
IMPLEMENTATION OF LOG-DOMAIN FFT BASED LDPC DECODER ON A GPU

by

Hanan Alqarni
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Master of Science
Computer Engineering

Committee:

Dr. Brian L. Mark, Thesis Director

Dr. Bernd-Peter Paris, Committee Member

Dr. Xiang Chen, Committee Member

Dr. Monson H. Hayes, Department
Chairperson

Dr. Kenneth S. Ball, Dean,
Volgenau School of Engineering

Date: Spring Semester 2019
George Mason University
Fairfax, VA

Implementation of Log-Domain FFT Based LDPC Decoder on a GPU

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Hanan Alqarni
Bachelor of Science

Princess Nora Bint AdbulRahman University. Riyadh, KSA, 2014

Director: Dr. Brian L. Mark, Professor
Department of Electrical and Computer Engineering

Spring Semester 2019
George Mason University

Fairfax, VA

Copyright © 2019 by Hanan Alqarni
All Rights Reserved

ii

Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. Brian Mark for the con-
tinuous support and guidance. As an advisor he has made sure that my graduate studies
at GMU would be significantly vital and valuable. I am grateful to him for his significant
guidance not only in my studies but also in this thesis. I am grateful for his support and
the opportunity he o�ered for joining the DARPA challenge project last summer.

Beside my advisor, I would like to thank Dr. Bernd-Peter Paris who allowed me to join the
DARPA challenge project in the summer 2018 and provide me the access to the project.
This opportunity played significant role in my learning as I learn not only about the project
but also how to tackle an issue and find the best solution for it.

I owe a special thanks to the graduate coordinator Ms. Patricia Sahs who has always
helped me in the department. Ms. Sahs has assisted me in the smallest details, which has
eased the process of my graduate studies, in things such as, course enrollment, and the
thesis preparation process.

iii

Table of Contents

Page
List of Tables . vi
List of Figures . vii
Abstract . ix
1 Introduction . 0
2 Theoretical Background . 3

2.1 Low-Density Parity-Check Codes . 4
2.2 Minimum Distance . 6
2.3 Tanner graph . 6
2.4 Parity-Check Matrix Construction . 7

2.4.1 Gallager�s Parity-Check Matrix Construction 7
2.4.2 MacKay�s Parity Check Matrix Construction 10
2.4.3 WiMax�s Parity Check Matrix Standards 11
2.4.4 WiFi�s Parity Check Matrix Standards 13

2.5 Binary LDPC decoding: Belief-Propagation and Iterative Decoding 16
2.6 Non-Binary LDPC Codes: Log-Domain Fast Fourier Transform Decoding . 20
2.7 Quasi-Cyclic LDPC Codes: Log-Domain Fast Fourier Transform Decoding . 23
2.8 CUDA Architecture . 25

2.8.1 NVIDIA’s Tesla K40m Architecture 26
2.8.2 Threads Organization and Execution 28

3 Implementation . 31
3.1 Log-Domain FFT decoding based LDPC Codes: CPU Implementation . . . 31

3.1.1 Performance and Results . 31
3.2 Log-Domain FFT decoding based LDPC Codes: GPU Implementation . . . 32

3.2.1 LDPC Memory Arrangement on GPU 33
3.2.2 LDPC Codes On GPU . 33
3.2.3 Performance and Results . 36

3.3 Quasi-Cyclic LDPC: GPU Implementation 37
3.3.1 Mapping QC-LDPC Decoding Algorithm to GPU Kernels 37

iv

3.3.2 Multi-codeword Parallel Decoding 38
3.3.3 Implementation of Early Termination Scheme 39
3.3.4 Optimizing Memory Access on GPU 39
3.3.5 Performance and Results . 40

3.4 Results and Comparisons . 42
3.4.1 Log-Domain FFT based LDPC Performance on GPU vs CPU 43
3.4.2 QC-LDPC on GPU vs Log-Domain FFT based LDPC Performance

on GPU vs CPU . 43
4 Summary and Conclusions . 47

4.0.1 Future Work . 47
Bibliography . 50

v

List of Tables

Table Page
2.1 Minimum distance of 802.11n LDPC codes with large packet 16
2.2 Minimum distance of 802.11n LDPC codes with medium-size packet 16
2.3 Minimum distance of 802.11n LDPC codes with small packet 16
3.1 GF(q) For Log-Domain FFT decoding based LDPC on CPU 32

3.2 GF(q) For Log-Domain FFT decoding based LDPC on GPU 37
3.3 Decoding Latency and Throughput for QC-LDPC 42

vi

List of Figures

Figure Page
2.1 Simplified model of LDPC encoding and decoding. 3
2.2 Gallager�s H constructed matrix [1]. Note that the circles represent the

permutation matrix and the diagonal lines represent the identity matrix . . 9
2.3 An example of H has a cycle of length 4 represented in Tanner graph [1] . . 10

2.4 1A construction of H with wc = 3 and wr = 6 and the rate is 1/2. Note that
the integer in the circle represents the number of permutations matrix. . . . 11

2.5 2A construction of H with the rate is 1/3. Note that the diagonal line
represents the identity matrix . 12

2.6 Periodicity Z ◊Z = 96x96 for a matrix with n=2304, rate=1/2 14

2.7 Example base matrix for N=1944 bits, rate = 1/2 LDPC code 15
2.8 Massage Passing in Tanner graph or Bipartite graph. 18
2.9 GPU Architecture showing multiple stream multiprocessors SM each with

SP [2] . 27

2.10 Blocks and threads arrangements for a grid [2] 29
2.11 Thread batching: the host issues a succession of kernel invocations to the

device (CPU host). Each kernel is executed as a batch of threads organized

as a grid of thread blocks [3] . 30
3.1 3D structures used for message vectors and correspond to linear data alloca-

tion in the global device memory as shown in [3] 34

3.2 Multi-codeword parallel decoding algorithm by [4]. NCW represents the

number of codewords in one Macro-codeword (MCW). NMCW represents
the number of MCWs. 38

3.3 Example of Parity-check matrix for WiFi IEEE 802.11n (1944, 972) LDPC

code. H consists of Msub x Nsub = 12x24 [4] 40

vii

3.4 Using the H matrix example in Figure 3.3 by [4], after the horizontal and
vertical are compressed, Hkernel1 and Hkernel2 are produced, respectively.
Each entry of the compressed H matrix contains 48-bit data indicating the
row and column index of the element in the original H matrix. The shift
value and a valid flag which shows whether the current entry is empty or not. 41

3.5 Number of iterations Log-domain FFT based LDPC decoder on GPU vs on
CPU . 44

3.6 Latency of Log-domain FFT based LDPC decoder on GPU vs on CPU . . . 45
3.7 Latency of Log-domain FFT based LDPC decoder on GPU vs on CPU . . . 46

viii

Abstract

IMPLEMENTATION OF LOG-DOMAIN FFT BASED LDPC DECODER ON A GPU

Hanan Alqarni

George Mason University, 2019

Thesis Director: Dr. Brian L. Mark

Forward error correction enables reliable one-way communication over noisy channels by

transmitting redundant data along with the message in order to detect and resolve errors

at the receiver. Low-density parity-check (LDPC) codes achieve superior error-correction

performance using belief propagation (BP) decoding. However, the computational complex-

ity of a BP decoder is O(q2) operations for each checksum calculation, where q represents

number of symbols in the underlying Galois field. The complexity is reduced by transform-

ing the operations into the log and frequency domains. This thesis explores how a GPU

implementation of a Log-domain FFT based LDPC decoder performs in comparison to a

CPU implementation for regular MacKay construction. Numerical results show that the

GPU implementation is about twice as fast as the CPU implementation. The thesis also

studies the performance of GPU implementations of a Quasi-cyclic LDPC decoder for WIFI

(IEEE 802.11n) and WIMAX (IEEE 802.16e) LDPC codes.

Chapter 1: Introduction

Low-density parity-check (LDPC) codes were first introduced by R. G. Gallager in 1960

[5], are a class of linear block codes. Theses codes are characterized by their parity-check

matrix, a low density of non-zero elements. The benefit of LDPC codes is that closely

approaches the capacity of many channels. In addition, LDPC codes are more convenient

for heavy implementations. However, these codes were ignored until the 90’s due to the

computational complexity of the implementation and the limitation of the hardware.

A convenient way to represent LDPC codes is via a Tanner graph representation, which

is an e�ective graphical representation that e�ciently helps to describe the decoding algo-

rithm. Tanner graphs are bipartite graphs, which have nodes separated into two di�erent

sets (variable nodes and check nodes), and edges connecting nodes of the two di�erent sets,

representing parity-check matrix.

The decoding algorithms decode the codes by performing local calculations and passing

those local results via messages. This message passing algorithm. Belief-propagation al-

gorithm is one of the most common message passing algorithm for decoding binary LDPC

codes. The log-domain Fourier transform belief-propagation algorithm is message pass-

ing algorithm used for the case of non-binary LDPC codes which achieve good decoding

performance.

A parallel computing architecture is e�ective method used to raise the performance of

iterative decoding of highly computational codes such as LDPC. Compute Unified Device

Architecture (CUDA) is a parallel computing architecture developed by NVIDIA Corpora-

tion, remains in the current NVIDIA graphics cards. It is accessible to software developers

through variants of industry standard programming languages. Using regular programing

languages such as C/C++ it is possible to program CUDA devices with NVIDIA extensions

and certain restrictions. CUDA chip technology is based on a multiprocessor with many

0

cores and hundreds of ALU’s, several thousand registers and some shared memory. Besides,

a graphics card contains global memory, which can be accessed by all multiprocessors, local

memory in each multiprocessor, and special memory for constants. The several multiproces-

sor cores in a Graphical User Interface (GPU) are single instruction, multiple data (SIMD)

cores.

