basically relocates the points along the manifold and adjusts the

sampling density on the manifold, whereas moving points in the normal bundle drastically

impacts the overall noise in the system. We use this insight as motivation for what follows.

89

First, we recall the following definitions of the tangent and normal bundles of a manifold

from Guillemin and Pollack in [31].

Definition 4.1. Let X ⊂ RN be a d-dimensional manifold and let φ : U → X be a local

parameterization around x ∈ X, where U ⊂ Rd is open. For simplicity, suppose φ(0) = x.

Then the map

u→ φ(0) + dφ0(u) = x+ dφ0(u)

is the best linear approximation to φ at 0. We define the tangent space, Tx(X), of X at

x ∈ X to be the image of dφ0 : Rd → RN . That is,

Tx(X) = im dφ0

Then the tangent bundle, TX, of the manifold X is given by

TX = {(x, v) : x ∈ X, v ∈ Tx(X)}

Similarly, we define the normal space, Nx(X), of X at x ∈ X to be the vectors in RN−d

which are orthogonal to Tx(X). That is

Nx(X) = {v ∈ RN−d : (v, w) = 0, ∀w ∈ Tx(X)}

and the normal bundle, NX, of the manifold X is given by

NX = {(x, v) : x ∈ X, v ∈ Nx(X)}

Note that while the tangent bundle of a manifold is an intrinsic object associated with

the manifold, the normal bundle depends on the embedding of the manifold. In particular,

the dimension of the normal bundle depends on the dimensionality of the ambient space RN .

However, since we are considering a fixed ambient space, this dependence does not pose any

90

complications. Additionally, it is important to note that while the definition of the tangent

space uses a particular choice of parameterization φ0, any other local parameterization will

produce the same tangent space as shown in [31].

The normal bundle of a manifold carries with it a great deal of geometric information

about the manifold. Therefore, approximating this normal bundle is a natural way of

approximating the geometry of the manifold. To this end, we construct a vector space

for each point x in our point cloud X , which approximates the normal space at the point

PM (x), where PM (x) is the projection of x onto the manifold M . That is,

PM (x) = arg min
y∈M

‖x− y‖

In doing so, we will also be defining the tangent space at PM (x) and therefore we will be

approximating a local frame for the manifold.

In particular, we follow the normal bundle approximation procedure outlined in [46],

modified for our focus on arbitrary dimensions. For simplicity, we will outline the procedure

assuming a codimension 1 manifold. The extension to higher codimensional manifolds will

be made explicit, but is quite simple. Since we are only considering codimension one

manifolds at the moment, for a point u ∈ RN , we will be seeking a single normal vector

n ∈ RN , which defines the tangent plane T (u) near u. Here, we use the Hesse normal form

of a hyperplane. That is, the tangent plane is defined as

T : yi · n− d = 0

where d is the distance from the origin, 0, to the plane T and yi are a set of k points

which lie on the plane T . From this definition of a hyperplane, one can write an equation

for a hyperplane containing the points yi. In our case, we would like to find a hyperplane

containing the points pi ∈ NNk
X (u), however we cannot hope these points all lie on a

91

hyperplane. Therefore, we will need to approximate a hyperplane which best fits the k-

nearest neighbor points. Since finding a hyperplane containing all the points is unlikely, we

instead seek a plane T which minimizes the following sum of weighted squares,

∑
p∈NNkX (u)

(p · n− d)2φp(u)

such that ‖n‖ = 1 and the weights φp(u) are defined as φp(u) = φ(‖p− u‖, u) where

φ(`, u) = e−`
2/(r(u)2σ2) (4.1)

for r(u) = maxp∈NNkX (u)
‖p − u‖ and a noise parameter σ ∈ R which controls the influence

of the neighbors of u. We use weights in the above formulation to give greater influence to

neighbors close to x than those distant from x. This allows local features to have greater

influence, helping to preserve them. Additionally, since the value of r(u) depends on the

size of the minimum enclosing sphere of NNk
X (u), the weights naturally adapt to the local

sampling density. Through the use of Lagrange multipliers, the above minimization problem

is found to be equivalent to the following eigenvector problem,

C(u) · v = λv (4.2)

where the matrix C(u) is chosen to be the sample covariance matrix whose form is given by

C(u) =
1

N − 1


p1 − p̃(u)

...

pk − p̃(u)


T 

p1 − p̃(u)

...

pk − p̃(u)

 (4.3)

92

and we define p̃(u) using the k-nearest neighbor set NNk
X (u) = {p1, p2, ..., pk} so that

p̃(u) =
1

S

∑
p∈NNkX (u)

pφp(u) (4.4)

where

S(u) =
∑

p∈NNkX (u)

φp(u)

This is the sample covariance matrix of the set NNk
X (u) where the expected value is given by

p̃(u). Thus, considering the points of NNk
X (u) probabalistically, we have assigned probabil-

ities of φp(u) to each point p ∈ NNk
X (u). Alternatively, we could have set p̃(u) = BarG(V)

where u ∈ V .

Finding the eigenvectors of Equation 4.2 will allow us to approximate the normal and

tangent spaces at the point u ∈ RN in a manner similar to that of [46]. Since ATA is positive-

semidefinite for any matrix A with real entries, we know C is positive-semidefinite as well.

Furthermore, since the matrix C(u) is real and symmetric, it will have real, orthogonal

eigenvectors. Finally, since it is derived from noisy data, C(u) will be a full rank matrix in

general. Therefore, the eigenvectors can be used to approximate a coordinate frame around

u.

The minimizing normal is then found to be the eigenvector vi with smallest associated

eigenvalue λi. We can easily generalize this situation for arbitrary codimension m manifolds

(i.e. the dimension of the manifold is d = N−m) by taking the smallest m such eigenvectors.

Suppose we order the eigenvectors such that v1 ≤ v2 ≤ ... ≤ vN where the ordering is

induced by the associated eigenvalues, i.e. 0 ≤ λ1 ≤ λ2 ≤ .. ≤ λN (where we know the

eigenvalues are all non-negative since C is positive-semidefinite). Then the first m such

eigenvectors give us the local coordinate frame for the normal space and the remaining

N − m eigenvectors span the approximated tangent space. When taking eigenvectors,

we will always use unit length eigenvectors. We denote the normal and tangent vector

93

approximations by N(u) and T (u), respectively. That is,

Ñ(u) = {v1, ..., vm}

T̃ (u) = {vm+1, ..., vN}
(4.5)

We can now induce a gradient flow along the approximated normal directions. To accomplish

this, we define the new gradient flow to be


du

dt
= −gN (u) t > 0

u(0) = x t = 0

(4.6)

where, letting E(u) denote the k-nearest neighbor energy function from Equation 3.2, we

define

gN (u) =
m∑
i=1

〈∇E(u), vi〉vi (4.7)

By restricting the flow to the approximated normal directions, we aim to avoid the clustering

we saw under the unrestricted gradient flow. When p̃(u) is defined as in Equation 4.4, we call

the gradient flow in Equation 4.6 the normal bundle flow. If we choose p̃(u) = BarG(V)

for u ∈ V , then we call the gradient flow the unweighted normal bundle flow.

In Figure 4.1 we illustrate how the normal bundle flow works for a one dimensional

curve in R2. In this figure, the curve is shown as the thick black line and the point cloud

is shown by points that are both filled and unfilled. The focal point of this figure is the

point u, which has two emanating arrows. The unfilled points are the nearest neighbors of

the point u. In this example, we take k = 5. The dashed arrow emanating from u is the

negative distance-to-measure gradient. The solid arrow on the other hand is the negative

of the projected normal bundle gradient, i.e. −gN (u). Notice that −gN (u) is perpedicular

94

u

-gN(u)
-∇E
(u)

p(u)~

Figure 4.1: Normal Bundle Flow

to the approximated tangent plane, shown here as the long dashed line. The point with the

dashed boundary represents the weighted barycenter p̃(u).

Using the normal bundle modification of the k-nearest neighbor flow provides some

robustness against the clustering behavior produced by the unmodified flow. As we saw,

including this projection into the approximated normal directions requires one to compute

a sample covariance matrix C(u) as well as compute the eigenvalues and eigenvectors of

this matrix. Thus, the normal bundle flow will be slower than the k-nearest neighbor flow.

However, when we compare the k-nearest neighbor flow and the normal bundle flow in

Chapter 5, we will see that the normal bundle flow outperforms the k-nearest neighbor flow

in both a geometric and a topological sense. Futhermore, the normal bundle flow actually

requires a lower value of k than the k-nearest neighbor flow for some interesting point

clouds. Since the value of k plays a part in determining the computational expense of either

algorithm, it is possible that the additional matrix computations inherent to the normal

bundle flow are balanced out by using a lower value of k. The geometric and topological

error reduction potential of these two algorithms will be further explored in Chapter 5.

95

4.2 Diffusive Flow

In this section, we build on the work in Section 3.4, where we explored adding a diffusive

term to the k-nearest neighbor gradient flow with the goal of alleviating the clustering

present in the original flow. In the previous section, we developed the machinery necessary

to project the gradient∇EX (u) into the approximated normal space around a point u ∈ RN .

In the process of constructing the approximated normal space, we computed a basis for the

approximated tangent space as well. This was given by T̃ (u) as defined in Equation 4.5.

Previously, in Section 3.4, we hinted at restricting the diffusive term of Section 3.4 to the

approximated tangent space of u. We can now make this precise.

For starters, let us recall the equation for the k-nearest neighbors gradient flow with the

diffusive term added. This was given in Equation 3.13 and reproduced below.


du

dt
= −∇EX0(u) + λ∇EXt(u) t > 0

u(0) = x t = 0

Recall that λ was chosen between 0 and 1. This parameter controls the level of repulsivity

points exhert. Furthermore, since the second gradient ∇EXt(u) is taken on the set Xt, the

current position of the points is taken into account. That is, we compute nearest neighbors

using NNk
Xt(u) instead of NNk

X0
(u). Thus, when points flow toward one another, they begin

pushing on each other. The problem with this approach is that points can be pushed in

directions normal to the sampled manifold, thus introducing more noise. We would therefore

like to project this diffusive gradient into the approximate tangent space.

To do this, we follow the same procedure we used above when projecting the original

gradient −∇EX0(u) into the normal space. In particular, we set

gT (u) =

N∑
i=m+1

〈∇EXt , vi〉vi (4.8)

96

where T̃ (u) = {vm+1, ..., vN} is as previously defined in Equation 4.5. Remember that the

vectors in T̃ (u) are normalized so the projection formula in Equation 4.8 takes a simple

form. We now induce a gradient flow system as follows.


du

dt
= −gN (u) + λgT (u) t > 0

u(0) = x t = 0

(4.9)

Once again, we set λ ∈ [0, 1]. Notice that we used the gradient gN (u) instead of ∇EX0(u).

Of course, we could have used the unprojected gradient, however as we will see in Chapter

5, the normal bundle flow outperforms the unprojected flow and so we will stick with gN (u).

We will refer to this gradient flow as the normal bundle flow with diffusivity.

This modification can be useful for point clouds which were obtained using a line scan-

ner. Since these scanners take readings in lines, these point clouds often exhibit streaks

of sampled points with no points in between the streaks. This is simply an artifact of the

sampling procedure and is not a true feature of the sampled surface. Thus, by inducing

diffusive smoothing, one can fill out these empty regions of the surface by moving points

sampled along the dense streaks into these barren regions. This is likely to improve topo-

logical reconstructions since simplicial complexes built on point clouds smoothed by the

normal bundle flow with diffusivity would be able to connect across the unscanned regions

more easily.

In practice, it makes sense to ramp up the diffusion as t increases. Thus, if we run the

gradient flow until T = t, we use

λ(t) =
t

T
λ

as the diffusivity coeffient at time t. This has the effect of first smoothing the points,

attempting to lower the distance-to-measure in the normal direction. Then, once the points

are closer to the sampled manifold, letting the points push harder on one another and diffuse

97

across the surface of the manifold.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) Original Point Cloud

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) Normal Bundle Smoothing

Figure 4.2: Smoothing without diffusion

To demonstrate the use of the diffusive term, we show a point cloud in Figure 4.2 which

was sampled from the unit circle S1 in a manner similar to a line scanner. However, this

example is in two dimensions to aid with visualization. Here, we see that only certain bands

were scanned, resulting in strips void of any samples. As seen in Figure 4.2b, the normal

bundle flow leaves these gaps in tact.

On the other hand, adding diffusivity to the gradient flow helps close the gaps by allowing

flow in the tangential directions. The results of running the normal bundle flow with

diffusivity are shown in Figure 4.3. The only difference between the smoothing performed

in Figure 4.2 and Figure 4.3 was the addition of the diffusive term. It is clear from Figure

4.3a that the gaps have mostly disappeared. As a final step, we applied a single iteration

of the normal bundle smoothing to the point cloud in Figure 4.3a. This has the effect of

smoothing out some of the roughness that is still left after the initial diffusive flow. The

results of this second pass are shown in Figure 4.3b.

To get a sense of the difference between the two smoothed point clouds, we show the

one-dimensional persistence diagrams associated with the point clouds smoothed with and

98

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) Diffusion

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) Diffusion with Second Pass

Figure 4.3: Smoothing with diffusion

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) No Diffusion

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Diffusion

Figure 4.4: Persistence diagram of smoothed point clouds

99

without diffusion. These can be seen in Figure 4.4, where the left hand figure is the per-

sistence diagram of the point cloud smoothed without diffusion (Figure 4.2b) and the right

hand side is the point cloud with diffusion (Figure 4.3a). Notice that the most persistent

component in the diffusion case is closer to (0, 1) than the most persistent component in the

non-diffusive point cloud. Since the circle contains a single hole, born at radius 0 and dying

at radius 1, the optimal persistence diagram would contain a single point at (0, 1). Thus,

the fact that the persistence diagram of the point cloud obtained through the diffusive flow

is closer to the optimal diagram than is the non-diffusive point cloud, indicates that the

diffusive flow can help control the topological error.

Of course, the diffusive flow should only be used when there is some indication that

the sampling is somewhat non-uniform. On the other hand, if the data is too non-uniform,

then the coordinate frame approximations will be inaccurate and the flow along the tangent

space will create problems. Additionally, since we need access to the nearest neighbors of

the set Xt to a point x ∈ RN , the computational complexity of the algorithm increases. This

is because the spatial indexing solution we utilize in Section 4.5 to efficiently compute the

nearest neighbors of a point has to be reworked when using the diffusive term. Instead of

computing the spatial index once, at the beginning of the flow, and using the same spatial

index throughout, we must create a new spatial index at every time t when we need the

current nearest neighbors. Thus, when determining whether to add a diffusive term, the

computational expense must be considered.

