
 

IMPROVING HYPER RESOLUTION SOIL MOISTURE ESTIMATION 

by 

 

Tasnuva Rouf 

A Dissertation 

Submitted to the 

Graduate Faculty 

of 

George Mason University 

in Partial Fulfillment of 

The Requirements for the Degree 

of 

Doctor of Philosophy 

Civil, Environmental and Infrastructure Engineering 

 

Committee: 

 

_________________________________ Dr. Viviana Maggioni, Dissertation Director 

 

_________________________________ Dr. Celso Ferreira, Committee Member 

 

_________________________________ Dr. Mark Houck, Committee Member 

 

_________________________________ Dr. Paul Houser, Committee Member 

 

_________________________________ Dr. Sam Salem, Department Chair 

 

_________________________________ Dr. Kenneth S. Ball, Dean, Volgenau School 

of Engineering 

 

Date: _____________________________ Spring Semester 2020 

      George Mason University 

      Fairfax, VA 

  



 

 

 

 

 

Improving Hyper Resolution Soil Moisture Estimation 

A Dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy at George Mason University 

by 

Tasnuva Rouf 

Master of Science  

Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, 2015 

Bachelor of Science  

Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, 2012 

Director: Viviana Maggioni, Assistant Professor 

Civil, Environmental and Infrastructure Engineering, George Mason University 

Spring Semester 2020 

George Mason University 

Fairfax, VA 



ii 

 

 

Copyright 2020 Tasnuva Rouf 

All Rights Reserved 



iii 

 

 

 

 

 

DEDICATION 

This is dedicated to my loving parents, Nafisa Quader and Abdur Rouf.  



iv 

 

 

 

 

ACKNOWLEDGMENTS 

I want to express my gratitude toward a very long list of people without their direct or 

indirect support and encouragement this thesis might not come into reality. The first and 

foremost, I want to thank my advisor Dr. Viviana Maggioni for believing me and 

providing the incredible help, support, and advice whenever needed throughout my 

graduate studies. I don’t believe without her support I would be able to reach this step. 

Not only she supported for professional development, but also, she gave mental support 

whenever needed. 

I also want to thank my co-supervisor, Dr. Paul Houser for his suggestions and help me to 

think critically about my research. I also want to thank my committee members Dr. Celso 

Ferreira and Dr. Mark Houck for their suggestions in my graduate research. 

I would like to thank my colleagues and friends at George Mason University who 

accompanied me in this long path. A special thanks go to my colleague Dr. Yiwen Mei 

who provided valuable suggestions and helped me technically at every step in the 

research. I would like to thank all of our Maggioni’s research lab group members, their 

valuable comments in every group meeting and their technical help me to accelerate the 

process of research.  

I would like to take a moment to thank the NASA Science Utilization of the Soil 

Moisture Active-Passive Mission Program for the funding that helped to offer me a 

research assistantship and the Mason Provost’s Office for the 2020 Dissertation 

Completion Grant, which facilitated the timely completion of this dissertation. 

Finally, I like to express my heedful gratitude to my parents and family members for their 

tremendous support and encouragement in difficult situations that have enabled me to 

attain this level. Especially, my incredible mother who took immense responsibility for 

bringing me at this level and taught me to keep dreaming. She is always just one call 

away throughout my life. I want to thank my younger sister for helping to relieve my 

stressed conditions. I especially thank my husband Dr. Shah Toufiqur Rahman for 

maintaining long-time long-distance relationship and give me support at tough times. 

 



v 

 

 

 

 

 

TABLE OF CONTENTS 

Page 

List of Tables .................................................................................................................... vii 

List of Figures .................................................................................................................. viii 

List of Equations ................................................................................................................. x 

List of Symbols .................................................................................................................. xi 

Abstract ............................................................................................................................. xii 

Extended Abstract ............................................................................................................... 1 

Thesis Organization......................................................................................................... 5 

1. A PHYSICALLY-BASED ATMOSPHERIC VARIABLES DOWNSCALING 

TECHNIQUE ...................................................................................................................... 7 

 Introduction ......................................................................................................... 7 

 Dataset............................................................................................................... 12 

 North American Land Data Assimilation System Phase 2 ........................... 12 

 Modern-Era Retrospective analysis for Research and Applications, Version 2

 13 

 Shuttle RADAR Topography Mission Data ................................................. 13 

 Moderate Resolution Imaging Spectroradiometer ........................................ 14 

 Ground observations ..................................................................................... 14 

 Methodology ..................................................................................................... 16 

 Air and Dew Point Temperature ................................................................... 16 

 Pressure, Humidity, and Incident Longwave Radiation ............................... 20 

 Incident Shortwave Radiation ....................................................................... 21 

 Wind Speed ................................................................................................... 22 

 Results ............................................................................................................... 25 

 Conclusions ....................................................................................................... 35 

2. TOWARDS HYPER‐RESOLUTION LAND‐SURFACE MODELING OF 

SURFACE AND ROOT ZONE SOIL MOISTURE ........................................................ 38 

 Introduction ....................................................................................................... 39 



vi 

 

 Methodology ..................................................................................................... 42 

 The Downscaled Forcing Dataset ................................................................. 44 

 The Noah-MP Land Surface Model Simulations.......................................... 47 

 Validation Dataset and Performance Metrics ............................................... 49 

 Results ............................................................................................................... 52 

 Precipitation .................................................................................................. 52 

 Soil Moisture ................................................................................................. 55 

 Conclusions ....................................................................................................... 61 

3. THE EFFICIENCY OF ASSIMILATING SATELLITE-BASED OBSERVATIONS 

IN A LAND SURFACE MODEL .................................................................................... 64 

 Introduction ....................................................................................................... 65 

 Methodology ..................................................................................................... 68 

 Soil Moisture Active Passive (SMAP) Products .......................................... 68 

 The Land Data Assimilation System ............................................................ 70 

 Validation ...................................................................................................... 73 

 Results ............................................................................................................... 75 

 Conclusions ....................................................................................................... 84 

Concluding Remarks ......................................................................................................... 86 

References ......................................................................................................................... 89 

Biography ........................................................................................................................ 103 

 



vii 

 

 

 

 

 

LIST OF TABLES 

Table Page 

Table 1: Statistical metrics for each NLDAS-2 atmospheric forcing at their original and at 

downscaled resolution (in italic) with respect to ground observations. ............................ 34 

Table 2. Noah-MP model runtime options and parameters used in this study. ................ 48 
Table 3. Contingency table to compute categorical statistics for the original NLDAS-2 

precipitation dataset and the downscaled products against Mesonet observations. The 

rain/no-rain threshold (th) is set to 0.025 cm/day (which corresponds to 0.01 inch/day). 54 
Table 4. Categorical statistics of the original NLDAS-2 precipitation dataset and the 

downscaled products against Mesonet observations computed during 2015 across all 

stations and corresponding pixels. .................................................................................... 54 
Table 5. Correlation coefficient, root mean square error, and mean relative error of 

modeled soil moisture vs Mesonet observations for a set of DA simulations that use either 

SMAP-36km or SMAP-9km, scaled by either monthly or yearly CDF matching ........... 77 
Table 6 Correlation and RMSE for two Mesonet locations of surface soil moisture 

standard normal  deviates.................................................................................................. 84 
 



viii 

 

 

 

 

 

LIST OF FIGURES 

Figure Page 

Figure 1. Study region and location of the Mesonet and ARM stations. .......................... 15 

Figure 2. (a) Mean and (b) standard deviation of air temperature-based lapse rates and (c) 

mean and (d) standard deviation of dew point temperature-based lapse rates across 

Oklahoma during 2015. .................................................................................................... 18 

Figure 3. Density scatter plots of hourly NLDAS-2 2m air temperature downscaled to 500 

m resolution, using (a) a dynamic lapse rate and (b) a constant lapse rate against the 

corresponding Mesonet ground observations across Oklahoma during 2015. ................. 19 
Figure 4. Frequency distribution of R2 for the linear regression between log-transferred 

surface roughness and MODIS NDVI. .............................................................................. 24 
Figure 5. Annual average maps of (a, b) 2m air temperature, (c, d) surface pressure, and 

(e, f) 2m specific humidity at the original NLDAS-2 resolution (left panels) and at the 

downscaled 500 m resolution (right panels). .................................................................... 27 
Figure 6. Annual average maps of (a, b) downward longwave radiation, (c, d) downward 

shortwave radiation, and (e, f) 10m wind speed at the original NLDAS-2 resolution (left 

panels) and at the downscaled 500 m resolution (right panels). ....................................... 28 

Figure 7. Density scatter plots of NLDAS-2 variables at their original resolution (left 

panels) and at the downscaled 500 m resolution against the corresponding Mesonet 

ground observations for (a, b) 2m air temperature, (c, d) surface pressure, (e, f) 2m 

relative humidity (RH) at hourly resolution...................................................................... 29 

Figure 8. Density scatter plots of NLDAS-2 variables at their original resolution (left 

panels) and at the downscaled 500 m resolution against the corresponding Mesonet 

ground observations for (a, b) downward longwave radiation (L), (c, d) downward 

shortwave radiation (S), and (e, f) 10m wind speed (W) at hourly resolution. ................ 30 
Figure 9. Maps of correlation coefficients of NLDAS-2 variables at their original 

resolution (left panels) and at the downscaled 500 m resolution against the corresponding 

Mesonet ground observations for (a, b) 2m air temperature, (c, d) surface pressure, (e, f) 

2m relative humidity. ........................................................................................................ 32 

Figure 10. Maps of correlation coefficients of NLDAS-2 variables at their original 

resolution (left panels) and at the downscaled 500 m resolution against the corresponding 

Mesonet ground observations for (a, b) downward longwave radiation, (c, d) downward 

shortwave radiation, and (e, f) 10m wind speed. .............................................................. 33 
Figure 11. Maps of the study region showing (a) elevation (from the Shuttle Radar 

Topography Mission (SRTM; “SRTM Data – CGIAR-CSI SRTM” n.d.) and location of 

the Mesonet stations, (b) average precipitation in 2015 measured by the Mesonet rain 



ix 

 

gauges, and average (c) surface soil moisture and (d) root zone soil moisture observed at 

the Mesonet stations in 2015............................................................................................. 43 

Figure 12. Maps of standard-normal deviates of the original resolution NLDAS-2 (a) and 

downscaled product (b) averaged during 2015, correlation coefficients (c, d) and root 

mean square errors (e, f) between Mesonet and NLDAS-2 at the original resolution (left 

column) and downscaled (right column). ......................................................................... 53 
Figure 13. Maps of average surface (left column) and root zone (right column) soil 

moisture during 2015 from Noah-MP simulation 1 (a, b), simulation 2 (b, d), and 

simulation 3 (e, f) across the study region. ....................................................................... 56 
Figure 14. Time series of standard-normal deviates of (a) surface and (b) root zone soil 

moisture averaged across the study area, simulated by Noah-MP (3 simulations) and 

observed by the Masonet network during 2015 ................................................................ 57 
Figure 15. Cumulative distribution functions of standard-normal deviates of soil moisture 

from the three Noah-MP simulations and the Mesonet observations ............................... 58 

Figure 16. Density scatterplots of model simulated standard-normal deviates of surface 

(a, b, c) and root zone (d, e, f) soil moisture versus the corresponding Mesonet 

observations ...................................................................................................................... 60 
Figure 17. Boxplots of correlation coefficients (a, b) and RMSEs (c, d) of standard-

normal deviates of surface (a, c) and root zone (b, d) soil moisture. In each box, the 

central mark indicates the median, the bottom and top edges of the box indicate the 25th 

and 75th percentiles, respectively, the whiskers extend to the most extreme points not 

considered outliers, which are plotted individually as red crosses. .................................. 61 
Figure 18. Domain area and location of two Mesonet stations (BOIS and ACME) used 

for validation purposes ...................................................................................................... 74 
Figure 19. Daily domain averaged values of surface soil moisture (a, b) and root zone soil 

moisture (c, d) for i) OL, ii) Mesonet observations, iii) DA using a yearly CDF matching, 

and iv) DA using a monthly CDF matching.  DA of both SMAP-36km (a, c) and SMAP-

9km (b, d) is presented. Note that SMAP observations are only availbale after March 30th, 

2015................................................................................................................................... 76 
Figure 20. Timeseries of daily domain averaged standard normal deviates of surface soil 

moisture (a) and root zone soil moisture during 2015. ..................................................... 79 

Figure 21 Boxplots of correlation coefficients (a, b) and RMSEs (c, d) of surface (a, c) 

and root zone (b, d) soil moisture standard-normal deviates computed at each Mesonet 

stations and corresponding model grid. In each box, the central mark indicates the 

median, the bottom and top edges of the box indicate the 25th and 75th percentiles, 

respectively, the whiskers extend to the most extreme points not considered outliers, 

which are plotted individually as red crosses. .................................................................. 80 
Figure 22 Timeseries of surface soil moisture standard normal deviates at two Mesonet 

stations, BOIS (a, c) and ACME (b, d). ............................................................................ 81 
Figure 23 Same as in Figure 22 but for root zone soil moisture standard normal deviates

........................................................................................................................................... 83 
 



x 

 

 

 

 

 

LIST OF EQUATIONS 

Equation Page 

(1) ...................................................................................................................................... 17 

(2) ...................................................................................................................................... 17 

(3) ...................................................................................................................................... 17 
(4) ...................................................................................................................................... 20 

(5) ...................................................................................................................................... 20 
(6) ...................................................................................................................................... 20 
(7) ...................................................................................................................................... 21 
(8) ...................................................................................................................................... 21 

(9) ...................................................................................................................................... 22 
(10) .................................................................................................................................... 22 

(11) .................................................................................................................................... 23 
(12) .................................................................................................................................... 23 
(13) .................................................................................................................................... 24 

(14) .................................................................................................................................... 25 
(15) .................................................................................................................................... 46 

 



xi 

 

 

 

 

 

LIST OF SYMBOLS 

2m air temperature .............................................................................................................. T 

2m dew point temperature  ................................................................................................ Td 

Dew point temperature lapse rate ...................................................................................... Γd 

Longwave radiation  ........................................................................................................... L 

Normalized Difference Vegetation Index ....................................................................NDVI 

Pressure ............................................................................................................................... P 

Shortwave radiation  ........................................................................................................... S 

Specific Humidity ................................................................................................................q 

SRTM terrain elevation ...................................................................................................... Z 

Surface roughness  ............................................................................................................. z0 

Temperature lapse rate ........................................................................................................ Γ 

Vapor pressure  ................................................................................................................... E 

Wind Speed ........................................................................................................................ W 

Zero-plane displacement height ......................................................................................... h0 

 



xii 

 

ABSTRACT 

IMPROVING HYPER RESOLUTION SOIL MOISTURE ESTIMATION 

Tasnuva Rouf, Ph.D. 