Motivated by both the parallel computation power of the CUDA architecture imple-

mentation of LDPC codes, the decoding performance of LDPC codes are studied in this

thesis. Parallel implementation using CUDA is implemented using an existing C software

based log-domain Fourier transform belief propagation algorithm, as well as Quasi-Cyclic

LDPC algorithm. The main objective is achieving an e�cient performance of CUDA imple-

mentation of decoding system and exposing to di�erent implementation of LDPC decoding

algorithm.

Chapter 2 introduces the necessary theoretical background for understanding LDPC

codes both Log-domain FFT and Quasi-Cyclic algorithms, and CUDA architecture. The

LDPC codes are presented together with their main characteristic, the parity-check ma-

trix, and their graphical representation (Tanner graph), which is the base for performing

the iterative LDPC decoding. Algorithms belief propagation and the log-domain Fourier

transform, and QC-LDPC are explained step by step. Afterwords, the CUDA architecture

is introduced and its parallel processing capabilities of these graphical cards, as well as

performance considerations to achieve better performance is explained.

Chapter 3 discusses the CUDA implementation of the LDPC decoders in CPU in de-

tail. Then, the belief propagation and the log-domain Fourier transform algorithms are

parallelized and assembled in kernels using CUDA implementation. Each kernel uses the

hardware resources in a di�erent way, in order to achieve the best performance. The implan-

tation of Log-FFT LDPC on Tesla k40m GPU is detailed in this chapter. Also, QC-LDPC

implementation on GPU is discussed along with its optimization solution for memory la-

tency.

Chapter 4 Discuss the performance of the implementation of Log-domain FFT based

1

LDPC on both GPU and CPU, and discuss the performance of QC-LDPC on GPU. Future

work addressed for FPGA hardware implementation of LDPC for both regular code using

regular parity-check matrix, WiFi and WiMax matrices.

2

Chapter 2: Theoretical Background

In channel coding, error correcting codes are essential mechanism due to the increase of data

transmission and storage systems, as the speed of communications, distance of transmission,

or amount of data to be transmitted are also increasing and introducing errors. Indeed, data

transmissions are not limited to wireless communications, thus, cable or terrestrial trans-

mission systems also adopt these mechanisms. The capability of detecting errors - even

correcting them in some cases - by the recipient of a message, has made systems with error

correcting mechanism widespread and available in many of recent standards. Among the

di�erent classes of error correcting codes, the focus of this chapter is on the study of binary

linear block codes, especially Low-Density Parity-Check (LDPC) whose powerful charac-

teristics have been widely addressed, investigated and exploited by the communication and

information theory community [6].

The term Forward Error Correction (FEC) is used when the receiving equipment does

most of the decoding work. In the case of block codes, once the errors are detected by

the decoder, it corrects them. FEC technique can reduce bit error rate (BER) at a fixed

power level or allow a specified error rate at a reduced power level at the cost of increased

Figure 2.1: Simplified model of LDPC encoding and decoding.

3

bandwidth (or transmission delay) and processing burden [6].

Shannon�s channel coding theorem has stimulated the improvement of error control

codes. All the data rates rb should be less than the channel capacity C so that it can satisfy

Shannon theorem, and, therefore, it can have an arbitrarily small probability of error Pe

[7]. The channel capacity C is given by the Shannon formula [1],

C = B log2[S/N] (bits per second) (2.1)

where B is the bandwith in Hz, and S/N is signal to noise ration (SNR) which is equal to

rbEb

BN0
. Substituting S/N into (Eq.2.1) [1] we get,

C

B
= log2(1+÷max

Eb

N0
) (or)

Eb

N0
= 2÷max≠1

÷max

(2.2)

where Eb

N0
is called Shannon�s Limit or specifically Shannon�s power e�ciency limit, which

is used to to evaluate coding-modulation scheme. Hence, it gives the required limit to

transmit data at a rate close to the channel capacity C [1].

2.1 Low-Density Parity-Check Codes

Low-Density Parity-Check (LDPC) Codes were initially introduced by Robert Gallager in

1962 [5] and they are sometimes called ’Gallager codes’ [8]. LDPC codes were nor noticed or

studied for decades due the limitations of computing capability - Hardware - at that time.

LDPC codes were recognized - in 1965 - by their remarkable performance in which allowing

the rate of data transmission more closely to Shannon limit by Mackay and Radford [9].

Lately, they have become popular due to proven performance of meeting channel capacity

and achieving excellent Bit Error Rate (BER) due to computationally intensive algorithms

4

on the decoder side of the system of historical and recent LDPC codes. The powerful

advantages LDPC codes o�er have led to recent inclusion of LDPC in several standards,

such as IEEE 802.16, IEEE 802.20, IEEE 802.3, and DBV-RS2 [10].

LDPC codes are a long linear block of codes that are defined by generator matrix G, N

x K matrix, or parity check matrix H in non-systematic form, (N - K) x N matrix, which

have a low density of non-zero elements. LDPC generator is called Regular when all the

columns’ weight wc are constant and all the rows’ weight wr are constant. Otherwise, it is

called Irregular.

A parity-check matrix H defines an (wc, wr, N) on LDPC, N denotes the length of

the code, K is used to denote its dimension, and the redundancy is M = N ≠ K. This H

said to be sparse if less than half of its elements are non-zero. The linear block encode k

information bits into N coded bits. The corresponding regular (wc, wr) code has a design

rate of R = 1 ≠ wc/wr. By using the row vector notation, the coded vector c is obtained

from the information message m by vector-matrix multiplication,

c = (c1, c2, ..., cn),

m = (m1,m2, ...,mk),

c = m ·G.

(2.3)

Each row of H provides a parity-check equation that any codeword c must satisfy,

c ·H€ = 0 (2.4)

The direct decoding process of the received codeword cÕ can have a high complexity due to

the huge dimensions that H can reach. Hence, LDPC decode the received codeword using

message passing algorithms over a Tanner graph discussed in the next subsections.

5

2.2 Minimum Distance

The Hamming distance D(x,y) between two codewords x and y is defined as the number of

bits with di�erent values between x and y. The Minimum Distance of a certain code c is the

lowest Hamming distance between two codewords over the entire range of codewords of that

code c [11]. The larger the minimum distance, the code and correct a larger number of bit

errors. Hence, the transmitted codeword will be decoded to the closest valid codeword [11].

If the minimum distance is small, the received codeword could decode to a di�erent codeword

from the one transmitted. A weight w is defined for a codeword x and it represents the

number of 1s in x. A weight of code is called, minimal weight, if the weight of the codeword

has the lowest non-zero weight. Thus, the minimum distance of a linear code is the minimal

weight of this code.

2.3 Tanner graph

A linear binary block code (N, K) can be described by a binary H matrix with dimen- sions

(N - K) x N. Also, it can be elegantly represented by a Tanner graph[118] defined by edges

connecting two distinct types of nodes:

• BitNodes(vi) that is also called variable nodes with a vi for each one of the N codeword

of the linear system of equations, and;

• Check Nodes (ci), also called restriction or test nodes with a ci for each one of the (N

- K) homogeneous independent linear system of equations represented by H.

Each ci connects to all the vi which have a contribution in that restriction or test

equation. For the other type of nodes, each Bit Nodes corresponding to a vi bit of the

codeword, connects to all the Check Nodes equations where bit vi participates in. The

graph edges connect Bits Nodes with Check Nodes, but never nodes of the same type,

which defines a bipartite graph. Every element in H where Hij = 1, represents a connection

between vj and ci.

6

Tanner graph is factor graph that can be used to describe the LDPC iterative decoding

algorithm. The terms below pertain to evaluate the algorithm in Tanner graph [1]:

Cycle:

A cycle in a Tanner graph is a sequence of connected codeword nodes and parity check

nodes that begin and conclude at the same node and no other nodes can appear in the

sequence more than once. This is useful to determine the convergence of the algorithm.

The Sum-Product algorithm shows that it can be converged at the optimal solution if the

Tanner graph has no cycle [1]. The presence of shorter cycles will degrade the algorithm.

Length:

The length of a cycle is typically the number of edges (the connecting line between the

check node and the variable node) in the cycle.

Girth:

The girth of a Tanner graph is the length of its shortest cycle.

Degree:

The degree of a node in the Tanner graph is the number of edges connected to it.

2.4 Parity-Check Matrix Construction

Parity-check matrix can be constructed in term of random sparse matrix, which makes it

easy to create LDPC code with any code rate. Many codes is constructed by specifying a

fixed weight for each column and row, then constructing the matrix at random subject to

these constraints. LDPC code have di�erent design criteria for its matrix that is reviewed

in this thesis.