4.3 Adaptive Flow

When we discussed the surface reconstruction problem in Section 1.4, we also discussed a

method suggested by Tamal Dey and Jian Sun in [22] for adapting the surface approximation

technique based on the local feature size of the point cloud. This technique has obvious

advantages since not all point clouds require the same level of smoothing throughout the

cloud. As a simple example, consider a point cloud consisting of two separated spheres

100

B1 and B2 of radius r1 and r2, respectively, with r1 � r2. In this example, we would

benefit from choosing a different step size for the points sampled around B1 than for those

sampled around B2. Using the same step size would require us to strike a balance between

oversmoothing B1 and undersmoothing B2. If we were able to approximate the local feature

size, as done in [22], we could specify feature dependent step sizes for B1 and B2 and smooth

both spheres appropriately. Furthermore, suppose both spheres were sampled using the

same sample density. Under this assumption, since B2 is a much larger sphere than B1, there

would be many more points sampled from B2 than from B1. In this case, choosing the right

number of neighbors to smooth points around B1 and B2 becomes difficult. An appropriate

value of k for smooothing B2 would be too large when smoothing B1. Conversely, if we

choose a smaller value of k to accomodate smoothing of B1, we would not be considering

enough neighbors for B2 and our tangent plane approximations would be skewed by the

noise in the sampling procedure.

Similar to the adaptive surface reconstruction technique, we would like to find a way to

determine how much smoothing we should apply to the point cloud given local considera-

tions. We may want to adjust the step size, flow time, or even the number of neighbors we

consider as a result. To accomplish this, we need a notion akin to the local feature size.

However, the local feature size relies on approximating the medial axis of the point cloud.

This is accomplished using Voronoi diagrams in [23] and only for two dimensions. Since

computing Voronoi diagrams in dimensions higher than two becomes extremely expensive,

we cannot use this notion for smoothing higher dimensional point clouds. We need a fast

and efficient technique that can fit in our smoothing framework. Instead of using the local

feature size, we will attempt to approximate the local curvature of the underlying manifold

from which the point cloud was sampled. This is motivated by the fact that for higher cur-

vature regions of the manifold, we want to use fewer neighbors to approximate the tangent

plane so that we don’t oversmooth the region.

Instead of allowing the gradient flow to continuously adapt its parameters every iter-

ation, we will compute adaptivity coefficients for each point in X at the beginning of the

101

gradient flow. This cuts down on the required number of computations since we do not need

to update these coefficients. These adaptivity coefficients will be based on the local geom-

etry around each point. We will then adapt the gradient flow parameters for each point

in X based on these coefficients. In the remainder of this section, we will only consider

modifying the value of k locally. However, adapting the step size or the length of time the

gradient flow is allowed to evolve may also prove useful. Finally, since our normal bundle

flow requires the calculation of an approximate coordinate frame, we would like to utilize

this construction to avoid extra computation.

Ideally, we would have access to the sampled manifold. Then we would measure the cur-

vature at a point using the second fundamental form. That is, given a hypersurface M with

second fundamental form II(X,Y), if we fix a point x ∈M and have an orthonormal basis

{X1, ..., Xn−1} for the tangent space Tx(M), then the principal curvatures κ1, κ2, ..., κn−1

are the eigenvalues of the matrix



II(X1, X1) II(X1, X2) ... II(X1, Xn−1)

II(X2, X1) II(X2, X2) ... II(X2, Xn−1)

...
...

. . .
...

II(Xn−1, X1) II(Xn−1, X2) ... II(Xn−1, Xn−1)


(4.10)

We could then let the curvature be given by κ = κ1κ2...κn−1. For large values of κ, i.e.

high curvature regions, we would modify the parameters in the gradient flow to reflect the

fact that the manifold exhibits high curvature around this point. Of course, we do not

have direct access to the manifold. We can only infer the curvature from the sampled point

cloud. Therefore, we need an alternative measure of the curvature. For this, we return

to the underlying idea behind curvature. Namely, how far does a surface deviate from a

hyperplane?

Although we do not know the tangent space or the second fundamental form precisely,

we do have approximations for the tangent and normal spaces. In particular, we have the

102

basis vectors given by the sets T̃ (x) and Ñ(x) in Equation 4.5. Thus, we can determine

how far points in NNk
X (x) are from the approximated tangent space, i.e. span(T̃ (x)), of x.

In fact, for any point x ∈ X , we can compute the following two values for every neighbor

y ∈ NNk
X (x).

dT (x, y) =

∥∥∥∥∥∥
∑

v∈T̃ (x)

〈v, y − x〉v

∥∥∥∥∥∥ , and dN (x, y) =

∥∥∥∥∥∥
∑

w∈Ñ(x)

〈w, y − x〉w

∥∥∥∥∥∥ (4.11)

These simply reflect the distance between x and y in the tangent space (dT (x, y)) and in

the normal space (dN (x, y)). We compute these values for every point y ∈ NNk
X (x) and use

the tuples (dT (x, y), dN (x, y)) to form the set

P (x) = {(dT (x, y), dN (x, y)) : y ∈ NNk
X (x)}

This set gives us the distance from x to every point in NNk
X (x) as measured in the tangent

space and the normal space. For example, consider the partial point cloud shown in Figure

4.5. We are interested in the red point, i.e. the point x = (1, 0). We can see the results of

computing the set P (x) in Figure 4.5. The idea is that for high curvature regions, as dT (x, y)

increases, the value of dN (x, y) will increase quickly. We can capture this by computing a

linear regression on the set P (x).

That is, we seek the line of best fit for the set P (x). In particular, we employ Ordinary

Least Squares estimation to find two parameters, the slope λ ∈ R and the intercept b ∈ R,

such that the line defined by

n = λt+ b (4.12)

where n is the normal space distance (i.e. dN (x, ·)) and t is the tangent space distance (i.e.

dT (x, ·)), minimizes the sum of the squared residuals. For the point clouds shown in Figure

4.5, we show the line of best fit in Figure 4.6. For this example, we have λ ≈ 0.71 and

103

0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) Partial Point Cloud

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Tangent Space Distance

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
l
S
p
a
ce

 D
is

ta
n
ce

(b) P (x) for x = (1, 0)

Figure 4.5: Example Point Cloud and P (x)

b ≈ −0.08.

After computing these regression lines for every point in the point cloud, we can associate

a slope, λ(x), to every point x ∈ X . Since we really only care about the magnitude of the

slope, we let λ(x) actually be the absolute value of the previously computed slope. Then

we let

m = min
x∈X

λ(x) and M = max
x∈X

λ(x)

and set the adaptivity coefficient a(x) to be

a(x) =
λ(x)−m
M −m

(4.13)

Thus, the point x∗ ∈ X with the steepest line of best fit for P (x∗) will receive an adaptivity

score of a(x∗) = 1 and the point x∗ ∈ X with the flattest line of best fit for P (x∗) will receive

a score of 0. This reflects the fact that points around x∗ move away from the tangent space,

span(T̃ (x∗)), of x∗ much faster than the points around x∗ move away from span(T̃ (x∗)).

Finally, we can use the value a(x) to modify the value of k around x. In particular, we

104

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 4.6: Regression line for P (x)

set

k(x) = b(k − k∗)(1− a(x)) + k∗c (4.14)

where bzc is the largest integer n for which n ≤ z and 0 < k∗ < k is chosen to be the

minimum desired value for k(x). Choosing k∗ depends on the properties of the point cloud

to be smoothed. In this section, we show results for k∗ = bk/2c. Notice that in Equation

4.14 we use the value 1−a(x) to determine the value of k(x). This results in lower values of

k(x) for larger values of a(x). Thus, a point x with high curvature will have a lower value

of k(x).

Although we have chosen to use the line n = λt+ b to fit the data P (x), we could have

alternatively chosen to use a quadtratic n = λ3t
2 + λ2t + λ1 with λi ∈ R. In this case, we

would actually want to set λ2 = 0 to ensure the minimum occurs at x = 0. Thus, we would

fit the quadratic n = λ3t
2 + λ1 to the data P (x) and use the value λ3 to determine the

adaptivty coefficients. Using a quadratic over a line may allow for better fits to the data.

However, due to noise in the data, a line can sometimes produce a better fit.

It should be noted that in practice, we often employ one more step in computing the

adaptivity coefficients. In particular, after computing a(x) for every point x ∈ X we smooth

105

5 4 3 2 1 0 1
3

2

1

0

1

2

3

(a) Linear Fit

5 4 3 2 1 0 1
3

2

1

0

1

2

3

(b) Quadratic Fit

Figure 4.7: Adaptivity Coefficients a(x)

the values of a by taking the average of a(x) over NNs
X (x) where s � k. That is, when

determining k(x), we actually use the adaptivity coefficients ã(x) defined by

ã(x) =
1

s

∑
y∈NNsX (x)

a(y) (4.15)

This is often a necessary step due to the noise in the point cloud. Although this process

adds another parameter to our model, in particular s, this choice is often relatively benign.

For our examples, we have taken s = 5.

We show an example point cloud in Figure 4.7a which has been color coded to show the

value of ã(x) as defined in Equation 4.15 using a linear fit (i.e. Equation 4.12). On the other

hand, in Figure 4.7b, we show the results under a quadratic fit. Here, we have ã(x) = 1

show up in red while ã(x) = 0 appears dark blue. It is interesting to note that not only

was the sharp corner on the right of the point cloud properly identified as exhibiting high

curvature, both the top and bottom curves were also identified as high curvature (though

less so than the right hand corner) and the straight lines leading up to the corner were

identified as exhibiting very low curvature. The adaptivity coefficients appear quite similar

106

5 4 3 2 1 0 1
3

2

1

0

1

2

3

Figure 4.8: Linear and Quadratic Absolute Difference

under the linear and quadratic fits. To make the difference more pronounced, in Figure 4.8,

we make highlight the points whose adaptivity coefficients a(x) changed by more than 0.1

between the two methods. The color of these points indicates how much the value of a(x)

changed between the two methods, with light blue and yellow points indicating the greatest

change. All the other points are made transparent. From this, we see that there are quite

a few points impacted by this change.

5 4 3 2 1 0 1
3

2

1

0

1

2

3

(a) Adaptive Flow

5 4 3 2 1 0 1
3

2

1

0

1

2

3

(b) Non-Adaptive Flow

Figure 4.9: Normal bundle flow with and without adaptivity

107

Smoothing the point cloud given in Figure 4.7 with and without adaptivity reveals how

this modification can prove useful. We show the results of the smoothing this point cloud

in Figure 4.9. In Figure 4.9a, which uses the adaptive flow we developed in this section, we

see that the corner of the original sampling surface has been preserved. On the other hand,

the corner has been rounded off in Figure 4.9b, where we did not use the adaptive flow.

From this example we see that the adaptive flow helps preserve some of the finer features

in this point cloud.

4.4 Mahalanobis Flow

The distance-to-measure function introduced in Section 1.5 provides a measure of the dis-

tance from a point to a probability distribution. To produce our smoothing algorithm, we

computed the gradient of the distance-to-measure function and used it to induce a gradient

flow on the point cloud. In doing so, we were able to move points closer to the sampling

distribution. By “closer”, we mean closer according to some distance function d, which in

this case was the distance-to-measure function d2µ,m0
. A natural question then follows, what

other functions can be used for this purpose?

In previous chapters, we mentioned several benefits to using the distance-to-measure

function. These included its stability properties, error guarantees, and ease of computation.

However, we also noticed some issues with the original algorithm, clustering in particular.

Therefore we discussed projecting the gradients along the eigenvectors of the covariance

matrix, similar to techniques used in surface reconstruction. This helps prohibit clustering

by restricting the trajectories of the points onto the approximate normal directions of the

sampled manifold. As it turns out, this modified gradient flow shares a close connection

with the Mahalanobis distance, a quantity commonly used in statistics. In this section, we

explore this connection.

The Mahalanobis distance, introduced by P.C. Mahalanobis in 1936 (see [37]), is

a measure of the distance between a point and a distribution. Specifically, given a point

108

x ∈ RN and a point cloud X with mean µ and covariance matrix S, the Mahalanobis

distance between x and the sampled distribution is estimated to be

DM (x) =
√

(x− µ)TS−1(x− µ) (4.16)

Recall the definition of the covariance matrix S of the random vector [X1, ..., Xn]T is the

n× n matrix whose entries Eij are given by

Sij = E[XiXj]− µiµj

where µi = E[Xi] for 1 ≤ i, j ≤ n. In what follows, we will be interested in the empirical

distribution induced by X and so we set µ to be the barycenter of the point cloud X .

This is an obvious choice since under the emipirical distribution, the expected value of the

empirical distribution is given by the barycenter of X .

In the above equation, we use the inverse of the covariance matrix S. Since covariance

matrices are only guaranteed to be positive semidefinite, the matrix S may not be invertible.

In this case, it is common to use a pseudoinverse, such as the Moore-Penrose pseudoinverse.

Let us recall the definition of this pseudoinverse.

Definition 4.2. Let A be an m×n matrix with entries taken from a field K. The Moore-

Penrose pseudoinverse is the unique n×m matrix A† satisfying the following conditions.

(a) AA†A = A and A†AA† = A

(b) (AA†)T = AA† and (A†A)T = A†A

For a further discussion of this generalized inverse, see the work by Penrose [47]. This

reference contains the simple proof that A† is unique along with many propeprties of the

Moore-Penrose pseudoinverse.

Given the nice structure of S, the pseudoinverse is easy to compute . In particular, since

S is a real, symmetric matrix, we can find the eigendecomposition S = QΛQT where Q

109

consists of the eigenvectors of S and Λ is the diagonal matrix with the associated eigenvalues.

Finding the Moore-Penrose inverse S† is then simply a matter of taking the reciprocals of

the diagonal non-zero entries of Λ. That is, for Λ = (Λij)
N
i,j=1 with Λii = λi for all i and 0

otherwise, we set Λ† to be the diagonal matrix with Λ†ii = 1/λi for all i such that λi 6= 0

and Λii = 0 if λi = 0. Then the pseudoinverse is simply S† = QΛ†QT .

Note that since S is symmetric, S† will also be symmetric. This is easy to see in the

Definition 4.2. In particular, if A is symmetric and A† is the Moore-Penrose inverse of A,

then we can take the transpose of all the statements in Definition 4.2 and obtain

AA†A = A ⇒ AT (A†)TAT = AT ⇒ A(A†)TA = A

A†AA† = A ⇒ (A†)TAT (A†)T = AT ⇒ (A†)TA(A†)T = A

(AA†)T = AA† ⇒ AA† = (AA†)T

(A†A)T = A†A ⇒ A†A = (A†A)T

Thus, (A†)T satisifies all the conditions in Definition 4.2 and so (A†)T is a Moore-Penrose

pseudoinverse of A. However, Moore-Penrose pseudoinverses are unique. Thus, we must

have A† = (A†)T and so A† is in fact symmetric.

Since A† = A−1 for an invertable matrix A, in what follows we will stick to the A†

notation. Using the pseudoinverse in the Mahalanobis distance when the covariance ma-

trix S proves to be singular is not uncommon. For example, in [32] the authors use the

pseudoinverse when their imagery texture data produces singular matrices.

We would like to investigate what happens when we induce a gradient flow according

to the Mahalanobis distance. Similar to the distance-to-measure function, the Mahalanobis

distance achieves a minimum at the barycenter of the point cloud. To see this, note that

DM (x) ≥ 0 since S−1 is positive semi-definite. Then by setting x = µ, we obtain DM (µ) = 0

110

and hence, µ is a minimizer of DM . This is to be expected since the Mahalanobis distance

is an example of a Bregman divergence.