George Mason University, 2020 

Dissertation Director: Dr. Viviana Maggioni 

 

The need for improved accuracy of terrestrial hydrological variables across different 

landscapes is driven by the development of hyper-resolution land surface modeling. The 

goal of this work is to propose a new framework to estimate surface and root zone soil 

moisture at resolutions that are useful for decision making and water resources 

management. In order to achieve this goal, a hyper-resolution atmospheric forcing dataset 

(temperature, pressure, humidity, wind speed, incident longwave and shortwave 

radiation) is developed from coarse resolution products using a physically-based 

downscaling approach. These downscaling techniques rely on correlations with landscape 

variables, such as topography, temperature lapse rate corrections, surface roughness, and 

land cover. A proof-of-concept has been implemented over the Oklahoma domain, where 

high-resolution observations are available for validation purposes. Hourly NLDAS-2 

(North America Land Data Assimilation System) atmospheric variables at 0.125° have 

been downscaled to 500 m over the study area during 2015. Results show that correlation 
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coefficients between the downscaled forcing dataset and ground observations are 

consistently higher, and biases are lower than the ones between the NLDAS-2 forcing 

dataset at their native resolution and ground observations. Results are therefore 

encouraging as they demonstrate that the 500 m forcing dataset has a good agreement 

with ground-based information and can be adapted to force a land surface model for soil 

moisture estimation. A land surface model is then forced with both the native resolution 

NLDAS-2 dataset and the downscaled one to simulate surface and root zone soil 

moisture. Model outputs are compared with in situ soil moisture observations at different 

spatial resolutions. Results show that the hyper-resolution simulation is able to bring 

modeled surface and root zone soil moisture closer to in situ observations. This is 

particularly evident in drier than usual cases, due to the improved ability of the 

downscaled precipitation to detect missed events and no-rain cases. In summary, finer 

resolution forcings have the potential to improve simulations of soil moisture, and the 

resolution of precipitation plays a critical role in improving the time series of soil 

moisture standard-normal deviates. Then, a land data assimilation system is adopted to 

merge the satellite soil moisture products into the land surface model. Satellite products 

offer a unique look at global soil moisture variability and have the potential to correct 

model biases. This work offers a radical improvement over current state-of-the-art 

forcing data and soil moisture estimates and will move us into the era of hyper-resolution 

land modeling. 
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EXTENDED ABSTRACT 

Soil moisture plays a significant role in numerous hydrological-related processes 

(Koster et al. 2004). Surface and root zone soil moisture control the partitioning of the 

available energy incident on the land surface. Being a storage component for 

precipitation and radiation, soil water content influences cloud coverage, precipitation, 

runoff, and evapotranspiration. Moreover, soil moisture is involved in several feedbacks 

at the local, regional, and global scale. In particular, soil moisture-temperature and soil 

moisture-precipitation feedbacks have a significant impact on climate-change projections. 

Therefore, understanding and predicting both weather and climate depend critically on 

the realistic characterization of soil moisture (Robock et al. 2000). 

As the availability of in situ surface measurements is extremely scarce in several 

regions of the world, satellite retrievals and model simulations are a valuable alternative 

for estimating soil moisture globally. In this context, the NASA Soil Moisture Active 

Passive (SMAP) mission, launched on 31st January 2015, measures land surface 

brightness temperature and radar backscatter (radar failed in July 2015), thus providing 

information on surface soil moisture (top 5 cm of the soil column). The usefulness of the 

SMAP-based soil moisture product is limited by its course resolutions (~9-36 km) and 

surface-only measurement. Therefore, modeling is necessary to estimate soil moisture 

and its variations at higher time and space resolutions and deeper in the soil column. 

Current land surface models have mostly had their origins in coupled weather and 

climate models, with a focus more on partitioning radiation at the land surface to provide 
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a lower boundary condition to the atmosphere, rather than tracing the movement of 

carbon and water at and near the land surface. Accordingly, the spatial resolution of 

current land surface models has largely been dictated by the spatial resolutions of global 

weather and climate models: currently, at best, ~100 km for climate models and ~20 km 

for weather models (somewhat higher resolutions are used by regional models). Much 

higher resolutions, which are referred to as hyper-resolutions (100 m to 1 km globally), 

have recently become available and provide much more detailed information about the 

storage, movement, and quality of carbon and water at and near the land surface (Wood 

et al. 2011). Hyper-resolution land surface data are fundamental for water resources 

management and for making decisions related to agricultural productivity, crop yield 

prediction, and hydroclimatic hazards.  

Developing a predictive capability for terrestrial hydrology across landscapes, 

with water, energy, and nutrients as the drivers of these dynamic systems, faces the 

challenge of scaling meter-scale process understanding to practical modeling scales. The 

upper limit of this scaling to achieve meaningful results is closer to 100 m than to the 

typical scale of current generation weather and climate models. Therefore, hyper-

resolution land surface modeling would provide a framework for addressing science 

questions that we are not able to answer with current modeling capabilities. Further, 

significant social benefits would accrue because of improved ability to monitor and 

predict the Earth’s terrestrial water, energy, and biogeochemical cycles at the decision- 

and management-relevant scales.  
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There are numerous challenges in developing a hyper-resolution land modeling 

system, ranging from assessing adequate model physics and computing resources to the 

representation of human impacts on the land surface. A current barrier is developing a 

global dataset required to parameterize and dynamically force these models at hyper-

resolutions. Land models typically require a minimum of seven near-surface atmospheric 

forcing variables provided at every time step (e.g., hourly), including air temperature and 

humidity, wind speed, incident longwave and shortwave radiation, and precipitation. 

Additional pressure, precipitation type, and radiation variables may be required for some 

model classes but are generally easily deduced from the basic set of seven. 

Currently, we do not have global sub-kilometer in situ or satellite observational 

capabilities from which to derive these forcing variables. Therefore, physical, dynamic, 

and statistical downscaling approaches have been developed that interpolate the required 

high-resolution fields from coarser-resolution data incorporating the interactions between 

the atmosphere and terrestrial surface (Cosgrove et al. 2003; Haylock et al. 2006; Liston 

and Elder 2006; Girotto, et al. 2014; Sunyer et al. 2015; Gaur and Simonovic 2017). 

Land surface states play a crucial role in understanding the complex land-

atmosphere interactions that affect climate. Soil properties like soil moisture and 

temperature strongly influence the atmospheric boundary layer (Sud et al. 1985; Beljaars 

et al. 1996; Fischer et al. 2007) and thus affect various land-atmosphere exchanges, as 

well as regional and global weather and climate prediction. Land surface models (LSMs) 

forced with in situ, or satellite-based data are the primary tools for the estimation of land 
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surface parameters that are used to initialize weather and regional climate models 

(Serpetzoglou et al. 2010). 

The unavailability of direct observations to quantify heterogeneous variables like 

soil moisture makes LSM simulations fundamental in hydrology. Nevertheless, LSMs 

suffer from several uncertainties (Serpetzoglou et al. 2010; Maggioni et al. 2012; Gupta 

et al. 2014). Specifically, studies evaluating uncertainties in LSM simulations argue that 

precipitation plays a significant role in the uncertainty observed in model output variables 

(Gottschalck et al. 2005; Peters-Lidard et al. 2007; Zhou et al. 2012). Satellite-based 

precipitation products (which are often used as input to LSMs) are inherently 

characterized by errors of complex nature at high spatiotemporal scales (Hossain and 

Anagnostou 2005). When propagated through LSMs, they can influence the nonlinear 

land-atmosphere interaction processes by affecting soil moisture predictions. 

This work builds upon past studies and goes one step further by including several 

novelties to the physical approaches in downscaling and developing an hourly, 500 m 

hyper-resolution forcing land surface weather boundary condition dataset (2m air 

temperature and humidity, wind speed and direction, incident longwave and shortwave 

radiation, and precipitation) during 2015 across Oklahoma, where high-quality and high-

resolution observations are available for validation purposes. A land surface model is 

then forced with three combinations of input variables to simulate surface and root zone 

soil moisture across the study domain: 1) NLDAS-2 atmospheric forcings at their original 

resolution; 2) downscaled NLDAS-2 atmospheric variables (i.e., near-surface air 

temperature and humidity, wind speed and direction, incident longwave and shortwave 
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radiation, pressure) and original resolution NLDAS-2 precipitation; and 3) downscaled 

NLDAS-2 atmospheric variables and precipitation. As the last step, SMAP products are 

assimilated into the LSM to enhance the estimation of soil moisture. SMAP products 

offer a unique look at global soil moisture variability and have the potential to directly 

correct modeling errors. 

The science questions we seek to answer with this research are:  

1. Is physically-based downscaling a viable approach to produce hyper-

resolution atmospheric forcings? 

2. What is the role of forcing resolution in land surface modeling? And in 

particular, what is the role of precipitation resolution relative to the other atmospheric 

forcings on simulated soil moisture? 

3. How useful is SMAP to land surface modeling? What is the efficiency of a 

data assimilation system to estimate surface and root-zone soil moisture? 

 

Thesis Organization 

The research carried out to address the aforementioned questions is presented in 

Chapters 1 through 3. Chapter 1 focuses on developing the methodology to downscale a 

set of atmospheric forcings. Chapter 2 focuses on investigating the role of the downscaled 

products for the estimation of soil moisture through a land surface model. Chapter 3 

proposes the use of satellite-based products as observations in a land data assimilation 

system to improve the estimation of surface and root-zone soil moisture. 
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The work described in Chapters 1−3 is presented in the form of the following 

research articles: 

Chapter 1: Rouf, T., Maggioni, V., Mei, Y., Houser, P., Noonan, M. “A 

physically-based downscaling technique for atmospheric forcings”; Journal of 

Hydrometeorology, 2019. 

Chapter 2: Rouf, T., Maggioni, V., Mei, Y., Houser, P., “Towards hyper‐

resolution land‐surface modeling of surface and root zone soil moisture”; Journal of 

Hydrology, under review. 

Chapter 3: Rouf, T., Maggioni, V., Mei, Y., Houser, P. “Investigating the 

efficiency of assimilating SMAP soil moisture observations in a land surface model”; in 

preparation. 
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1. A PHYSICALLY-BASED ATMOSPHERIC VARIABLES DOWNSCALING 

TECHNIQUE 

This chapter presents the development of a physically-based downscaling 

approach for a set of atmospheric variables that relies on correlations with landscape 

information, such as topography, surface roughness, and vegetation. A proof-of-concept 

has been implemented over Oklahoma, where high-resolution, high-quality observations 

are available for validation purposes. Hourly NLDAS-2 (North America Land Data 

Assimilation System, Version 2) meteorological data (i.e., near-surface air temperature, 

pressure, humidity, wind speed, and incident longwave and shortwave radiation) have 

been spatially downscaled from their original 12.5 km resolution to a 500 m grid over the 

study area during 2015. Results show that correlation coefficients between the 

downscaled products and ground observations are consistently higher than the ones 

between the native resolution NLDAS-2 data and ground observations. Furthermore, the 

downscaled variables present smaller biases than the original ones with respect to ground 

observations. Results are therefore encouraging toward the use of the 500 m dataset for 

land surface and hydrological modeling. This would be especially useful in regions where 

ground-based observations are sparse or not available altogether, and where downscaled 

global reanalysis products may be the only option for model inputs at scales that are 

useful for decision making.  

 Introduction 

Hyper-resolution (100 m to 1 km globally) land surface modeling has recently 

become available and provides detailed information about the storage, movement, and 
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quality of carbon and water at and near the land surface (Wood et al. 2011). Hyper-

resolution land surface data are fundamental for water resources management and for 

making decisions related to agricultural productivity, crop yield prediction, and 

hydroclimatic hazards. These hyper-resolution land surface data are expected to advance 

weather forecasting (Senatore et al. 2015), climate prediction (Baker et al. 2017), precise 

irrigation scheduling (Gibson et al. 2017), quantification of greenhouse gas fluxes (Franz 

et al. 2017), flood prediction (Maidment 2017), estimation of water scarcity (Zhou et al. 

2016), and hydrologic simulations (Ko et al. 2019).  

There are numerous challenges in developing a hyper-resolution land modeling 

system, ranging from assessing adequate model physics and computing resources to the 

representation of human impacts on the land surface. A current barrier is developing a 

global dataset required to parameterize and dynamically force these models at hyper-

resolutions. Land surface models typically require a minimum of seven near-surface 

atmospheric forcing variables provided at every time step (e.g., hourly), including air 

temperature and humidity, wind speed, incident longwave and shortwave radiation, and 

precipitation. Additional pressure, precipitation type, and radiation variables may be 

required for some model classes but are generally easily deduced from the basic set of 

seven.  

Currently, we do not have global sub-kilometer in situ or satellite observational 

capabilities from which to derive these forcing variables. Therefore, physical, dynamic, 

and statistical downscaling approaches have been developed that interpolate the required 

high-resolution fields from coarser-resolution data incorporating the interactions between 
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the atmosphere and terrestrial surface (Cosgrove et al. 2003; Haylock et al. 2006; Liston 

and Elder 2006; Girotto, Margulis, and Durand 2014; Sunyer et al. 2015; Gaur and 

Simonovic 2017). For precipitation downscaling, Venugopal et al. (1999) proposed 

dynamic space-time scaling of rainfall along with a spatial disaggregation scheme at 

subgrid scales. To account for orographic influences, Badas et al. (2006) considered a 

modulation function which superimposed to homogeneous and isotropic synthetic fields 

to take into account for spatial heterogeneity. Using satellite data, Zorzetto and Marani 

(2019) proposed a downscaling procedure to calculate the point rainfall extreme value 

distribution and relates it with the ground observation.  

Cosgrove et al. (2003) proposed algorithms for developing 0.125º/hourly 

spatial/temporal-resolution products from nine primary forcing fields at a native 

resolution of 40 km/3hourly across North America. Their assumption was that the 

original 0.125º topography differs significantly within a 40 km grid cell, and elevation 

could be used as the prime factor for downscaling temperature, pressure, specific 

humidity, and longwave radiation. The downscaled variables were successfully validated 

against ground observations from the Oklahoma Mesonet network and the Atmospheric 

Radiation Measurement Program/cloud and radiation test bed, and Surface Radiation 

observation data. 

Another framework was proposed by Liston and Elder (2006) who developed an 

intermediate-complexity, quasi–physically based, meteorological model (MicroMet) to 

produce high-resolution (1 km) atmospheric forcings (air temperature, relative humidity, 

wind speed, incoming shortwave radiation, incoming longwave radiation, surface 
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pressure, and precipitation). They focused on complex terrain regions in Colorado, 

Wyoming, Idaho, Arctic Alaska, Svalbard, central Norway, Greenland, and Antarctica. 

Their downscaling approach applied a temperature–elevation relationship and used 

meteorological stations at hourly resolution. 

Fiddes and Gruber (2014) proposed another physically-based approach, 

TopoSCALE, to downscale coarse-grid climate variables to a fine-scale sub-grid forcing 

data (<100 m), primarily based on a high-resolution digital elevation model (DEM). 

Elevation and topography correction were estimated by normalizing geopotential heights 

by gravity at sea level to downscale temperature, humidity, shortwave radiation, and 

wind speed. This method was tested across the Swiss Alps (characterized by a large 

elevation gradient of 195 – 4634 m above sea-level) against a ground-based validation 

dataset.  

More recently, Tao and Barros (2018) developed a framework to derive high-

resolution long-term meteorological forcings for hydrologic modeling from mesoscale 

atmospheric reanalysis products, including topographic and cloud corrections and a new 

physical parameterization of near-surface wind fields. The downscaling methodology is 

applied to 3-hourly North American Regional Reanalysis (NARR) fields originally at 32 

km spacing to 1 km/hourly resolution for seven years (2007–2013) over the Southeast 

U.S. The downscaled datasets were assessed against flux tower observations available in 

the region, and performance statistics, Root Mean Squared Error (RMSE) had improved 

for all the variables.  
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This work builds upon these past studies and goes one step further by including 

several novelties to the approaches discussed above. We derived dynamic lapse rates 

based on air and dew point temperature data and elevation for the downscaling of near-

surface air temperature and dew point temperature. These two temperature fields are 

subsequently used to correct air pressure, humidity, and incident longwave radiation. For 

downscaling wind speed, we assume a log-wind profile and introduce the use of 

vegetation index for the parameterization of surface roughness and zero-plane 

displacement height. The downscaling shortwave radiation takes into consideration the 

optical air depth difference, local illumination, cast-shadowing, portion of the visible sky, 

and surface reflection to calculate direct, diffusive, and reflected shortwave radiation. 

These downscaling approaches have been applied to downscale the North American Land 

Data Assimilation System Phase-2 (NLDAS-2; Cosgrove et al. 2003; Mitchell 2004) 

dataset (original resolution of 12.5 km) to a 500 m grid across Oklahoma. The main 

reason for choosing 500 m as the target resolution is that most physical landscape 

parameters used to downscale the atmospheric variables are available at 500 m 

resolution. Achieving finer resolutions is possible, but the supporting landscape 

parameters would need to be downscaled or use higher-resolution physical parameter 

sources, adding the opportunity for more uncertainties and errors. Additionally, 

precipitation is one of the most important inputs in a hydrologic model. All the 

downscaled variables can be potentially used as predictands in a machine learning 

algorithm for downscaling precipitation, as shown by Mei et al. (2018). This manuscript 
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represents the first step in this direction and focuses on the methodology to downscale all 

atmospheric variables except precipitation. 