2.4.1 Gallager�s Parity-Check Matrix Construction

Gallager [5] imposed in his work a fixed column weight wc and a fixed row weight wr. The

parity check matrix was horizontally divided into wc equal size sub-matrices; where each

sub-matrix contain in each of its column a single Õ1Õ. The first sub-matrix was constructed

7

in predetermined manner. The subsequent sub-matrices were random column permutations

of the first [12]. Gallager�s construction technique [13] is outline as follows:

1. The code parameters:

N , K

wc (the column weight),

wr (the row weight) are given,

2. The number of the rows is constructed using N ≠K

wc
rows and the number of the

columns is N,

3. The H1 sub-matrix is constructed with N ≠K

wc
x N dimension,

4. Let �(H1) be a pseudo-random column permutation of H1,

5. The parity-check matrix H is constructed by stacking wc submatrices:

H =

S

WWWU

H1
�(H1)
�(H1)

T

XXXV (2.5)

The feature of LDPC codes to perform near the Shannon�s limit of a channel exist

mostly for large block lengths. The large block length results in large parity-check and

generator matrices. The complexity of multiplying a codeword with a matrix depends on

the amount of 1�s in the matrix [12]. Thus, the sparse matrix H should be in the systematic

form such that H = [P T I], where P is sub-matrix that is generally not sparse and

I is identity matrix. Then the generator matrix G can be constructed as G = [I P].

The sub-matrix P makes the encoding complexity quite high since it not sparse matrix.

Therefore the complexity grows O(N2) even though sparse matrices do not result in a good

performance if the block length gets very high [12], [13].

8

Figure 2.2: Gallager�s H constructed matrix [1]. Note that the circles represent the permu-
tation matrix and the diagonal lines represent the identity matrix

9

Figure 2.3: An example of H has a cycle of length 4 represented in Tanner graph [1]

2.4.2 MacKay�s Parity Check Matrix Construction

Tanner graph is the representation of the parity-check matrix H, and short cycles in the

Tanner graph cause degradation of the algorithm convergence. Thus, Mackay�s main goal

was to keep the short cycles in Tanner graph as minimum number as possible. Belif-

Propagation decoder algorithm faces di�culties when short cycles are present in Tanner

graph as illustrated in the following example [14]:

Figure 2.3 represents a cycle of length 4 that is indicated by the bold edge between vi

and ci nodes. If the state of variable node vi changes to (vi + c) for arbitrary c œ GF (2p),

then only one check cj is a�ected. Therefore, the decoder will stuck and it is di�cult to

find the evidence of the other satisfied checks ci. To ensure that any pair of columns in the

H matrix has an overlap at most one, a cycle of length 4 is avoided [14]. The construction

of H with no cycles of length 4 is described in three ways [14]:

1A construction: is the basic construction that has fixed weight per column wc (i.e.

wc = 3), and keeping the weight per row wr as uniform as possible. As well as the overlap

between any two columns no greater than 1. See Figure 2.4.

2A construction: similar to 1A construction except that the up to m/2 columns have

10

Figure 2.4: 1A construction of H with wc = 3 and wr = 6 and the rate is 1/2. Note that
the integer in the circle represents the number of permutations matrix.

weight 2. These weight 2 columns are in form of two identity matrices of size m/2 x m/2, in

which one is the above than the other one. See Figure 2.5. This irregular construction using

weight columns was introduced by MacKay [14] that had better performance in practice.

1B, 2B construction: in those construction, a small number of columns are omitted from

a matrix produced by 1A and 2A, respectively. So that the Tanner graph corresponding to

the matrix has no short cycles of length less than some length l.

2.4.3 WiMax�s Parity Check Matrix Standards

WiMAX standard (IEEE 802.16e) uses LDPC codes, whose decoders can be very demanding

from a computational perspective [15]. For this reason, they are still implemented using

dedicated hardware based on ASIC solutions. WiMAX standard is based on a special class

of LDPC codes [15] that is characterized by a sparse binary block parity-check matrix H of

the form:

11

Figure 2.5: 2A construction of H with the rate is 1/3. Note that the diagonal line represents
the identity matrix

12

H = [H1 H2] (2.6)

=

S

WWWWWWWWWWWWWU

P0,0 P0,1 . . . P0,k/z≠1 Pb0 I 0 ... 0

P1,0 P1,1 . . . P1,k/z≠1 Pb1 I I

...

Pn≠k/z≠2,0 Pn≠k/z≠2,1 . . . Pn≠k/z≠2,k/z≠1 I I

Pn≠k/z≠1,0 Pn≠k/z≠1,1 . . . Pn≠k/z≠1,k/z≠1 Pbn≠k/z≠1 0 ... 0 I

T

XXXXXXXXXXXXXV

(2.7)

where H 1 is sparse and has special periodicity constraints introduced in the pseudo random

design of the matrix [IEEE P802.16e/D12, 2005; see paper [16]. H 2 is a sparse lower

triangular block matrix with a staircase profile. The periodic nature of these codes defines

H 1 based on permutation sub-matrices Pi,j , which are:

• quasi-random circularly shifted right identity sub-matrices I , as depicted in Fig-

ure 2.6.The dimensions is Z ◊ Z ranging from 24x24 to 96x96 and incremental gran-

ularity of 4.

• Z ◊Z null sub-matrices.

The periodic nature of such codes allowed simplifying the architecture of the system and

storage requirements without code performance loss [15]. Also, the right sub-matrix H 2 is

formed by identity: I sub-matrices of dimension Z ◊ Z; or null sub-matrices of dimension

Z ◊Z.

2.4.4 WiFi�s Parity Check Matrix Standards

The special structure of the IEEE 802.11n LDPC parity check matrices makes the encoding

process is done very e�cient. The IEEE 802.11n LDPC codes are based on block-structured

13

Figure 2.6: Periodicity Z ◊Z = 96x96 for a matrix with n=2304, rate=1/2

14

Figure 2.7: Example base matrix for N=1944 bits, rate = 1/2 LDPC code

LDPC codes with circular block, the entire parity-check matrix H can be partitioned into

an array of block matrices [17], [18]; each block matrix is either a zero matrix (null) or a

right cyclic shift of an identity matrix. The parity check matrix designed in this way can

be conveniently represented by a base (block) matrix.

An example of WIFI (IEEE 802.11n) base matrix Hb for an LDPC code is illustrated

[18] in Figure 2.7, with code length N = 1944 bits and rate = 1/2. The block size is Z = 81

bits with mb = 12 and nb = 24. In Hb matrix, each entry represents a circular right-shift

of the identity matrix IZ . i.e. if Z = 3 and the entry is 1, then the corresponding block

is [010;001;100]. The -1 entry means a null block. Thus, this Hb matrix is a compact

expression of a binary 2D such that [M = 12≠81,N = 24≠81] matrix.

The parity-check matrix will be in the form of the following;

Hb =

S

WWWWWWWWWWWWWU

h0,0 h0,1 . . . h0,kb≠1 1 0 ... ≠1

h1,0 h1,1 . . . h1,kb≠1 ≠1 0 ... ≠1

...

hmb≠2,0 hmb≠2,1 . . . hmb≠2,kb≠1 0 0 ... 0 ≠1

hmb≠1,0 hmb≠1,1 . . . hmb≠1,kb≠1 1 ≠1 ... 0 0

T

XXXXXXXXXXXXXV

(2.8)

15

Table 2.1: Minimum distance of 802.11n LDPC codes with large packet
Code Rate Weight of Matrix Search using Parity Check Matrix

r (independent of n) (n = 1944 bits)
1/2 27 33
2/3 17 21
3/4 12 17
5/6 10 14

Table 2.2: Minimum distance of 802.11n LDPC codes with medium-size packet
Code Rate Weight of Matrix Search using Parity Check Matrix

r (independent of n) (n = 1296 bits)
1/2 31 23
2/3 17 15
3/4 22 10
5/6 17 9

There are four code rates for each of three block length that are specified in this standard.

The following three tables [19]. The Table 2.1 highlights the largest block length codes when

n = 1944 bits, Table 2.2 shows the medium block length codes where n = 1296 bits, and

lastly Table 2.3 illustrates the smallest code length where n = 648 bits. The tables shown

the following code rates 1/2, 2/3, 3/4, and 5/6, for the following H matrices: 12◊24, 8◊24,

6◊24, and 4◊24, respectively.

2.5 Binary LDPC decoding: Belief-Propagation and Iterative De-

coding

Tanner graphs as in section 2.3, have often been proposed to perform approximate infer-

ence calculations [20]. They are based on iterative intensive message-passing algorithms

Table 2.3: Minimum distance of 802.11n LDPC codes with small packet
Code Rate Weight of Matrix Search using Parity Check Matrix

r (independent of n) (n = 648 bits)
1/2 31 15
2/3 27 12
3/4 14 8
5/6 19 8

16

also known as belief propagation (BP) which, under certain circumstances, can become

computationally prohibitive. BP, also known as the Sum-Product Algorithm (SPA)1, is an

iterative algorithm [21]. For the computation of joint probabilities on graphs, it is com-

monly used in information theory such as in channel coding, as well as artificial intelligence

(AI) and computer vision (e.g., stereo vision). It has proved to be e�cient and is used in

numerous applications including LDPC codes [22] and other codes.

SPA applied to LDPC decoding operates with probabilities, to exchange information

and update messages between neighbors over successive iterations. Considering a codeword

c is to be transmitted over a noisy channel, the theory of graphs applied to error correcting

codes has fostered codes are extremely close to the Shannon limit [23]. In bipartite graphs,

particularly in those with large dimensions (e.g., N >1000 bit), the uncertainty on a bit

can be spread over neighboring bits of a codeword allowing, in certain circumstances, in the

presence of noise, to recover the correct bits on the decoder side of the system. In a graph

representing a linear block error correcting code, reasoning algorithms exploit probabilistic

relationships between nodes imposed by parity-check conditions that allow inferring the

most likely transmitted codeword. The BP mentioned before allows to find the maximum

a posteriori probability (APP) of vertices in a graph [21].