Definition 4.3. Let Ω be a closed, convex set and let f : Ω → R be a strictly convex,

continuously differentiable function. The Bregman divergence Df : Ω× Ω→ R induced

by f is defined as

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉

The squared Mahalanobis distance is the Bregman divergence induced by the function

g(x) = xTAx. The particular form of the Mahalanobis distance we use above is obtained

by taking DM (x) = Dg(x, µ) where µ is the barycenter of the point cloud X . A simple

property of Bregman divergences is that Df (x, y) ≥ 0 for all x, y ∈ Ω and Df (x, y) = 0 if

and only if x = y. Thus, since DM is in fact a Bregman divergence, we see that DM (x) ≥ 0

and DM (x) = 0 if and only if x = µ. Thus, the minmium of the Mahalanobis distance is

achieved at the barycenter of the point cloud.

Notice however that the Mahalanobis distance requires the entire point cloud to compute

DM (x). This is in contrast to the distance-to-measure function, which is a local function and

only considers a neighborhood of x. Since locality is a desirable property for a smoothing

algorithm, we must modify the Mahalanobis distance so that it acts as a local distance

measure. The trick is simple, we will only consider the k-nearest neighbors of the point x,

instead of the entire point cloud X . Thus, we define the local Mahalanobis distance,

denoted Dk
M (x) to be

Dk
M (x) =

√
(x− BarG(V))TS†k(x)(x− BarG(V)) (4.17)

where V ∈ V k(X) such that x ∈ V and S†k(x) is the pseudoinverse of the covariance matrix

of NNk
X (x) as defined in Equation 4.3 for the unweighted normal bundle flow. We then

follow our previous procedure and induce a gradient flow on the point cloud by taking the

gradient of the squared local Mahalanobis distance. This produces the following differential

111

system, referred to as the Mahalanobis flow.


du
dt = −∇Dk

M (x)2 t > 0

u(0) = x0 t = 0
(4.18)

Similar to our treatment of the distance-to-measure flow, when computing the barycen-

ter and the covariance matrix we use the original nearest neighbors to avoid clustering.

Therefore, we can once again use the k-order Voronoi diagram V k(X) when discussing the

Mahalanobis flow.

Note that from the definition of the local Mahalanobis distance (Equation 4.17), we

recognize Dk
M (x)2 = (x− BarG(V))TS†k(x− BarG(V)) as a quadratic form. Thus, if S†k(x)

is constant in the k-order Voronoi region V for which x ∈ V , then we can compute the

gradient using the simple equation for the gradient of a quadratic form (∇y(yTAy) = 2Ay).

Unfortunately, the covariance matrix Sk(x) used for the (weighted) normal bundle flow is

not constant in V . This is because we use the weighted barycenter when computing the

covariance, which depends on x. This is why we must instead use the covariance matrix

from the unweighted normal bundle flow. In this case, S†k(x) is constant in x and so applying

the formula for the gradient of a quadratic form, with y = x − BarG(V) and A = S†k(x)

being the real, symmetric, square matrix defined above, we obtain

∇Dk
M (x) = 2S†k(x− BarG(V))

Inserting this into the above system, we recognize the Mahalanobis flow as follows,


du
dt = −2S†k(u)(u− BarG(V)) t > 0

u(0) = x0 t = 0
(4.19)

112

From this, it is readily apparent that the only ways to obtain du
dt = 0 are for either u(t) =

BarG(V) or S†k(u)w = 0 with w = u−BarG(V) 6= 0. The first case we already noted was a

stable point, similar to the distance-to-measure function. The second case requires w to be

in the null space of the matrix S†k(u). Therefore, S†k(u) is singular and w must be orthogonal

to every eigenvector v associated with a non-zero eigenvalue λ. This can be seen below,

recalling that S†k(u) is symmetric,

〈v, w〉 =
1

λ
〈λv,w〉 =

1

λ
〈S†k(u)v, w〉 =

1

λ
〈v, S†k(u)Tw〉 =

1

λ
〈v, S†k(u)w〉 =

1

λ
〈v, 0〉 = 0

Since the eigenvectors correspond to the covariance matrix, this result tells us there is no

variance in the neighbor set NNk
X (x) along the direction w = u − BarG(V). In this case,

we would not want to move the point u in the direction w since this would be introducing

variance in a direction which originally had zero variance. Thus, the fact that this gradient

is zero makes sense and is desirable. However, since we are interested in applying this

gradient flow to noisy data, in general the matrix Sk(x) will be full rank and so the fix

points arising when x− BarG(V) is in the null space of Sk(x) occur with probability zero.

We now seek an explicit formula for the Mahalanobis flow which will let us directly com-

pare the Mahalanobis flow and the normal bundle flow. For the following line of reasoning,

we will fix x and simplify our notation by setting S†k(x) = S† and B = BarG(V). Recall

the simple structure of the pseudoinverse S† = QΛ†QT . Note that since the matrix S is

positive semi-definite, we are guaranteed that the eigenvalues of S will be non-negative.

Let n∗ ≤ n be the number of non-zero eigenvalues. Denote the non-zero eigenvalues of S

as λi with i ≤ n∗ and ordered according to magnitude, i.e. 0 < λ1 ≤ ... ≤ λn∗ . Also,

let λi = 0 for i > n∗. Finally, let ei be the eigenvector associated with λi. Note that the

eigendecomposition is S† = QΛ†QT = QΛ†Q−1, and so we can take the eigenvectors to be

normalized to length one since the product involves both Q and Q−1. Thus, we assume

113

‖ei‖ = 1 for all i ≤ n∗. Then we can decompose the gradient of Dk
M (x) as follows.

∇Dk
M (x) = 2S†(x−B) = 2QΛ†QT (x−B) = 2

n∗∑
i=1

1

λi
eie

T
i (x−B) = 2

n∗∑
i=1

1

λi
〈x−B, ei〉ei

(4.20)

Now let us consider the normal bundle flow. Recall that for the projected k-nearest neighbor

gradient, we must specify the codimension of the sampled manifold to approximate the

normal space of the manifold. Let m denote this codimension. Thus, we use the gradient

gN (x) which takes the following form.

gN (x) =
m∑
i=1

〈∇E(x), ei〉ei =
m∑
i=1

〈
2

k

∑
y∈NNkX (x)

(x− y), ei

〉
ei = 2

m∑
i=1

〈x−B, ei〉ei (4.21)

Note that since we use the same covariance matrix for both flows, the eigenvectors vi will

be the same for both flows.

From Equations 4.20 and 4.21 the connection between the two flows becomes clear.

Although the two flows share remarkably similar structure, there are a few key differences

that cause the behavior of a point cloud under these two flows to be different.

First, the number of eigenvectors used in each equation is different. In particular, we

will always have m ≤ n∗ and so the number of eigenvectors in Equation 4.20 will always be

greater than or equal to that used in Equation 4.21. An advantage of the Mahalanobis flow

over the normal bundle approximation flow is that the dimensionality of the manifold does

not need to be specified a priori. This can be of great benefit for high dimensional data sets

where the intrinsic dimension is unknown.

The other major difference between the two flows concerns the fact that the scale factor

used for each eigenvector in the sum varies dramatically. In the Mahalanobis flow, the

scaling factor for each eigenvector is the reciprocal of the corresponding eigenvalue. Thus,

for smaller eigenvalues, there will be more motion in the direction of the corresponding

114

eigenvector. Since in our setting we take eigenvectors with small eigenvalues to be ap-

proximations of the normal directions, this implies that the Mahalanobis flow boosts the

flow along the “normal directions”. The normal bundle flow does not follow this approach.

Instead, the eigenvectors with the smallest eigenvalues are taken as approximate normal

directions and then each of these eigenvectors is weighted equally in the flow. Although

it might make sense to weight each eigenvector based on how likely it is to represent the

normal direction, taking the reciprocal will likely produce far too much boosting in the

given direction. In particular, for an eigenvector v with eigenvalue λ, the scaling factor,

1/λ, grows to infinity as λ→ 0. Thus, the gradient may be dominated by eigenvectors with

very small but positive eigenvalues.

Taking the similarity between the two equations as a cue, it seems natural to generalize

the flow as follows. Let W ∈ Rn∗ be a weight vector and set

gW (x) = 2
n∗∑
i=1

Wi〈x−B, ei〉ei (4.22)

We can recover Equation 4.20 by settings Wi = 1/λi and Equation 4.21 by setting Wi = 1

for i ≤ m and Wi = 0 for m < i ≤ n∗.

To find the best of both worlds, we can consider a weight vector W defined as follows.

We set

τ =
n∗∑
i=1

1

λi

and then set

Wi =
1/λi
τ

(4.23)

We refer to the resulting gradient flow as the normalized Mahalanobis flow. The benefit

of this approach is that the scaling factor will always be bounded by one, but the flow will

still be boosted along the eigenvectors with smallest eigenvalues (i.e. the approximate

115

normal directions). Additionally, the dimensionality of the manifold does not need to be

specified a priori, unlike the normal bundle flow.

There are certainly many other choices for the weight vector in Equation 4.22. In this

dissertation, we have investigated three different choices; a binary scheme corresponding

to the normal bundle flow, the reciprocal of the eigenvalues corresponding to the Maha-

lanobis flow, and the normalized reciprocal eigenvalues corresponding to the normalized

Mahalanobis flow. The two approaches given in Equation 4.20 and Equation 4.21 each have

advantages and disadvantages. The normalized Mahalanobis flow defined by Equation 4.23

was designed to combine the advantages of both approaches and diminish the disadvantages.

4.5 Nearest Neighbor Calculations

We close this chapter with a quick discussion of the nearest neighbor calculation. While

computing the k-nearest neighbor gradient (Equation 3.3) and even computing the nor-

mal directions (Equation 4.7) are relatively inexpensive operations, the computation of the

k-nearest neighbor set is the overwhelming driver of the computational complexity of the

algorithms described in this dissertation. This operation näively exhibits quadratic com-

plexity since for a point cloud X with |X | = n, we must compute n(n − 1)/2 distances

to find the k nearest neighbors of all the points. Thus, running the smoothing algorithms

described in this section on large data sets becomes impractical.

We employ a common method of reducing the complexity of the nearest neighbor opera-

tion by using a space partitioning method. In particular, we will employ a k-d tree to obtain

the complexity savings. It is important to note that the name k-d tree is conventional and

that k, as used in this context, refers to the dimensionality of the data set upon which the

k-d tree is constructed, it is not used in the same context we have been using in reference

to the number of neighbors. A k-d tree provides a partitioning of ambient space such that

searching for neighbors is made efficient. A tree is built from the data set so that the leaf

nodes of the tree represent the data points and the non-leaf nodes represent hyper-planes

which subdivide the space. To find a nearest neighbor of a sample point, one can simply

116

use the properties of the tree to climb up the tree and descend into adjacent regions looking

for the nearest neighbor. Since we very rarely need to ascend the entire length of the tree,

much of the search is eliminated, providing significant compuational savings. The specific

k-d tree technique we use in our implementations of the algorithms described in this section

can be found in the paper by Maneewongvatana and Mount [38].

Although k-d trees provide large savings for lower dimensional datasets, higher dimen-

sional point clouds cause the method to becomes less and less effective. This is because as

the dimensionality increases, the number of points which must be considered at each recur-

sion of the tree grows larger. Thus, it is often recommended that for an N -dimensional point

cloud X , we need |X | � 2N . This, of course, is a consequence of the curse of dimension-

ality. However, by using approximate nearest neighbors instead of exact nearest neighbors,

we can gain computational savings for high dimensional point clouds as well. Allowing

some errors in the selection of a point’s neighbors can drastically reduce the complexity of

finding nearest neighbors in high dimensional spaces. Techniques for approximate nearest

neighbors include locality-sensitive hashing and best bin first which is an adaptation of k-d

trees.

117

Chapter 5: Applications

In this chapter, we will conduct several numerical experiments with the k-nearest neighbors

gradient flow and the normal bundle flow. Our goal will be to determine optimal parameters

for the two flows when applied to point clouds sampled from various manifolds. To begin, we

will use simple geometric shapes as our sampling manifolds. We use these simple geometries

since we know both the geometry and topology of these shapes. This allows us to measure

both the geometric and topological error of a point cloud smoothed using the two flows.

Next, we will apply the gradient flows to noisy point clouds drawn from the Stanford Bunny

and the Stanford dragon. These pose new challenges for the gradient flows since they are

much more complicated geometries. As we did with the simple geometries, we measure the

geometric error of the point clouds obtained after smoothing the noisy clouds using the two

flows. Finally, we will apply the gradient flows to LiDAR point clouds with hundreds of

thousands of points. Since we have no knowledge of the ground truth for these point clouds,

we use these experiments to analyze the computational cost of running the gradient flow

algorithms.

Since we will be implementing these gradient flows on a computer to perform the ex-

periments, we have two choices. First, we can compute the k-order Voronoi diagram and

solve the gradient flow system exactly using the tools developed in Chapter 3. Of course,

this will only allow us to solve the k-nearest neighbor flow, not the normal bundle flow.

Furthermore, computing the k-order Voronoi diagram for large values of k and in three or

more dimensions is computationally extremely expensive. Therefore, instead of following

this approach, we follow the alternative approach, implementing a discretized gradient flow.

118

In particular, for a gradient ∇E(u), instead of using the continous gradient flow system


du

dt
= −∇E(u)

u(0) = x

we use the discretized flow given by

u(ti+1) = u(ti)− σ∇E(u(ti))

u(0) = x

where we discretize time to be {0, t1, ..., tT } and use step size σ > 0. In this case, we say

that the gradient flow system was run for T iterations. The step size is chosen to control the

smoothness and accuracy of this discrete approximation. Of course, too small a step size

would cause the discretized gradient flow to progress very smoothly and slowly, but would

yield greater accuracy. On the other hand, a large step size would allow the gradient flow

to move points further during each iterations, but this would come at a loss of accuracy.

From the framework we build in Chapter 3, we know that if the step-size is chosen to be

too large, a point may jump over an entire k-order Voronoi region when it moves along the

gradient. Therefore, the size of the smallest k-order Voronoi region helps determine the

optimal step size. However, for this work, we will simply choose the step size to be σ = 0.01

for all our experiments.

In all the experiments that follow, we use this discretized gradient flow instead of the

continuous gradient flow. Thus, when we refer to the k-nearest neighbor flow or the normal

bundle flow, we are really refering to the discretized versions of these gradient flows. Ad-

ditionally, when we refer to time, we are talking about the number of iterations for which

the gradient flow was run.

119

5.1 Simple Geometries

In this section, we will present numerical results obtained through systematic testing of

the described algorithms on point clouds sampled from several simple geometric shapes

embedded in Euclidean spaces of varying dimensions. In particular, we will see how the

smoothing induced by the k-nearest neighbors gradient flow and the normal bundle flow

reduce the error in the sampled point cloud. Since the geometric shapes from which we will

sample are known a priori, we can construct error functions and inspect the point clouds to

find which parameter values yield the minimum geometric error. Most of the shapes we will

investigate exhibit many symmetries which diminish the need for using an adaptive flow.

However, the capsule we study in Section 5.1.2 will benefit from the use of the adaptive

flow. Therefore, in this section we will also study the performance of the normal bundle

flow with adaptivity.

