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ABSTRACT

A general planar model of multidimensional discrete spaces (a
diagram) is described which can be used for geometrically representing binary,
multiple-valued, discrete and variable-valued logic functions. It is es-
sentially a multiple-valued extension of Marquand's binary diagram , with an
additienal feature of varying thickness of lines representing axes of variables.

The diagram has been used extensively over the years by the author
and his eollaborators, and has proved to be useful for such tasks as: logic
design and development of efficient algorithms for eptimization of switching
circuits of many variables, detection of symmetry in bipary or multiple-valued
logic functions, fast conversion of normal forms of switching functions to
exclusive-or polynomial forms, design of algorithms for inductive inference and
pattern recognition, optimization of decision tables and their conversion to
optimal decision trees.

A method for recognizing in the diagram certain constructs (cartesian
complexes), which are important for various applications, is presented and
illustrated by two examples: one, involving a determination of a classification
rule, and another, involving a synthesis of a variable-valued logic expressicn.

Key words and phrases: Logic diagram, Marquand diagram, Karnaugh map, Veitch

diagram, discrete spaces, multiple-valued logic, variable-valued logic, logic
design.

CR categories: 3.61, 3.63, 5.20, 5.21, 6.l



Motto: A picture is worth a thousand
words. Especially when it is
a right one.
1. INTRODUCTION

There exists a large number of problems in which there is a need to

deal with functions of the general form:

f: Dl X D2 X aws K Dn =D (1)
where
Dl, D2, g Dn are finite non-empty sets
and
D is a finite or infinite non-empty set.
For example, a binary switching function is a special case of f when
D, = D, = +v. = B = {0,1} and D = {0,1,*}, where * denotes a '"DON'T CARE'

value. A k-valued switching function is a special case of f when Dl = D2 =
crs = Dn ={0,1, 2.y k-1} and D = {0,1, ..., k=1,%}, Often used in operations
research are the so-called psuedo-Boolean functions, which are a special case

of £, when

Dl T, e Dn = {0,1} and D = [0,1] (the closed interval).

When sets D; and D are finite sets of integers, {0,1,2,...}, then f represents
a discrete function (e.g., Deschamps and Thayse [2]).

In pattern recognition and decision theory many problems can be
phrased as a search for an efficient expression of a function £, where Di are
domains of values of certain features or descriptors which are used to char-
acterize objects or situations, and D is either a finite set of decision
classes to which the objects belong or a set of 'degrees of membership’ of an
object in a class (usually the closed interval [0,1]). Considered mainly
from this point of view, functions f,in which Di and D are arbitrary finite
sets with or without any order, were studied by Michalski and his collaborators

(e.g., [12]-[14]) under the name of wariable-valued logic functions.



When analyzing a function £ {which often is only partially defined),

or designiné algorithms involving such a function, it can be very useful to

represent it in a form of a geometrical patterm.

The advantage of such representatiom, &s compared to a symbolic re-
presentation, is that it is easier for humans to perceive in this form the

global properties of the functiom, i.e., to Moee" the function as a whole. r
Also, it is easier to detect various regularities in the function,if it is OEE
by c;mparing geometrical configurations rather than strings of symbols or numbers.

The above explains the popularity nf Venn diagrams, Karnaugh maps, histograms or

other graphical aids for representing functions.

This paper describes a general planar geometrical model (a diagram)

for representing functioms type (1) and gives a method for easily recognizing

constructs in the diagram which are important for applications. The
presented diagram has been extensively used over the years by the author and

his collaborators, and has proved to be very useful for various tasks such as:

e logic design and a development of efficient algorithms for optimization
of switching circuits of many variables (Michalski [8], Michalski and
Kulpa [17])

e detection of symmetry in binary and multiple-valued logic functions
(Michalski [9], Jensen [3])}

- fast conversionm of normal forms of switching functions to exclusive-or
polynomial forms (Michalski [10])

@ design of algorithms for inductive inference and patterm recognition
(Michalski [12]-[15], Larson and Michalski [6])

® optimization of decision tables and their conversion to optimal

decision trees (Michalski [16]).