Propagating probabilities across nodes of the Tanner graph, rather than just flipping

bits [10] which is considered hard decoding, is defined as soft decoding. This iterative

procedure accumulates evidence imposed by parity-check equations that try to infer the

true value for each bit of the received word [10]. Using the probabilistic decoding algorithm

sum-product or BP [10], at each step the posterior probability of the value of each noise

symbol —variable node vi —given the received signal r and the channel properties.

P (vn|r,H€c = 0) (2.9)

This process is represented Tanner graph as a message passing algorithm on bipartite
1In the literature, the terms BP and SPA are commonly undistinguished. Both are used in this text

without di�erentiation.

17

Figure 2.8: Massage Passing in Tanner graph or Bipartite graph.

graph defined by H in which the two sets of nodes: variable nodes vi representing the noise

symbols and and check nodes ci. The nodes vi and ci are connected if the corresponding

Hij is non-zero. The directed edges show the relationships such that the state of a check

node is determined by the state of variable nodes to which it is connected. This can be

represented in the tree graph; where the neighbors of variable nodes vi as the parents and

the neighbor of check nodes ci as the childern.

At each step of decoding each variable node vi sends message qa
ij to each child /check

nodes ci connected to it, to approximate the node’s belief in state a, given messages are

received from all its other children. In addition, the check node ci sends messages ra
ij to each

parent vi that is involved to the check equation approximating the probability of check ci

being satisfied if the parent is assumed to be in state a, given that the messages are received

from all its other parents [24]. After each step, the messages are updated iteratively until

18

the decoding satisfies the observed syndrome vector. Declaration of decoding algorithm can

be (success) if the syndrome vector is 0, and can be (failure) if the maximum number if

iteration is reached.

Initialization:

The message qa
ij is set to fa

j which is the prior probability that the jth variable node is a

[24].

Updating Check Nodes Messages ra
ij :

Check nodes messages ra
ij that the check i sends to variable j should be the probability of

check i being satisfied if the variable was in stat a. That is, the check i is satisdied if it

agrees with the corresponding syndrome symboled si.

P (ci|vj = a) =
ÿ

v:vj=a

P (ci|v)P (v|vj = a) (2.10)

Hence, all v configurations is summed for which the check is satisfied and the variable is in

state a and added up the probability of the configurations; that is the product of associated

Q messages. Now the message ra
ij for node ci is updated to the node vi for each state a as

follow:

ra
ij =

ÿ

v:vj=a

P (ci|v)
Ÿ

kœN (i)\j

qvk
ik (2.11)

where N (i) is the set of indices of the variable nodes vi and N (i)\j is the the set of indices

of the variable nodes vi except node vj . The probability P (ci|v) is either 0 or 1 for any

given configuration v.

Updating Variable Nodes Messages qa
ij :

Variable nodes messages qa
ij that the noise node j sends to check i the belief it has in state

a. The message is updated as follow:

19

qa
ij = –ijfa

j

Ÿ

kœM(j)\i

ra
kj (2.12)

where M(j) is the set of indices of the check nodes ci and the fa
j is the prior probability

that vi in state a. The –ij is the normalized constant ensure that
q

a qa
ij = 1.

Decoding Decision:

After updating the messages r and q for possible states a, at each index j = 1, ...,n, the

quantity is calculated accordingly:

n̂i = argmax
a

fa
j

Ÿ

kœM(j)
qa

kj (2.13)

where n̂i is the decoding decision. If this satisfied the syndrome equation H
T n̂ = s, then

the decoding is terminated and declared a success. Otherwise the decoding keep decode

iteratively until it reached the maximum number of iteration and declare either success or

failure [24].

2.6 Non-Binary LDPC Codes: Log-Domain Fast Fourier Transform

Decoding

A binary LDPC can be represented using a sparse binary matrices or corresponding Tanner

graph. Binary LDPC codes can be generalized by using the same Tanner graph; however,

some changes are made such that making the variable nodes vi take the values from some

finite alphabet and making the check nodes ci impose some complex constraints than the

binary LDPC codes [24]. Defining the variable nodes vi over the finite filed GF(q) required

the check ci as follows:

ÿ

jœN (i)
fij(vj) = 0 (2.14)

20

where N (i) is the set of variable nodes connected to check i, and each fij is one of the (q-1)!

permutations of the field elements [24].

Non-binary LDPC codes are defined over the Galois field GF (q = 2p). By encoding over

GF (q), each parity check becomes more complex. The decoding of non-binary LDPC codes

is not equivalent to the binary case as the non-binary decoder operates on the symbol level,

and not on the bit level. The decoding algorithm is based on the probability and log domain

versions of the Fourier transform over GF (q), since it reduces the algorithm complexity [25].

The channel messages are loaded into the variable nodes vi. These messages represent

the prior fa for the state a, where a œ GF (q).

fa :=
pŸ

i=1
fa

vi
(2.15)

This means that the decoder interprets p bits (v1, ..., vp) from the channel as single q-array

symbol and sets the prior distributions for that symbol. The prior fa
vi

is the likelihood the

ith bit of variable (vi) is equal to ai. such that the set (a1, ..., ap) is the binary representation

of the symbol a [24].

The complexity of decoding of non-binary LDPC is raised due to the large number of

convolution operations and multiplication [26]. These complexity can be reduced by intro-

ducing Fast Fourier Transform (FFT) and logarithmic domain. FFT is used to convert the

large number of convolution operations into multiplication operations in frequency domain,

while the log-domain is used to convert the multiplication of the original FFT algorithm

into addition and a lookup table [27].

Similarly with binary LDPC the decoding can be divided into four steps.

Initialization:

The variable node message is set from qa
ij to fa

j ; where qa
ij = [q0

ij , ..., qq≠1
ij]. Then, the

log-Domain initialized its information F a
j such that:

21

F a
j = log(fa

j)

hence;F a
j = Qa

ij

and;Qa
ij = log(qa

ij)

(2.16)

Updating Check Nodes Messages Ra
ij :

In this process the probability information in the log-domain should be converted to expo-

nential domain, as follow:

qa
ij = exp(Qa

ij) (2.17)

Then, this is combined with qa
ij = [q0

ij , ..., qq≠1
ij], to obtain:

ua
ij = –ijFFT (Phij qa

ij) (2.18)

where Phij is the permutation matrix of message propagation from variable nodes vi. The

term –ij is normalized term to ensure
q

aœ(0,q≠1) qa
ij = 1. Then, log-domain applied to

convert the multiplication to additions, and inverse of FFT is used to update the check

message in the state a as follows:

Ua
ij = log(ua

ij) (2.19)

Ra
ij = P

≠1
hij

IFFT (
ÿ

kœN (i)\j

Ua
ik) (2.20)

where Phij is the permutation matrix of message propagation from check nodes ci to variable

nodes vi.

22

Updating Variable Nodes Messages Qa
ij :

This process of updating variable nodes only used log-domain such that,

Qa
ij = F a

j +
ÿ

kœM(j)\i

Ra
kj (2.21)

Decoding Decision:

After updating the messages R and Q for possible states a or iteration, each variable node

vi needs to be hard decision after it updated again to declare whether the decoding is

successful or failure.

ŷi = argmax
a

(F a
j +

ÿ

kœM(j)
Ra

kj) (2.22)

If the check equations are satisfied the decoding process is finished and it should declare

the state of decoding algorithm. If not, the process continues with a new iteration until a

valid message word is estimated or the maximum number of iterations is reached out [27],

[28].

2.7 Quasi-Cyclic LDPC Codes: Log-Domain Fast Fourier Transform

Decoding

Quasi-Cyclic LDPC (QC-LDPC) codes are a special class of LDPC codes with a structured

H matrix, which can be generated by the expansion of a Z ◊Z base matrix. For WiMax H

matrix, each square box with I matrix represents an Z ◊ Z circularly right-shifted identity

matrix with a shifted value of x, and each empty box represents an Z ◊ Z zero matrix

(null-sub-matrix). Similarly for WiFi matrix (IEEE 802.11n) the H matrix is constructed

by the expansion of a Z ◊Z base matrix, an example is disused in [4]. QC-LDPC uses Log-

Domain Sum-Product (Log-SPA) decoder algorithm algorithm which is massage passing

(iterative) algorithm.

23

For a codeword cn, and a decoded codeword cÕ
n, the a posteriori probability (APP)

log-likelihood ratio (LLR) is soft information for cn and can be defined as Lj = log((Pr(cn

= 0)/Pr(cn= 1)).

Initialization:

Lj is initialized to be the input channel LLR. The vi-to-ci (VTC) message Qij and the

ci-to-vi (CTV) message Rij are initialized to 0.

Iterative Decoding:

For each vi, the Qij is calculated by;

Qij = Lj +
ÿ

kœM(j)\i

Ra
kj (2.23)

where M(j)\i denotes the set of all the checks connected with vj except ci. Then, for each

ci, compute the new CTV message RÕ
ij and �ij by;

RÕ
ij = Qij1 �Qij2 � ...�Qijn , (2.24)

�ij = RÕ
ij ≠Rij (2.25)

where j1, j2, ..., jn œ M(i)\j and M(i)\j denotes the set of all the checks cÕs connected with

vi except cj The � operation is defined below:

x�y = sign(x)sign(y)min(|x| ,|y|)+S(x,y),

S(x,y) = log(1+e≠|x+y|)≠ log(1+e≠|x≠y|)
(2.26)

Updating APP and Decoding Decision:

24

LÕ
j = Li +

ÿ
�ij i (2.27)

Then, the decoder makes a hard decision to get the decoded bit cÕ
n by quantizing the APP

value LÕ
j into 1 and 0, that is, if LÕ

j <0, then cÕ
n = 1, otherwise cÕ

n = 0. The decoding

process terminates when the codeword cÕ
n satisfies H cÕT

n = 0, or the pre-set maximum

number of iterations is reached. Otherwise, go back to iterative decoding step and start a

new iteration of decoding.