Our goal in this analysis will be to determine the optimal values of k and the optimal

number of iterations T to run the gradient flows. Choosing too high a value of k will result

in oversmoothing, destroying important features in the process. On the other hand, too

low a value of k will fail to remove the noise in the point cloud. We can also induce over-

smoothing or under-smoothing by our choice of the number of iterations. Of course, running

the gradient flow indefinitely is not always ideal since many features may collapse during

the flow. We report exactly when, for a range of values of k, the optimal stopping time

is reached. Additionally, we can report the minimum error present during the flow, which

corresponds to the error reached with the optimal value of k after the optimal number of

iterations.

5.1.1 Circle

For our first experiment, we will sample a point cloud from the unit circle

S1 = {x ∈ R2 : ‖x‖ = 1}

120

Since we wish to incorporate noise into our model, we will compute a point (x, y) by setting

x = r cos(θ) y = r sin(θ)

and sampling (r, θ) according the following probability distributions

r ∼ N (1, σ) θ ∼ U(0, 2π)

where N (m,σ) is the Gaussian distribution with mean m and standard deviation σ > 0

and U(a, b) is the uniform distribution on the interval (a, b) ⊂ R. Following this process,

we sample a point cloud X with |X | = 1000. An example point cloud resulting from this

procedure with σ = 0.1 is given in Figure 5.1. Clearly, this point cloud exhibits plenty of

noise as some rather significant outliers.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Figure 5.1: Point Cloud Sampled from S1

For this manifold, we can formulate the geometric error function EG(Y) for the smoothed

121

point cloud Y as

EG(Y) =
∑
y∈Y

(1− ‖y‖)2

The simplicity of this formula arises from the simplicity of our manifold. In particular, since

the closest point y′ on S1 to a point y ∈ R2 is given by y′ = y/‖y‖, we see that the squared

Euclidean distance between y and y′ is given by

‖y′ − y‖2 =

∥∥∥∥ y

‖y‖
− y
∥∥∥∥2 =

(
1

‖y‖
− 1

)2

‖y‖2 = (1− ‖y‖)2

and so we are really finding the sum of the squared distances between each point y ∈ Y and

its closest point in S1.

Notice that the manifold from which we are sampling, S1, is a one dimensional manifold

which we are embedding in R2. Hence, it has codimension one. Therefore, in the normal

bundle flow, we will be computing a single normal vector at each point, thus constituting our

normal bundle. In a later example, we will consider manifolds with codimension different

from one.

Since we are interested in finding the optimal parameters for the two algorithms, i.e. the

k-nearest neighbor flow and the normal bundle flow, we will perform a parameter sweep on

the sampled point clouds. As we will see, the optimal parameters vary with the amount of

noise present in the system. To make this clear, we have provided error plots for point clouds

sampled from S1, using the noisy procedure outlied above, using the standard deviation

values σ = 0.1, σ = 0.075, σ = 0.05, and σ = 0.025. Inspecting the error plots for these

point clouds makes the connection between the optimal parameters and the level of noise,

i.e. σ, rather clear.

122

0 50 100 150 200 250
Number of Neighbors

0

2

4

6

8

10

12

14

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(a) k-NN Flow

0 50 100 150 200 250
Number of Neighbors

0

2

4

6

8

10

12

14

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.2: Geometric Error Rates for S1 with σ = 0.1

Geometric Error

The first error plot we encounter, Figure 5.2, is that for σ = 0.1. In this figure, we show

the geometric error, as calculated by EG, after running the k-nearest neighbor flow, Figure

5.2(a), and the normal bundle flow, Figure 5.2(b). In each plot, we show the error for

different values of k (i.e. the number of neighbors). Additionally, we show the original error

in the point cloud X , that is EG(X). This is represented in the plot as a dotted black line,

referred to as the noise baseline in the figures. Any parameter values which produce an

error below this line can be considered to be improving the point cloud from a noisiness

perspective.

From Figure 5.2, we see that both the k-nearest neighbor and normal bundle flows

performed best when allowed to run for greater iterations. We have decided to only show

the error values for iterations t = 1, 3, 5, 7, 9 since for greater values, the plots begin to

overlap. This is because the gradient flows begin converging around t = 9. While hard to

see from the plots, the normal bundle flow does actually perform slightly better than the

k-nearest neighbor flow, achiving a lower overall error.

123

We also see that both the k-nearest neighbor flow and the normal bundle flow have strik-

ingly similar performance on this point cloud. This will be a theme that we see throughout

the Simple Geometries section. However, the similarity will disappear when we consider

more complicated geometries in the sections to follow. For now, notice that both flows reach

optimality around k = 75 for t = 9. However, the optimal value of k changes depending on

how many iterations the flows are run. For example, while k = 75 yields around the best

performance for the k-nearest neighbor flow with t = 9, if we look at t = 3, we get better

performance around k = 100. Thus, there seems to be a trade off between the value of k

and t. Higher values of k require fewer iterations to reach their minmial error. However,

this minimal error will be greater than the minimal error achieved using nine iterations and

around 75 neighbors.

0 50 100 150 200 250
Number of Neighbors

0

1

2

3

4

5

6

7

8

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(a) k-NN Flow

0 50 100 150 200 250
Number of Neighbors

0

1

2

3

4

5

6

7

8
Ge

om
et

ric
 E

rro
r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.3: Geometric Error Rates for S1 with σ = 0.075

Figures 5.3, 5.4, and 5.5 show the same error plots for points clouds sampled from S1

with σ = 0.075, 0.05, and 0.025 respectively. Of course, as σ decreases, so too does the noise

baseline. Perhaps more interesting, we also see that as we decrease σ, the optimal value of

k decreases. This makes sense since increasing the value of k has the effect of increasing the

amount of smoothing being applied to the point cloud. If we have less initial error, then as

expected we should require a lower value of k. In the four cases we investigated, associated

124

with the four values of σ, the optimal value of k went from around k = 75 (σ = 0.1), to

around k = 70 (σ = 0.075), to around k = 50 (σ = 0.05), and finally to around k = 40

(σ = 0.025). As expected, the minimal error also decreased for both algorithms as we

decreased σ.

0 50 100 150 200 250
Number of Neighbors

0

1

2

3

4

5

6

7

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(a) k-NN Flow

0 50 100 150 200 250
Number of Neighbors

0

1

2

3

4

5

6

7

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.4: Geometric Error Rates for S1 with σ = 0.05

Looking closer at the errors we see that the flows initially decrease the value of EG as

we increase k, however after the optimal value of k, we see EG rise sharpely. This is due to

volumetric shrinking of the point cloud. This occurs because we are utilizing the barycenter

of a collection of points. If that collection happens to represent some portion of a convex

surface, the barycenter will lie below the convex surface. Hence, over time, the volume of

the point cloud will shrink. Although combatting volumetric shrinking is outside the scope

of this dissertation, it is important to note that just because the geometric error may be

increasing beyond some values of k and t, the topological error may not be increasing. It

could, in fact, continue decreasing. This is why we must also look at topological measures

of error.

Before we turn to our topological discussion, we would like to call attention to Figure

5.6. Here, we see the two point clouds produced by the optimal values of k and t for both the

125

0 50 100 150 200 250
Number of Neighbors

0.0

0.2

0.4

0.6

0.8

1.0

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(a) k-NN Flow

0 50 100 150 200 250
Number of Neighbors

0.0

0.2

0.4

0.6

0.8

1.0

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.5: Geometric Error Rates for S1 with σ = 0.025

k-nearest neighbor flow, Figure 5.6(a), and the normal bundle flow, Figure 5.6(b). Recall

that the normal bundle flow was motivated by the fact that the k-nearest neighbor flow

would result in points clustering together over time. This is evident in Figure 5.6(a) where

several gaps are plainly visible. However, in Figure 5.6(b), there are no visible gaps. Of

course, each point is zero-dimensional and thus takes up zero area, however the scatter plots

here can be seen as a covering of the point cloud Y. From such a covering, we can construct

the Cěch-complex and compute the homology. In this case, Figure 5.6(b) would exhibit a

topology more similar to S1 than would the point cloud in Figure 5.6(a).

Finally, notice that in the first three plots, for the single iteration line (i.e. t = 1), after

intially descending, the error values remain relatively flat as we increase k. This is simply

an artifact of the choice for the range of the bottom axis. In actuality, if we continued to

increase k, the first three plots would begin to look like the fourth plot (i.e. σ = 0.025) and

begin to rises sharpely for large enough k.

126

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.0

0.5

0.0

0.5

1.0

(a) k-NN Flow

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

(b) Normal Bundle Flow

Figure 5.6: Geometrically Optimal Point Clouds for S1 with σ = 0.1

Topological Error

As we saw in the previous section, both the k-nearest neighbors flow and the normal bundle

flow reduce the geometric error of the point cloud. Of course, the degree to which the

geometric error is reduced, depends on the chosen parameter values. However, geometric

error is not the only way to measure error in a point cloud.

One issue that was clear from the plots in the previous section was volumetric shrinking.

When considering geometric error, volumetric shrinking will be a major problem since once

the smoothed point cloud becomes smaller than the sampled manifold, the geometric error

increases sharpely. On the other hand, volumetric shrinking is not an issue for the topolog-

ical error. This is because topological considerations are scale invariant. For example, if we

are given a point cloud X and we create another point cloud X ′ = {2x : x ∈ X}, the the

persistence diagrams of X and X ′ would be identical. Thus, even though X is much smaller

than X ′ (in a volumetric sense), the persistence diagrams agree and so topologically, these

point clouds can be considered the same.

Since we know the topology of S1, we know that the one-dimensional persistence diagram

of S1, denoted Dgm1(S
1), will consist of a single point at (0, 1). To see this, supposed we

127

uniformly sampled S1, generating n points on S1, denoted Xn. Next, let rn be the minimum

resolution r for which the α-complex, AlphaXn(r), contains a single connected component

(just as S1 contains a single connected component). Then as n→∞, we will have rn → 0

since the sampling of S1 becomes increasingly dense.

From this fact, we can construct a function, EpT , for the topological error between S1

and a point cloud Y. Recall that is function was developed at the end of Section 2.4.

In particular, we let EpT be the bottleneck distance between the p-dimensional persistence

diagram of S1 and the p-dimensional persistence diagram induced by the filtration FY of

the α-complex corresponding to Y. That is,

EpT (Y) = dB(Dgmp(S
1),Dgmp(FY)) (5.1)

Using this function, we have a notion of the topological difference between a point cloud Y

sampled from a manifold, in this case S1. In the sections that follow, we will redefine EpT

to reflect the manifold being sampled.

50 100 150 200 250
Number of Neighbors

0.00

0.05

0.10

0.15

0.20

0.25

0.30

To
po

lo
gi

ca
l E

rro
r

1 Iterations
5 Iterations
10 Iterations
15 Iterations
20 Iterations
25 Iterations

(a) k-NN Flow

50 100 150 200 250
Number of Neighbors

0.00

0.05

0.10

0.15

0.20

0.25

0.30

To
po

lo
gi

ca
l E

rro
r

1 Iterations
5 Iterations
10 Iterations
15 Iterations
20 Iterations
25 Iterations

(b) Normal Bundle Flow

Figure 5.7: Topological Error Rates for S1 with σ = 0.1

In Figure 5.7, we show the one-dimensional topological error E1
T (Xt) for point clouds

128

smoothed using the same parameters we chose previously. These figures are quite interest-

ing. The most immediate observation is that the smoothing induced by the normal bundle

flow is much more topologically stable as the iteration count increases than is the smoothing

induced by the k-nearest neighbor flow. This can be seen by comparing Figures 5.7(a) and

5.7(b). In particular, while the error rates form relatively smooth curves for both the the

k-nearest neighbor flow (a) and normal bundle flow (b) with few iterations, after around

10 iterations, the k-nearest neighbor flow begins losing stability across values of k. On the

other hand, the normal bundle flow maintains its stability across k even after 25 iterations.

We can also see that the optimal topological error achieved by the normal bundle flow

is lower than the optimal error achieved by the k-nearest neighbor flow. Specifically, the

normal bundle flow achieves a minimum topological error of around E1
T (Y) = 0.0487 for the

point cloud Y created by evolving the original point cloud X using the parameters k = 80

and t = 30, while the k-nearest neighbor flow achieves a minimum topological error around

E1
T (Y) = 0.0658 for k = 115 and t = 15. Thus, we see that not only does the normal bundle

flow achieve a lower topological error, it also does so with fewer neighbors. This helps since

nearest neighbor computations are expensive.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Smoothed Point Cloud

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Persistence Diagram

Figure 5.8: Topologically Optimal Point Cloud for k-NN Flow

In Figures 5.8 and 5.9, we show the point clouds resulting from the topologically opti-

mal parameter values associated with the k-nearest neighbor flow and the normal bundle,

129

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Smoothed Point Cloud

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Persistence Diagram

Figure 5.9: Topologically Optimal Point Cloud for Normal Bundle Flow

respectively. In addition to the topologically most accurate point cloud, we show the one

dimensional persistence diagram associated with the point cloud. From this, it is clear that

the persistence diagram in Figure 5.9(b) more closely resembles the persistence diagram

of S1, consisting of a single point at (1, 0), than does the persistence diagram in Figure

5.9(b), corresponding to the k-nearest neighbor flow. This reflects the fact that the normal

bundle flow achieves lower topological error than the k-nearest neighbor flow. However, it

is worth noting that the topologically optimal point cloud for the k-nearest neighbor flow

does produce a point cloud which appears rounder, and hence more like the unit circle, than

the normal bundle flow. The lower topological error provided by the normal bundle flow

comes strictly from the fact that the points in Figure 5.9(b) provide a denser sampling of

the unit circle and therefore the resolution r required for the α-complex of the point cloud

to exhibit a single connected component is lower for the normal bundle flow than for the

k-nearest neighbor flow.

In this section, we have shown how the k-nearest neighbor flow and the normal bundle

flow perform when smoothing a point cloud drawn from the unit circle, S1. We have seen

that the normal bundle flow produces both the lower geometric error point cloud as well as

the lower topological error point cloud. In the sections that follow, we will perform the same

anlaysis with point clouds drawn from different manifolds. To add variability and difficulty

130

to the smoothing process, each manifold was chosen to reflect a unique set of smoothing

requirements. In the next section, we consider a geometric shape which has varying degrees

of curvature throughout the manifold.

5.1.2 Capsule

5 4 3 2 1 0 1 2 3
3

2

1

0

1

2

3

Figure 5.10: Point Cloud Sampled from W

We now turn our attention to a geometric shape we refer to as a capsule. This shape

is simply two half circles of differing radii connected by two line segments. In particular,

the shape is made of four components, the left half circle C` which has radius r` and is

centered at (−r`, 0), the right half circle Cr of radius rr and centered at (rr, 0), the top

line segment Lt which is a line from (−r`, r`) to (rr, rr), and the bottom line segment Lb

which is a line from (−r`,−r`) to (rr,−rr). Taken together, these four components form

the capsule Cap(r`, rr).

To sample the capsule, we first compute the perimeter p(r`, rr) of Cap(r`, rr) using the

131

equation

p(r`, rr) = (r` + rr)π + 2
√

(rr + r`)2 + (rr − r`)2

Then for each components C, we compute the ratio F (C) of the perimeter that is due to

that component. That is, for one of the half circle components, either C` or Cr, we let

F (Ci) (for i = ` or i = r) be defined as

F (Ci) =
riπ

p(r`, rr)

and for either of the line segments L, we let

F (L) =

√
(rr + r`)2 + (rr − r`)2

p(r`, rr)

Then to generate a sampling of Cap(r`, rr), we randomly choose a component to sample

where the probability of a component C is given by F (C). Once the component is chosen,

we sample from that component and add a zero-centered Gaussian noise term N (0, σ) with

standard deviation σ. An example of a point cloud sampled from this process is shown in

Figure 5.10. In this case, we set r` = 2 and rr = 1. Notice that the point cloud in this

figure is uniformly sampled.