Let us define E{dl, d R dn}, written also as E, as the cartesian

2!

product of sets D i=1,2, ... 02

ii
E(dl, d caay dn} =E=D xD, x ... X Dn {2)

2 1 2

where di = the number of elements in Di’ and call it the universe of events

{or event space). Let us assume, for simplicity, that the domains Di are

sets of positive integers:

p,=1f0, 1, ..., 4}, 1 =1, 2, ..., n (3



where 4 = di—l. This assumption causes no loss in genera%ity because any
finite set can be isomorphically mapped into Di given by (3} Let us also
assume that Dl’ Dz, Y Dn are value sets (domains) of certain variables
Kps Xgy seen X respectively (i.e., x, can take values only from Dl, Xy~
only from DE’ and so on).

A discrete-Euclidean representation of the space E would be in the
form of an n-dimensional 'grid', spanned from the dl' dZ' Ip— dn points on
axes associated with variables X1s Xgs eevs Koo respectively (Fig. 1). The
above geometrical model of E is, howewver, difficult to visualize whem n > 3,
and therefore it is not practical for a larger number of variables.

In the past, for the case when x, are binary variables, many dif-
ferent planar representations of the space E have been proposed. Among
well known early constructions are Euler's circles (1768) [1] and Venn
diagrams (1880) [20]. The earliest known constructions for representing

logical operations were developed in XIII century by Raymond Lull [1].

A diagram of rectangular shape, which is divided into cells corres-
ponding to single combinations of bimary logic values was first pro-
posed by Marquand in 1881 [7]. The regularity and simplicity of such a
diagram made it useful for a larger numher of variables than the Venn diagram.
It has not become popular, however, hecause there was no pressing need at that
time for representing complex logical functions. Such a need.arose many years
later when Shannon discovered the appiicability of Boolean algebra for des-
cribing switching systems. And thena Marquand-type diagram was independently
rediscovered by Veitch in 1952 [19] {(a diagram of this type was als; developed
by Svoboda [18]). Soon afterward in 1953, Karnaugh [4] reorganized the Veitch
diagram, assigning variable values to rows and columns according to the
Grey's code rather than to the regular binary code, used in Marquand and

Veitch diagrams. In such an arrangement, any two neighboring cells in the diagram
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correspond to adjacentuonjunotiéus {(i.e., conjunctions which differ only in one
literal (variable or its negation) and, therefore, can be reduced to one con—
junction). In this form, the diagram {called the Karnaugh's map) became very
popular as an aid in logical design of electronic circuitry. It is quite con-
venient for minimization of Boolean functions up to 4 variables. When there are
more than 4 variables, however, the rules of using the map change and quickly
become rather complicated.

This paper describes a diagram for representing discrete spaces spanned
over not only binary wvariables, but variables with any discrete values. The
rules for constructing and using the diagram are the same for any number of
variables and any number of wvalues which variables can take. Consequently,
the diagram provides a general geometrical model of discrete spaces.

The diagram is essentially a multiple-valued extensicn of Marquand's
binary diagram (although the author was not aware of this when he developed it).
In addition, it has a new feature which is a varying thickness of lines re-
presenting axes of variables. This feature greatly improves the clarity of
the diagram, especially when there are many variables. The diagram was orig—
inally described in a departmental report by Michalski [11] which is out of
print, The binary form of this diagram was described earlier (Michalski [8]).
The intention of this paper is to make available written information about

the diagram and describe various new results not yet published.

7. CONSTRUCTION OF THE DIAGEAM
Suppose a task is to represent the space E{dl. dys e dn), that

is a space Spanned over n variables, which tale dl, dz, iy dn values, respectively.