The present manuscript is organized as follows. Section 1.2 introduces the dataset 

and study area. A comprehensive step-by-step description of the downscaling algorithms 

is presented in section 1.3. The improvement in the downscaled atmospheric forcings 

with respect to the original resolution NLDAS-2 is assessed using ground observations 

and is discussed in section 1.4. Section 1.5 summarizes our conclusions. 

 Dataset 

This work focuses on a domain in Oklahoma, in the Midwestern U.S. during 

2015. The region is characterized by a diverse landscape that includes the Great Plains, 

hills, lakes, and forests. This area is chosen because of the availability of high-quality, 

high-resolution ground-based data to validate the proposed downscaling approach. 

 North American Land Data Assimilation System Phase 2  

The NLDAS-2 dataset is available at hourly temporal resolution and 1/8th-degree 

grid spatial resolution for a period ranging from 1st January 1979 to present over the 

contiguous United States. The NLDAS-2 datasets are primarily derived from NARR 

(Mesinger et al. 2006) interpolated from the 32 km horizontal resolution NARR grid to 

the 1/8th degree NLDAS-2 grid, adjusted for elevation differences and temporally 

disaggregated from three-hourly to hourly time scales (Cosgrove et al. 2003; Mitchell 

2004). Surface downward shortwave radiation is derived by bias correcting NARR output 

using Geostationary Operational Environmental Satellite data (Pinker et al. 2003). The 

downscaling scheme proposed in this work is applied to the NLDAS-2 2m air 
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temperature, surface pressure, 2m specific humidity, downward longwave and shortwave 

radiation, and wind speed at 1/8th-degree spatial resolution and hourly temporal 

resolution. Surface albedo is required for the shortwave downscaling, and it is collected 

from the NLDAS-2 Noah land surface model. All NLDAS-2 variables are projected to 

12.5 km under the USA Contiguous Lambert Conformal Conic coordinate system, 

approximating the original 1/8th-degree resolution. 

 Modern-Era Retrospective analysis for Research and Applications, Version 2  

The Modern-Era Retrospective analysis for Research and Applications, Version 2, 

MERRA-2, (Rienecker et al. 2011; Gelaro et al. 2017) provides data since 1980. The 

advancement in the assimilation system replaces the original MERRA dataset that 

enables the merging of modern hyperspectral radiance and microwave observations, 

along with GPS-Radio Occultation dataset. Resolution of MERRA-2 is 0.5°/0.625° in the 

latitudinal/longitudinal and hourly. Surface roughness and zero-plane displacement 

height from the MERRA-2 dataset are used to support the downscaling scheme, as 

described in detail in section 1.3. These data have been interpolated to match the 

NLDAS-2 resolution of 12.5 km. 

 Shuttle RADAR Topography Mission Data 

The Shuttle RADAR Topography Mission (SRTM; “SRTM Data – CGIAR-CSI 

SRTM” n.d.) digital elevation model (DEM) data at 90m spatial resolution, originally 

produced by National Aeronautics and Space Administration (NASA), are a 

breakthrough in digital mapping and provide high-quality elevation data at the global 

scale (Survey 2006). The SRTM data are upscaled to 500 m, and NLDAS-2 (12.5 km) 
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resolution using the average pooling operation. The SRTM elevation data play a major 

role in the proposed downscaling technique, as shown in the methodology section. 

 Moderate Resolution Imaging Spectroradiometer 

The Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation 

indices products, MOD13Q1 and MYD13Q1 version 6, at 250m/16-daily resolution are 

used in the downscaling framework. By considering both MOD13Q1 and MYD13Q1, we 

obtain Normalized Difference Vegetation Index (NDVI) for every 8 days. The 8-daily 

NDVI is upscaled to 500 m and 12.5 km representing the target and original resolution. 

 Ground observations 

The installation of the Oklahoma Mesonet network began in the 1980s, as the 

result of an ongoing collaboration between Oklahoma State University and the University 

of Oklahoma to develop a near real-time, extremely reliable source of surface 

observational data on local weather conditions across the state (“Oral History Interview 

with Fred V. Brock” n.d., “Oral History Interview with Ken Crawford” n.d.). As a result, 

a statewide network of 121 automated environmental monitoring stations was officially 

launched in March 1994. These provide regular measurements of air and soil 

temperature, barometric pressure, rainfall, relative humidity, solar radiation, wind speed 

and direction, and soil moisture, both direct and calculated, including instrumentation 

data, all of which are regularly transmitted every 5 minutes to the Oklahoma 

Climatological Survey, where the data quality is verified (Martens et al. 2017). 

Temperature, pressure, specific humidity, longwave radiation and shortwave radiation, 
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wind speed and direction observations at several stations across Oklahoma are used for 

validation purposes in this study (Figure 1; “Mesonet | Home Page” n.d.).  

 

 

  
Figure 1. Study region and location of the Mesonet and ARM stations. 

 

The Atmospheric Radiation Measurement (ARM) Program, supported by the U.S. 

Department of Energy, had an intention to improve the understanding of processes that 

affect atmospheric radiation and the description of these processes in climate models. To 

achieve this goal, the ARM Program employed five highly instrumented primary 

measurement sites at land and ocean locations for up to 10 years, from the Tropics to the 

Arctic. These provide a measurement of longwave and shortwave radiation, along with 
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several meteorological variables including wind velocity, precipitation rate, surface 

moisture, temperature, and fluxes of sensible and latent heat (Stokes and Schwartz, 

1994). In 2015, for the launch of the NOAA Geostationary Operational Environmental 

Satellite R-Series satellite, the sites were improved with new capabilities (Michalsky et 

al. 2016). In this study, we have used longwave radiation data at the Oklahoma site, 

which are available at hourly resolution. The ground observations used in this study are 

from the Oklahoma Mesonet network and one ARM site, which are independent of both 

NLDAS and NARR data (Xia et al. 2012). 

 Methodology 

The overarching idea behind the proposed methodology is that topography and 

vegetation cover have a large impact on surface atmospheric conditions. Therefore, we 

propose to use high-resolution topography and vegetation information to spatially 

downscale NLDAS-2 2m air temperature, surface pressure, 2m humidity, incident 

longwave/shortwave radiation, and 10m wind speed from 12.5 km to a 500 m regular 

Cartesian grid across Oklahoma. The downscaling approach comprises of two main steps: 

1) a statistical interpolation (bilinear interpolation) of all NLDAS-2 variables to match 

the downscaled terrain resolution of 500 m, and 2) deterministic downscaling rules to 

account for the local scale effects.  

 Air and Dew Point Temperature 

The downscaling of air and dew point temperature is based on a lapse rate 

correction that accounts for the strong temperature–elevation relationship. These two 

variables are used to derive the 500 m pressure, humidity, and downward longwave 
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radiation (that will be introduced in section 1.3.2). While 2m air temperature (T) is 

available from NLDAS-2, dew point temperature at the same altitude needs to be derived 

first. The 2m dew point temperature (Td) is calculated (in K) from vapor pressure using 

the (Lawrence 2005) method: 

𝑇𝑑 =
𝐶3 ln (

𝐸
𝐶1
)

𝐶2 − ln (
𝐸
𝐶1
)
 (1)  

where C1, C2, and C3 are constant, and their values are 611.21Pa/611.15Pa, 

17.368/22.452, and 238.88°C/272.55°C for water/ice, adopted from Buck (1981). E 

stands for vapor pressure (Pa) and is derived from the NLDAS-2 pressure and specific 

humidity by reorganizing the following equation that 𝐸 =
𝑃

0.622∓0.378𝑞
, where P and q 

represent the NLDAS-2 air pressure (Pa) and specific humidity (kg/kg), respectively. 

The lapse rate corrections of air and dew point temperature are defined as follows: 

𝑇̂ = 𝑇 + 𝛤(𝑍̂ − 𝑍) (2) 

𝑇𝑑̂ = 𝑇𝑑 + 𝛤𝑑(𝑍̂ − 𝑍)  (3) 

where a variable with/without “^” denotes the downscaled/original resolution one. T (K) 

is the NLDAS-2 2m air temperature. Z and Ẑ (m asl) are SRTM terrain elevation at the 

12.5 km resolution and at 500 m resolution, respectively. Γ and Γd (K/m) correspond to 

the temperature and dew point temperature lapse rates. The elevation and air temperature 

differences between a target grid cell and its eight nearest neighbors at each time step are 

calculated, and a line is fitted to describe the T-Z relationship. The slope of the fitted line 
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is taken as the estimate of Γ for the target grid cell. This process is repeated for all grid 

cells and time steps and similarly for Γd. As shown by maps of the lapse rate means and 

standard deviations, the average Γ is not a constant (although commonly assumed to be -

6.5 K/km) and the standard deviation is not null over time and across the study domain 

(Figure 2). Γ and Γd are computed based on NLDAS-2 because the goal is to produce a 

robust methodology which will generate high-resolution data from any coarse resolution 

product only with the help of elevation data and MODIS vegetation cover data, which are 

available all over the world at the target resolution.  

 

 
Figure 2. (a) Mean and (b) standard deviation of air temperature-based lapse rates and (c) mean and (d) 

standard deviation of dew point temperature-based lapse rates across Oklahoma during 2015. 

 

Figure 3 shows a comparison between the air temperature downscaling technique 

proposed here that adopts a dynamic lapse rate and a constant lapse rate. Correlation 
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coefficients are also computed between the downscaled air temperature NLDAS-2 and 

the corresponding MESONET observations across Oklahoma during 2015. Firstly, the 

correlation coefficient for the dynamic lapse rate case (0.97) is higher than the one 

obtained with a constant lapse rate (0.93), which is very close to the correlation between 

the original resolution NLDAS-2 and the in situ observations (0.94, as shown in Table 1), 

demonstrating minimal improvement due to the downscaling process in the latter case. 

Secondly, the downscaled temperature obtained assuming a constant lapse rate is 

consistently higher than the observed temperature, showing an overestimation, especially 

at low temperatures. Thirdly, the deviation around the 1:1 line is largely reduced when 

the dynamic lapse rate is introduced. 

 

 
Figure 3. Density scatter plots of hourly NLDAS-2 2m air temperature downscaled to 500 m resolution, using (a) 

a dynamic lapse rate and (b) a constant lapse rate against the corresponding Mesonet ground observations 

across Oklahoma during 2015. 
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 Pressure, Humidity, and Incident Longwave Radiation 

The downscaled 2m air temperature is used to adjust the surface pressure using the 

hydrostatic approximation and the ideal gas law (following the methodology developed 

by Cosgrove et al. 2003): 

𝑃̂ = 𝑃𝑒
−
𝑔(𝑍̂−𝑍)

𝑅𝑇𝑚 (4) (4) 

where R is the ideal gas constant (287J·kg-1·K-1), g is the gravitational acceleration 

(9.81m/s2), and Tm (K) is the mean air temperature between the T and T̂.  

The specific humidity is calculated with P̂ and Ê as follows: 

𝑞̂ =
0.622𝐸̂

𝑃̂ − 0.378𝐸̂
 

 (5) 

Ê is calculated based on the Magnus formula with T̂d (𝐸̂ = 𝐶1𝑒
𝐶2𝑇𝑑

̂

𝑇𝑑
̂+𝐶3). 

The downscaling of downward longwave radiation is based on the Cosgrove et al. 

(2003) method, which is derived from the Stefan-Boltzmann law: 

𝐿̂ =
𝜀̂

𝜀
(
𝑇̂

𝑇
)

4

𝐿 (6) 

where L is the NLDAS-2 incident longwave radiation (W/m2), and ɛ is emissivity. The 

empirical relationship suggested by Cosgrove et al. (2003) is applied here to calculate ɛ 

and ɛ̂. 
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 Incident Shortwave Radiation 

The shortwave radiation downscaling technique comprises four steps from different 

methodologies. First, the global shortwave radiation (S) is partitioned into direct (Sb) and 

(Sd) diffuse radiation based on the regression model proposed by Ruiz-Arias et al. (2010). 

This model estimates the solar transmissivity of the atmospheric column by defining the 

ratio of incident shortwave radiation between the surface level and the top of the 

atmosphere as the clearness index. Larger values of the clearness index indicate larger 

weighting for the direct shortwave. As a second step, Sb is adjusted for optical air depth 

difference, local illumination, and cast-shadowing and Sd is adjusted for sky obstruction 

(Fiddes and Gruber 2014; Tao and Barros 2018). In the third step, a reflected radiation 

component is estimated with the adjusted Sb and Sd, albedo, and a terrain configuration 

factor (Tao and Barros  2018). Fourth, the downscaled global shortwave radiation (Ŝ) 

results from the summation of the three components: 

𝑆̂ = 𝛿 𝑐𝑜𝑠(𝜃) 𝑒𝑘(𝑃̂−𝑃)𝑆𝑏⏟            
𝐵𝑒𝑎𝑚

+ 𝐹𝑣𝑆𝑑⏟
𝐷𝑖𝑓𝑓𝑢𝑠𝑒

+ 𝐴𝐹𝑡[𝑆𝑏̂ + (1 − 𝐹𝑣)𝑆𝑑̂]⏟              
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑

 
(7) 

where δ is a binary shadowing mask indicating whether the location is blocked by the 

shadow of nearby terrain. The presence of shadow implies that the local horizontal angle 

on the solar azimuth direction is higher than the solar altitude and vice-versa. cos(θ) is the 

cosine of the solar illumination angle, which indicates if the sun is below or above the local 

horizon: 

𝑐𝑜𝑠(𝜃) = 𝑐𝑜𝑠 𝜃𝑧 𝑐𝑜𝑠 𝛽 + sin 𝜃𝑧 sin 𝛽 𝑐𝑜𝑠(𝜃𝑎 − 𝛼) (8) 



22 

 

where θz and θa are the solar zenith and azimuth, respectively; α and β stand for the terrain 

aspect and slope, respectively; and k is the broadband attenuation coefficient (in Pa-1) 

calculated according to Sen Gupta and Tarboton (2016): 

𝑘 = −
𝑙𝑛(𝑆𝑇) − 𝑙𝑛(𝑆)

𝑃
 (9) 

where ST is the top-of-atmosphere incident shortwave radiation, computed based on 

𝑺𝑻 = 𝑺
∗ 𝒄𝒐𝒔𝜽𝒛, with S* being the solar constant (S* = 1370 W/m2; Dingman 2015). Fv is 

the sky-view factor indicating the portion of the visible sky of a location. Ft is the terrain 

configuration factor, which is a function of both sky-view factor and slope. Both Fv and Ft 

are calculated using the SAGA-GIS Sky View Factor Module (Häntzschel et al. 2005). A 

is the surface albedo from NLDAS-2. This study is conducted over Oklahoma which is a 

region characterized by neither frequent snowfalls nor sharp topography. Therefore, the 

effects of subgrid surface heterogeneity on the albedo are minor. In areas where the 

frequency of snow is high, albedo at finer resolution should be considered to account for 

such heterogeneity. 

 Wind Speed 

The downscaling of wind speed (W,  m/s) is based on an adjustment for friction 

velocity, terrain slope, aspect, and curvature (Tao and Barros 2018; Liston and Elder 2006). 