Geometric Error

To compute the geometric error EG(Y), we take the sum over all the points of the square

distance to Cap(r`, rr). In particular, for a point x ∈ RN , we set

dCap(r`,rr)(x) = min {dC`(x), dCr(x), dLt(x), dLb(x)}

132

0 20 40 60 80 100 120 140
Number of Neighbors

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(a) k-NN Flow

0 20 40 60 80 100 120 140
Number of Neighbors

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.11: Geometric Error Rates for Cap(2, 1) with σ = 0.1

where dC(x) is the distance from x to the component C. Since each component is either a

line or a half circle, it is easy to compute dC(x). Then the geometric error is given by

EG(Y) =
∑
y∈Y

dCap(r`,rr)(y)2

0 20 40 60 80 100 120 140
Number of Neighbors

0

1

2

3

4

5

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(a) k-NN Flow

0 20 40 60 80 100 120 140
Number of Neighbors

0

1

2

3

4

5

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.12: Geometric Error Rates for Cap(2, 1) with σ = 0.05

133

As in the previous section, we show the geometric error rates EG(Xt) for various degrees

of noise (as determined by the value of σ). However, instead of showing all four plots for

σ ∈ {0.1, 0.075, 0.05, 0.025}, we instead show the results for σ = 0.1 and σ = 0.05. First,

in Figure 5.11, we see that the two methods perform remarkably similar. This holds true

as well when σ = 0.05, as shown in Figure 5.12. This is because our geometric error does

not capture the difference between the two gradient flows effectively. In fact, if every single

point of the original point cloud was moved to the same point on Cap(r`, rr), then the

geometric error would be 0, even though the point cloud has collapsed to a single point.

Instead, we need to investigate the topological error, which we do shortly.

5 4 3 2 1 0 1 2 3
3

2

1

0

1

2

3

(a) k-NN Flow

5 4 3 2 1 0 1 2 3
3

2

1

0

1

2

3

(b) Normal Bundle Flow

Figure 5.13: Geometrically Optimal Point Clouds for W

The difference between the two algorithms is better revealed in Figure 5.13 which shows

the optimal point clouds under the geometric error function EG(Y). From this figure, it is

clear that the k-nearest neighbors flow contains gaps along Cap(r`, rr), whereas the normal

bundle flow has much smaller gaps. Thus, when we consider the topological error, we expect

the normal bundle flow to produce the more topologically correct point cloud.

In Figure 5.14 we show the results of applying the adaptive smoothing discussed in

Section 4.3 to the normal bundle flow. In Figure 5.14a we show the geometric error rates as

134

we did for the non-adaptive flow. Then in Figure 5.14b, we show the geometrically optimal

point cloud. This point cloud was obtained after 9 iterations with k = 57. Although the

minimal error achieved by the adaptive flow is approximately equal to that of the k-nearest

neighbor flow and the normal bundle flow, we see that the error grows much slower as we

increase k past the optimal value than it does for the k-nearest neighbor and normal bundle

flows. For those two flows, once the optimal value of k has been passed, the geometric error

increases rapidly. This is because the adaptive flow has the ability to lower the value of k

whereas the non-adaptive flows are stuck with the original value of k for the entire point

cloud.

0 20 40 60 80 100 120 140
Number of Neighbors

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(a) Geometric Error

5 4 3 2 1 0 1 2 3
3

2

1

0

1

2

3

(b) Optimal Point Cloud

Figure 5.14: Adaptive Smoothing for Cap(2, 1) with σ = 0.1

Topological Error

We now turn our attention to the topological error analysis for the capsule Cap(r`, rr). Just

as in Section 5.1.1, we use the persistence diagram to compute the p-dimensional topological

error EpT (Y) of a point cloud Y. Notice that the topology of the capsule Cap(r`, rr) is

identical to S1. Therefore, we can almost use the same topological error function as defined

in Equation 5.1. The only difference will be that instead of a single component at (0, 1) as

135

is the case for the one-dimensional persistence diagram of S1, the capsule will have a single

component at (0, 2) in its one-dimensional persistence diagram. This is because the hold in

the middle of the capsule forms immediately. However, the hole disappears when the radius

r in the α-complex is r = 2. This is due to the left hand half circle in the capsule having

radius r` = 2.

0 20 40 60 80 100 120 140
Number of Neighbors

0.0

0.1

0.2

0.3

0.4

0.5

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(a) k-NN Flow

0 20 40 60 80 100 120 140
Number of Neighbors

0.0

0.1

0.2

0.3

0.4

0.5

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.15: Topological Error Rates for Cap(r`, rr) with σ = 0.1

Once again we see that the minimal topological error rate was achieved under the normal

bundle flow. Furthermore, we also see that the k-nearest neighbor flow is less topologically

stable than the normal bundle flow as we increase the value of k. From this figure, it is

clear that the topologically optimal point cloud is achieved for the k-nearest neighbor flow

at around k = 35 or k = 65 and with t = 9. Of course, it is hard to tell since there is

so much variability in the topological error across values of k. On the other hand, the

minimal topological error is achieved for the normal bundle flow around k = 50 and t = 9.

Another interesting observation is that initially, i.e. after a single iteration, both of these

algorthms introduce some topological error as indicated by the red points. Thus, it is clear

that running the smoothing for more than a single iteration is required for this point cloud.

In Figure 5.16, we show the dimension one persistence diagrams associated with the

topologically optimal point clouds produced by the k-nearest neighbor flow and the normal

136

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(a) k-NN Flow

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b) Normal Bundle Flow

Figure 5.16: Optimal Persistence Diagrams for Cap(r`, rr) with σ = 0.1

bundle flow. From these persistence diagrams, we can see that the single hole in Cap(r`, rr)

is formed sooner under the normal bundle flow than under the k-nearest neighbor flow. This

can be seen by considering the most persistent component in each diagram (i.e. the point at

the top left). The distance of this point from the vertical axis tells us when this component

was formed. Since this component corresponds to the one dimensional homology group,

this point tells us when the hold was formed. Since the most persistent component under

the normal bundle flow is closer to the vertical axis, we know the hold formed sooner under

this flow than under the k-nearest neighbor flow. This is unsurprising given the results in

Figure 5.17, which shows the topologically optimal point clouds under both flows. Since

the gaps are bigger for the cloud produced by the k-nearest neighbor flow, the radius in

the α-complex will have to grow larger before the complex forms the large hole present in

Cap(r`, rr). Thus, the normal bundle flow outperforms the k-nearest neighbor flow when

considering the topology of the resulting point clouds.

5.1.3 Circle in R3

Having considered two one-dimensional manifolds embedded in R2, we now look at a one-

dimensional manifold embedding in R3. This allows us to not only test a point cloud in R3,

but more importantly to test a manifold whose codimension is greater than one. To make

137

5 4 3 2 1 0 1 2 3
3

2

1

0

1

2

3

(a) k-NN Flow

5 4 3 2 1 0 1 2 3
3

2

1

0

1

2

3

(b) Normal Bundle Flow

Figure 5.17: Topologically Optimal Point Clouds for Cap(r`, rr) with σ = 0.1

the comparison simple, we will investigate how the gradient flows perform when used to

smooth a point cloud drawn from the unit circle S1 embedded in R3. We follow a similar

sampling procedure as in Section 5.1.1 but instead of using a two dimensional Gaussian

error term, we use a three dimensional Gaussian error. An example point cloud generated

by this sampling procedure is shown in Figure 5.18.

Geometric Error

Although we are using the unit circle S1 as in Section 5.1.1, we cannot use the same

geometric error function. This is due to the fact that in R3, the geometric error function

in Section 5.1.1 acts as the geometric error function of the unit sphere. Therefore, we must

instead derive the correct error function. Of course, we can parameterize S1 in R3 via

S(θ) = (cos θ, sin θ, 0). Thus, the squared distance from a point (x, y, z) ∈ R3 to S(θ) is

given by

D(θ) = (x− cos θ)2 + (y − sin θ)2 + z2

138

1.5
1.0

0.5
0.0

0.5
1.0

1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 5.18: Sample point cloud drawn from S1 in R3

and so taking the derivative of this function, we have

dD

dθ
= 2(x− cos θ) sin θ − 2(y − sin θ) cos θ

Setting this equal to zero and searching for the critical points, we find

2x sin θ = 2y cos θ

which tells us that

y

x
= tan θ

Therefore, the point S(θ) which is closest to (x, y, z) is given by the point in S1 closest to

(x, y) when considered in R2. Thus, we see that the geometric error function EG(Y) should

be defined

EG(Y) =
∑

(x,y,z)∈Y

(1− ‖(x, y, 0)‖)2 + ‖z‖2

139

The geometric error rates for a point cloud sampled from S1 in R3 with σ = 0.1 are shown

0 50 100 150 200 250
Number of Neighbors

0

2

4

6

8

10

12

14

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(a) k-NN Flow

0 50 100 150 200 250
Number of Neighbors

0

2

4

6

8

10

12

14

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.19: Geometric Error Rates for S1 in R3 with σ = 0.1

in Figure 5.19. Here, we see that the two gradient flows perform similarly as in the previous

examples. Both the flows achieve optimal geometric error around k = 75. Furthermore,

both flows achieve the best error after nine iterations of the gradient flow. We show the

geometric error rates for point clouds sampled from S1 in R3 with σ = 0.05 in Figure

5.20. Notice that the number of neighbors required to achieve the optimal error rates has

decreased for both gradient flows. Now the optimal value of k is closer to k = 50. On the

other hand, the optimal number of iterations is the same as for σ = 0.1.

We show the geometrically optimal point clouds for both flows in Figure 5.21. As in

the previous examples, the k-nearest neighbor flow exhibits some visual gaps, which lead to

greater topological error. On the other hand, the point cloud produced under the normal

bundle flow has a much more uniform distribution of points around the circle.

Topological Error

For the topological error estimates, we are still interested in the one-dimensional persistence

diagram. This is due to the fact that the circle S1 has a single hole which we would like to

140

0 50 100 150 200 250
Number of Neighbors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(a) k-NN Flow

0 50 100 150 200 250
Number of Neighbors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.20: Geometric Error Rates for S1 in R3 with σ = 0.05

1.5
1.0

0.5
0.0

0.5
1.0

1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) k-NN Flow

1.5
1.0

0.5
0.0

0.5
1.0

1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) Normal Bundle Flow

Figure 5.21: Geometrically Optimal Point Clouds for S1 in R3 with σ = 0.1

pick up from the persistence diagrams. Thus, our topological error function E1
T (Y) remains

the same as Section 5.1.1. We show the topological error rates in Figure 5.22. Unlike

the previous examples, the k-nearest neighbor flow is quite stable with increasing values of

k. Additionally, we see that both the gradient flow systems exhibit optimal performance

around k = 100. Although hard to see, the normal bundle flow achieved a lower minimum

141

topological error, just as in all the previous examples We can view the topologically optimal

0 50 100 150 200 250
Number of Neighbors

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Ge

om
et

ric
 E

rro
r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(a) k-NN Flow

0 50 100 150 200 250
Number of Neighbors

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.22: Topological Error for Point Clouds Drawn from S1 in R3 with σ = 0.1

point clouds in Figure 5.23 and their associated persistence diagrams in Figure 5.24. We

can see that the topologically optimal point cloud for the k-nearest neighbor flow has some

regions where there is a lower density of points while the normal bundle flow point cloud

appears uniformly dense. This results in the persistence diagram of the normal bundle

flow, shown in Figure 5.24b, is closer to the ground truth persistence diagram (i.e. a single

component at (0, 1)).

5.1.4 Sphere

In our final simple geometry example, we analyze point clouds drawn noisily from the unit

sphere S2. This will test the algorithm’s ability to operate in three dimensions with a

codimension one sampled manifold. To draw samples from S2, we follow the simple method

of randomly sampling three numbers (x, y, z) from the standard Gaussian distribution, that

is

x ∼ N (0, 1), y ∼ N (0, 1), z ∼ N (0, 1)

142

1.5
1.0

0.5
0.0

0.5
1.0

1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) k-NN Flow

1.5
1.0

0.5
0.0

0.5
1.0

1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) Normal Bundle Flow

Figure 5.23: Topologically Optimal Point Clouds for S1 in R3 with σ = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) k-NN Flow

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Normal Bundle Flow

Figure 5.24: Optimal Persistence Diagrams for S1 in R3 with σ = 0.1

We then set

z′ =
(x, y, z)

‖(x, y, z)‖

Thus, since the point z′ has unit norm, it lies on the sphere S2. We then add noise to the

point by setting

z = rz′

143

where r ∼ N (1, σ). This has the effect of adding noise in the radial direction. We drew

1000 samples following this procedure to create a noisy point cloud sampled from S2. An

example point cloud drawn from this process is shown in Figure 5.25.

1.5
1.0

0.5
0.0

0.5
1.0

1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 5.25: Example Point Cloud Drawn from S2

Geometric Error

The geometric error function for this example is identical to the geometric error function

used in Section 5.1.1 except now we take the Euclidean norm in R3 instead of R2. In

particular, the geometric error function EG(Y) is given by

EG(Y) =
∑
y∈Y

(1− ‖y‖)2

The error rates associated with different values of k are shown in Figure 5.26 for σ = 0.1

and in Figure 5.27 for σ = 0.05. Similar to all previous examples, the geometric error plots

are quite similar between the two algorithms. Additionally, the optimal value of k once

again decreases with a lower value of σ. This is to be expected since a point cloud with

144

lower initial noise will require less smoothing.

0 20 40 60 80 100 120 140
Number of Neighbors

0

2

4

6

8

10

12

14

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(a) k-NN Flow

0 20 40 60 80 100 120 140
Number of Neighbors

0

2

4

6

8

10

12

14

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.26: Geometric Error Rates for Point Clouds for S2 with σ = 0.1

0 20 40 60 80 100 120 140
Number of Neighbors

0

2

4

6

8

10

12

14

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(a) k-NN Flow

0 20 40 60 80 100 120 140
Number of Neighbors

0

2

4

6

8

10

12

14

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.27: Geometric Error Rates for Point Clouds for S2 with σ = 0.05

The geometrically optimal point clouds for S2 are shown in Figure 5.28. In the k-nearest

neighbors case (the left hand figure), the clustering tendency of the k-nearest neighbors

gradient flow is plainly evident. Although this does not cause a problem for our geometric

error function, this particular point cloud would score quite poorly under the topological

145

error function. On the other hand, the optimal point cloud under the normal bundle flow

is much more uniformly distributed across the surface of the sphere. This results in fewer

and smaller gaps.