First, determine v which is the maximal number satisfying relation:

dl‘dz...dvf_dv_l_l'dﬁz...dn (4)



vector (x,, x

{xv+i’ Roggs treo

This is an arbitrary step, but it leads to a unique diagram for a
given E. Also, the diagram is visually more satisfying if the products on
both sides of (4) are approximately equal. (To achieve this a permutation
of the di -s may be helpful.) Next, draw an arbitrary rectangle and divide

it into dl 2 d2 s dv rows and dv+1 . dv+2 - dn columns according to the

following rules:
(i) In the first step, divide the rectangle by horizomntal
lines into dl rows and assign to the rows values g, 1,
S dl (values of wariable xlj in order from the top
‘to the bottom. In the step i, 1 < i < v, divide each
row generated in step i-1 inte di rows, and assign to
them values 0, 1, ..., di, in order from the top te the

bottom (di = g4, =1}.

i

(ii) Do the steps w#l, v+2, ..., 0, in the similar way as

above, but divide the rectangle by vertical lines into
columns.

{(iii) The lines generated in step i, i =1, 2, ..., 1, are
called axes of x.. Vary the thickness of axes of dif-
ferent variables: the thinnest should be axes of x,
and X s mext thinnest —_._tﬁi-a axes of X1 and X _1° and
s0 on, until exhausting all the axes. (Thus, if n
is even and v = nf2, the thickest will be the axes

®) and xv+1}.

Figure 2 presents a general form of the diagram for n = 4. 'A unique
1 X0 ces xv} corresponds to each row and a unique vector

xn) corresponds to each column of the diagram. The inter-

section of any row with any column is called a cell. We will assume that the
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cells do not include points belonging to any axis nor to the perimeter of the

rectangle. Each cell represents an alement of E (event) determined by con-

P corresponding
catenating vectors (xl, 32’ s xv) and (Kv+1= Eoyyz? ¥ n)’

to the row and the column, respectively, whose jntersection produces the given

g er of events in
cell. The diagram comprises d=d, dz"'dn cells (that is the numb

E).

Each event & = (xl, Xoy -ns xn) from E can be assigned a unique

number y(e) according to the formula:

1 i+l (5)
Fle) ==+ Z X, [—1 dy
i=n-1 k=n

For example, in the space E(5,6,4,3) the val#é of the function y(e)

(y-number) for the event e = {3,4,1,2) is
y(e) =2+ 1:3 + 4+4°3 + 3-6-4-3 = 269

It is easy to see that from a given value y(e} and values
dl’di’ e R dn’ one can determine the corresponding event E=Exl,x2, S xnj.
Namely, first divide y(e) by d ; the remainder is the value of x_. Next, divide
the result by dn-i; the remainder is the value of X _q0 and so on, until the
value of x is obtained. It can be easily verified that if one assigns the
corresponding y-number to each cell, th; order of the numﬂers in any diagram
will be lexicographical (i.e., from left to right and from top to bottom), NO
matter what is the number of variables or the number of values the variables
take.

Figures 3 and 4 present diagrams for two different event spaces and

the distribution of y-numbers in them.
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3. RECOGNITION OF INTERVAL AND CARTESIAN COMPLEXES IN A DIAGRAM

3.1 Definitions

We will introduce now certain concepts which play an important role
in various applications of the diagram.
Let {x, w{xiL i€ l1,2,..:;n , where &, is a subset of Di, denote the
i
set of all events from an E, whose X, component takes a value from ©,:
{xi =al={e= (x5, X5 +ous xn}[xi e a,l (6)

Such an event set is called a cartesian literal. TIf the subset oy is a se-

quence of consecutive integers, atl, ..., b, then the cartesian literal is

consists of only

called an interval literal and denoted {xi = a..b}. If &

one element, then {xi = ui} is called an elementary literal.
A set-theoretical product of cartesian (interval) literals is called

a cartesian complex (interval complex):

L= ﬁ [xi-ui},lg{l,z,...,n} (7)

iel
A cartesian complex which is a product of elementary literals is

called an elementary complex.