We start by assuming a logarithmic wind profile: 

𝑊̂ =
𝑢∗̂
𝜅
𝑙𝑛
𝐻 − ℎ0̂
𝑧0̂

 
 

(10) 
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where Ŵ is wind speed adjusted for the friction velocity û* (m/s), κ is the Von Kármán 

constant (~0.41), H is the measurement height (m above ground), ẑ0 is the surface 

roughness (m), and ĥ0 is the zero-plane displacement height (m). The friction velocity at 

high resolution is calculated by taking advantage of the dependence of the geostrophic drag 

coefficient on surface roughness and the assumption that the geostrophic wind component 

remains constant at different scales (Tao and Barros 2018):  

𝑢∗̂ = 𝑢∗ (
𝑧0̂
𝑧0
)
0.09

 (11) 

u* is calculated from the NLDAS-2 wind speed (W), MERRA-2 surface roughness (z0), and 

zero-plane displacement height (h0) using Eq.(10). Surface roughness and zero-plane 

displacement height are related to the type and height of vegetation (Allen et al. 2007; 

Bastiaanssen 2000; Dong et al. 2001). There are some other factors on which surface 

roughness and displacement height depend, e.g., land cover and snow cover. However, our 

analysis over Oklahoma found the vegetation index as the most important factor to 

downscale surface roughness. If other regions of the world are considered, the dependency 

of surface roughness and displacement height on such factors should be investigated. Given 

the difficulties in measuring vegetation characteristics, NDVI is often used as a proxy to 

estimate z0 and h0 (Bastiaanssen 2000). In this study, a customized function for z0 based on 

the MODIS NDVI is developed for every time step: 

𝑧0 = 𝑒
𝑎1𝑁𝐷𝑉𝐼+𝑎2 (12) 

where the coefficient a1 and a2 are evaluated by log-transferring z0 and NDVI at the 

NLDAS-2 resolution. Coefficients a1 and a2 have been calibrated for each time step over 
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the entire region (40x72 pixels); however, future applications of this methodology in more 

heterogeneous areas should consider a spatial analysis of these two parameters. Figure 4 

shows a histogram of the coefficients of determination (R2) between log-transferred z0 and 

NDVI. Most of the R2 values lie within 0.5 to 0.8, which reveals the strong correlation 

between the two variables. ĥ0 is estimated using a transfer function evaluated between z0 

and h0 Nicholas and Lewis (1980): 

𝑙𝑜𝑔10 𝑧0 = 𝑎3 𝑙𝑜𝑔10 ℎ0 + 𝑎4 (13) 

The coefficient a3 and a4 are evaluated at a coarse resolution for every time step, and 

then ẑ0 is substituted in for ĥ0.  

 

 
Figure 4. Frequency distribution of R2 for the linear regression between log-transferred surface roughness and 

MODIS NDVI. 
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The downscaled wind speed is further adjusted by the terrain slope and curvature 

following Liston and Elder (2006): 

𝑊𝑡̂ = 𝑊̂ (1 +
𝛺𝑠
2
+
𝛺𝑐
2
) (14) 

where Ŵt is the final 500 m wind speed adjusted for the friction velocity and terrain 

characteristics (m/s). Ωs and Ωc are the slope in the wind direction and curvature of terrain, 

respectively. 𝛺𝑠and 𝛺𝑐 are available at 500 m resolution – note that no hat is used for these 

symbols since they are not available at the NLDAS-2 native resolution of 12.5 km. 

 Results 

The annual average for the six atmospheric variables over Oklahoma during 2015 is 

presented in Figure 5 and Figure 6 at the original NLDAS-2 resolution (left panels) and at 

the downscaled 500 m resolution (right panels). Specifically, Figure 5 presents maps of 2m 

air temperature, surface pressure, and 2m specific humidity, whereas Figure 6 shows maps 

of downward longwave radiation, downward shortwave radiation, and 10m wind speed. 

These figures highlight how the spatial patterns of the original resolution NLDAS-2 

variables are retained in the downscaled maps. For instance, the temperature gradient (i.e., 

from colder NW regions to the warmer SE plains) is evident at both resolutions (Figure 5a 

and 5b) and is consistent with the topography gradient illustrated in Figure 1. However, the 

downscaled resolution variables are able to capture more detail, thanks to the inclusion of 

physiological feature information (e.g., orography, vegetation) in the downscaling 

techniques.  
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Five downscaled variables – air temperature, pressure, specific humidity, downward 

shortwave radiation, and wind speed – are then validated against ground observations at 

118 Mesonet stations, whereas downward longwave radiation is validated against data 

collected at the ARM station. Specific humidity is converted to relative humidity for 

comparison with the measurements recorded by the Mesonet network. Firstly, we present 

scatterplots of NLDAS-2 data (both at their native resolution and the downscaled products) 

against ground observations (Figure 7 and Figure 8). Secondly, we analyze maps of 

correlation coefficients across all sites in the study region to investigate the spatial 

variability of the downscaling technique performance (Figure 9 and Figure 10). Lastly, we 

compute overall statistics, including average correlation coefficient, additive bias, RMSE, 

and Nash Sutcliffe model efficiency (NSE) to summarize the performance of the proposed 

approaches for each variable across Oklahoma (Table 1).  

 



27 

 

 
 
Figure 5. Annual average maps of (a, b) 2m air temperature, (c, d) surface pressure, and (e, f) 2m specific 

humidity at the original NLDAS-2 resolution (left panels) and at the downscaled 500 m resolution (right panels). 
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Figure 6. Annual average maps of (a, b) downward longwave radiation, (c, d) downward shortwave radiation, 

and (e, f) 10m wind speed at the original NLDAS-2 resolution (left panels) and at the downscaled 500 m 

resolution (right panels). 
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Figure 7. Density scatter plots of NLDAS-2 variables at their original resolution (left panels) and at the 

downscaled 500 m resolution against the corresponding Mesonet ground observations for (a, b) 2m air 

temperature, (c, d) surface pressure, (e, f) 2m relative humidity (RH) at hourly resolution. 
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Figure 8. Density scatter plots of NLDAS-2 variables at their original resolution (left panels) and at the 

downscaled 500 m resolution against the corresponding Mesonet ground observations for (a, b) downward 

longwave radiation (L), (c, d) downward shortwave radiation (S), and (e, f) 10m wind speed (W) at hourly 

resolution. 

 

The downscaled temperature and pressure products align more closely with the 

Mesonet observations than the original resolution NLDAS-2 data, as shown by the density 
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scatterplots in Figure 7. The dynamic lapse-rate correction largely improves both the air 

temperature and pressure estimates, moving them closer to the 1:1 line. The correlation 

coefficient maps presented in Figure 9 a-d corroborate this point: although correlations 

between the original resolution NLDAS-2 estimates and observations are already high, 

they are even higher when the downscaled temperature and pressure products are 

considered. These maps also show that there is no spatial bias in the downscaling algorithm 

performance since the improvement in the correlation coefficient is evident across the 118 

Mesonet stations. For temperature, the correlation coefficient improves from 0.94 for the 

original resolution to 0.97 for the downscaled product, whereas for pressure, the correlation 

coefficient goes from 0.94 to 1.00 (Table 1). Although ground observations are quite 

representative of the coarse grid, the improvement in the correlation coefficients 

demonstrates that finer resolutions would be even more representative of the in situ 

observations. 

The downscaled relative humidity slightly deviates from the observed data; however, 

the proposed methodology shows a large improvement over the original resolution 

NLDAS-2 data (Figure 7 e-f). Overall the correlation improves from 0.69 to 0.92. 

Similarly, to what observed for temperature and pressure, correlations improve consistently 

at all stations across the study domain (Figure 9 e-f).  
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Figure 9. Maps of correlation coefficients of NLDAS-2 variables at their original resolution (left panels) and at 

the downscaled 500 m resolution against the corresponding Mesonet ground observations for (a, b) 2m air 

temperature, (c, d) surface pressure, (e, f) 2m relative humidity. 

 

The ARM site is used to validate the downscaled downward longwave radiation 

product. The sample size is smaller compared to the Mesonet stations, but still significant 

since data collected at the ARM sites are at hourly resolution and one year of data is 

considered, with a total of 8,627 data points. Although the improvement in this variable is 

not as great as the previous ones, both the scatterplots (Figure 8 a-b) and the correlation 

maps (Figure 10 a-b) reveal an improvement in the downscaled product. Specifically, the 
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downscaling scheme shifts the 500 m product closer to the ground observations, and the 

correlation improves from 0.69 to 0.82. Analogously to longwave radiation, the 

improvement in the downscaled shortwave radiation is not obvious from the scatterplot 

(Figure 8 c-d), but Figure 9 c-d show higher correlations in the downscaled product over 

the original NLDAS-2 data. 

 

 
Figure 10. Maps of correlation coefficients of NLDAS-2 variables at their original resolution (left panels) and at 

the downscaled 500 m resolution against the corresponding Mesonet ground observations for (a, b) downward 

longwave radiation, (c, d) downward shortwave radiation, and (e, f) 10m wind speed. 
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For wind speed, we do not notice a clear improvement in the downscaled product 

when analyzing the scatterplots in Figures 8 e-f. Similarly, the correlation values 

presented in Figures 10 e-f are very similar to each other at most of the Mesonet stations. 

 

Table 1: Statistical metrics for each NLDAS-2 atmospheric forcing at their original and at downscaled 

resolution (in italic) with respect to ground observations. 

Native 

Resolution/Downscaled 
Correlation Bias RMSE NSE Sample Size 

Temperature (K)  0.94/0.97 3.94/1.95 5.09/2.69 0.74/0.93 1,028,409 

Pressure (hPa) 0.94/1.00 11.6/1.52 13.8/2.75 0.56/0.99 1,030,356 

Relative Humidity (%) 0.69/0.92 13.2/9.71 17.1/12.6 0.25/0.53 1,028,328 

Longwave Radiation (W/m2) 0.73/0.82 37.7/28.1 49.4/36.9 0.36/0.67 8,627 

Shortwave Radiation (W/m2) 0.89/0.93 63.7/52.3 119/101 0.81/0.86 1,029,358 

Wind Speed (m/s) 0.67/0.70 2.62/1.75 3.04/2.19 -0.27/-0.24 1,020,335 

 

The overall statistics presented in Table 1 confirm the improved performance of 

the downscaled variables with respect to the original NLDAS-2, in terms of additive bias, 

RMSE, and NSE, computed against the hourly ground observations recorded at 118 

stations (and for the ARM site for longwave radiation). RMSE of pressure is reduced 

from 13.8hPa for the original resolution NLDAS-2 to 2.75hPa for the downscaled 

product. Moreover, for the downscaled pressure, NSE gets close to 1, showing an almost 

perfect match with the corresponding ground observations. For longwave radiation, both 

bias (from 13.18 to 9.63W/m2) and RMSE (from 17.1 to 12.6W/m2) are lower thanks to 
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the downscaling procedure. For shortwave radiation, bias and RMSE reduce from 63.73 

to 52.30W/m2 and from 119 to 100.68W/m2, respectively, while the correlation 

coefficient and the NSE increase from 0.89 to 0.93 and from 0.81 to 0.86, respectively. 

For wind speed, the overall statistical analysis shows slightly improved results in terms of 

RMSE for the downscaled product (2.19m/s) with respect to the original resolution 

NLDAS-2 wind speed (3.04m/s). 

 Conclusions 

This study presented a downscaling methodology for six atmospheric variables that are 

commonly used as land surface model inputs. The proposed downscaling framework 

comprises a statistical interpolation and a set of deterministic physical rules and is tested 

on the NLDAS-2 dataset across Oklahoma during 2015. The novelties introduced in this 

study with respect to previous work can be summarized as follows. First, we adopt a 

dynamic lapse rate of air and dew point temperature that is not constant in space and time. 

This step is extremely important since i) lapse rate showed high variability across 

Oklahoma, and ii) the dynamic lapse rate is used to downscale air temperature, which is 

then used to downscale air pressure and air humidity, thus, critically modifying the 

downscaling of all three variables. Second, the method adopted for downscaling shortwave 

radiation considers multiple factors, including a clearness index, local illumination, cast-

shadowing, sky obstruction, and topographic configuration. Third, spatially downscaled 

surface roughness and zero-plane displacement height are introduced in the downscaling 

technique adopted for wind speed. In summary, this work combines different 
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methodologies that have been previously proposed and modifies some of them to account 

for more factors. 

To assess the improvement with respect to the original resolution dataset (at 12.5 km 

resolution), the 500 m downscaled products were compared to high-quality, high-

resolution ground observations. The goal of this work is to prove the viability of the 

proposed methodology where high-quality, high-resolution continuous ground-based data 

are available, and the Oklahoma Mesonet network offers such dataset.  

For all the atmospheric variables, an improvement was observed in terms of several 

performance metrics (bias, correlation coefficient, RMSE, and NSE). Except for wind 

speed, the improvement in the other five downscaled products with respect to the original 

NLDAS-2 dataset was found substantial in terms of RMSE, correlation, and NSE. Thanks 

to the adopted dynamic lapse-rate correction, the downscaled temperature and pressure 

matched almost perfectly with the ground observations. Although the improvements in 

specific humidity, longwave radiation, and shortwave radiation were not as obvious, the 

statistical analysis revealed the pointedly better performance of the downscaled products 

with respect to their native resolution version. Overall, the downscaled atmospheric 

products captured more spatial variability compared to the original NLDAS-2.  

During the past few decades, land surface models have become popular for simulating 

surface energy and water fluxes in response to near-surface atmospheric forcing. The 

downscaled near-surface atmospheric forcing dataset developed in this study would 

facilitate the transition of these models to hyper-resolution and improve our ability to 

monitor and predict the Earth’s terrestrial water, energy, and biogeochemical cycles at 
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scales that are relevant for decision making. Nevertheless, this study only tested the 

proposed methodology over Oklahoma and during one year. More validation exercises 

using quality-controlled observations and longer time series should be conducted to 

understand the potential of such an approach in different regions of the world. Although 

the downscaling approach here was applied only to the NLDAS-2 dataset, the proposed 

methodology could be applied to any other dataset. The methodology proposed in this 

study can be replicated in other regions of the world, by applying the downscaling 

technique to global datasets, such as the Modern-Era Retrospective Analysis for Research 

and Applications Version 2 (MERRA-2; Rienecker et al. 2011, Gelaro et al. 2017) and the 

European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5th 

Generation (ERA-5; Dee et al. 2011), as presented in Mei et al. (2018). Moreover, the 

downscaling spatial resolution is limited to 500 m for this work. This method can 

potentially be applied to finer resolutions if all parameters used in the proposed framework 

are made available at higher resolutions in the future. 
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2. TOWARDS HYPER‐RESOLUTION LAND‐SURFACE MODELING OF 

SURFACE AND ROOT ZONE SOIL MOISTURE 

The goal of this chapter is to estimate surface and root zone soil moisture at 

resolutions that are useful for decision making and water resources management. A 500 

m atmospheric forcing dataset is developed from the 12.5 km NLDAS-2 (North America 

Land Data Assimilation System) products across Oklahoma, where high-quality 

observations are available for validation purposes. A land surface model is then forced 

with three combinations of input variables to simulate surface and root zone soil 

moisture: 1) NLDAS-2 atmospheric forcings at their original resolution; 2) downscaled 

NLDAS-2 atmospheric variables (i.e., near-surface air temperature and humidity, wind 

speed and direction, incident longwave and shortwave radiation, pressure) and original 

resolution NLDAS-2 precipitation; and 3) downscaled NLDAS-2 atmospheric variables 

and precipitation. Results show that the third simulation is able to bring modeled 

standard-normal deviates of both surface and root zone soil moisture closer to in situ 

observations, whereas the second simulation only shows slight improvements with 

respect to one forced with original resolution NLDAS-2 data. This is particularly evident 

for negative values of standard-normal deviates, which correspond to drier than usual 

cases, due to the improved ability of the downscaled precipitation to detect missed events 

and no-rain cases. In summary, finer resolution forcings have the potential to improve 

simulations of soil moisture, and the resolution of precipitation plays a critical role in 

improving the time series of soil moisture standard-normal deviates. 
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 Introduction 

 

By controlling the partitioning of available energy incident on the land surface, 

soil moisture is a key variable in land–atmosphere interactions that impact local weather, 

such as cloud coverage and precipitation, and hydrological parameters, such as runoff and 

evapotranspiration (Seneviratne et al. 2010). Soil moisture is also involved in several 

feedbacks, e.g., soil moisture-temperature and soil moisture-precipitation, that may be 

significant not only at the local scale but also at the regional and global scale. In 

particular, root zone soil moisture plays a prime role in the regulation of water and energy 

budgets at the soil–vegetation–atmosphere interface through evaporation processes of the 

surface soil layer and plant transpiration (Shukla and Mintz 1982). If the initialization of 

root-zone soil moisture is not accurate, it may cause drifts of the temporal evolution of 

the surface state variables and degrade weather forecasts (Beljaars et al. 1996; Dirmeyer 

2000; Koster and Suarez 2003). Thus, realistic estimates of surface and root-zone soil 

moisture can improve weather and climate prediction, hazard mitigation (floods and 

droughts), agricultural planning, and water resources management.  