2.8 CUDA Architecture

Graphics processing units (GPUs) are performing high parallel processing that have been

used for solving general purpose computing problems, and triggered the field of general-

purpose computing on graphics-processing units (GPGPU). In just a few years, GPUs have

evolved into flexible platforms for general computing [29]. Initially, GPUs were programmed

by low-level languages which restricted its application as computing workhorses. The release

of Cg, a high-level programming language for GPU, facilitated the application of GPU for

a general purpose computation [30], [3]. However, Cg is not user-friendly enough, because

it requested programmers must have fundamental knowledge on computer graphics for

using this high-level programming language. NVIDIA releases the Compute Unified Device

Architecture (CUDA) [3], programmers can write codes for both CPU and GPU in a similar

way by using the instruction set of CUDA [31]. CUDA is a GPU software development kit

proposed by David Kirk and Mark Harris [32]; thus, advantage of CUDA is that it is an

extension of the standard C programming language. That is, those who are familiar with

the C/C++ programming language can learn how to program in CUDA relatively easily.

This technology allows to execute thousands of concurrent threads for the same process,

which makes this kind of devices ideal for massive parallel computation. CUDA devices

are programmed using a extended C/C++ code and compiled using the NVIDIA CUDA

25

Compiler driver (NVCC). After the compilation process, the serial code is executed on the

host and the parallel code is executed on the device using kernel functions.

In this thesis, the hardwere used for CUDA programming is referred to NVIDIA Tesla

K40m model. The device specifications are mentioned in NVIDIA website [33].

2.8.1 NVIDIA’s Tesla K40m Architecture

The architecture of NVIDIA Tesla K40m has (15) Multiprocessors, each multiprocessor has

(192) single precision (SP) thread processors which make up to 2880 CUDA GPU cores.

and 12GB GDDR5 memory. It supports Dynamic Parallelism and HyperQ features and

include GPU Boost that increased clock speeds to 745 MHz. Each SP can process a block

of data with a thread allocation in parallel. However, it is not possible for the CPU and the

GPU to share memory space. Thus, the GPU must make a copy of the shared data to its

own memory space in advance. If the CPU wants data stored in the memory of the GPU, a

similar copy operation must take place. These copy operations incur significant overhead.

To achieve high speed performance in the kernels execution, the study of memories type

in CUDA GPU is essential. Device memory can be sorted as read-write per-thread registers,

read-write per-thread local memory, read-write per-block shared memory, read-write per-

grid global memory, read-only per-grid constant memory and read-only per-grid texture

memory. Since the shared memory is embedded on the multiprocessor, it provides a very

fast read and write access for threads. Thus, here are some discussion of memory types in

CUDA GPU.

Global memory: This is the largest capacity memory in the device which is a read and

write memory and can be accessed by all the threads during the application execution.

Tesla k40m has 11441 MBytes total amount of global memory. That is the stored data

remains accessible between di�erent kernel executions. It is used for the communication

channel between host and device. In which, the data is sent from the host the device and

sent back to the host after execution, then global memory is processing the data. Global

memory can achieve good performance if each continuous thread index accesses continuous

26

Figure 2.9: GPU Architecture showing multiple stream multiprocessors SM each with SP
[2]

27

memory data positions.

Constant memory: This memory is available to all the threads during the application

execution. It is a read-only memory by the device, and only the host is able to write data

to it. Tesla k40m has 65536 bytes of constant memory that performs with short-latency

and high-bandwidth when all threads simultaneously access the same location.

Shared memory: This is a read and write memory that is available to all the threads

in one block. The data is available during the kernel execution and the access can be very

fast if the available shared memory banks are accessed in a parallel way. Tesla k40m has

49152 bytes total amount of shared memory per block.

Registers: These are available to each independent thread; where the total number of

threads per multiprocessor in Telsa k40m is 2048. The local variables in a kernel are usually

stored in the registers, performing a full speed access. If a variable can not be allocated in

the on-chip hardware registers, then it is stored in the global memory with a slower access.

The total number of registers per block in Telsa k40m is 65536 registers.

The variables created in CUDA programing can be allocated in each of the available

memory types, depending on which keyword precedes the variable declaration or where are

they declared.

2.8.2 Threads Organization and Execution

A Tesla k40m GPU has a 15 number of streaming multiprocessors (SM). Each SM is able

to execute concurrently up to 2048 threads which arranged into blocks. A block contains

up to 1024 threads, arranged with an 1D, 2D or 3D distribution [34].

The relation between a block and a thread in the GPU illustrated in Figure 2.11. A

kernel function is executed for one thread at a time. The blocks are partitioned in grids,

such that a grid is a 1D or 2D arrangement of the total number of blocks containing all

the data to be processed. The threads/block and blocks/grid settings are configured for

the execution of each kernel [34]. Hence, the execution for one grid of is lunched by each

kernel. When a function is invoked, the thread and the block index are identified by the

28

Figure 2.10: Blocks and threads arrangements for a grid [2]

29

Figure 2.11: Thread batching: the host issues a succession of kernel invocations to the
device (CPU host). Each kernel is executed as a batch of threads organized as a grid of
thread blocks [3]

’thread idx’ and ’block idx’ variables, respectively [34].

A kernel is launched as a C/C + + function with some extensions from the host and

executed on the device. The kernel is called by using global kernelName <<<numGrids,

numBlocks >>>(parameters list); where, global which indicates to the compiler that

the kernel has to be executed on the following device <<<numGrids, numBlocks >>>.

The blocks/grid, threads/block settings, and parameters list are the typical parameters

that passes to a standard C/C ++ function. CUDA programming manual is provides more

detailed information for how CUDA is used in regular C/C ++ program [34].

30

Chapter 3: Implementation

3.1 Log-Domain FFT decoding based LDPC Codes: CPU Imple-

mentation

The LDPC decoder algorithm has been implemented using C language by Takamura [35].

The implementation is based on Log-domain FFT for GF (2m) field. A lookup table is

created for each GF (q) where q is the range from 21, ...,28. The lookup table is used to

reduce the complexity of the FFT multiplication operations. such that the addition and

subtraction operations are defined in GF(q). The input to the simulation is H matrix that

is constructed by MacKay [36].

3.1.1 Performance and Results

The obtained results are related to the hardware architecture used in the simulations and

will di�er if di�erent CPUs are used. For the experiments of work by Takamura [35], the

following hardware and softwere standard were used on Ubuntu 16.04 operating system:

• CPU: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz,

• GCC compiler version 5.4.0

The performance of the decoder shows that the LDPC decoder was successfully decoded

the regular MacKay [36] code; while the decoder fails when the parity-check matrix is

constructed in a di�erent way.

Table 3.1 shows the latency (in millisecond) of the decoding algorithm that is imple-

mented on CPU with 2.20 GHz speed. The table shows that as the q symbols for the GF

field increase the decoding takes more time to decode the message. The block size of the

31

Table 3.1: GF(q) For Log-Domain FFT decoding based LDPC on CPU
GF(q) Code rate Dimension Time in msec number of iterations

GF (21) 0.5 20000x10000 313 27
GF (22) 0.67 9000x6000 66 7
GF (23) 0.66 6000x4000 448 6
GF (24) 0.66 9000x6000 348 9
GF (25) 0.66 9000x6000 728 9
GF (26) 0.66 9000x6000 1846 11
GF (27) 0.66 6000x4000 17872 71
GF (28) 0.66 6000x4000 18832 84

code is a�ecting the decoding time as the binary LDPC decoder over GF (2) is shown in

Table 3.1 has larger block size, thus it took longer time to decode than over GF (22) with

smaller block size of 9000x6000. Belief-Propagation algorithm is iterative decoding algo-

rithm, thus the decoder here illustrated for NB-LDPC that the iteration increased when we

have more symbols in the code.

3.2 Log-Domain FFT decoding based LDPC Codes: GPU Imple-

mentation

LDPC is implemented using CUDA programming language supporting multiple standards

such as GF(q) and data rates using multiple H-matrices that are stored as files. The host

CPU ’ device ’ reads the H-matrix for a given standard. The host CPU then generates

an address table of data processed in parallel by the GPU. Generation of the address table

is parallelized by CUDA functions. Next, generated address information is transferred to

the memory in the GPU ’ global ’ . This copy operation takes place only if there is a

change in standard or code rate.

When signals from the channel are received, the host CPU delivers them to the GPU.

The GPU executes the proposed LDPC decoding software in parallel. Upon completion of

the decoding, decoded bits are transferred to the host CPU. A CUDA API called ’cud-

aMemcpy()’ is used to exchange data between the host and the GPU. The copy overhead

32

may be significant, so it is crucial to minimize it. In this log-Domain FFT based LDPC im-

plementation the copy operation takes place only for generated address transfers, received

signal transfers, and decoded bit transfers.

3.2.1 LDPC Memory Arrangement on GPU

The most important structures are Qa
ij and Ra

ij messages which are passed between variable

nodes and check nodes and the posteriors F a
j . All of these are accessed very frequently

in most kernels of the main functions. LDPC codes of di�erent sizes and di�erent Galois

field dimensions should be supported, such that the potential required amount of memory

should be considered for these message vectors.