Set-theoretical operations on cartesian complexes: complement,
product and sum are equivalent to the complement, intersection and union of
the corresponding sets of cells in a diagram” (Fig. 5, 6, 7).

In the binary case (i.e., when dl = d2 . dn = 2) cartesian
complexes reduce to sets of events corresponding to single conjunctions of
binary literals. For example, complex {xl=D}{x3=1}{x5=D} corresponds to

conjunction X XqXse

3.2 Supporting concepts

A funetion

f: E+D (8)

% In the sequel, whenever it does not lead to confusion, a set of cells

corresponding to a cartesian complex will be called simply a cartesian
complex.
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can be represented in a diagram by marking cells representing events e £ E
by corresponding value f(e). For example, Fig. 8 presents a diagramatic
representation of the function from Fig. 1:
£r Bk, 4, 8, B + 10, %. 1% (9)

In solwing various logical or combinatorial problems cceurring,
e.g., in logic design, pattern clagsification, decision theory, eLC., there
is often a need for expressing a fumction f (8) in terms of concepts which
are special cases of cartesian or interval complexes. For example, in
logical design such cohcepts are prime implicants; in pattern classification
and artificial intelligence - property lists or logical products of condi-
tions: 'does feature x have value a' or 'does feature x have value in the
set &' (Michalski [12]). In using diagrams for manual solving or illustrating
such problems, or as an aid in designing and testing algorithms for a com-
puter solution, a question arises of how to visually recognize in a diagram
the configurations of cells which correspond to cartesian or interval com-
plexes. In order to develop such a rule, we will first introduce some geo-
metrical concepts which are very easy to Teceognize in the diagram, and then
express the rule in terms of these concepts.

Definition 1: A set of cells ineluded in one row {columm} or in two or more

adjacent rows {columns} generated in step 1 =1, 2, ..., v {i= v+l, v+2, ..., 0}

and, if 1 # 1 {1 # v + 1}, contained in a single row {column} generated in step

i-1, is called a regular row {regular colummn} (Fig. 9).

Definition 2: The intersection of any regular row and any regular column is

called a regular rectangle (Fig. 10).

Definitions 1 and 2 imply that any regular rectangle can be ex-
pressed as a single product of interval literals, that is as an interval

complex. A regular rectangle can be considered a diagram itself, representing
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a subspace of the total event space, spanned over the axes which cross the
rectangle. If we assume that the perimeter of a diagram is made of the
thickest line, then it is easy to observe that the thickest axis crossing
any regular rectangle is never thicker than the thickest, parallel to it,
borderline axis.

From now on, whenever we use the name rectangle, we will mean a
regular rectangle.

Definition 3: A regular partition of a rectangle is a set of rectangles

obtained by splitting the original rectangle along the thickest horizontal
or vertical axes crossing the rectangle (Fig. 11).

It follows from the definition 3 that expressions of rectangles in
a partition differ only in one literal (Fig. 11).
Definition 4: Let E be a set of cells. The minimal-under-inclusien regular
rectangle which includes E (i.e. the regular rectangle contained in every

other rectangle which includes E), is called the covering rectangle of E

(Fig. 12).

Suppose a configuration of cells, E, corresponds to a simple car-
tesian complex L(E), i.e., a product of literals involving variables from the
set {xl,...,xn}.

Lemma 1 If E is a proper subset of rectangle R, then L(E)} can be expressed
as

L(E) = L(R) N L (10)
where L(R) is a product of lirerals expressing rectangle R, and L a product
Proof Since an intersection of sets of cells corresponds to a product of

expressions representing sets and E € R, therefore the expression L(R) must be a

part of the product L(E); the remaining part is L. =



Xy Xz
0
0
1
Q
1
1
8]
2
1
0 1
o]
Fig. 11. R, {x1=0}{x3=1.2} R, {xlrl}{x3FL.2}
. =71 = 2]
R3 g {x1 ..{x3 1,2;
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.The product L is a cartesian complex in the subspace of event
space E, determined by rectangle R, i.e., gpanned over the axes crossing the
rectangle. Lemma 1 implies that in order to determine whether a set E cor-
responds to a cartesian complex, it is sufficient to determine whether E is a
cartesian complex in the context of a rectangle which includes E (rather than
in the context of the whole diagram}.