As the global availability of in situ high-quality/high-resolution soil moisture 

measurements is limited, satellite missions, such as the Soil Moisture Active Passive 

(SMAP; Entekhabi et al. 2010a) and the Soil Moisture Ocean Salinity (SMOS; Kerr et al. 

2001), represent a valid alternative. Satellite-based instruments measure land surface 

brightness temperature and radar backscatter, thus providing information on surface soil 

moisture (top 5 cm of the soil column). The significance of these products depends 

critically on the resolution at which they are available, which often limits their use in 



40 

 

decision making. Therefore, modeling is necessary to estimate soil moisture and its 

variations over time, space, and with depth in the soil column. 

This need for improved accuracy and resolution of soil moisture across different 

landscapes drove the development of hyper-resolution land surface modeling. Models at 

high resolution, often referred to as hyper-resolution (100 m to 1 km globally), have 

recently been able to provide detailed information about the storage, movement, and 

quality of carbon and water at and near the land surface (Wood et al. 2011). However, 

developing such modeling systems is challenging, as adequate model physics should be 

assessed, computing resources must be available, and atmospheric variables at such 

resolutions are needed as input to force the model (Beven et al. 2015; Garnaud et al. 

2015; Singh et al. 2015; Ji et al. 2017). 

Land surface models (LSMs) generally require a set of near-surface atmospheric 

forcing variables at every time step: air temperature, air humidity, wind speed and 

direction, incident longwave radiation, shortwave radiation, and precipitation. Physical, 

dynamic, and statistical downscaling approaches have been developed in the past to 

interpolate coarser resolution atmospheric variables to the required resolution (Cosgrove 

et al. 2003; Haylock et al. 2006; Liston and Elder 2006; Girotto et al. 2014; Sunyer et al. 

2015; Gaur and Simonovic 2017). Rouf et al. (2019) recently developed a downscaling 

approach for a set of atmospheric variables based on correlations with landscape 

information, such as topography, surface roughness, and vegetation. Their proof-of-

concept over Oklahoma showed that correlation coefficients between the downscaled 

products (at 500 m) and ground observations were consistently higher (and biases 
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smaller) than the ones between the native resolution data (at 12.5 km) and ground 

observations. Moreover, the random forest (RF) framework developed by Mei et al. 

(2020) for downscaling precipitation showed promises. Specifically, they downscaled the 

Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) 

precipitation product to 1 km resolution using the RF classification and regression 

algorithm across High Mountain Asia. Their results suggest improvements with respect to 

the original resolution MERRA-2 and comparable performance with several satellite 

products and ground-based observations, both in terms of precipitation magnitude and 

variability. 

This work investigates the potential of applying these downscaling techniques to a 

set of atmospheric forcings and subsequently force an LSM to estimate surface and root 

zone soil moisture at 500 m across Oklahoma. Particular attention is given to the 

resolution of precipitation. The reason is twofold. First, being precipitation the main 

driving forcing variable in land surface modeling, it controls several hydrological and 

biogeochemical processes, including runoff, evaporation, transpiration, groundwater 

recharge, and soil moisture (Hazra et al. 2019). Second, precipitation largely varies both 

in space and time, and its resolution may play a fundamental role in the estimation of soil 

moisture. Nevertheless, soil moisture temporally integrates prior precipitation and is 

subject to lower and upper limits, and the variability of errors in soil moisture is typically 

smaller than that of errors in precipitation (Maggioni et al. 2012). Hence, the impact of 

atmospheric forcings and their associated resolutions on soil moisture simulated by an 

LSM is not straightforward. 
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This works seeks therefore to answer the following main research questions: do 

finer resolution forcing data improve estimates of surface and root-zone soil moisture 

simulated by an LSM? is the resolution of precipitation more important than the one of 

others? In order to answer such questions, we propose three different simulations that use 

different combinations of LSM input data (at different resolutions), as described in the 

Methodology section. The coarse resolution dataset comes from Phase 2 of the North 

American Land Data Assimilation System (NLDAS-2; Cosgrove et al. 2003). The 

downscaling approaches developed by Rouf et al. (2019) and Mei et al. (2020), which 

consider local topography to downscale a set of atmospheric variables, are applied to the 

NLDAS-2 dataset. 

 

 Methodology 

This work focuses on a domain in Oklahoma, in the Midwestern United States 

during 2015. This area is chosen because of the availability of a dense network of 

hydrometeorological stations, the Oklahoma Mesonet (Brock et al. 1994; McPherson et 

al. 2007; Figure 11), which is fundamental to evaluate the proposed modeling approach. 

Oklahoma is characterized by a gentle topography that spans from an altitude of 88 

MAMSL (meters above mean sea level) in the southeastern corner to a height of 1515 

MAMSL in the northwestern corner and by a continental climate with cold winters and 

hot summers. The western region is drier compared to the wetter eastern half, as shown in 

Figure 11. 
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Figure 11. Maps of the study region showing (a) elevation (from the Shuttle Radar Topography Mission (SRTM; 

“SRTM Data – CGIAR-CSI SRTM” n.d.) and location of the Mesonet stations, (b) average precipitation in 2015 

measured by the Mesonet rain gauges, and average (c) surface soil moisture and (d) root zone soil moisture 

observed at the Mesonet stations in 2015.  

 

The Noah-MP is selected as the land surface model (see section 2.2.2). The 

meteorological forcing used for Noah-MP comes from NLDAS-2 (Cosgrove et al. 2003; 

Mitchell 2004). The non-precipitation land-surface forcing fields for NLDAS-2 are 

derived from the NCEP North American Regional Reanalysis (NARR; Mesinger et al. 

2006), while NLDAS uses the Eta Data Assimilation System for precipitation (EDAS; 

Rogers et al. 1996). NLDAS-2 has a spatial resolution of 1/8 degree and temporal 

resolution hourly for the period of 1979-present. 

The original NLDAS-2 variables (near-surface air temperature and humidity, 

wind speed and direction, incident longwave and shortwave radiation, pressure and 

precipitation) are downscaled to 500 m using the combination of physically-based 
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methods (for all variables but precipitation) and a RF-based framework (for 

precipitation), as described in the next section. Then, both the original resolution 

NLDAS-2 and the downscaled variables are used to force the Noah-MP land surface 

model to produce high-resolution soil moisture estimates. Three different simulations are 

proposed in this work, in which Noah-MP is forced with different combinations of input 

data:1) NLDAS-2 atmospheric variables and precipitation at their original resolution 

(hereinafter, simulation 1); 2) NLDAS-2 downscaled atmospheric variables (i.e., near-

surface air temperature and humidity, wind speed and direction, incident longwave and 

shortwave radiation, pressure) and original resolution NLDAS-2 precipitation 

(hereinafter, simulation 2); and 3) NLDAS-2 downscaled atmospheric variables and 

precipitation (hereinafter, simulation 3). 

 The Downscaled Forcing Dataset 

The downscaling framework proposed by Rouf et al. (2019) is based on a set of 

deterministic physical rules and was tested on the NLDAS-2 dataset across Oklahoma 

during 2015. Their methodology assumes that topography and vegetation cover have a 

large impact on surface atmospheric conditions, and, thus, uses high-resolution 

topography and vegetation information to spatially downscale 12.5 km NLDAS-2 2m air 

temperature, surface pressure, 2m humidity, incident longwave/shortwave radiation, and 

10-m wind speed to 500 m. Moreover, this approach adopts i) a dynamic lapse rate of air 

and dewpoint temperature to downscale air temperature, pressure, and humidity, ii) 

multiple factors, including a clearness index, local illumination, cast- shadowing, sky 

obstruction, and topographic configuration for downscaling shortwave radiation, and iii) 
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a spatially downscaled surface roughness and zero-plane displacement height for 

downscaling wind speed. 

In Rouf et al. (2019), the 500 m downscaled products were compared to high-

quality, high-resolution ground observations collected by the Oklahoma Mesonet 

network. For all the atmospheric variables, an improvement was observed in terms of 

(bias, correlation coefficient, root mean square error, and Nash–Sutcliffe efficiency). 

Additionally, the downscaled atmospheric products were able to overall capture more 

spatial variability than the original NLDAS-2. Since the dataset adopted in this study is 

exactly the same as the one developed and validated by Rouf et al. (2019) over the same 

domain, no additional evaluation is proposed here and the reader is referred to their study 

for supplementary information and more detail on the algorithms and their performance. 

The 500 m precipitation dataset is obtained through the framework developed by 

Mei et al. (2020). The core of this method is RF classification and regression. First, a 

recursive feature elimination procedure is used to select relevant predictors, which 

include variables representing atmospheric, geographic, and vegetation cover information 

(i.e., air temperature, dew point temperature, air pressure, specific humidity, relative 

humidity, incident longwave radiation, incident shortwave radiation, wind speed, 30-day 

lagged vegetation index, 60-day lagged vegetation index, distance to the closest dry grid 

cell, climate class, latitude, longitude, and day of year). The eight variables selected as 

relevant predictors are dew point temperature, air pressure, specific humidity, incident 

longwave radiation, incident shortwave radiation, wind speed, 60-day lagged vegetation 

index, and day of year. A binary precipitation mask is produced based on a daily 
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cumulative precipitation rate greater than 0 mm, and an RF classification model is trained 

to the daily precipitation mask. Then, the RF regression model is applied to provide the 

500 m precipitation field using the downscaled predictors over rainy pixels only. The 

obtained product is validated across the study area using observations collected at the 

Mesonet rain gauges, as discussed in section 2.2.3. 

The RF-based framework provides downscaled precipitation at 500 m/daily 

resolution. This downscaled precipitation is further disaggregated to hourly for the land 

surface model following a method similar to (López López et al. 2018). Specifically, the 

fraction of precipitation per hour derived from the 12.5 km NLDAS-2 dataset is used to 

disaggregate daily downscaled precipitation at 500 m resolution to the hourly time scale, 

following these steps: 

(i) Precipitation at 12.5 km resolution that occurs during the ith hour (Pi) is divided 

by the daily total precipitation to obtain the fraction of precipitation F for hour i: 

𝐹𝑖 =
𝑷𝒊

∑ 𝑷𝒊
𝟐𝟒
𝒊=𝟏

  
(15)  

 

where 24 is the number of hours in a day. Note that Fi is defined for pixel with 

non-zero daily precipitation accumulation only. 

(ii) The fractions of precipitation obtained for the 12.5 km grid, Fi, are bilinearly 

interpolated to the 500 m grid, obtaining FDi. 

(iii)Daily downscaled precipitation is multiplied by the corresponding fractions FDi 

to obtain hourly precipitation at each 500 m grid cell. Daily precipitation is 

disaggregating evenly for pixels whose FDi is not defined.  
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 The Noah-MP Land Surface Model Simulations 

The LSM adopted in this study is the Community Noah Land Surface Model with 

Multi- Parameterization Options (Noah-MP) (version 3.6; Niu et al. 2011; Yang et al. 

2011). The Noah-MP is based on the original Noah LSM, with improved physical 

processes, such as the separation of the vegetation canopy from the ground surface and 

the inclusion of a multi-layer snow model. Noah-MP has been shown to successfully 

simulate land-atmosphere energy, water, and carbon exchanges and hydrologic states, 

such as surface runoff, soil moisture, snow depth, snow water equivalent, and terrestrial 

water storage both over the United States (e.g., Cai et al. 2014; Chen et al. 2014; Ma et al. 

2017) and in other complex regions, such as High Mountain Asia (Xue et al. 2019). 

Noah-MP is run within the NASA Land Information System (LIS; Peters-Lidard 

et al. 2007), a software for high-performance land surface modeling and data assimilation 

that provides a common framework capable of ensemble land surface modeling on 

points, regions or the globe. In order to initialize the offline LSM, a multi-year spin-up 

loop approach is adopted. The model is first spun up for 20 years, looping over a 10-year 

period from 2005 to 2014, reaching quasi-equilibrium for both surface and subsurface 

temperature states and then run at a 15 min time step to produce hourly output for 2015 

on a regular 1 km and 12.5 km spatial grid. Model parameters (e.g., land cover, land 

mask, soil texture, elevation, slope, aspect, greenness data, albedo, snow albedo, bottom 

temperature) are used at 1 km for the high-resolution runs and averaged to the 12.5 km 

grid for the coarser resolution simulations. Quasi-equilibrium is reached when the 
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difference in soil moisture values between the last two runs was less than 0.1 %, 

following the approach in Rodell et al. (2005) and Cai et al. (2016). 

 

Table 2. Noah-MP model runtime options and parameters used in this study.  

Option Definition 

Vegetation model option Dynamic vegetation 

Canopy stomatal resistance option Ball-Berry type (Ball et al. 1987) 

Soil moisture factor for stomatal resistance option Original Noah (Chen and Dudhia 2001) 

Runoff and groundwater option TOPMODEL with groundwater (Niu et al. 2007) 

Surface layer drag coefficient option Monin-Obukhov (Brutsaert 1982) 

Supercooled liquid water option No iteration (Niu and Yang 2006) 

Frozen soil permeability option Linear effects, more permeable (Niu and Yang 2006) 

Radiation transfer option Modified two-stream 

Snow surface albedo option CLASS (Verseghy 1991) 

Rainfall and snowfall option Jordan (Jordan 1991) 

Lower boundary of soil temperature option Noah 

Snow and soil temperature time scheme Semi-implicit 

Parameter Value 

Number of soil layers 4 

Each soil layer thickness (from top to bottom) 0.1, 0.3, 0.6, 1.0 meter 

Soil color index 4: for medium dark color soil 

 

Within LIS, the NLDAS-2 forcing fields (i.e., near surface air temperature and 

specific humidity, downward longwave and shortwave radiation, eastward and northward 

wind, surface pressure, and total precipitation) with an hourly temporal resolution and 

12.5 km and 1 km spatial resolution onto the same model time step. The static input data 

for Noah-MP are obtained from the National Center for Atmospheric Research 

Application Laboratory website (https://ral.ucar.edu/solutions/products/noah-

multiparameterization-land-surface-model-noah-mp-lsm), which are preprocessed onto 

the same model grid using the NASA Land surface Data Toolkit (LDT) public release of 
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version 7.2 (Arsenault et al. 2018). The Noah-MP is developed based on the original 

Noah land surface model, with multiple options available for surface water infiltration, 

runoff, groundwater transfer and storage, dynamic vegetation, canopy resistance, and 

frozen soil physics (Niu et al. 2011). Table 2 summarizes all Noah-MP options and 

parameters used in this study. 

 Validation Dataset and Performance Metrics 

The Oklahoma Mesonet network, used as reference for validating the model 

estimates (both in terms of precipitation and soil moisture) is a statewide network 

designed and implemented by the University of Oklahoma and Oklahoma State 

University (Figure 11). It consists of 120 automated environmental monitoring stations 

that provide regular measurements of several atmospheric and hydrologic variables 

(Martens et al. 2017; “Mesonet | Home Page,” n.d.). The measurements are taken every 5 

minutes and transmitted to a central facility that performs quality control. 