Although the data is stored as a one-dimensional array in the device, it is interpreted

as 2D F a
j or 3D Qa

ij and Ra
ij structures. This depends on the indexing as illustrated in

Figure 3.1; where for the 3D arrays case, the first index is pertinent to the node, the second

to the node connection and the third to the Galois field element that corresponds to one

entry of a prior vector [3]. While 2D arrays are indexed first by the node and second

by the Galois field element. This indexing points to the exact position of one element in

the structure, and helps to set the CUDA grid and block configuration of the kernels [37].

Therefore, multiple float values are handled in only one read/write memory access which

allows accessing the memory in a coalesced way and helps in boosting the performance.

A GPU�s texture memory is employed and available for all kernels for Galois field arith-

metic operation; such as 2D lookup tables for for the addition and multiplication, and 1D

lookup tables for the inversion (size q-1) and conversion between exponential and decimal

representation (size q).

3.2.2 LDPC Codes On GPU

Initialization:

The number of iterations is initialized to zero. Then, the input data is transferred to the

CUDA device to do the initial check of the parity equations. If they are not fulfilled, the

33

Figure 3.1: 3D structures used for message vectors and correspond to linear data allocation
in the global device memory as shown in [3]

main decoding loop is executed until they are, or until a maximum number of iterations

(1000) is reached. After the iterative decoding process finishes, a hard decision is conducted

to obtain the final decoding result.

Permute Message Vectors:

Before and after the check node update Ra
ij , the elements of the message F a

ij vectors have

to be permuted according to the Galois field element at the corresponding check matrix

position. A shared memory block is used as a temporary memory for parallel implementation

of the permute operation. For Ra
ij to be permuted, the shared memory stores the input data

using the permuted indices according to the matrix entry Hi,j , and writes the output data

directly. For Qa
ij to be the permuted, the shared memory reads the input values directly,

but the output is written using the permuted indices [as illustrated in [38] fig. 4]. In this

way, one thread per node and per GF(q) element can employed without accessing the same

shared memory banks. Therefore, no bank conflicts are generated, resulting in full speed

memory access [25].

Log Domain FFT:

34

The implementations of the log-domain FFT and the inverse IFFT domain are identical and

follow a butterfly diagram [25] [as shown in [38] fig. 5]. The addition operations carried

out in the log-domain which consists of two separate operations for the magnitude and

the sign. Thus, two shared memory blocks are required for this purpose. Both operations

are executed simultaneously in the CUDA kernel implementation. The log-domain FFT is

applied independently to each F a
ij vector of size q. Thus, the CUDA block width is fixed to

q; for example in case of GF (28) the CUDA block size equals to 256. For each node (variable

and check), a loop processes all node connections to compute the log-domain FFT of the

F a
ij vector elements. The execution of the butterfly is supervised by a small loop of log2(q)

iterations. Since each continuous thread accesses a di�erent shared memory bank during

the butterfly, no bank conflicts are produced. The exponential and logarithm functions that

are needed for the log-domain operations [25] are realized by the fast hardware implemented

functions which are provided by the GPU.

Check Node Update Ra
ij :

The implementation uses one thread per node and GF(q) element to compute the outgoing

message F a
ij vectors for each edge of the corresponding check node [as visualized in [38] fig.

6]. The computations that performed in the log domain are separated in two threads. In

the first, loop over the node�s edges calculates the total sum of the magnitude values and

the total product of the sign values. In the second loop, the current magnitude value is

subtracted from the total magnitude sum to acquire the extrinsic sum, and the total sign

is multiplied by the current sign value for each edge.

Variable Node Update Qa
ij :

The kernel processes one thread per variable node Qa
ij and GF(q) dimension [as shown in [38]

fig. 7]. An internal loop processes all the node connections within one thread. Each thread

first reads the input F a
ij into a shared memory block and then adds all extrinsic information

from Ra
ij for the current edge and result is written into Qa

ij . Since the shared memory

operations are inside the loop over the node connections, continuous thread numbers access

35

di�erent shared memory banks in each iteration. This avoids bank conflicts and provides

maximum performance for the shared memory.

Update Posteriors:

The implementation of this kernel follows the one for the variable node update and the

information of all edges rather than all but one is added to the input F a
j to yield the

posterior F a
ij vectors Qa

j .

Evaluate Check Equations:

First, one thread per variable node is employed to determine a hard decision of the node�s

posterior vector by looping over the GF(q) to find the maximum element. After this,

one thread per check node loops over its edges and utilizes the texture tables for Galois

field addition and multiplication to add up the hard decision values. The result is a binary

vector of length M. To decide if decoding can be stopped, a parallelized reduction algorithm

is applied to sum up the elements of this vector in log2 M steps. The parity equations are

fully satisfied if the result of the sum is zero.

3.2.3 Performance and Results

The results is obtained using specific hardware architecture and software tools, the hardware

and software specifications are listed below:

• CPU: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz,

• GPU: Telsa km40, 2880 CUDA cores, 12GB RAM,

• CUDA tools kit v9.1

The performance of this implanted algorithm is of this using the same parity-check

matrix as it used for the decoder implemented on CPU. The following Table 3.2 illustrates

the latency of the decoder that increases as q increased. The performance is boosted by

mainly the fact that the elements q of GF field are stored in continuous memory positions,

which leads to boost the e�ciency of the coalesced memory access.

36

Table 3.2: GF(q) For Log-Domain FFT decoding based LDPC on GPU
GF(q) Code rate Dimension Time in msec number of iterations

GF (21) 0.5 20000x10000 37.3 7
GF (22) 0.67 9000x6000 27 5
GF (23) 0.66 6000x4000 44.50 6
GF (24) 0.66 9000x6000 48 7
GF (25) 0.66 9000x6000 83.4 9
GF (26) 0.66 9000x6000 166.3 9
GF (27) 0.66 6000x4000 178 20
GF (28) 0.66 6000x4000 186 28

3.3 Quasi-Cyclic LDPC: GPU Implementation

QC-LDPC was implemented by [4] using standard parity-check matrix for WiFi (IEEE

802.11n) and WiMax (IEEE 802.16e).

3.3.1 Mapping QC-LDPC Decoding Algorithm to GPU Kernels

The following equations (2.24), (2.25), and (2.27) makes the decoding process to be split

into two stages: the horizontal processing stage and the APP update stage; in which one

computational kernel is created for each stage. This kernel runs in GPU, while the host

code running in the CPU which is responsible of the CUDA initialization and memory copy

between host and device [4].

Horizontal Processing: CUDA Kernel 1

In this stage, and since all the CTV messages are calculated independently, a kernel is

created that uses many parallel threads to process these CTV messages. For an M x N

H matrix, M threads are generated, and each thread processes a row. Since all non-zero

entries in a sub-matrix of H have the same shift value, threads processing the same layer

have almost exactly the same operations when calculating the CTV messages Msub [4].

APP value update: CUDA Kernel 2

In this stage, there are N APP values to be updated. Similarly, the APP value update is

independent among variable nodes vi. Thus, Nsub thread blocks are used, with Z threads

in each thread block. In this stage, Kernel 2 makes a hard decision for each bit.

37

Figure 3.2: Multi-codeword parallel decoding algorithm by [4]. NCW represents the number
of codewords in one Macro-codeword (MCW). NMCW represents the number of MCWs.

3.3.2 Multi-codeword Parallel Decoding

A two-level multi-codeword scheme is designed to further increase the parallelism of the

workload. N of codewords are first packed into one macro-codeword (MCW). Each MCW

is decoded by a thread block and NMCW MCWs are decoded by a group of thread blocks.

The multi-codeword parallel decoding algorithm is described in Figure 3.2. Since multiple

codewords in one MCW are decoded by the threads within the same thread block, all the

threads follow the same execution path. Also, the latency of read-after-write dependencies

and memory bank conflicts can be completely hidden by a su�cient number of active threads

[4].

38

3.3.3 Implementation of Early Termination Scheme

Wang and his colleagues [4] proposed an early termination (ET) algorithm that is used to

avoid unnecessary computations when the decoder already converges to the correct code-

word. A new CUDA kernel with M threads is launched and each thread calculates one

parity check equation ci independently. The parity check results are used by all the threads,

and on-chip shared memory is used to speed up the memory access. After the concurrent

threads finish computing the parity check equations, these threads are re-used to perform

a reduction operation on all the parity check result to generate the final ET check result.

This ET results indicates the correctness of the codeword.

Wang and his colleagues [4], also, proposed a tag-based ET for multi-codeword parallel

decoding. In which, one tag is assigned per codeword and the tag is marked once the

corresponding parity check equation is satisfied. Then, if the tags for all the codewords are

marked, the iterative decoding process is terminated.

3.3.4 Optimizing Memory Access on GPU

The latency of memory access is one of the main bottlenecks which limits the performance

of the LDPC decoder. Two memory access optimization techniques are employed to further

increase the throughput [4].

Memory Optimization for H Matrix:

Reading from the constant memory is as fast as reading from a register as long as all the

threads within a half-warp read the same address. Since all the Z threads in one thread

block access the same entry of the H matrix simultaneously, the H matrix is stored in the

constant memory and used in the broadcasting mode that is o�ered by constant memory.

The quasi-cyclic characteristic of the QC-LDPC code allows us to e�ciently store the

sparse H matrix. For WiFi parity-check matrix shown in Figure 3.3, the Hkernel1 and

Hkernel2 are compacted by compressing H horizontally and vertically, respectively (see in

Figure 3.4). This results in reducing the device memory usage, therefore, the time spent

on reading the H matrix from device memory is reduced. Moreover, the number of branch

39

Figure 3.3: Example of Parity-check matrix for WiFi IEEE 802.11n (1944, 972) LDPC code.
H consists of Msub x Nsub = 12x24 [4]

instructions which may cause throughput degradation are also reduced since there is no

need to check whether an entry of H is empty.