Let F be a subset of cells of some regular rectangle R. E can be
represented in R by marking cells which belong to E and leaving the remaining
cells of B unmarked.

Definition 5: A regular rectangle R with marked cells belonging to a set of
cells E is called an image of E and denoted I(R,E). If E is a cartesian com-

plex in the context of R, then R is called an image of a cartesian complex.

For completeness, a rectangle with no marked cells is alternatively called
an empty image.

Definition 6: Two or more images are congruent if they can be superimposed
by translation and, when superimposed, the corresponding cells in the images
are all marked or all empty (Fig. 13).

3.3 A ecartesian complex recognition thecrem and a recognition rule

Suppose El’ Ez, ... are configurations of cells corresponding to

cartesian complexes.
Lemma 2 If and only if images I(Rl,El}, I(R2’E2}’ ... are congruent then
expressions of El’Ez"' in the context of Rl’RZ"" are identical.

Proof According to lemma 1, a cartesian complex L(Ej) corresponding to Ej’

j=1, 2, .., can be expressed as

i = n
(i) L(Ej} L(Rj) Lj

where L(Ej} is the expression of the rectangle Rj, and Lj isthe expression of

Ej in the context of Rj. Since images I{Rj,Ej) are congruent, then each Ej’

j=1, 2, .., has an identical location with regard to the borderlines of the



Fig. 13, Images 11, "’In are congruent,
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corresponding rectangle and, consequently, the differences between expres-
sions L(Ej), 3 =1, 2,..., can only be due to the differences in expressions of
rectangles, i.e., L{Rj). Thus, all Lj must be identiecal.

To prove the reverse implicationm, observe, that if all Lj are
identical, then expressions L{E*L given by (i), can differ only in expres-
gions of rectangles, i.e., L(Rj}, and, conseguently, images I(Rerj] have
to be congruent. 7]

Let Lj’ { =ily 2juve BE cartesian complexes which differ only in
one literal:

Lj = T{xk=aj}, 3 =20 By
where T is the common part. Using the distributive property of the set-
theoretical union over the intersection and the definition of literal, we

can write:

.

UL, = U T{xkﬂaj] = T[xkﬂyl.aj} (11)
J i i

Consequently, the union of such cartesian complexes is also a cartesian

complex. The equation (11) is called the combining rule. If LFaj =D,

k
i
where D, is the domain of x,then {xk-Uaj} is equivalent to the event space
E and rule (11) reduces to the simplification rule:
U T{x,=a.} =T (12)
; {x, J}

We can now formulate a theorem which leads to a recursive recogni-
tion rule for cartesian and interval complexes in an arbitrary diagram.
Theorem 1l A configuration E of cells in a diagram is a
cartesian complex if and only if:

(1) E is a regular rectangle (in this case E is also an

interval complex), or
(2) A regular partition of the covering rectangle of E

consists of congruent images of cartesian complexes
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and possibly some empty images. If the partition has

no empty images, and consists of congruent images of

interval complexes, then E is also an interval complex.
Proof: Condition 1: The definition of a regular rectangle (definitiom 2)
implies that a rectangle can be expressed as an interval complex.

Condition 2: Definition 3 implies that a regular partition of a
rectangle consists of rectangles whose expressions differ only in one lit-
eral. Let Rl’ 32, ... denote nonempty rectangles and El’ Ez, ... Bvent sets
contained 4in them, respectively. Because images I(Rj,Ej}, i=1,2, «vvy
are congruent, therefore, according to lemma 2, expressions of Ej in the
context of Rj are identical, and, therefore, complete expressions of Ej’ L{Ej),
differ only in one literal. We have

EnElUEZU... (i)

therefore, the expression of E, L(E), is the union of L{Ej} and, according
to the combining rule (11), is a cartesian complex.