The total amount of rainfall is measured by tipping bucket rain gauge sensors 

(approximately 0.01 inch per tip, or 0.254 mm). The gauges are located 0.6-m above the 

ground, have a 30.5 cm diameter opening, and are surrounded by a 121 cm shield to 

minimize wind effects. Mesonet uses unheated gauges because of their cost and power 

efficiency, which may cause underestimation in case of snow or freezing rain events.  

Soil moisture at each Mesonet site is measured using thermocouples at four 

different depths (5, 25, 60, and 75 cm). For each measurement, temperature is measured 

before and after a short heat pulse (21 seconds). Each sensor measurement is calibrated 

with its own coefficient first; then a linear regression is applied to normalize the response 
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and reduce sensor-specific variances. Using a set of empirical coefficients measured from 

different retention curves, the volumetric water content is determined from the soil matric 

potential, which is a measure of the capillary force needed to retain water in the soil, 

calculated using the calibrated temperature values (Van Genuchten 1980; Arya and Paris 

1981; Illston et al. 2008).  

In this work, we focus on anomaly time series of precipitation and soil moisture, 

i.e., standard-normal deviates, computed by subtracting the 2015 yearly mean and 

dividing by the corresponding standard deviation. This is because we are well aware of 

systematic differences between in situ observations and model estimates due to the point-

scale character of the first versus the distributed nature of the latter. In the case of soil 

moisture, there is also a mismatch in the available measurement depths and the vertical 

resolution of the land surface model. Specifically, surface soil moisture in this manuscript 

refers to the Mesonet soil moisture measured at 5-cm depth and the 0–10-cm soil 

moisture output from the Noah-MP model, whereas root zone soil moisture is defined as 

the Mesonet observation at 60cm depth and the 40–100-cm (the mid-point of the layer is 

70cm) output from Noah-MP. Standard-normal deviates capture the phase 

correspondence between model estimates and in situ measurements, regardless of 

potential mean biases or differences in dynamic range (Maggioni et al. 2011, Entekhabi 

et al. 2010b). 

To validate the downscaled precipitation dataset against the Mesonet in situ 

observations, we adopt both continuous metrics like correlation coefficient (R) and root 

mean square error (RMSE) of time series of standard-normal deviates. Additionally, we 
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investigate categorical metrics like hit rate, probability of detection, threat score, 

probability of false detection, and false alarm rate, defined based on a contingency table 

(Table 3). Specifically, the hit rate (HR) measures the number of events that were 

correctly detected – either both products detect rain (hits) or neither does (correct no-rain) 

– divided by the total number of events (N). The probability of detection (POD) assesses 

the chances that the model estimates (in our case, either NLDAS-2 or the downscaled 

product) correctly detect rain (hits) when the in situ stations measure rain (hits + misses). 

The threat score (TS) is equal to the total number of correctly detected events (hits) 

divided by the total number of estimated events plus the number of misses (hits + false 

alarms + misses). The probability of false detection (POFD) measures the number of false 

alarms per the total number of non-events (false alarms + correct zeros), whereas the 

false alarm rate (FAR) is computed as the number of false alarms per the total number of 

estimated events (hits + false alarms). 

For soil moisture, we analyze the time series of station-averaged standard-normal 

deviates of surface and root zone soil moisture simulated by Noah-MP for the three 

experiments described above and the corresponding Mesonet observations to study the 

temporal correspondence between model prediction and in situ measurements. Similar to 

precipitation, soil moisture standard-normal deviate time series is computed by 

subtracting the 2015 yearly mean and dividing by the corresponding standard deviation. 

Next, the cumulative distribution function (CDF) of each dataset is computed to 

investigate whether the model performs particularly well (or poorly) for certain value 

ranges of surface/root zone soil moisture. We also analyze the scatterplots of simulated 
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soil moisture deviates versus their corresponding reference values to visually assess the 

proximity of these two datasets for each proposed simulation. As the last step, we 

summarize what observed through the time series, CDFs, and scatterplots in boxplots of 

correlation coefficients and RMSEs computed between the model estimates and the 

Mesonet observations. 

 Results 

 Precipitation 

In order to validate the downscaled precipitation product, we investigate maps of 

precipitation standard-normal deviates and compute correlation coefficients and root mean 

square errors between the original resolution NLDAS-2 (and downscaled product) deviates 

and the corresponding Mesonet deviates at each site across the study region (Figure 12). 

The annual average for precipitation (mm/day) over Oklahoma during 2015 is presented in 

Figure 12(a) at the original NLDAS-2 resolution and in Figure 12(b) at the downscaled 500 

m resolution. The overall statistics, shown on the plots to summarize the product’s 

performance, prove that R does not change and RMSE decreases thanks to downscaling. 

In general, R and RMSE only slightly improve the precipitation anomalies after 

downscaling. Some locations show poor performance in the original NLDAS-2 dataset, 

and the downscaling algorithm only marginally improves some of them, e.g., the yellow 

(dark blue) dot located in the panhandle in panel 12c (12e) turns into brownish (light blue) 

in panel 12d (12f), demonstrating a slightly higher correlation and smaller root mean square 

error. A larger improvement is noticed in RMSE compared to R at several stations. 
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Figure 12. Maps of standard-normal deviates of the original resolution NLDAS-2 (a) and downscaled product 

(b) averaged during 2015, correlation coefficients (c, d) and root mean square errors (e, f) between Mesonet and 

NLDAS-2 at the original resolution (left column) and downscaled (right column). 

 

Although the improvement in the statistical metrics is not substantial, the level of 

detail that the 500 m map (1a) presents compared to the native NLDAS-2 resolution one 

(1b) is certainly noteworthy. Figure 12 also demonstrates that there is no systematic 

spatial bias introduced by the downscaling algorithm since the improvement in the RMSE 

is evident at most Mesonet stations, whereas R values are consistently similar to the ones 

observed in the original dataset. 
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Table 3. Contingency table to compute categorical statistics for the original NLDAS-2 precipitation dataset and 

the downscaled products against Mesonet observations. The rain/no-rain threshold (th) is set to 0.025 cm/day 

(which corresponds to 0.01 inch/day). 

N = 43,628 
Observation 

> th ≤ th 
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> th 
Hits 

10,513/10,380 

False alarms 

2,564/3,697 

≤ th 
Misses 

5,133/3,585 

Correct zeros 

25,418/25,966 

 

As shown by the contingency table in Table 3 and the categorical statistics in 

Table 4, the downscaled precipitation product is able to improve (decrease) the number of 

misses, and therefore correctly detect more no-rain events. This results in a slightly larger 

HR and TS (i.e., 1% higher) and in an enhanced POD (from 72% to 79%). The downside 

is an increased false alarm rate (from 18% to 23%) and a slightly higher probability of 

false detection (i.e., 1% higher), although still below 10%. False alarms are particularly 

critical in flood prediction, but in agriculture management, missed events are also 

essential, for instance, to avoid irrigating crops where and when there is no need. 

 

Table 4. Categorical statistics of the original NLDAS-2 precipitation dataset and the downscaled products 

against Mesonet observations computed during 2015 across all stations and corresponding pixels. 

Categorical Statistic Definition NLDAS-2/ Downscaled 

Hit Rate (HR) (Hits + Correct zeros)/N 0.86/0.87 

Threat Score (TS) Hits/ (Hits +False alarms + Misses) 0.63/0.64 

Probability of Detection (POD) Hits/ (Hits + Misses) 0.72/0.79 

Probability of False 

Detection (POFD) 
False alarms/ (False alarms + Correct zeros) 0.07/0.09 

False Alarm Ratio (FAR) False alarms/ (False alarms + Hits) 0.18/0.23 
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 Soil Moisture 

Figure 13  

Figure 13. Maps of average surface (left column) and root zone (right column) soil moisture 

during 2015 from Noah-MP simulation 1 (a, b), simulation 2 (b, d), and simulation 3 (e, f) 

across the study region.presents maps of 12.5 km output soil moisture obtained from the 

Noah-MP model forced with the native resolution NLDAS-2 atmospheric variables 

(simulation 1) and output at 500 m resolution from simulations 2 and 3, forced with the 

downscaled NLDAS-2 data. As a reminder, in simulation 2 only select atmospheric 

variables (i.e., near-surface air temperature and humidity, wind speed and direction, 

incident longwave and shortwave radiation, pressure) are downscaled and the original 

resolution NLDAS-2 precipitation is used, whereas in simulation 3 all NLDAS-2 

atmospheric variables, including precipitation, are downscaled to 500 m. The spatial 

distribution of soil wetness across the study region is maintained when moving the coarser 

12.5 km to the finer grid. Nevertheless, the level of detail added by the downscaling 

procedure is evident when comparing maps in the first row with the remainder. 
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Figure 13. Maps of average surface (left column) and root zone (right column) soil moisture during 2015 from 

Noah-MP simulation 1 (a, b), simulation 2 (b, d), and simulation 3 (e, f) across the study region. 

 

In order to investigate the temporal variability of soil moisture, Figure 14 presents 

station-average standard-normal deviate daily time series of model-predicted surface and 

root zone soil moisture for the three simulations and corresponding Mesonet observations 

during the study period. First off, standard-normal deviate time series are consistent 

between surface and root zone soil moisture. Second, variations of the modeled soil 

moisture in all three simulations are consistent with the Mesonet observations. Third, 

simulation 3 (which uses as input all the downscaled atmospheric variables, including 

precipitation) is able to bring the model closer to the in situ time series, especially when 
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the soil is either particularly wet (winter) or dry (summer). This is noticeable both in 

surface and root zone soil moisture time series. 

 
Figure 14. Time series of standard-normal deviates of (a) surface and (b) root zone soil moisture averaged across 

the study area, simulated by Noah-MP (3 simulations) and observed by the Masonet network during 2015 

 

Cumulative distribution functions of the standard-normal deviates of soil moisture 

estimates and observations are constructed based on all model pixels where both a 

Mesonet measurement is available. CDFs for each simulation and for the Mesonet 

observations are shown in Figure 15. First off, simulations 1 and 2 are very closed to each 

other, as also demonstrated by the time series in Figure 14, with a slight difference for 

low values of standard-normal deviates (between -2.5 and -1.5) and being more 
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pronounced in the root zone soil moisture distributions. This stresses how the resolution 

in the input atmospheric variables only has a minor impact on modeled soil moisture 

anomalies. The story is very different when actual values of soil moisture are considered 

(rather than anomalies), as simulation 2 is able to remove the bias between the original 

resolution Noah-MP (i.e., simulation 1) and the reference dataset. However, since this 

comparison is not completely fair, as discussed in Section 2.3.2, such analysis is not 

discussed here. 

 

 
Figure 15. Cumulative distribution functions of standard-normal deviates of soil moisture from the three Noah-

MP simulations and the Mesonet observations 

 

The CDF from simulation 3 is much closer to the ground observations both in 

terms of surface and root zone moisture and particularly for negative standard-normal 

deviates, i.e. when the soil is drier than the average value. These results suggest that the 

higher resolution precipitation product improves the accuracy of the land surface model 

under dry condition, which is linked to the better performance of the downscaled 
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precipitation product with respect to the original resolution NLDAS-2 in terms of number 

of misses and correct detection of no-rain events (as shown in Table 3 and Table 4). 

What previously shown in the time series and CDFs is corroborated by the density 

scatterplots in 

 

Figure 16 that present soil moisture predicted by Noah-MP in the three different 

simulations versus the corresponding Mesonet observations. Simulation 3 largely 

improves surface soil moisture estimates, moving them closer to the 1:1 line with respect 

to the native resolution simulation (simulation 1) and the one with only the atmospheric 

variables downscaled to 500 m, but not the precipitation input (simulation 2). Once again, 

this is particularly evident at negative values of standard-normal deviates, which are 

pushed closer to the reference (Mesonet) values. In the case of root zone soil moisture, 

the improvement is not as obvious as in surface soil moisture, which is why Rs and 

RMSEs are investigated next. 



60 

 

In order to quantify what discussed above, we analyze the correlation coefficients 

and RMSEs between simulated and observed standard-normal deviates of soil moisture 

for each station and corresponding model pixel. Boxplots in Figure 17 present the 

median, the 25th and 75th percentiles, and the minimum and maximum of such values of 

R and RMSE. The median value of R slightly increases throughout the different 

simulations for both surface and root zone soil moisture. Even more interestingly, the 

variability around the median (i.e., the difference between 75th and 25th percentile and the 

difference between minimum and maximum value) also shrinks thanks to the higher 

resolution input dataset. Once again, simulation 3 improves the performance of both 

simulations 1 and 2, showing the importance of precipitation resolution in modeling soil 

moisture. 
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Figure 16. Density scatterplots of model simulated standard-normal deviates of surface (a, b, c) and root zone (d, 

e, f) soil moisture versus the corresponding Mesonet observations 

 

Similarly, the median RMSE decreases when downscaled NLDAS-2 atmospheric 

variables and precipitation are used to force Noah-MP to simulate both surface and root 

zone soil moisture (with respect to simulation 1, in which the native resolution NLDAS-2 

dataset is used). Although the difference between the RMSE in simulation 1 and 2 is 

minimal for surface soil moisture, it is more substantial in predictions of root zone soil 

moisture, showing some impact due to the change in resolution of most atmospheric 

variables (excluding precipitation). The variability around the median RMSE is 

noticeably narrower for surface and root zone soil moisture in simulation 3 with respect 

to the corresponding simulations 1. 
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Figure 17. Boxplots of correlation coefficients (a, b) and RMSEs (c, d) of standard-normal deviates of surface (a, 

c) and root zone (b, d) soil moisture. In each box, the central mark indicates the median, the bottom and top 

edges of the box indicate the 25th and 75th percentiles, respectively, the whiskers extend to the most extreme 

points not considered outliers, which are plotted individually as red crosses. 

 

 Conclusions 

One of the top priorities and fundamental input for hydrologic process models is 

surface weather at the land-atmosphere boundary. As hydrologic models move toward 

higher spatial and temporal resolution and larger spatial domains, this work contributes 

an assessment of a land surface model forced with 500 m atmospheric variables that 

simulates surface and root zone soil moisture. 

The proposed downscaled precipitation product is shown to only marginally 

improve the original resolution NLDAS-2 dataset in terms of correlation coefficients and 

root mean square errors of standard-normal deviates of precipitation with respect to the 
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Oklahoma Mesonet observations. In terms of categorical statistics, the downscaled 

product is able to improve the number of missed events and correctly detect more no-rain 

events, but showed larger false alarm rates and a slightly higher probability of false 

detection. Nevertheless, the level of detail that the 500 m precipitation field presents 

compared to the 12.5 km resolution is noteworthy, which is also translated into maps of 

soil moisture simulated by Noah-MP. 

Simulation 3 (which used as input all the downscaled atmospheric variables, 

including precipitation) is proven to be the most successful at pushing the model closer to 

the Mesonet soil moisture observations, for standard-normal deviates of both surface and 

root zone soil moisture. Simulation 2 (forced with downscaled atmospheric variables but 

original resolution NLDAS-2 precipitation) only shows slight improvements with respect 

to Simulation 1 (forced with original resolution NLDAS-2 data), which stresses the 

importance of precipitation resolution on modeled soil moisture anomalies. This is more 

evident for negative values of standard-normal deviates, which correspond to drier than 

usual cases and may be related to the ability of the downscaled precipitation product to 

better detect missed events and improve the detection of no-rain cases. 