1.5
1.0

0.5
0.0

0.5
1.0

1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) k-NN Flow

1.5
1.0

0.5
0.0

0.5
1.0

1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) Normal Bundle Flow

Figure 5.28: Geometrically Optimal Point Clouds for S2 with σ = 0.1

Topological Error

Now that we are working with a two-dimensional manifold, our topological considerations

will be slightly different. Instead of working with the one-dimensional persistence diagrams,

we will instead use the two-dimensional persistence diagrams. Thus, instead of looking for

holes in the point cloud as was the case for the circle, capsule, and unit circle in R3, we will

be looking for three-dimensional voids. In the case of the unit sphere, there is a single void:

the interior of the sphere. For the unit sphere, this void is born at 0 and dies at 1 (since the

radius of the unit sphere is 1). Therefore, the optimal two-dimensional persistence diagram

will have a single component at (0, 1). Here we use the topological error function E2
T (Y)

given by

E2
T (Y) = dB(Dgm2(S

2),Dgm2(Y))

In Figure 5.29, we show the topological error E2
T (Y) for point clouds Y produced by

146

0 20 40 60 80 100 120 140
Number of Neighbors

0.00

0.05

0.10

0.15

0.20

0.25

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(a) k-NN Flow

0 20 40 60 80 100 120 140
Number of Neighbors

0.00

0.05

0.10

0.15

0.20

0.25

Ge
om

et
ric

 E
rro

r

1 Iterations
3 Iterations
5 Iterations
7 Iterations
9 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.29: Topological Error for Point Clouds Drawn from S2 with σ = 0.1

running the two gradient flows using various parameters of k and number of iterations. As

we can see, the k-nearest neighbor gradient flow has a lower topological error for every set

of parameters considered, however it stays relatively constant as we increase the value of

k. On the other hand, the normal bundle flow has an initial dive in topological error as we

increase k, and then the error begins climbing after about k = 35. Thus, the optimal value

of k for the normal bundle flow is k = 35. Additionally, the optimal number of iterations

for the normal bundle flow in this case is t = 9. However, the error rates begin to converge

so there is not much difference in error for t = 7 and t = 9.

The topologically optimal point clouds are shown in Figure 5.30 and their associated

two-dimensional persistence diagrams are shown in Figure 5.31. Here, we can see that the

two optimal point clouds both exhibit some clustering, but overall are much more uniformly

dense than geometrically optimal point clouds. This is what causes these point clouds to

exhibit lower topological error. In the persistence diagrams, we can see the single component

which corresponds to the interior of the sphere. The most persistent component of the k-

nearest neighbor point cloud was formed at r = 0.263 and dies at r = 0.876 while the most

persistent component of the normal bundle point cloud was formed at r = 0.232 and dies

at r = 0.880. Thus, we see that the topologically optimal point cloud obtained under the

147

1.5
1.0

0.5
0.0

0.5
1.0

1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) k-NN Flow

1.5
1.0

0.5
0.0

0.5
1.0

1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) Normal Bundle Flow

Figure 5.30: Topological Optimal Point Clouds for S2 with σ = 0.1

(a) k-NN Flow

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Normal Bundle Flow

Figure 5.31: Topological Optimal Point Clouds for S2 with σ = 0.1

normal bundle flow achieves a lower topological error than that of the k-nearest neighbor

flow.

5.1.5 Five-dimensional Sphere

All the of examples we have presented thusfar concern point clouds in two or three dimen-

sions. Since our algorithms were designed to operate on arbitrary dimensions, we now show

the results of applying the gradient flow algorithms to a five dimensional sphere embedded

148

in R6, i.e. the sphere S5. Since we are working in R6, the sampled manifold is codimension

one. Furthermore, since we have increased the dimensionality, we increase the number of

points in the point cloud as well to avoid issues with sampling density. In particular, we

drew a point cloud of 10,000 points from S5. Since we are using S5, the geometric error

function EG(Y) is simply

EG(Y) =
∑
y∈Y

(1− ‖y‖)2

as before.

0 20 40 60 80 100 120 140
Number of Neighbors

0

20

40

60

80

100

120

140

Ge
om

et
ric

 E
rro

r

1 Iterations
2 Iterations
4 Iterations
6 Iterations
8 Iterations
10 Iterations
Noise Baseline

Figure 5.32: Geometric error for a point cloud drawn from S5 under the k-nearest neighbors
flow

The results of running the flow are shown in Figures 5.32 and 5.33. From these images,

we see that the gradient flows were able to drastically reduce the original geometric error,

despite the problem being posed in R6. Thus, we see that the algorithms still work as

expected for higher dimensions. Furthermore, we see that the optimal parameters differ

for the k-nearest neighbor flow and the normal bundle flow. In particular, the k-nearest

neighbors flow performs best with k = 15 and 10 iterations. On the other hand, the normal

149

bundle flow reaches minimum geometric error when k = 30 and the number of iterations is

set to 8. Furthermore, the k-nearest neighbor flow actually achieves a lower geometric error,

unlike all the previous examples. The smallest error obtained by the k-nearest neighbors

flow is EG(Y) = 33.99 while the minimum error obtained by the normal bundle flow is

EG(Y) = 42.61. Likely, the k-nearest neighbor flow outperformed the normal bundle flow

because the normal and tangent space approximations were less effective for this point

cloud. Although we have increased our dimension by a factor of two, we have only used

10, 000 points to form this point cloud. When the dimensionality of the ambient space

doubles, we must square our sample size to maintain the same sampling density. Therefore,

to achieve comparable performance, we would likely need to use 1, 000, 000 points. Due to

the considerable computational cost of running a parameter sweep on such a large point

cloud, we leave this as speculation. Of course, both these error rates are still far lower

than the original error, EG(X) = 99.46. Therefore, we see that both methods improve the

geometric accuracy of the sampled point clouds.

0 20 40 60 80 100 120 140
Number of Neighbors

0

20

40

60

80

100

120

140

Ge
om

et
ric

 E
rro

r

1 Iterations
2 Iterations
4 Iterations
6 Iterations
8 Iterations
10 Iterations
Noise Baseline

Figure 5.33: Geometric error for point cloud drawn from S5 under the normal bundle flow

150

From these results, we see that the gradient flow algorithms can help in higher dimen-

sions. As for computational cost, let X2 and X5 be two point clouds drawn from S2 and

S5, respectively. Let |X2| = |X5| = 10000 and let k = 1000. Then a single iteration of the

k-nearest neighbor gradient flow for X2 takes approximately 5.706 seconds while a single

iteration of the gradient flow for X5 takes approximately 8.910 seconds. For the normal

bundle flow, a single iteration takes 6.054 seconds for X2 and 9.518 seconds for X5. As

expected, the high dimensional point cloud takes longer to process for the same point cloud

size and number of neighbors. However, the extra expense is not large given the ability

to smooth these higher dimensional point clouds. Furthermore, although the normal bun-

dle flows took slightly longer than their corresponding k-nearest neighbor flows, the extra

incurred cost going from R3 to R6 was about the same in both cases. Furthermore, the

computational cost is dominated by the size of the point cloud and the value of k. These

factors drive the most expensive part of the algorithms, the determination of the k-nearest

neighbors for each point in X .

5.2 3D Scanning and LiDAR

Now that we have applied the k-nearest neighbor flow and the normal bundle flow to some

simple geometries and found that the flows lower both the geometric and topological noise

in the point cloud, we turn to applying the two flows on richer and more complicated

geometries. In particular, we will apply the smoothing algorithms to point clouds obtained

from 3D scanning and from LIDAR. We will show that the smoothing algorithms once again

succeed in reducing the noise in these more complex point clouds, just as we saw on the

simple geometries in the previous section. Unlike the previous section, the point clouds we

analyze in this section reflect a more realistic use of the smoothing algorithms since both

3d scanning and LIDAR are in common use in modern technology.

151

5.2.1 Stanford Bunny

We begin our analysis using a point cloud sampled from the classic Stanford Bunny model.

The Bunny was created using by Greg Turk and Marc Levoy in [53] while at Stanford

University in 1994. To create the Bunny, Turk and Levoy developed a technique for re-

constructing surfaces from multiple range images. A range image is produced by a range

scanner, which produces a 2d array of distance values describing the distance from the scan-

ner to the nearest surface. Since most objects self occulde, the Stanford Bunny included,

Turk and Levoy had to develop a method for combining multiple range images of a single

object and reconstructing the surface of the object. Their technique essentially consisted of

three steps: align the meshes, zipper together the adjacent meshes, and finally compute a

locally weighted average of the surfaces on the overlapping regions. Their algorithm helped

open the door to rich 3d scans of entire objects.

Figure 5.34: Noisy Stanford Bunny

152

In the paper describing their surface reconstruction technique (see [53]), Turk and Levoy

provided several examples to demonstrate the quality of the algorithm. However, the Stan-

ford Bunny easily became one of the most famous of these examples. The Stanford Bunny

has a rich history of use in testing various 3d modeling algorithms. Here, we follow in the

footsteps of many before us and analyze the performance of the smoothing algorithms on

the Stanford Bunny. However, we also heed the advise Greg Turk provides on his website

[3] and will evaluate the algorithm on more complicated shapes later in this section.

For our evaluation using the Stanford Bunny, we will take a point cloud sampled from

the surface of the Bunny and add artificial noise to the point cloud. Following this approach

will allow us to measure the geometric error of the point cloud precisely since we know the

surface from which the point cloud was sampled. Additionally, since we can control the level

of noise, we can evaluate the performance of the smoothing algorithms across a range of

noise parameters. Therefore, we will be able to guage how robust the algorithm is to varying

levels of noise. This evaluation approach will contrast with the approach we must take later

to measure the noise in LIDAR data. With LIDAR data, we have no known ground truth

and so we cannot precisely measure the reduction in the geometric and topological error

after the smoothing algorithms have been applied.

The version of the Stanford Bunny we use is a point cloud X of 35,947 points. The

point cloud is contained in a rectangular cuboid R which measures approximately

R = (−0.0972, 0.0631)× (0.0304, 0.1889)× (−0.0633, 0.0607)

Given these dimensions, we add a randomly sampled 3-dimensional Gaussian distribution

of mean 0 and standard deviation σ = 0.001 to each point of X , thereby producing a noisy

point cloud Xσ. We then apply the k-nearest neighbor flow of Chapter 3 and the normal

bundle flow of Section 4.1 for varying values of k and for a varying number of iterations.

For a given value of k and a given number of iterations t, we then measure the geometric

error L(X ,Y) of the resulting smoothed point cloud Y using the following equation

153

L(X ,Y) =
∑
y∈Y

min
x∈X
‖x− y‖2 (5.2)

Note that the above equation approximates the exact geometric error of each point which

would be measured by taking the distance to the manifold. However, since the points of

X all lie on the surface of the underlying manifold and provide a thorough sampling of the

manifold, the point cloud based error function L provides an accurate approximation of

the true geometric error. This error function also benefits from not relying on knowledge

of the underlying manifold. This will be important when we investigate the algorithms’

performance LiDAR data, where there is no underlying manifold to compare against. For

this reason, we have chosen to compute all the geometric errors using the function L, thereby

providing consistency for the three experiments presented in this section.

0 20 40 60 80 100 120 140
Number of Neighbors

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ge
om

et
ric

 E
rro

r

2 Iterations
5 Iterations
10 Iterations
15 Iterations
20 Iterations
Noise Baseline

(a) k-NN Flow

0 20 40 60 80 100 120 140
Number of Neighbors

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ge
om

et
ric

 E
rro

r

2 Iterations
5 Iterations
10 Iterations
15 Iterations
20 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.35: Geometric Error for Stanford Bunny

The geometric error rates for the two algorithms are presented in Figure 5.35. Here, we

show the value of L obtained by setting k = 5i where i ∈ N with 2 ≤ i ≤ 30. We reported

the error rate after t iterations, where t is set to be 2, 5, 10, 15, and finally 20. The noise

baseline is also reported. This is the value of L computed directly on the pair X and Xσ

154

(i.e. the initial error of the noisy point cloud).

Some immediate conclusions can be drawn from these two figures. In the k-nearest

neighbor flow in Figure 5.35(a), it is clear that the optimal value of k lies somewhere

around k = 35. Additionally, the optimal number of iterations to run the algorithm was

t = 5. On the other hand, for the normal bundle flow in Figure 5.35(b), the optimal values

of k and t were closer to k = 20 and t = 20. Therefore, the normal bundle flow in this

experiment required fewer neighbors but more iterations than the k-nearest neighbor flow.

It is also clear that the overall error obtained under the optimal parameters is lower

for the normal bundle flow than for the k-nearest neighbor flow. Furthermore, the error

initially drops more rapidly for the normal bundle flow than for the k-nearest neighbor flow

and it also grows slower once the optimal parameters have been passed.

It is worth noting that the increasing error both algorithms experience after their optimal

parameters have been passed is due to volumetric shrinking of the point clouds. That is,

when the point clouds are smoothed too much, their volumes begin to shrink. Thus, while

the shape of the point cloud may still be an accurate representation of the orignial point

cloud, it’s volume has shrunken enough that the smoothed point cloud is much smaller

than the original point cloud, hence the increasing error. A geometric explanation for this

volumetric reduction can be see by considering the convexity of the point cloud. Since the

bunny contains many locally convex regions, if the chosen nearest neighbors around a point

exhibit this convexity, their barycenter will lie within the bunny. Hence, when smoothing,

the points will move closer to the center of the bunny and reduce the overall volume of the

point cloud.

Finally, notice that while the error rates for the k-nearest neighbor flow with t = 5, 10, 15

and 20 never cross each other as k increases, the error rates for t = 2 cross both the t = 5

and t = 10 error rates. This makes sense since the initial iterations of the flow produce the

biggest decrease in error. Then, once the optimal value of k is passed (i.e. around k = 35),

the volume begins to shrink, an effect felt less when there are only two iterations. Also,

notice that the error rates produced by t = 20 are the worst for every value of k. This

155

indicates the the k-nearest neighbor smoothing should be run for far fewer iterations. In

fact, other than for t = 2, the error rates decrease at every value of k for decreasing values

of t.

Similar crossing can be seen in the normal bundle flow error shown in Figure 5.35(b).

However, in this case, the error rates for t = 2 are the worst of the five reported values when

k is small. In fact, at the optimal value of k (i.e. around k = 20), the error rates exhibited

for t = 2 are the highest. Only after we increase k to be greater than 120 do we see t = 2

produce the best error rates. In contrast with the k-nearest neighbor flow, we see setting

t = 20 produces the best error rates. Thus, the normal bundle flow seems to require more

iterations than the k-nearest neighbor flow to produce optimal results. Although, note that

when k is around 20, the error rates reported for t = 10, 15, and 20 are all approximately

the same. Thus, we have seem some convergence around this value of k. For larger values

of k, the three values of t do not produce convergent error rates.

(a) k-NN Flow (b) Normal Bundle Flow

Figure 5.36: Optimal Smoothing for the Stanford Bunny

156

5.2.2 Stanford Dragon

For our next experiment, we analyze the performance of the k-nearest neighbors flow and the

normal bundle flow when applied to a noisy version of the Stanford Dragon point cloud. The

Stanford Dragon is a point cloud created by the Stanford University Computer Graphics

Laboratory using the Cyberware 3030 MS scanner. The point cloud first appeared in [19].

To obtain the point cloud, approximately seventy scans were taken of the dragon, producing

437, 645 points.