If a partition of the covering rectangle does not include empty
images, that means that in the expressions

L(E.) =T{x,=a,}, j = 1, 2, ...
:| 1

3

aj-g form a set of consecutive integers. Consequently, the union UL(Ej} .

i

T{xi-ai}, where a, = ? a, , is an interval complex, if T is an interval com-
)
plex, i.e., if rectangles of the partition are images of interval complexes.
Now we have to prove that if E corresponds to a cartesian complex
then it satisfies condition 2 (if it satisfies condition 1 it also satisfies
condition 2). Let L(E) denote a cartesian complex corresponding to E:

n
LE) = N {x;=a,}, a, €Dy
i=1
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1

Suppose sets ®, are transformed to new sets o, D O, by £illing-

"gaps' in &, or substituting D, for o, such that

e 1
R(E) = N {x,=d},
. o I
i=1
defines the covering rectangle of E. If k is seleected in such a way that x,
are the thickest vertical or horizontal axes crossing rectangle R(E), then

rectangles Ra defined by complexes

T 1
L(Ra} =T {xkfa}, a € oy

where

n
e n gx =otl
L7k

i#k
i=1
constitute a regular partition of R(E). A rectangle defined by L(Rh), contains

for a e U'k’ ka = ui, a set of cells, Ea c Ey defined by the cartesian complex
L(Ea) = L{xk=a}

where

and for a e uty\uk., where ™ denotes set subtraction, no cells of E. Because
all L(Ea}, a e, differ only in one literal (involving xk)’ therefore the ex-
pressions of Ea in the context of Ra (which are parts of L) are identical, and,
according to lemma 2, images I{Rﬂ,Ea}, for a u% “ g are empty. If E is an
interval complex then ui = ﬂk, there are no empty images I(Ra,Ea}, anﬁ all
images are images of interval complexes. B
Based on the above theorem, the following rule can be suggested for

determining whether a given set E of cells in a diagram represents a car-

tesian complex:
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1. TFind the covering rectangle, R(E), of E. If R(E) is
identical with E then go to YES.

7. Determine a vertical or horizontal partition of R(E)
which produces the most square-like images.

3. Check if the nonempty images of the partition are
congruent. If answer is no, go to NO.

4. Select any nonempty image and treat the subset of
cells from E contained in the image as a new set

E. Go to 1.

YES: E is a cartesian complex.

N0 : E is net a cartesian complex.

If an application of the rule terminates with YES and there were no
empty images at any step of the rule, then E is an interval complex.

The rule can be used for "building up' complexes or determining
maximal possible complexes, by starting with any set of cells which can be
directly recognized as representing a complex (in the worst case, an indi-
widual cell), then adding to it more cells and applying the rule.

Fig. 14 illustrates the rule by a few examples of cartesian com-
plexes,.

3.4 Recognition rule for elementary complexes

In many applications, for example, in optimizing decision tables
(Michalski [16]), cne deals with a special case of cartesian complexes, which
are elementary complexes (i.e., complexes Li =f\{xi = Li}, where L, is just
a single value (see gsec. 3.1)). For such applications, rather than general rule 1,
one needs a rule for recognizing elementary complexes. Such a rule can be easily
obtained by appropriately modifying rule 1.

To do so, we will first introduce concepts of an elementary row,

elementary column and an elementary rectangle (which are special cases of the
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regular row, regular column and regular rectangle, respectively - see definition
1 and 2).

pefinition la: A set of cells included in a single row {column} created at amny
step of constructing a given diagram, ig called an elementary EEH_{column].
Definition 2a: The intersectiom of any elementary row with any glementary column

is called an elementary rectangle.