In summary, to answer the research questions posed in the introductory section, 

results show that 1) finer resolution forcing data have the potential to improve estimates 

of surface and root-zone soil moisture simulated by Noah-MP, in terms of higher 

correlations and lower RMSEs in soil moisture anomalies, and 2) the resolution of input 

precipitation has a critical role in improving time series of both surface and root zone soil 

moisture standard-normal deviates. 
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Although land surface models can provide spatial and temporal soil moisture 

variability information, they are well known to introduce biases, which is the reason why 

biases were not discussed in this work. Nevertheless, assimilation of satellite-based soil 

moisture products (e.g., SMAP, SMOS) can help to correct these first-order large-scale 

biases. Future research work should not only evaluate the proposed methodology with 

different land surface models and in different regions of the world, but also investigate 

the potential to combine hyper-resolution land surface model estimates with satellite-

based products in a land data assimilation system. 
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3. THE EFFICIENCY OF ASSIMILATING SATELLITE-BASED 

OBSERVATIONS IN A LAND SURFACE MODEL 

This chapter focuses on combining modeling estimates of surface soil moisture 

with satellite-based observations within a land data assimilation system. Specifically, 

model states simulated by the Noah-MP land surface model described in the previous 

chapter are updated using an Ensemble Kalman Filter with products from the NASA 

SMAP (Soil Moisture Active Passive) satellite mission at two different resolutions (36 

km and 9 km). The land surface model is run on a 12.5 km regular grid and forced with 

the NLDAS-2 (North America Land Data Assimilation System) dataset (also at 12.5 km 

resolution) to produce surface and root zone soil moisture estimates across Oklahoma 

during 2015. The Oklahoma Mesonet ground observations are used for validation 

purposes. Ground observations are compared to surface and root zone soil moisture 

output simulated by three different Noah-MP model runs: i) an open loop simulation (in 

which no satellite data are assimilated); ii) assimilation of the 36 km SMAP product; and 

iii) assimilation of the 9 km SMAP product. Results show that SMAP soil moisture 

retrievals (at both resolutions) improve the model performance (i.e., in comparison with 

the open loop run), particularly at higher elevations. Although root zone soil moisture is 

not directly assimilated (since satellite observations are limited to the top 5 cm of the soil 

column), the assimilation of SMAP products at the surface is transferred to lower layers 

by the modeled physical processes and is shown to improve root zone soil moisture 

estimates as well. 
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 Introduction 

Estimating soil moisture at high spatial and temporal resolutions is critical for 

accurate prediction of weather, droughts, floods, and energy exchange between the land 

and the atmosphere. Traditional ground-based soil-moisture measurements are discrete 

and often sparse, thus, not adequate to obtain holistic information regarding the wetness 

of soil over large regions. Satellite observations using microwave brightness temperature 

and radar backscatter can provide an alternative to sample soil-moisture at large scales 

(Jackson 1993; Njoku et al. 2003).  

Several satellite mission have been dedicated to the retrieval of soil moisture in 

the recent past, such as the European Space Agency (ESA) Soil Moisture and Ocean 

Salinity (SMOS) mission (Kerr et al. 2010) and the NASA Soil Moisture Active Passive 

(SMAP) mission (Entekhabi et al. 2010a). However, satellite measurements are only 

sensitive to the top few centimeters of the soil column, which is particularly limiting for 

most agricultural, hydrological, and meteorological applications that require root zone 

information. Satellite retrievals are also limited by sensor accuracy and sampling (i.e., the 

coverage is often not spatially and temporally continuous), heavily depend on the 

parameterization of the retrieval algorithm (i.e., difficulties in defining the physical 

processes that relate brightness temperature to soil moisture and uncertainty in the 

algorithm parameters), and are affected by land cover heterogeneity within the pixel. 

Furthermore, satellite products are limited in areas where the fraction of open water is 

significant and where the soil is frozen or densely vegetated.  
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Land surface modeling is a valid alternative to provide soil moisture estimates 

that are continuous, at high spatial resolution, and that varies with depth in the soil 

column. The key challenges in land surface modeling are the susceptibility to errors in 

the model forcing, structure, and parameterization. It has been long argued that the 

observational and modeling limitation can be partially resolved by Land Data 

Assimilation Systems (LDAS) that combine the soil moisture observations (either in situ 

or satellite-based) with the state of a land surface model to maximize the spatio-temporal 

coverage, consistency, and accuracy of such simulations (Maggioni and Houser 2017; 

Reichle 2008; Reichle and Koster 2005). 

Several past studies have investigated the efficiency of LDASs for soil moisture 

estimation (Crow and Van Loon 2006). Reichle et al. (2005) have assimilated global soil 

moisture retrievals from the Scanning Multichannel Microwave Radiometer (SMMR) 

into the NASA Catchment land surface model and demonstrated that the assimilation of 

SMMR data yields improved soil moisture estimates over those obtained from the model 

or the satellite data alone (Reichle and Koster 2005). Maggioni et al. (2012) have 

compared the efficiency of assimilating near-surface soil moisture from Advanced 

Microwave Scanning Radiometer for Earth Observing System (AMSR-E) using two 

different satellite rainfall error models (a complex multidimensional satellite rainfall error 

model and the simpler model which is commonly used in the NASA Goddard Earth 

Observing System Model) and found that the LDAS soil moisture estimate improve over 

the satellite retrievals and the open loop (no assimilation) land surface model estimates 

(Maggioni et al. 2012).  
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Among the several techniques available, the Ensemble Kalman Filter (EnKF) is 

thought to be an ideal sequential data assimilation method in hydrology and has been 

successfully applied to meteorological and oceanographic problems of moderate 

complexity in small-to medium size domains (Evensen and van Leeuwen 1996; 

Houtekamer and Mitchell 1998; Keppenne 2000; Lermusiaux 1999; Madsen and 

Canizares 1999). The EnKF is based on Monte Carlo runs that represent the forecast 

uncertainty, which is obtained by perturbing the model forcing and state variables to 

obtain an ensemble of state fields. The EnKF is very flexible at treating errors in model 

equations and parameters and is particularly suitable for nonlinear problems, such as soil 

dynamics (Durand and Margulis 2008; S. Kumar et al. 2008; Pan and Wood 2006).  

For instance, Evensen et al. (1996) have used an EnKF to assimilate Geosat 

altimeter data in a two-layer ocean model to estimate the ring-shedding process in the 

Agulhas current (Evensen and van Leeuwen, 1996). Madson et al. (1999) have compared 

the efficiency of an extended and an ensemble Kalman filter for data assimilation in 

coastal areas and proven the EnKF superiority in highly non-linear dynamic problems 

(Madsen and Canizares, 1999). The performance of EnKFs for soil moisture estimation 

has been assessed by assimilating the L-band (1.4 GHz) microwave radio-brightness 

observations into a land surface model and EnKF was proven to be a flexible and robust 

data assimilation technique even at moderate ensemble sizes (Reichle et al. 2002a).  

In this work, we examine the efficiency of using an EnKF within the Noah-MP 

land surface model (presented extensively in the previous chapter) for assimilating 

satellite-based soil moisture products. The methodology section describes the 
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experimental setup and the satellite products adopted in this study. The efficiency of the 

data assimilation system is assessed in the Results section by comparisons with the 

corresponding open-loop (i.e., no data assimilation) simulations, using the Mesonet 

ground observations as reference. The main conclusions are drawn in the Conclusion 

section, which also summarizes the main limitations of the proposed experiment and 

future research directions.  

 

 Methodology 

This work focuses on the same domain described in the two previous chapters, 

Oklahoma and in the same time period (the year of 2015). In this chapter, satellite soil 

moisture data are incorporated in the Noah-MP land surface model using an EnKF to 

simulate surface and root zone soil moisture. This section describes in detail the 

experimental setup, including a discussion of the SMAP products assimilated within 

Noah-MP and the data assimilation system. 

 

 Soil Moisture Active Passive (SMAP) Products 

The NASA Soil Moisture Active Passive (SMAP) mission was launched on 31st 

January 2015, with the goal of measuring land surface brightness temperature and radar 

backscatter (but the radar failed in July 2015) and provide information on surface soil 

moisture (top 5 cm of the soil column; Entekhabi et al. 2010). This works considers two 

products of the SMAP suite: the 36 km SMAP Level 3 product (hereinafter SMAP-

36km) and the Enhanced L3 Radiometer Global Daily 9 km (hereinafter SMAP-9km). 



70 

 

The SMAP Level 3 (SPL3SMP) products are based on daily passive radiometer 

estimates of global land surface soil moisture (nominally 5 cm) that are resampled to a 

global, cylindrical 36 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0; 

O’Neill et al. 2016). The SPL3SMP brightness temperature dataset is adjusted for the 

presence of water bodies. The brightness temperature is calibrated at the surface level, 

i.e., sky radiation and atmosphere contributions are corrected with auxiliary near surface 

data (De Lannoy et al. 2015). For this study, the most recent version 5 of SPL3SMP is 

used. In this version of the product, regions with permanent snow and ice, frozen ground, 

excessive static or transient open water in the cell, excessive radio-frequency interference 

(RFI) in the sensor data, and heavy vegetation (vegetation water content > 4.5 kg m−2) 

are masked out using a passive freeze–thaw retrieval based on the normalized 

polarization ratio (NPR). Given the 1000 km swath and 98.5 min orbit, the SPL3SMP 

retrievals are spatially and temporally discontinuous, with 2–3-day gaps depending on 

location. 

The recently released SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-

Grid Soil Moisture, Version 2 (SPL3SMP_E, Version 2, ONeill 2018) is also selected in 

this study. This SMAP L3 product is a daily global product that provides volumetric 

surface SM (0–5 cm, m3/m3). Corrected brightness temperatures are used in passive soil 

moisture retrieval and observed by the SMAP L-band radiometer (1.41 GHz) on the 9 km 

global cylindrical Equal-Area Scalable Earth (EASE) Grid 2.0 (Brodzik et al. 2012). This 

enhanced L3 product is a daily composite of SMAP enhanced L2 half-orbit products, 

where the L3 ascending and descending products are derived separately by only 
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considering the enhanced L2 SM products acquired (Chan 2016; ONeill 2018). The 

SMAP enhanced L2 SM product is derived from the SMAP Enhanced L1 Gridded 

Brightness Temperature Product (L1CTB_E) (posted at the 9 km grid cell) based on the 

Backus-Gilbert optimal interpolation technique (Chan et al. 2018; Colliander et al. 2018; 

ONeill 2018). An improved depth correction for effective soil temperature is used in this 

version of soil moisture retrievals to reduce dry biases seen when comparing SMAP 

products to in situ data at the SMAP core validation sites. 

 

 The Land Data Assimilation System 

The land surface model adopted in this study is the Community Noah Land 

Surface Model with Multi- Parameterization Options (Noah-MP version 3.6; Niu et al. 

2011; Yang et al. 2011), extensively described in Chapter 2. Noah-MP is run within the 

NASA Land Information System (LIS; Peters-Lidard et al. 2007), which is particularly 

suitable for high performance land surface modeling and ensemble data assimilation. 

Noah-MP is forced with the NLDAS-2 atmospheric fields (i.e., near surface air 

temperature and specific humidity, downward longwave and shortwave radiation, 

eastward and northward wind, surface pressure, and total precipitation) at hourly 

temporal resolution and 12.5 km spatial resolution. The static input data for Noah-MP are 

obtained from the National Center for Atmospheric Research Application Laboratory 

website (https://ral.ucar.edu/solutions/products/noah-multiparameterization-land-surface-

model-noah-mp-lsm), which are preprocessed onto the same model grid using the NASA 

Land surface Data Toolkit (LDT) public release of version 7.2 (Arsenault et al. 2018). 
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A multi-year spin-up loop approach is adopted to initialize the model (i.e., 20 

years, looping over a 10-year period from 2005 to 2014). The model is run at a 15 min 

time step to produce hourly output during 2015 on a regular 12.5 km grid. Model 

parameters (e.g., land cover, land mask, soil texture, elevation, slope, aspect, greenness 

data, albedo, snow albedo, bottom temperature) are available at 1 km and are here 

averaged to the 12.5 km grid, similarly to the coarse-resolution experiment presented in 

Chapter 2. 

Surface and root zone soil moisture are then simulated by three different Noah-

MP model runs: an open loop simulation (hereinafter OL, in which no satellite data are 

assimilated) and two data assimilation (DA) simulations that adopt an EnKF to merge 

SMAP observations. To assess the impact of the resolution of the satellite retrievals in the 

data assimilation system, two DA experiments are conducted: 

i. assimilation of the SMAP-36km product, hereinafter 36-km DA; and 

ii. assimilation of the SMAP-9km product, hereinafter 9-km DA. 

The assimilation of SMAP retrievals is implemented using the EnKF (Evensen 

2003; Reichle et al. 2002b) assimilation system included in LIS (Kumar et al. 2008). The 

Kalman filter combines the Noah-MP forecast (background) with the SMAP soil 

moisture observations to generate an improved estimate of the modeled soil moisture. In 

an EnKF, an ensemble of model runs is used to represent the model state and its 

associated uncertainty. In the EnKF adopted in this study, model predictions of surface 

soil moisture are corrected with a stochastic filtering technique towards the SMAP 

observations, by accounting for the relative observation and model uncertainties. Based 
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on the previous studies ( Kumar et al. 2008; Maggioni et al. 2012; Reichle et al. 2002a; 

Yin et al. 2015), an ensemble size of 24 members is chosen for all the DA simulations. 

A major assumption of an EnKF is that the observations and model simulations 

have to be Gaussian distributed. In the DA experiments, the NLDAS-2 forcing inputs 

such as shortwave/longwave radiations and precipitation are perturbed hourly, similar to 

previous work (Kumar et al. 2019, 2018, 2014). Multiplicative perturbations are applied 

to shortwave radiation and precipitation with a mean of 1 and standard deviations of 0.3 

and 0.5, respectively, whereas, longwave radiation is perturbed via an additive error 

model with a standard deviation of 30 W/m2. Moreover, cross-correlations between the 

three meteorological forcing variables are imposed as follows: cross-correlation between 

shortwave radiation and precipitation is -0.8, cross-correlation between longwave 

radiation and precipitation is 0.5; and cross-correlation between shortwave and longwave 

radiations is -0.5. The SMAP soil moisture observations are perturbed via an additive 

model with a standard deviation of 0.01 cm3/cm3 (Kumar et al. 2012). 

Another major assumption that implement an EnKF is that the observations and 

model estimates are not biased from each other. To ensure unbiasedness, two different 

scaling methods are initially applied to the SMAP products: a yearly cumulative 

distribution function (CDF) matching method and a monthly CDF matching method 

(following Reichle and Koster 2004). Recently published work has shown that monthly 

CDF matching procedures are preferred when applied to SMAP observations in an LDAS 

(Yin and Zhan 2018). Thus, a comparison between the two is assessed in the Results 

section. 
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At each assimilation step, the new state of each ensemble member is computed as 

a weighted average of the observations (satellite soil moisture retrieval) and the model 

background. Weighting is determined by the relative size of the background and 

observation errors, with the background error governed by the ensemble covariance. The 

observation operator is simply a rescaling of the top layer of the soil moisture state (0–10 

cm in Noah). Thus, only the top layer is directly adjusted, but deeper layers of soil 

moisture can slightly change in the DA step due to background covariances. A more 

significant impact (over time) on the deeper layers can occur resulting from the modeled 

physical processes of drainage and diffusion (Sabater et al. 2007). 

 

 Validation 

As in the previous study presented in Chapter 2, the Oklahoma Mesonet network 

is used as reference for validating the model soil moisture estimates (Figure 11). The 

network consists of 120 monitoring stations that measure a suite of atmospheric and 

hydrologic variables every 5 minutes. Soil moisture data are provided at four different 

depths (5, 25, 60, and 75 cm) and are quality controlled. Ground observations are 

compared to soil moisture output from the three simulations described in the 

methodology (OL, 36-km DA, and 9-km DA). Surface soil moisture refers to the 

Mesonet soil moisture measured at 5 cm depth and the 0–10 cm soil moisture output from 

Noah-MP. Root zone soil moisture is defined as the Mesonet observation at 60 cm depth 

and the 40–100 cm (the mid-point of the layer is 70 cm) model output. 



75 

 

To validate the efficiency of assimilating SMAP in Noah-MP, we focus on time 

series of standard-normal deviates of surface and root zone soil moisture, defined by 

subtracting the 2015 yearly mean and dividing by the corresponding standard deviation. 