Coalescing Device Memory Access:

In CUDA kernel 1, Rij and �ij values are stored in the device memory. There are only one

Rij and one �ij values per row in each sub-matrix of H. Thus, the compressed format can

be used to store Rij and �ij . This results in total, the memory saving forRij and �ij is

more than halved. Therefore, the compressed Rij and �ij matrices are written column-wise,

and all memory accesses to Rij and �ij are coalesced.

3.3.5 Performance and Results

The obtained results are using the same hardware architecture as for Log-Domain FFT

algorithm. The simulations of QC-LDPC is tested on the following standard hardware and

graphic card were used for Log-Domain FFT simulation:

• CPU: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz,

40

Figure 3.4: Using the H matrix example in Figure 3.3 by [4], after the horizontal and
vertical are compressed, Hkernel1 and Hkernel2 are produced, respectively. Each entry of
the compressed H matrix contains 48-bit data indicating the row and column index of the
element in the original H matrix. The shift value and a valid flag which shows whether the
current entry is empty or not.

41

Table 3.3: Decoding Latency and Throughput for QC-LDPC
Codes Code rate Dimension GPUT ime in msec CPUT ime in msec Throughput

WIFI(802.11n) 0.5 1944x972 1059.7 7511.6 196.30
WIMAX(802.16e) 0.5 2304x1152 1057.6 7488.3 196.32

• GPU: Telsa km40, 2880 CUDA cores, 12GB RAM,

• CUDA tools kit v9.1

The implementation of this algorithm focuses on improving the throughput. The through-

put is calculated as Throughput = (NbitsxNSimxNcodeword)/Ttotal, where Nbits is codeword

length, Ncodeword is the total number of the codewords, and NSim is the simulation number,

these parameters are divided by Ttotal which is the running time. Simulation on the Tesla

k40m shows that around 1280 codewords is parallelized.

According to the capacity of Tesla k40m GPU, around 1280 codewords are processed

in parallel in the multi-codeword decoding scheme (Ncodeword = 1280). Table 3.3 shows the

throughput and the latency of [4] implementation for both the WIFI (802.11n) code and

WiMAX (802.16e) code. The results also show that the decoder for the WiMAX (802.16e)

code has almost the same throughput compared to the WIFI (802.11n) code. Similar for

the latency of the decoding algorithm, the latency is almost the same for both application

on GPU, while on the CPU the WIMAx application have slightly higher latency, this is due

to longer codeword of the WIMAX compared to that of WIFI.

3.4 Results and Comparisons

In this section the performance of Log-Domain FFT based LDPC decoder on CPU is com-

pared with the performance of the GPU implementation. The main measurement is the

speed of the decoding algorithm for large codeword. Afterward, the performance QC-LDPC

that used for application such as WIFI and WIMAX is compared with Log-Domain FFT

based LDPC decoder.

42

3.4.1 Log-Domain FFT based LDPC Performance on GPU vs CPU

The GPU implementation allows to prallelized the serial implementation of Log-Domain

FFT based LDPC decoder. Both Table 3.1 and Table 3.2 show that the GPU implementa-

tion is faster than the CPU. For the Binary LDPC decoder the GPU implementation is 8

times faster than CPU implementation. While for the NB-LDPC the GPU is almost up to

10 times faster than CPU.

The Figure 3.5 below illustrates the number of iterations for each simulation for Log-

domain FFT based LDPC. The CPU have fluctuated iterations line for di�erent GF(q).

The block size 6000x4000 for GF(8), GF(128), and GF(256) has higher iteration numbers

compared with block size 9000x6000. While GPU have smooth increasing of iteration

number as q elements increased.

The illustration of the latency of each simulation for Log-domain FFT based LDPC

decoder is in Figure 3.6 below. This figure shows that the GPU simulation of the decoder has

latency less than one seconds for all elements of q. While the latency of CPU implementation

increased dramatically from approximately one second for GF(64) to almost 19 seconds

latency for GF(256). The reason for GPU to have maintained the speed of decoder is

because of the cascaded memory that each group of q elements is stored in.

3.4.2 QC-LDPC on GPU vs Log-Domain FFT based LDPC Performance on GPU

vs CPU

Both applications , WIFI and WIMAX, have similar QC-LDPC decoding latency on GPU

which is approximately one second for block length 1944x972 and 2304x1152, respectively.

While they have approximately 8 seconds decoding latency on CPU. Comparing with Log-

Domain FFT on GPU for regular code and di�erent field elements, the latency of LDPC

decoder is less than one second. This main conclusion that Log-Domain is faster even

though the block length is larger. Figure 3.7 below shows the latency of all algorithms that

have been studied.

43

Figure 3.5: Number of iterations Log-domain FFT based LDPC decoder on GPU vs on
CPU

,

44

Figure 3.6: Latency of Log-domain FFT based LDPC decoder on GPU vs on CPU,

45

Figure 3.7: Latency of Log-domain FFT based LDPC decoder on GPU vs on CPU,

46

Chapter 4: Summary and Conclusions

This thesis presents the techniques and design methodology to fully utilize a GPU

textquotesingles computational resources to accelerate a computation-intensive of LDPC

decoding algorithm. The implementation of Log-Domain FFT based LDPC decoder on

GPU is presented and has resulted in faster decoding process compared with the case

study, the implementation of Log-Domain FFT based LDPC decoder on CPU. Another

case study, a massively parallel implementation of LDPC decoder on GPU, is presented.

The LDPC decoder is demonstrated with di�erent parity-check matrices constructions,

WIFI (IEEE 802.11n), WiMAX (802.16e), and regular MacKay parity-check codes. The

simulation results exhibit that our LDPC decoder can achieve high speed around up to 10x

faster than CPU and up to 0.186 millisecond. A future implantation for achieving higher

speed LDPC decoding algorithm using FPGA is detailed in the following section.

4.0.1 Future Work

LDPC for regular MacKay codes and for WIFI and WIMAX codes can be implemented in

hardware such as FPGA (Felid Programmable Gateway). FPGAs have proven to be useful

under high load; i.e. they improve the throughput of each server by a factor of 95% for a

fixed latency distribution[39]. However, the fact that the computer architecture is largely

unconstrained, enables an e�cient tailoring of the architecture to the particular application.

This cause di�culty to maintain flexibility of architecture design while o�ering a productive

programming. High-level synthesis (HLS) is a tool that supports a high level application

description that can be e�ectively synthesized in e�cient hardware, finding that description

is a complex design problem requiring solid hardware understanding. While HLS tools have

been proven worthy as testing and validation tools, we find them, backed on the designs

47

herein proposed, su�ciently mature nowadays to synthesize e�cient hardware accelerators

[40].

HLS tools have greatly improved and are able to provide a convenient environment to

speed up the development process and empower the developers to quickly explore a much

wider design space. Xilinx Vivado HLS [39] is a state-of-the-art High-level synthesis (HLS)

tool that accepts design inputs in C, C++ or SystemC and enables the designer to quickly

perform algorithm verification before automatically translating the high-level design input

into an Register-Transfer-Level (RTL) implementation. HLS also permits the designer to

use compiler directives, when necessary, to guide the tool to explore some architectural

options. Due to this high degree of control on the underlying architecture and the low

e�ort of retargeting di�erent devices, we used Vivado HLS to develop the non-binary LDPC

decoder [39].

LDPC decoding is a complex signal processing application that o�ers plenty of paral-

lelism for FPGA-based acceleration. Vivado HLS can be used to develop HLS IP cores that

implement the LDPC decoding functionality. However, to realize the FPGA accelerator,

one solution is to integrate these cores into a high-level architecture that contains essential

system components, such as the interconnection bus and external memory controller, and

the clock and control circuitry. This is needed because the storage space required for larger

values of m in GF (2m) can exceed the local storage capacity of typical FPGAs [39].

To design the GF (2m) LDPC FFT-SPA decoder in two ways HLS is used to design the

algorithm, either by proper code writing, such that in the case of an existing C application,

the code should be refactored, or by annotating the code with optimization directives. These

directives can be inlined with C code using the ’ # pragma’ construct, or systematized in a

Tcl script with equivalent syntax, both of which are mutually exclusive methods to instruct

the HLS tool. One method is using Mapping the FFT-SPA to HLS C which synthsize the

C code to HLS than they will be simulated using Verilog simulator. Then, Multiplication

Kernels which consists of ’vn proc’ and ’cn proc’ are the kernels that perform multiplica-

tion, each composed of a triple-nested loop structure, number of edges, GF(q) dimension,

48

and number of elements in variable and check nodes. Afterward, Permute and De-permute

Kernels is needed to deal with the permutation and de-permutation of probabilities F a and

are described as a double nested loop structure. The ’GF read’ loop loads data and shu�es

it according to the permutation/de-permutation into a local copy. Then, ’GF write’ loop

writes data back contiguously to the correct BRAM location. Last kernel is FFT Kernel

that implements the FWHT, a special case of the FFT where the twiddle factors are always

-1 or 1, thus only additions and subtractions are executed by this kernel.

FPGA implementation using HLS can be further optimized to avoid the decoder to

perform sequential steps and leverage the available parallelism process.