Next we define:
Dafinition 4a: The minimal-under-inclusion elementary rectangle which contains

a given set of cells, E, is called an elementary covering rectangle of the set E.

It follows from definitions la and 2a, that an elementary rectangle
is an elementary complex. Therefore it is easy to see, that if in theorem 1
every regular rectangle is restricted to be an elementary rectangle, then the
theorem describes conditions for recognizing elementary complexes. Thus, we have:
Theorem la: A configuration of cells, E, is an elementary cartesian complex, iff:
(1) E is an elementary rectangle, or
(2) a regular partition of the elementary covering rectangle of E
consists of congruent images of elementary cartesian complexes.
The proof is left to the reader. Using theorem la, it is easy now to
appropriately modify rule 1 to obtain a recognition rule for elementary complexes.

Figure 15 gives a few examples of elementary complexes.

4. REMARKS ON APPLICATIONS AND EXAMPLES
The diagram presented here is a general model of discrete spaces
and therefore can be useful as a geometrical representation in any situa-
tion involving such spaces. In particular, it can be used as an educational
aid im various areas of computer science, logic, discrete mathematics, etc.
For research purposes, it can be useful in design and testing com-
puter algorithms invelving discrete spaces and functions determined onm them

{e.g., binary, many-valued, discrete and variable-valued logic functions).
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An example of such an application is the development of a series of AQVAL
programs for computer-aided inductive inference (Michalski [15]). The
diagram was extensively used there for developing algorithms, solving test
examples, Illustrating obtained solutiomns, etc.

In binary logic design the diagram can be used similarly to the
Karnaugh map (it can be especially useful in the case of more than 4 variables
and up to 8-10 variables). And, of course, the diagram can also be used In
many-valued logic design.

Another possible application is to designing decision tables and de-
cision trees, in particular for quick testing decision tables for redundancy,
consistency and completeness; for reduction of decision tables and for cenverting
them into decision trees. This application is described in detail in
Michalski [16].

In conclusion, to give the reader an opportunity to get more practice
in using the diagram we will consider two examples.

Example 1: Find a classification rule.

This, somewhat whimsical, example gives an illustration of a less-
traditional use of the diagram. Suppose we were given 4 different bottles of
wine produced by company A and &4 different bottles of wine produced by company
B (Fig. 16). Suppose, for the sake of the example, that the wines did not
have labels with company names but each bottle had a special geometrical pattern
on it, as shown in Fig. 16. The problem is to determine the "simplest' rule(s)
which will permit one to distinguish the wines of each company based on the geo-—
metrical pattern. A way to solve the problem is to determine first a set of
possible relevant characteristics (descriptors) of patterns, and then to comstruct
the simplest (according to some eriteria) 'discriminant' description of each
class of wines in terms of these descriptors (or their subset). Although
determining a set of possibly relevant descriptors is, in general, a difficult
problem itself, we will assume here that it can be done, and will consider only

the problem of determining the final rule.
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Fig. 16,

D{xl] - {0,1}
plx.) = {0,1,2,3} '

2 i A %, = 1} {x, = 1}
p(x;) - {0,1,2) {eg = 1 e
b(x,) - 10,1,2} B: {x; =1}{x, =1}

Bottles of wine produced by company A and B,
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Suppose the following descriptors were gelected as a possible try:

"
1

number of squares in the pattern,

1

Xy = number of triangles,
Xy = number of circles,
X, - number of asterisks.

From Fig. 16, we can determine that the domains D{xi) of these de-—
scriptors, sufficient for describing each bottle, are: D(x]? = {0, 11, D{xz) =
{0, 1, 2, 3}, D(xy) = {0, 1, 2} and D(x,) = {0, 1, 2}.

Figure 17 shows the diagram for the space D(xllx-..x D(x4) with
marks indicating the correspondence between the cells and individual bottles.
I1f the number of conjunctive statements is accepted as a measure of complexity
of a deseription, then the simplest discriminant description of bottles of
company, say A, can be obtained by grouping cells marked A into the fewest
elementary cartesian complexes, whose union includes every cell A but does not
include any of the cells B. Such a grouping is shown in Fig. 17.