Figure 5.37: Noisy Stanford Dragon

Similar to the Stanford Bunny in Section 5.2.1, the points lie directly on the sampled

manifold. Therefore, to analyze the smoothing quality of our algorithms, we will artificially

add noise to the point cloud. This allows us to precisely measure the geometric error of the

resulting point cloud. As in the previous section, we will use notation X to represent the

original point cloud and Xσ to represent the noisy point cloud. Additionally, we once again

157

use the geometric error function L, given by Equation 5.2.

The Stanford Dragon is contained in a rectangular cuboid R of dimensions

R = (−0.109, 0.097)× (0.0527, 0.198)× (−0.050, 0.042)

since the size of R is different for the Stanford Bunny than for the Stanford Dragon, we

will use a different standard deviation σ for the Gaussian noise. In particular, we set

σ = 0.0005 since the dragon is considerably thinner than the bunny. We then perform a

similar parameter sweep to the sweep we did in Section 5.2.1. Since this point cloud has

an order of magnitude more points than the Stanford Bunny, we perform the sweep against

larger values of k. Due to the increasing computational demands as we increase k, we

sampled the parameter space more densely for lower values of k. That is, we set k = 10i

for i = 1, ..., 10 and then set k = 20j for j > 5 We use the same iteration values as in the

previous experiment.

0 50 100 150 200 250 300 350 400
Number of Neighbors

0.00

0.05

0.10

0.15

0.20

0.25

Ge
om

et
ric

 E
rro

r

2 Iterations
5 Iterations
10 Iterations
15 Iterations
20 Iterations
Noise Baseline

(a) k-NN Flow

0 50 100 150 200 250 300 350 400
Number of Neighbors

0.00

0.05

0.10

0.15

0.20

0.25

Ge
om

et
ric

 E
rro

r

2 Iterations
5 Iterations
10 Iterations
15 Iterations
20 Iterations
Noise Baseline

(b) Normal Bundle Flow

Figure 5.38: Geometric Error for Stanford Dragon

The results of our parameter sweep are shown in Figure 5.39. We once again show the

results for the k-nearest neighbor flow (Figure 5.39(a)) and the normal bundle flow (Figure

5.39(b)). We also show the value of L(X ,Xσ), represented by the dotted noise baseline.

158

From these figures, it is clear that once again the normal bunlde flow outperforms the k-

nearest neighbor flow. Not only does the normal bundle flow reach a lower overall geometric

error, the growth of its error once the optimal value of k has been passed is much slower

than the growth in thek-nearest neighbor flow. In fact, up to k = 400 none of the resulting

point clouds exhibit more error than in the original noisy point cloud Xσ. This is in stark

contrast to the k-nearest neighbor flow where the noise baseline is passed rather quickly.

Furthermore, we once again see that the t = 20 iteration setting performs worst in the

k-nearest neighbor flow and best in the normal bundle flow. This again suggests that the

k-nearest neighbor flow requires fewer iterations to achieve an optimal value. However,

unlike the pervious experiment with the Stanford Bunny, the k-nearest neighbor flow does

not require fewer nearest neighbors (i.e. a lower value of k) than the normal bundle flow.

In this case, both algorithms reach peak performance with fewer than 50 nearest neighbors

and for some values of t the normal bundle flow actually requires fewer neighors to reach

peak performance.

(a) k-NN Flow (b) Normal Bundle Flow

Figure 5.39: Optimal Smoothing for the Stanford Dragon

159

5.2.3 LIDAR Data

Having seen the effectiveness of the various smoothing algorithms when applied to point

clouds obtained via 3d scans, we turn our attention point clouds obtain from LIDAR data.

LIDAR, which stands for Light Detction and Ranging, is a remote sensing technique used

to measure the distance from a LIDAR sensor to the Earth. For an overview of LIDAR

data, we will quickly summarize the relevant parts of Campbell and Wynne’s Introduction

to Remote Sensing (see [11]). LIDAR uses a transmitter to emit pulsed laser light and a

light detector. To measure the distance to the ground, the difference in time between when

a pulse was emitted and when the reflected pulse was detected by the detector is computed.

The distance the pulse travelled can then be deduced using the speed of light.

Often these measurements are taken from an airplane or a helicopter. While flying over

an area of interest, the LIDAR sensor measures and records the distance from the sensor to

the ground. Simultaneously, a GPS unit in the aircraft records the position of the sensor

and an inertial measurement unit (IMU) records precise information about the orientation

of the aircraft, including its roll, pitch, and yaw. Since LIDAR scanners can transmit up

to 300,000 pulses per second, very detailed measurements of the ground elevation can be

recorded. Most LIDAR collection missions involve flying parallel strips over an area of

interest and patching together the recordings at the end of the mission.

Unlike most 3d scanning techniques, LIDAR can see through some objects while pulses

make their way to the ground. This often occurs when a pulse hits vegetation above the

ground. In this case, only some of the light is reflected up to the aircraft, with the rest of

the light continuing toward the ground. This results in multiple returns being registered

for a single pulse. Constraints on the detector response time lead to something called the

dead time during which no additional returns can be registered. When there is vegetation

directly above the ground, this can lead to the ground elevation being detected as artificially

high. This occurs because first the vegetation return registers and then the ground return

arrives at the detector during the dead time. A consequence of this complication results

160

in the surface of the Earth appearing artificially rough when there is considerable vegeta-

tion ground cover. Other issues such as atmospheric effects and surfaces with complicated

reflectance properties can contribute to the noise inherent in the sampling process.

Figure 5.40: Granite Island Point Cloud

Point clouds obtained from LIDAR data are often considerably richer than those ob-

tained from 3d scans. In addition to the bare Earth, there are often man-made objects,

vegetation, and water present in the LIDAR scans. Therefore, such point clouds can pro-

vide quite a challenge. Furthering this challenge, point clouds obtained from LIDAR can be

much larger than those obtained from 3d scans, often containing many millions of points.

For our evaluation, we will analyze how our smoothing algorithms perform on real-world

LIDAR data.

For our analysis of the gradient flow algorithms when applied to LiDAR data, we will

focus on the computational expense of running these flows. We choose this focus because,

unlike the previous experiments, we have no ground truth. Of course, the purpose of LiDAR

is to measure the terrain. Thus, the closest we can get to the ground truth is the LiDAR

161

Figure 5.41: Stadium Point Cloud

itself. All we can do is smooth the point cloud, and visualize the results. We cannot

measure the geometric or topological error. Therefore, we will use this section to analyze

the performance of the k-nearest neighbor gradient flow and the normal bundle gradient

flow.

In particular, we will run the two discretized gradient flows on three different LiDAR

samples. We refer to these samples by the names Granite, Stadium, Potomac. The Granite

and Potomac point clouds were obtained from the OpenTopography repository [2]. The

Granite point cloud contains 391,236 points and the Potomac point cloud contains 908,216

points. The Stadium point cloud was obtained from the LibLAS samples webpage [1]. This

point cloud contains 693,895 points. These three point clouds can be seen in Figures 5.40

(Granite), 5.41 (Stadium), and 5.42 (Potomac). We show the point clouds as smoothed by

the normal bundle flow in these figures. However, due to the size of the point clouds, it is

hard to visually notice the difference between the smoothed point clouds and the original,

unsmoothed point clouds when zoomed out far enough to capture the entire point cloud.

162

Figure 5.42: Potomac Point Cloud

Therefore, we opt to save space and only show one example of each point cloud.

Given the considerable size of each point cloud, it is not surprising that running the

discretized gradient flows is computationally quite expensive. For these experiments, we

ran the two gradient flows using eight threads on an Intel Core i7-7700K clocked at 4.20

GHz. Running the gradient flow in parallel was a simple modification to the gradient flow

routine as each point gets updated independent of every other point. Additionally, each

update only needs access to the common k-d tree, however since the update process only

reads from this tree, there are no memory issues. Thus, we can partition the updates across

the eight threads.

The runtime, in seconds, for a single iteration of the k-nearest neighbor gradient flow is

shown in Figure 5.43. We show the runtime across several values of k to get an idea of the

scalability of the gradient flow as we increase k. Clearly, this algorithm scales superlinearly.

Unsurprisingly, we see that the computational cost increases as we increase the number of

points in the point cloud.

163

0 500 1000 1500 2000 2500 3000
Number of Neighbors (k)

0

100

200

300

400

500

600

R
u
n
ti

m
e
 (

s)

Granite
Potomac
Stadium

Figure 5.43: Runtime for k-nearest neighbor gradient flow

0 500 1000 1500 2000 2500 3000
Number of Neighbors (k)

0

100

200

300

400

500

600

R
u
n
ti

m
e
 (

s)

Stadium
Potomac
Granite

Figure 5.44: Runtime for normal bundle gradient flow

For comparison, we show the runtime, again in seconds, for a single iteration of the

normal bundle flow in Figure 5.44. We see very similar scaling, although the total runtime

164

has increased for every value of k. This is expected since the normal bundle flow has

the additional computational cost associated with computing the covariance matrix C(u)

defined in Equation 4.3 as well as the eigenvalue decomposition of C(u). However, these

operations are quite fast and therefore do not add much to the overall runtime.

It is important to keep in mind that these figures only show the runtime for a single

iteration of the gradient flows. As seen in the previous sections, it if often desirable to run

the gradient flows for several iterations. Therefore, in practice these point clouds may take

considerably longer to run than the figures indicate. However, due to the horizontal scaling

the parallelization affords, if a point cloud is run across more threads, the runtimes will

correspondingly decrease. As we saw here, a single iteration of a point cloud with close

to a million points (Stadium) takes over nine minutes to complete on eight threads. By

increasing the number of threads by a factor of ten (i.e. eighty threads), we could potentially

get the runtime down to under a minute for a single iteration.

Another potential approach for scaling the gradient flows to very large point clouds

would involve breaking up the LiDAR point cloud into many chunks and running the discrete

gradient flows on each chunk. Then the number of points in each point cloud would be much

smaller. Additionally, the flows could be run on separate machines and then reunited at the

end. The difficulty with this approach, of course, is the boundary behavior of the gradient

flows. In particular, the boundaries may not align between adjacent chunks after the flow.

To mitigate this issue, each chunk would have an overlapping boundary with all its adjacent

chunks. Then, when stiching together the smoothed chunks, one could remove half of the

overlapping boundary from each chunk and align the resulting new boundaries. Another,

potentially more effective approach, would be averaging the position of the pairs of points

from each chunk. This form of horizontal scaling would be much more cost effective than

horizontal scaling using threading. However, this form of horizontal scaling falls outside the

scope of this dissertation.

165

Chapter 6: Conclusion

In this dissertation, we investigated the gradient flow induced by the distance-to-measure

function. In particular, we focused on the distance-to-measure function induced by the

empirical distribution of a point cloud X . This version of the distance-to-measure function is

a k-nearest neighbor energy function. In Chapter 3, we built a theoretical foundation for the

study of the gradient flow induced by this k-nearest neighbors function. The foundation was

built on the notion of the higher order Voronoi diagrams. For each k-order Voronoi region

V in the k-order Voronoi diagram V k(X), we determined a condition which characterizes

when the region contains a sink of the gradient flow. This occurs precisely when the region

V satisfies the barycentric sink condition, BarG(V) ∈ V . If the region does not satisfy this

condition, then points in V will eventually flow outside the region.

Due to the gradient not being well-defined along the boundary ∂Vi ∩ ∂Vj of two k-order

Voronoi regions Vi and Vj , we needed to find an appropriate means of defining the gradient.

For this, we turned to the notion of a piecewise smooth gradient flow and showed that

if we define the gradient along the boundary using Filippov’s convex method, we obtain

a piecewise smooth gradient flow with a well defined gradient along the boundary. For

Filippov systems, the behavior along the boundaries is important. We are not too concerned

about boundaries exhibiting repulsive sliding since solutions cannot reach these boundaries

in forward time. For boundaries exhibiting aligned gradients we can simply follow the flow

to define the gradient. On the other hand, of particular concern are boundaries ∂Vi ∩ ∂Vj

which exhibit attractive sliding, that is the gradient from Vi points into Vj and the gradient

from Vj points into Vi. These boundaries are important because the boundary can be

reached in forward time under the gradient flow. However, we showed in Section 3.3.1 that

the k-nearest neighbors gradient flow does not exhibit any attractive sliding. This is a

166

critical result for numerical implementations of the k-nearest neighbors gradient flow since

if attractive sliding were present, we would need access to the k-order Voronoi diagram for

an accurate implementation. Since k-order Voronoi diagrams are notoriously expensive to

compute in high dimensions, requiring this diagram for an accurate implemetation would

make such implementations prohibitively expensive.

Once the gradient is defined on the boundary, we can establish some additional charac-

teristics of the k-nearest neighbors gradient flow. In particular, the flow does not contain

any periodic orbits. Additionally, the continuity of the gradient flow yields continuity in t

of the persistence diagrams arising from the point clouds Xt, where Xt is the evolved point

clouds after the gradient flow has been run for time t. This establishes that the vineyards,

i.e. the stacked persistence diagrams, are also continuous. Thus, as the gradient flow is

run, the topology of the point cloud, as measured through the persistence diagrams, evolves

continuously.

In Chapter 4, we developed several extensions to the k-nearest neighbors gradient flow

to address several shortcomings that were identified during the analysis of the original

gradient flow. To begin, we extended a method from surface reconstruction to approximate

the normal and tangent bundles of the manifold from which the point cloud X was sampled.

This techniques relies on computing a covariance matrix of the neighborhood NNk
X (x) (i.e.

the k-nearest neighbors of X). Once the covariance matrix is computed, we then take the

eigendecomposition of the matrix and use the span of the smallest eigenvectors, as measured

by their eigenvalues, to approximate the normal space around x. Additionally, we can let

the span of the largest eigenvectors, again as measured by their corresponding eigenvalues,

approximate the tangent space. Thus, for every point we have an approximated coordinate

frame, decomposed into normal and tangent spaces.

Building on the normal and tangent bundle approximations, we can project the k-nearest

neighbor gradient at a point x into the approximated normal space around x, yielding a

new vector gN (x). We then induce a gradient flow using gN (x) instead of ∇EkX (x). This

allows the point x in a k-order Voronoi region V to flow toward BarG(V), but only through

167

the normal space. This technique drastically reduces clustering, a common issue with the

k-nearest neighbors gradient flow. While this modification only uses the normal space, we

can incorporate the tangent space as well if we add a diffusive term to the gradient flow. In

particular, if we compute the k-nearest neighbors of x from the point cloud Xt instead of

X0, and compute the gradient EkXt(x) using these neighbors, then we can project this vector

into the tangent space around x, yielding the vector gT (x). We then induce a gradient

flow using the vector −gN (x) + λgT (x), where we choose λ ∈ [0, 1] to control the level of

diffusion. Since the sign in front of the projected gradient gT (x) is opposite that of gN (x),

we are forcing the points to push against one another when they become close in Xt.

Not every point cloud requires the same amount of smoothing everywhere. Often, in real

data, the level of noise varies at different points of the point cloud. Therefore, we would like

to add adaptivity to our gradient flow so that the degree of smoothing is determined by local

geometric conditions. Methods of adding adaptivity to surface smoothing techniques exist,

however they are often too computationally expensive to extend to higher dimensions. To

allow adaptive smoothing in higher dimensions, we developed a new technique for adapting

the gradient flow to local conditions. In Section 4.3, we approximate the curvature of the

point cloud around a point x using the approximated normal and tangent spaces around

x. In particular, we look at the distance of the nearest neighbors of x to the point x in

both the normal space and the tangent space. This yields a set of points in R2 representing

how far away each neighbor is in both spaces. We then fit a line of best fit to these points.