49

Bibliography

50

Bibliography

[1] I. Gautam, “Parity check matrix and construction methods of Low Density Parity
Check code,” International Journal of Innovative Research in Information Security,
vol. 1, no. 3, pp. 29–35, 2014.

[2] J.-Y. Park and K.-S. Chung, “Parallel LDPC decoding using CUDA and OpenMP,”
EURASIP Journal on Wireless Communications and Networking, vol. 2011, no. 1, p.
172, 2011.

[3] S. Wang, S. Cheng, and Q. Wu, “A parallel decoding algorithm of LDPC codes us-
ing CUDA,” in 2008 42nd Asilomar Conference on Signals, Systems and Computers.
IEEE, 2008, pp. 171–175.

[4] G. Wang, M. Wu, Y. Sun, and J. R. Cavallaro, “A massively parallel implementation
of QC-LDPC decoder on GPU,” in 2011 IEEE 9th Symposium on Application Specific

Processors (SASP). IEEE, 2011, pp. 82–85.

[5] R. Gallager, “Low-density parity-check codes,” IEEE Transactions on Information

Theory, vol. 8, no. 1, pp. 21–28, 1962.

[6] B. Sklar and F. J. Harris, “The ABCs of linear block codes,” IEEE Signal Processing

Magazine, vol. 21, no. 4, pp. 14–35, 2004.

[7] B. Vucetic and J. Y. C. Principles, “Applications’ Boston,” 2000.

[8] L. Hardesty, “Explained: Gallager codes,” Jan 2010. [Online]. Available:
http://news.mit.edu/2010/gallager-codes-0121

[9] D. J. MacKay and R. M. Neal, “Good codes based on very sparse matrices,” in IMA

International Conference on Cryptography and Coding. Springer, 1995, pp. 100–111.

[10] T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms. New
York, NY, USA: Wiley-Interscience, 2005.

[11] Y. Akhtman, R. G. Maunder, and L. Hanzo, “An Approximate Coding-Rate Versus
Minimum Distance Formula for Binary Codes,” arXiv preprint arXiv:1206.6584, 2012.

[12] R. Shedsale and N. Sarwade, “A review of construction methods for regular ldpc codes,”
Indian Journal of Computer Science and Engineering (IJCSE) Vol, vol. 3, pp. 380–385,
2012.

[13] O. O. Khalifa, S. Khan, M. Zaid, and M. Nawawi, “Performance evaluation of low
density parity check codes,” 2008.

51

http://news.mit.edu/2010/gallager-codes-0121

[14] D. J. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE

transactions on Information Theory, vol. 45, no. 2, pp. 399–431, 1999.

[15] G. Falcao, V. Silva, J. Marinho, and L. Sousa, “LDPC decoders for the WiMAX
(IEEE 802.16 e) based on multicore architectures,” in WIMAX New Developments.
IntechOpen, 2009.

[16] T. Brack, M. Alles, F. Kienle, and N. Wehn, “A synthesizable IP core for WIMAX
802.16 e LDPC code decoding,” in 2006 IEEE 17th international symposium on per-

sonal, indoor and mobile radio communications. IEEE, 2006, pp. 1–5.

[17] H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding system design ap-
proach,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 4,
pp. 766–775, 2005.

[18] Z. Cai, J. Hao, P. Tan, S. Sun, and P. Chin, “E�cient encoding of IEEE 802.11 n
LDPC codes,” Electronics Letters, vol. 42, no. 25, pp. 1471–1472, 2006.

[19] B. K. Butler, “Minimum distances of the QC-LDPC Codes in IEEE 802 Communication
Standards,” arXiv preprint arXiv:1602.02831, 2016.

[20] E. B. Sudderth and W. T. Freeman, “Signal and image processing with belief propa-
gation,” IEEE Signal Processing Magazine, vol. 25, no. 2, p. 114, 2008.

[21] S. B. Wicker and S. Kim, Fundamentals of codes, graphs, and iterative decoding.
Springer Science & Business Media, 2006, vol. 714.

[22] J. Zhang and M. Fossorier, “Shu�ed belief propagation decoding,” in Signals, Systems

and Computers, 2002. Conference Record of the Thirty-Sixth Asilomar Conference on,
vol. 1. IEEE, 2002, pp. 8–15.

[23] S.-Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design of
low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Commu-

nications letters, vol. 5, no. 2, pp. 58–60, 2001.

[24] M. C. Davey, “Error-correction using low-density parity-check codes,” Ph.D. disserta-
tion, University of Cambridge, 2000.

[25] G. J. Byers and F. Takawira, “Fourier transform decoding of non-binary LDPC codes,”
in Proceedings Southern African Telecommunication Networks and Applications Con-

ference (SATNAC). Spier Wine Estate, Western Cape, South Africa, 2004.

[26] J. Patel, N. Chapatwala, and M. Patel, “FFT based sum product decoding algorithm
of LDPC coder for GF (q),” in 2014 2nd International Conference on Emerging Tech-

nology Trends in Electronics, Communication and Networking. IEEE, 2014, pp. 1–4.

[27] Z. Wang, J. Meng, Z. Deng, L. Zhang, and J. Gao, “FPGA Implementation Scheme of
Mixed Logarithmic Domain FFT-BP Decoding Algorithm Based on Non-Binary LDPC
Codes,” in 2018 37th Chinese Control Conference (CCC). IEEE, 2018, pp. 8459–8464.

52

[28] S. Aruna and M. Anbuselvi, “FFT-SPA based non-binary LDPC decoder for IEEE
802.11 n standard,” in 2013 International Conference on Communication and Signal

Processing. IEEE, 2013, pp. 566–569.

[29] C. Nvidia, “Compute unified device architecture programming guide,” 2007.

[30] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: A system for pro-
gramming graphics hardware in a C-like language,” ACM Transactions on Graphics

(TOG), vol. 22, no. 3, pp. 896–907, 2003.

[31] R. Shams and N. Barnes, “Speeding up mutual information computation using NVIDIA
CUDA hardware,” in 9th Biennial Conference of the Australian Pattern Recognition So-

ciety on Digital Image Computing Techniques and Applications (DICTA 2007). IEEE,
2007, pp. 555–560.

[32] D. Kirk et al., “NVIDIA CUDA software and GPU parallel computing architecture,”
in ISMM, vol. 7, 2007, pp. 103–104.

[33] “NVIDIA Tesla Supercomputing Solutions.” [Online]. Available: https://www.nvidia.
com/en-us/data-center/tesla/

[34] C. Nvidia, “Cuda c programming guide, version 9.1,” NVIDIA Corp, 2018.

[35] “David Varodayan.” [Online]. Available: http://ivms.stanford.edu/≥varodayan/
software.html

[36] D. MacKay, “Alist format.” [Online]. Available: http://www.inference.org.uk/mackay/
codes/alist.html

[37] S. Cook, CUDA programming: a developer’s guide to parallel computing with GPUs.
Newnes, 2012.

[38] M. Beermann, E. Monzo, L. Schmalen, and P. Vary, “GPU accelerated belief propa-
gation decoding of non-binary LDPC codes with parallel and sequential scheduling,”
Journal of Signal Processing Systems, vol. 78, no. 1, pp. 21–34, 2015.

[39] J. Andrade, N. George, K. Karras, D. Novo, V. Silva, P. Ienne, and G. Falcao, “From
low-architectural expertise up to high-throughput non-binary LDPC decoders: Opti-
mization guidelines using high-level synthesis,” in 2015 25th International Conference

on Field Programmable Logic and Applications (FPL). IEEE, 2015, pp. 1–8.

[40] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,” IEEE

Design & Test of Computers, vol. 26, no. 4, pp. 18–25, 2009.

53

https://www.nvidia.com/en-us/data-center/tesla/
https://www.nvidia.com/en-us/data-center/tesla/
http://ivms.stanford.edu/~varodayan/software.html
http://ivms.stanford.edu/~varodayan/software.html
http://www.inference.org.uk/mackay/codes/alist.html
http://www.inference.org.uk/mackay/codes/alist.html

	List of Tables
	List of Figures
	Abstract
	 Introduction
	 Theoretical Background
	Low-Density Parity-Check Codes
	Minimum Distance
	Tanner graph
	Parity-Check Matrix Construction
	Gallagers Parity-Check Matrix Construction
	MacKays Parity Check Matrix Construction
	WiMaxs Parity Check Matrix Standards
	WiFis Parity Check Matrix Standards

	Binary LDPC decoding: Belief-Propagation and Iterative Decoding
	Non-Binary LDPC Codes: Log-Domain Fast Fourier Transform Decoding
	Quasi-Cyclic LDPC Codes: Log-Domain Fast Fourier Transform Decoding
	CUDA Architecture
	NVIDIA's Tesla K40m Architecture
	Threads Organization and Execution

	 Implementation
	Log-Domain FFT decoding based LDPC Codes: CPU Implementation
	Performance and Results

	Log-Domain FFT decoding based LDPC Codes: GPU Implementation
	LDPC Memory Arrangement on GPU
	LDPC Codes On GPU
	Performance and Results

	Quasi-Cyclic LDPC: GPU Implementation
	Mapping QC-LDPC Decoding Algorithm to GPU Kernels
	Multi-codeword Parallel Decoding
	Implementation of Early Termination Scheme
	Optimizing Memory Access on GPU
	Performance and Results

	Results and Comparisons
	Log-Domain FFT based LDPC Performance on GPU vs CPU
	QC-LDPC on GPU vs Log-Domain FFT based LDPC Performance on GPU vs CPU

	 Summary and Conclusions
	Future Work

	Bibliography