The union of complexes Ll and L2 gives us a description of the bottles
of company A:

A: {xz =1} U {x3 =1}

It can be interpreted: 'if a bottle has 1 triangle or 1 circle then the wine

was made by company A.' In a similar way, we can obtain a description of wines
of company B:
{xl = 1}{:'1'5L = 1}

That is: 'if a bottle has 1 square and 1 asterisk then the wine was made by

company B.'
By grouping cells differently, we can obtain alternative descriptions,

for example:

1]

Ar: dx ar W {xz =1}
or

A: {x =0} U {xﬁ = 2}
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l}{x2 + 1}

[
Lo
=
)

or
B: {x, = 1}‘[:1!.'£F $ 2}
The interpretation of these descriptions is left to the reader.
The above example gave an elementary and informal introduction to

the kind of problems which occur in the application of the variable-valued

logic system le to problems of computer induction and pattern recognition
(Michalski[12-15] , Larson and Michalski[6] ).

It is obvious that when the number of deseriptors is large, de-
scriptions of this kind should be synthesized using a computer. (Paper [14]
presents synthesis algorithms and papers [6], [15] describe various computer imple-
mentations in the logic system le, and, also, much richer system vL2[15]'}.
Example 2: Determine a DVLl expression of the function represented in Fig. 1
(and Fig. 8).

Any function f: E + D, where D is a linearly ordered set, can be
expressed as a disjunctive normal expression in the variable-valued logic

system VL i.e., a DVL

1
Assuming that D = {0,...,d}, a DVL

1 expression (Michalski [13]).

, expression is a disjunction
(maximum function) of terms, where term is a product {minimum.funcgion} of se-

lectors. A selector is either a constant from D or a function [xi=ﬂi], from

E into endpoints of D, defined:
d, if e € {xi-ﬂi}

[x1=uiI{E} "1 0, otherwise

To obtain a D*JL1 expression of the function f from Fig. B one groups
the cells marked by 1 into cartesian complexes (including cells marked by *,
whenever it is convenient).

Next, all cells marked by 1 obtain mark *; and cells marked by

1/2 are grouped into cartesian complexes (Fig. 18). Expressing complexes as

terms with appropriate constants one obtains the following DVLl formula:
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expression of function from Fig. 8.
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An equivalent way of expressing f is by an ordered set of produc-
tion rules (i.e., rules which consist of a condition part and an action
part; the action part is evoked if the condition part is satisfied). Rules
in an ordered set are applied sequentially, the first rule gatisfied produces
the action:
(2,711 [x,=0] => [£=1]
[xl=1,2]{x2=1,2][x3+2] => [f=1]

[x4=1,2] => [f= % ]

Sometimes an unordered set of rules is preferable (i.e., rules can
be applied in any order). In this case, each set of cells with the same mark
is treated independently. For example, function f from Fig. 8 can be ex-
pressed by the following unordered set of rules:

[x,=11[x,=0] => [£=1]

[x,=1,2] [x,=1,2][xgt2] =2> [£=1]
[x3=2] => [f=1 ]

[x,=3] [x,=1,2] =>> [£= % ]

To see clearly the difference between the two sets of rules, the reader is
advised to represent them in the diagram.
5. SUMMARY

We have presented here a general geometrical model of multidimensicnal
discrete spaces, and introduced several comcepts associated with the model, such
as regular row, column, rectangle, a regular partition, etc. These concepts were
subsequently used for determining a rule for recognizing constructs, specifically
cartesian and interval complexes, that are important in various applications of the

model.
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The model can serve as an aid in designing, testing, describing, and,
also, in many practical pfoblems, in hand executing algorithms involving discrete,

many valued or variable-valued logic functions. It can also be useful in

education, for teaching concepts and algorithms involving such functions.
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