As discussed in the previous chapter, this is due to several reasons: i) there are systematic 

differences between in situ observations, satellite products, and model estimates due to 

the point-scale character of the first versus the distributed nature of the other due; ii) there 

is a mismatch in the available ground and satellite measurement depths and the vertical 

resolution of the land surface model; iii) the nature of the three estimates is very different 

(in situ thermocouple measurements for the Mesonet data, brightness temperature 

retrieved by a passive microwave radiometer in space, and model simulations). In 

addition to that, one of the inherent assumptions of the EnKF is unbiasedness in the 

model and observations. Biases in the SMAP products are removed via CDF matching, as 

mentioned above and discussed in the next section, and therefore not tested in the 

validation phase. 

 

 
Figure 18. Domain area and location of two Mesonet stations (BOIS and ACME) used for validation purposes 
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Model estimates of soil moisture are evaluated against the Mesonet in situ 

observations, using time series of standard-normal deviates, in order to capture the phase 

correspondence between two estimates, regardless of potential mean biases or differences 

in dynamic range (Maggioni et al. 2011). Time series are presented both for domain 

averages and for two Mesonet stations of interest (and corresponding model pixels), one 

located in the panhandle, named BOIS (characterized by higher elevation) and one in the 

central region, named ACME (characterized by lower elevation), as shown in Figure 18. 

Correlation coefficients (R) and root mean square errors (RMSE) of simulated soil 

moisture standard deviates (for each of the three model runs) are computed against 

Mesonet observations and SMAP retrievals. 

 

 Results 

First off, two different scaling methods applied to the SMAP observations prior to 

the assimilation are compared against each other: a yearly cumulative distribution 

function (CDF) matching method and a monthly CDF matching method. Figure 19 shows 

time series of domain averaged surface (top panels) and root zone (bottom panels) soil 

moisture values for the OL run and a set of DA runs that use the two different scaling 

methods (yearly in red and monthly in pink) applied to the SMAP-36km (left panels) and 

SMAP-9km (right panels) products. 

A first thing to notice is that, as expected, the data assimilation of SMAP 

retrievals largely impacts the model free run (i.e., OL), which also confirms that SMAP 

adds information on the soil dynamics to the ones modeled by Noah-MP. Figure 19 
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demonstrates how the OL is pushed towards the SMAP products, when the latter are 

merged to the model forecast. As SMAP products are drier than the modeled soil 

moisture, the DA runs also result drier than the initial OL simulation. 

 

 
Figure 19. Daily domain averaged values of surface soil moisture (a, b) and root zone soil moisture (c, d) for i) 

OL, ii) Mesonet observations, iii) DA using a yearly CDF matching, and iv) DA using a monthly CDF matching.  

DA of both SMAP-36km (a, c) and SMAP-9km (b, d) is presented. Note that SMAP observations are only 

availbale after March 30th, 2015. 

 

When comparing the performance of the yearly CDF to the monthly CDF 

matching approach, we observe how the first results closer to the SMAP products (and 

often further from the Mesonet reference observations) than the latter. This is due to the 

fact that biases are resolved at a temporal frequency (yearly) that is too coarse, while such 
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biases are seasonally dependent, and also confirms what observed in past literature (Yin 

and Zhan, 2018). Regardless of which SMAP product is assimilated (either SMAP-36km 

or SMAP-9km), the monthly CDF matching yields the best performance, pushing the OL 

run closer to the Mesonet ground observations, which, in this work, represent the 

benchmark soil moisture values. 

Although root zone soil moisture is not directly assimilated, its estimate is 

impacted by the SMAP DA because of the physical processes in the soil column modeled 

by Noah-MP, as shown in the bottom plots of Figure19. Similarly, to surface soil 

moisture, the DA with monthly CDF matching is closer to the OL than the DA with 

yearly CDF matching, which in some cases brings the model also closer to the Mesonet 

observations, but in some instances deteriorates the model performance. This is evident in 

the spring and fall months, when the soil moisture is particularly wet or dry, respectively. 

Nevertheless, DA with monthly CDF matching appears to be superior during the summer, 

when the soil starts to dry up. 

 

Table 5. Correlation coefficient, root mean square error, and mean relative error of modeled soil moisture vs 

Mesonet observations for a set of DA simulations that use either SMAP-36km or SMAP-9km, scaled by either 

monthly or yearly CDF matching 

Simulation 
Surface Soil Moisture Root Zone Soil Moisture 

R RMSE MRE R RMSE MRE 

36-km DA yearly CDF 0.60 0.10 0.28 0.70 0.05 0.15 

36-km DA monthly CDF 0.66 0.07 0.21 0.71 0.06 0.20 

9-km DA yearly CDF 0.60 0.10 0.28 0.70 0.05 0.15 

9-km DA monthly CDF 0.66 0.07 0.21 0.71 0.06 0.20 
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What observed in the time series is corroborated by the statistics presented in 

Error! Reference source not found.. Specifically, correlation coefficients, RMSEs, and 

Mean Relative Errors (MREs) between the modeled surface soil moisture and ground-

based measurements improve when a monthly CDF matching is applied compared to the 

yearly CDF DA simulation. For root zone soil moisture, R for both 36-km DA and 9-km 

DA monthly CDF marginally increases compared to the corresponding DA simulations 

that utilize a yearly CDF approach, whereas the overall RMSE and MRE slightly worsen. 

Moreover, there exists no difference between the performance of 36-km DA and 9-km 

DA. In conclusion, the monthly CDF matching method is chosen for all the DA 

simulations discussed next. 

Next, time series of domain averaged standard normal deviates of surface soil 

moisture and root zone soil moistures are investigated (Error! Reference source not 

found.). Seasonality is evident in both surface and root zone soil moisture anomalies, 

with summers that are drier than the rest of the year. Summer and fall months also show 

larger variations with respect to winter and spring. In general, Mesonet time series 

present more abrupt changes, whereas model simulations (OL, 36-km DA, 9-km DA) are 

characterized by more gradual dry outs. Moreover, the variation in water content in the 

top few centimeters of the soil column (which more quickly responds to precipitation) is 

clearly higher than the one in the deeper soil layer. 

 



80 

 

 
Figure 20. Timeseries of daily domain averaged standard normal deviates of surface soil moisture (a) and root 

zone soil moisture during 2015. 

 

It is noteworthy how estimates of very different nature (ground measurements, 

satellite retrievals, and model simulations) all capture the same trend (i.e., seasonality) 

and variability. This is also demonstrated by the high correlation coefficients between 

model runs and Mesonet observations, presented in the boxplots in Figure 21 (median 

values are all greater than 0.6). For both surface and root zone soil moisture anomalies, 

the DA runs are closer to the reference Mesonet time series than the OL, showing that 

SMAP is able to improve the Noah-MP performance. 



81 

 

 

Figure 21 Boxplots of correlation coefficients (a, b) and RMSEs (c, d) of surface (a, c) and root zone (b, d) soil 

moisture standard-normal deviates computed at each Mesonet stations and corresponding model grid. In each 

box, the central mark indicates the median, the bottom and top edges of the box indicate the 25th and 75th 

percentiles, respectively, the whiskers extend to the most extreme points not considered outliers, which are 

plotted individually as red crosses. 

 

Correlation coefficients and RMSEs are computed for soil moisture standard 

normal deviates at each Mesonet station and corresponding model pixel. Boxplots in 

Figure 21 present their median, 25th and 75th percentiles, and minimum and maximum 

values for each model simulation (OL, 36-km DA, and 9-km DA) and for both surface 

and root zone soil moisture across the study area. In terms of R, not only slight 

improvements are observed when SMAP is assimilated, but the variability around the 
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median (i.e., difference between the 75th and 25th percentiles and difference between 

maximum and minimum values) also shrinks with respect to the OL simulation. The 

RMSE stays almost constant across the different simulations, with a slight decrease in the 

maximum value in the two DA runs with respect to the OL one for surface soil moisture.  

 

 
Figure 22 Timeseries of surface soil moisture standard normal deviates at two Mesonet stations, BOIS (a, c) and 

ACME (b, d). 

 

In the case of root zone soil moisture, the median RMSE of the OL run is similar 

to the one of the two DA experiments that show an increase in the RMSE 75th percentile 

and maximum value. As mentioned in the comparison between the two CDF matching 

approaches, there exists no difference between the two DA simulations, showing that the 
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assimilation of the coarser SMAP products yields the same performance as the enhanced 

9 km product. 

In order to further investigate the performance of SMAP DA across the study 

area, Error! Reference source not found. focuses on time series of standard normal 

deviates of surface soil moisture at two Mesonet stations (and corresponding model 

pixels) of interest, one characterized by relatively high elevation (BOIS) and the other by 

lower elevation (ACME). A good agreement between the OL run and the Mesonet 

ground observations is observed at both locations. Nevertheless, SMAP data assimilation 

improves the correlation between model estimates and ground observations by 33% 

(from 0.51 in the OL to 0.68 in both 36-km DA and 9-km DA) at the BOIS station, as 

shown in Table 6. At the same location, the RMSE also decreases by 18% (from 1.04 in 

the OL to 0.85 in the DA runs). However, at the lower elevation location, DA does not 

seem to have an impact (1% deterioration in R and RMSE) on the Noah-MP 

performance.  
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Figure 23 Same as in Figure 22 but for root zone soil moisture standard normal deviates 

 

Figure 23 presents the time series of standard normal deviates of root zone soil 

moisture at the same two Mesonet stations (and corresponding model pixels). Similar to 

surface soil moisture, the OL run and the Mesonet ground observations show the same 

trends at both locations, with better agreement at the ACME station (characterized by 

relatively lower elevation). The impact of SMAP DA is then particularly evident at the 

BOIS station (relatively higher elevation) pushing the model run closer to the Mesonet 

observations. Specifically, DA improves R by 15% (from 0.58 in the OL to 0.67 in both 

36-km DA and 9-km DA) at the BOIS station, as shown in Table 6. At the same location, 

the RMSE also decreases by 10% (from 0.89 in the OL to 0.80 in the DA runs). However, 



85 

 

at the lower elevation location, DA causes a 2% deterioration in R and 6% deterioration in 

RMSE, slightly worsening the Noah-MP performance. A pint to note is that correlations 

are still very high (>0.88) and RMSE low (<0.47) at the ACME location. 

 

 
Table 6 Correlation and RMSE for two Mesonet locations of surface soil moisture standard normal  deviates 

 

Station Simulation 
Surface Soil Moisture Root Zone Soil Moisture 

R RMSE R RMSE 

BOIS OL  

36-km DA 

9-km DA 

0.51 

0.68 

0.68 

1.04 

0.85 

0.85 

0.58 

0.67 

0.67 

0.89 

0.80 

0.80 

ACME OL  

36-km DA 

9-km DA 

0.76 

0.75 

0.75 

0.70 

0.71 

0.71 

0.90 

0.88 

0.88 

0.44 

0.47 

0.47 
 

 

 Conclusions 

Land data assimilation systems that combine information from remotely-sensed retrievals 

and the spatially and temporally complete estimate from land surface models have the 

potential to provide a soil moisture product that is superior to the two parenting ones. 

Specifically, an LDAS incorporates observations (e.g., from satellites) that are limited in 

terms of temporal and spatial coverage (e.g., with soil depth) with estimates from a land 

surface model that captures the key land surface processes, such as the vertical transfer of 

water between the surface and root zone reservoirs. 

The analysis of times series of soil moisture standard deviates shows how 

estimates of extremely different nature (ground observations, satellite products, and 
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model simulations) all capture the seasonality and variability of such anomalies and 

present high correlation between each other. Results show that the assimilation of SMAP 

soil moisture retrievals in a land surface model has the potential to improve the 

estimation of surface and root zone soil moisture, especially at higher elevations, 

increasing the correlation and reducing the random error between the model and the 

reference data. Although root zone soil moisture is not directly assimilated, it is impacted 

nonetheless by the assimilation of SMAP observations at the surface level, which brings 

root zone soil moisture estimates closer to the in situ observations. At the 12.5-km 

resolution adopted in this experiment, the two SMAP products (at 36 km and 9km 

resolution) behave very similarly, which may be attributed to the fact that they are both 

based on the same brightness temperature signal. Additionally, a monthly CDF matching 

method applied to the SMAP observations prior to the assimilation was found to be 

superior to a yearly CDF matching method. This proves that biases should be resolved at 

a finer temporal frequency than yearly to capture their seasonal variability. 

Future work should investigate the assimilation of different satellite-based soil 

moisture products (e.g., SMOS) using different land surface models, focus on different 

regions of the world (including areas characterized by complex terrain and by denser 

vegetation), and extend the time series to a multi-year analysis. Future research should 

also apply the methodology proposed in Chapters 1 and 2 to downscale a set of 

atmospheric variables that will force a land surface model merged with satellite-based 

observations within land data assimilation system. This has the potential to improve at 

once the resolution and quality of surface and root zone soil moisture estimates.  
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CONCLUDING REMARKS 

 

This work developed a method to improve the estimation of surface and root zone 

soil moisture at high resolution. First, an innovative physically-based scheme to 

downscale a suite of atmospheric variables (air temperature, pressure, humidity, wind 

speed, incident longwave and shortwave radiation) is proposed. The proposed 

downscaling framework, which comprises a statistical interpolation and a set of 

deterministic physical rules, is tested across Oklahoma during 2015 and applied to the 

NLDAS-2 dataset (from 12.5 km to 500 m). Second, the downscaled NLDAS-2 product 

is used to force a land surface model to simulate 500 m resolution surface and root zone 

soil moisture. Third, a land data assimilation system is adopted to merge land surface 

model simulations with products from the NASA SMAP (Soil Moisture Active Passive) 

satellite mission at two different resolutions (36 km and 9 km).  

The science questions posed in the introductory section were addressed as 

follows:  

1. Is physically-based downscaling a viable approach to produce hyper-

resolution atmospheric forcings? 

The physically-based approach developed in this work was demonstrated 

to be a viable approach to downscale atmospheric forcings from a resolution of 

12.5 km to 500 m. The downscaled product is evaluated with respect to high-

quality, high-resolution ground-based observations collected by the Oklahoma 

Mesonet network. For most atmospheric variables, an improvement was observed 
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in terms of several performance metrics (bias, correlation coefficient, and RMSE). 

Although the proposed downscaled precipitation product was shown to only 

marginally improve the original resolution NLDAS-2 dataset, the level of detail 

that the 500 m atmospheric forcings presented compared to the 12.5 km resolution 

was noteworthy. 

2. What is the role of forcing resolution in land surface modeling? And in 

particular, what is the role of precipitation resolution relative to the other 

atmospheric forcings on simulated soil moisture? 

Finer resolution forcing data have the potential to improve estimates of 

surface and root zone soil moisture simulated by a land surface model, producing 

higher correlations and lower RMSEs with respect to Mesonet in situ 

observations. The resolution of input precipitation plays a critical role in 

improving the estimation of both surface and root zone soil moisture. The model 

forced with all the hyper-resolution atmospheric variables (including 

precipitation) is proven to be the most successful at pushing the model closer to 

the Mesonet surface and root zone soil moisture observations. 

3. How useful is SMAP to land surface modeling? What is the efficiency of a 

data assimilation system to estimate surface and root-zone soil moisture? 

Land data assimilation systems that combine information from remotely-sensed 

retrievals and the spatially and temporally complete estimate from land surface models 

have the potential to provide a soil moisture product that is superior to the two parenting 

ones. SMAP data assimilation was shown to improve estimates of surface and root zone 
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soil moisture anomalies, especially at higher elevation, by increasing the correlation with 

ground observations and reducing random errors. 

The methodologies developed in this research have the potential to be generalized 

to different datasets, models, longer time series, different resolutions, different products, 

and other regions of the world. Future studies should investigate the efficiency of 

assimilating SMAP products in a land surface model forced with a hyper-resolution 

atmospheric variable dataset. As more SMAP products/versions become available, the 

framework developed here should be expanded to a larger scale and multiple 

spatio/temporal resolutions.  
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