Using these lines, for a point x ∈ X whose line of best fit exhibits a large slope, we know the

nearest neighbors move away from x in the normal space faster than in the tangent space.

Since curvature can be seen as deviation from the tangent space, we can view the high slope

as representing high curvature. On the other hand, points with small slope correspond to

points in X where X locally exhibits low curvature. Once we have an approximated measure

of the local curvature of the point cloud, we can adjust the parameters of the gradient flow

to reflect the curvature. In this work, we looked at lowering the value of k when the slope is

large, in an attempt to preserve the high curvature features. As we saw through example,

168

this technique can help alleviate corners being rounded off by the gradient flow, since corners

exhibit infinitely high curvature and are thus smoothed with a much lower value of k.

Changing focus slightly, we then turned to the Mahalanobis distance, dM , a function

often used in statistics. Since this function is used to provide a notion of the distance from

a point to a probability distribution (a goal in common with the distance-to-measure func-

tion), it seems natural to compare th gradient flow induced by dM with the gradient flow

induced by the distance-to-measure function. However, before we could make the compar-

ison, we had to introduce the notion of the local Mahalanobis distance, which computes

the Mahalanobis distance on the nearest neighbors of a point. We then found that the un-

weighted normal bundle flow shares a strong connection with the local Mahalanobis gradient

flow. In particular, both flows take the vector w = x−BarG(V), where x ∈ V , and project

it into the eigenspace of the covariance matrix. However, the weights for the projection

differ. In particular, the local Mahalanobis gradient flow projects w along the eigenvector

vi with a weight of 1/λi where λi is the eigenvalue corresponding to vi. This causes greater

flow along eigenvectors with smaller eigenvalue. On the other hand, if we assume the point

cloud was sampled from a codimension m manifold, the unweighted normal bundle flow

projects the vector w along the eigenvector vi with weight 1 if i ≤ m and weight 0 otherwise

(where the eigenvectors are sorted in an increasing order, according to their eigenvalue).

This led us to generalize the two flows by creating a new flow with arbitrary weights wi for

each eigenvector vi. We then introduced the normalized Mahalanobis flow, whose weights

were given by wi = (λiτ)−1 where τ is the sum of all the eigenvalues {λi}.

The final topic we address in Chapter 4 concerns computing nearest neighbors. This

calculation is the most expensive part of the algorithm and so great care must be taken

when determining how to compute the nearest neighbors. Of course, näıvely computing

the nearest neighbors by computing the distance matrix exhibits quadratic complexity. As

discussed in Section 4.5, we can employ a k−d tree to improve the computational complexity

of finding the nearest neighbors. However, this is only useful for smaller dimensions (up to

about 20) and does not scale well to very high dimensions. In order to continue using the

169

smoothing algorithms discussed in this proposal in the higher dimensional setting, we would

need to turn to approximate nearest neighbors instead of exact nearest neighbors. Although

this would introduce another source of error, the computational savings allow the gradient

flow algorithms to become tractable even in high dimensional spaces. Investigating how the

use of approximate nearest neighbors over exact nearest neighbors impacts the performance

of the algorithms is, for now, left as an open question. Further research could be aimed at

determining how much error is incurred in the switch and how much computational gain

comes from the switch.

Finally, in Chapter 5, we looked at how the pointwise geometric error and the topological

error of the point clouds changes as the clouds evolve under the smoothing algorithms. We

found topologically and geometrically optimal parameters for point clouds sampled from

several different manfiolds. Additionally, We saw how the topology of simplicial complexes

built from the evolving point clouds, a common mechanism in topological data analysis,

changed as we evolved the clouds. To determine this change, we used persistence diagrams.

Furthermore, for the simple geometries studied in Section 5.1, we knew the topology of the

sampled manifold and therefore we could easily measure the topological accuracy of the

smoothed point clouds.

In addition to the simple geometries, we studied the effectiveness of the smoothing

algorithms when applied to point clouds obtained through 3d scans of the Stanford Bunny

and the Stanford Dragon. For these experiments, we added noise to the original point

clouds. Then, we computed the geometric error of the smoothing algorithms by comparing

the final smoothed point clouds with original, noise-free point clouds. As we saw, both the

k-nearest neighbors gradient flow and the normal bundle flow reduced the geometric error

of the noisy point clouds. Additionally, we saw that the k-nearest neighbors clustering issue

was quite pronounced when smoothing the Stanford Dragon. However, the normal bundle

flow prohibited this clustering and therefore produced a more uniformly dense point cloud.

Thus, we saw that the normal bundle flow performed as designed.

Although this work established a theoretical foundation for the study of the gradient

170

flow induced by the distance-to-measure function dµ,m0 , when µ is chosen to be the empirical

distribution, and extended the gradient flow to overcome some critical issues, there is still

plenty of work to be done. In general, it would be useful to have automated heuristics

which are able to determine effective parameters for the gradient flow. As it stands, one

has to experiment with the parameters to find suitable settings. Additionally, several of the

modifications to the gradient flow could use further investigation.

Our current formulation of the adaptivity coefficients simply uses a single line of best

fit, thus producing a single number indicative of the local curvature. A potentially more

appropriate approach would consist of approximinating the curvature along every tangent

eigenvector we obtain from the covariance matrix. Then the resulting slopes would act as

the principal curvatures, whose product could be used as the final adpativty coefficient.

This may produce better curvature approximations. Another extension of the adaptivity

computation would involve using weights for each distance pair (dT (x, y), dN (x, y)). There

weights would be a function of the distance dT (x, y) so that points closer to x in the

tangent space would have greater influence over the parameters of the line of best fit. This

modification would help to avoid distant points exerting too great an influence over the

local curvature approximation.

The connection between the unweighted normal bundle flow and the local Mahalanobis

flow was made explicit in Section 4.4. Building on the connection, we generalized this type

of flow by adding a weight term to each eigenvector projection. However, we did not do

any deep investigation of other weights which may produce an effective flow. Experimenting

with various weighting schemes may produce some interesting flows which could outperform

the normal bundle flow. This is a topic which could receive greater attention in future work.

Finally, the entirety of this work focused on the distance-to-measure function induced

by the empirical distribution. An analysis of the gradient flow induced by the distance-to-

measure function under arbitrary probability measures is still left open. Clearly, the k-order

Voronoi diagram framework we built in Chapter 3 would not suffice for the study of these

171

more general flows. Many interesting probability distributions exist for which the distance-

to-measure gradient flow may prove effective. For example, if instead of using point masses

at each point x ∈ X , we centered Gaussian distributions at each point, then the resulting

probability distribution would be a kernel density estimation of the underlying manifold.

How would the gradient flow induced by the distance-to-measure function for a kernel

density estimated measure differ from the gradient flow we studied in this dissertation?

In this case, it may even be possible to approximate the normal bundle of the underlying

manifold not from the covariance matrix we computed in Section 4.1, but instead from the

geometry of the kernel density estimation itself. These questions, while interesting, are left

open.

172

Bibliography

[1] Liblas sample lidar data. http://liblas.org/samples. Accessed: 2017-01-05.

[2] Opentopography. http://www.opentopo.sdsc.edu. Accessed: 2017-01-05.

[3] The stanford bunny. http://www.cc.gatech.edu/~turk/bunny/bunny.html. Ac-

cessed: 2017-02-11.

[4] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and

Claudio T. Silva. Point set surfaces. Proceedings of the IEEE Visualization, 2001.

[5] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and

Claudio T. Silva. Computing and rendering point set surfaces. IEEE Transactions on

Visualization and Computer Graphics, 9(1), 2003.

[6] Franz Aurenhammer. A new duality result concerning Voronoi diagrams. Discrete and

Computational Geometry, 5:243–254, 1990.

[7] Alexander I. Bobenko and Peter Schröder. Discrete Willmore flow. Eurographics Sym-

posium on Geometry Processing, 2005.

[8] V.I. Bogachev and A.V. Kolesnikov. The Monge-Kantorovich problem: Achievements,

connections, and perspectives. Russian Mathematics Surveys, 67:785–890, 2012.

[9] Jean-Daniel Boissonnat and Fréderic Chazal. Smooth surface reconstruction via natural

neighbour interpolation of distance functions. 16th ACM Symposium on Computational

Geometry, pages 185–203, 2002.

173

[10] Claire Caillerie, Frédéric Chazal, Jérôme Dedecker, and Bertrand Michel. Deconvolu-

tion for the Wasserstein mertric and geometric inference. Electronic Journal of Statis-

tics, 5, 2011.

[11] James B. Campbell and Randolph H. Wynne. Introduction to Remote Sensing, Fifth

Edition., volume 5th ed. The Guilford Press, 2011.

[12] Piermarco Cannarsa. Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal

Control. Birkhäuser, 2004.

[13] JC Carr, RK Beatson, JB Cherrie, TJ Mitchell, WR Fright, BC McCallum, and

TR Evans. Reconstruction and representation of 3d objects with radial basis func-

tions. Proceedings of the ACM SIGGRAPH 2001, pages 67–76, 2001.

[14] Frédric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for

measures based on distance functions. INRIA Rapport de recherche, 2010.

[15] Frédric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for

probability measures. Foundations of Computational Mathematics, 11:733–751, 2011.

[16] Bernard Chazelle and Herbert Edelsbrunner. An improved algorithm for constructing

kth order Voronoi diagrams. IEEE Transactions on Computers, 36(11), 1987.

[17] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams.

Proceedings of the 21st Annual Symposium on Computational Geometry, pages 263–

271, 2005.

[18] David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and vine-

yards by updating persistence in linear time. Twenty-Second Annual Symposium on

Computational Geometry (SCG ’06), 2006.

[19] Brian Curless and Marc Levoy. A volumetric method for building complex models from

range images. SIGGRAPH 1996 Proceedings, 1996.

174

[20] B. Delaunay. Sur la sphére vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskikh

i Estestvennykh Nauk, 7:793–800, 1934.

[21] Tamal Dey, Joachim Giesen, and Samrat Goswami. Delaunay triangulations approx-

imate anchor hulls. Compuational Geometry: Theory and Applications, 36:131–143,

2006.

[22] Tamal K. Dey and Jian Sun. An adaptive mls surface for reconstruction with guaran-

tees. Eurographics Symposium on Geometry Processing, 2005.

[23] Tamal K. Dey and Wulue Zhao. Approximating the medial axis from the voronoi

diagram with a convergence guarantee. 2002.

[24] M. di Bernardo, C.J. Budd, A.R. Champneys, and P. Kowalczyk. Piecewise-smooth

Dynamical Systems: Theory and Applications. Springer, 2008.

[25] R.L. Dobrushin. Prescribing a system of random variables by conditional distributions.

Theory of Probability and its Applications, 15(3):458–486, 1970.

[26] Herbert Edelsbrunner and John L. Harer. Computational Topology: An Introduction.

AMS, 2010.

[27] Steven Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, pages

153–174, 1987.

[28] C.M. Gevaert, C. Persello, R. Sliuzas, and G. Vosselman. Informal settlement classi-

fication using point-cloud and image-based features from uav data. ISPRS Journal of

Photogrammetry and Remote Sensing, 125:225–236, 2017.

[29] Dejan Govc. On the definition of the homological critical value. Journal of Homotopy

and Related Structures, pages 1–9, 2013.

[30] Joachim Gudmundsson, Mikael Hammar, and Marc van Kreveld. Higher order Delau-

nay triangulations. Computational Geometry, 23(1):85–98, 2002.

175

[31] Guillemin and Pollack. Differential Topology. 1974.

[32] Shin-Yi Hsu. The mahalanobis classifier with the generalized inverse approach for

automated analysis of imagery texture data. Computer Graphics and Image Processing,

9:117–134, 1979.

[33] Lei Hu, Xiaojun Xu, Lifeng Wang, Na Guo, and Feng Xie. 3d registration method

based on scattered point cloud from b-model ultrasound image. volume 10245, pages

102450C–102450C–9, 2017.

[34] L.V. Kantorovich and G.S.H. Rubinshtein. On a space of totally additive functions.

Vestnik St. Petersburg University, 13(7):52–59, 1958.

[35] Der-Tsai Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Transac-

tions on Computers, 31(6):478–487, 1982.

[36] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information

Theory, 28(2):129–137, 1982.

[37] P.C. Mahalanobis. On the generalized distance in statistics. Proceedings of the National

Institute of Science, 1936.

[38] Songrit Maneewongvatana and David M. Mount. It’s okay to be skinny, if your friends

are fat. 4th Annual CGC Workshop on Computational Geometry, 4, 1999.

[39] Wusheng Chou Mingjie Dong and Bin Fang. Underwater matching correction naviga-

tion based on geometric features using sonar point cloud data. Scientific Programming,

2017, 2017.

[40] John W. Morgan and Gang Tian. Ricci Flow and the Poincaré Conjecture. 2007.

[41] Dmitriy Morozov. Dionysus. http://www.mrzv.org/software/dionysus/. Accessed:

2015-06-07.

176

[42] Elizabeth Munch. Applications of Persistence Homology to Time Varying Systems.

Deparment of Mathematics, Duke University, 2013.

[43] James Munkres. Topology: Second Edition. Pearson, 2000.

[44] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel.

Multi-level partition of unity implicits. ACM Transactions of Graphics (TOG), 22(3),

2003.

[45] Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessellations: Concepts

and Applications of Voronoi Diagrams. John Wiley & Sons, Inc., New York, NY, USA,

1992.

[46] Mark Pauly, Leif Kobbelt, and Markus Gross. Multiresolution modeling of point-

sampled geometry. CS Technical Report #378, 2002.

[47] B Y R. Penrose and Communicated by J. A. Todd. A generalized inverse for matrices.

1954.

[48] Joseph Rotman. An Introduction to Homological Algebra. Springer Universitext, 2008.

[49] M. Hahn M. Mokhtarzade H. Arefi S. Malihi, M.J. Valadan Zoej. 3d building recon-

struction using dense photogrammetric point cloud. volume XLI-B3 of XXIII ISPRS

Congress, 2016.

[50] Hanan Samet. Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann Publishers, 2006.

[51] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.

[52] Philippe Steer, Dimitri Lague, Aurélie Gourdon, Thomas Croissant, and Alain Crave.

3d granulometry: grain-scale shape and size distribution from point cloud dataset of

river environments. EGU General Assembly 2016, 18, 2016.

177

[53] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In Proceed-

ings of the 21st Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ’94, pages 311–318, New York, NY, USA, 1994. ACM.

[54] L.N. Vasershtein. Markov processes over denumerable products of spaces describing

large system of automata. Problems Inform. Transmission, 5(3):47–52, 1969.

[55] D. F. Watson. Computing the n-dimensional Delaunay tessellation with application to

Voronoi polytopes. The Computer Journal, 24(2):167–172, 1981.

[56] Brian White. Evolution of curves and surfaces by mean curvature. Proceedings of the

International Congress of Mathematics, 1:525–538, 2002.

178

Curriculum Vitae

Include your curriculum vitae here detailing your background, education, and professional
experience.

179

