
UNSUPERVISED ANOMALY DETECTION IN SEQUENCES
USING LONG SHORT TERM MEMORY

RECURRENT NEURAL NETWORKS

by

Majid S. alDosari
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of

The Requirements for the Degree
of

Master of Science
Computational Science

Committee:

Dr. Kirk D. Borne, Thesis Director

Dr. Estela Blaisten-Barojas,
Committee Chair

Dr. Igor Griva, Committee Member

Dr. Kevin Curtin (acting), Department Chair

Dr. Donna Fox, Associate Dean, Office
of Student Affairs & Special Programs,
College of Science

Dr. Peggy Agouris, Dean, College of
Science

Date: Spring Semester 2016
George Mason University
Fairfax, VA

Unsupervised Anomaly Detection in Sequences Using Long Short Term Memory Recurrent
Neural Networks

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

by

Majid S. alDosari
Bachelor of Science

Vanderbilt University, 2003
Master of Science

Vanderbilt University, 2012

Director: Dr. Kirk D. Borne, Professor
Department of Computational and Data Sciences

Spring Semester 2016
George Mason University

Fairfax, VA

Copyright c© 2016 by Majid S. alDosari
All Rights Reserved

ii

Dedication

I dedicate this thesis to my father, Saad F. al-Dosari, who supported me in this endeavor.

iii

Acknowledgments

I appreciate Dr. Borne’s lead, as well as encouraging enthusiasm, in this endeavor. Similarly,
I am grateful to my other committee members, Dr. Blaisten-Barojas and Dr. Griva, who
have given their time and input so that I may successfully complete my thesis. Also, I give
special thanks to John Kaufhold of Deep Learning Analytics for being responsive to my
questions regarding anything related to neural networks. His interest in and support of my
work motivated me to do the best job that I can. Last but not least, I appreciate very much
that Leif Johnson, author of the Theanets neural network package that I used, provided
assistance beyond user support.

iv

Table of Contents

Page

List of Tables . vii

List of Figures . viii

Abstract . ix

1 Introduction . 1

2 The Challenge of Anomaly Detection in Sequences 3

2.1 Introduction . 3

2.2 Anomaly Types . 4

2.2.1 Point Anomalies . 4

2.2.2 Discord . 6

2.2.3 Multivariate . 7

2.3 Procedure . 7

2.3.1 Sample Extraction . 8

2.3.2 Transformation . 9

2.3.3 Detection Technique . 10

3 Detection Technique . 11

3.1 Proximity . 12

3.1.1 Effects on Point Distribution . 14

3.1.2 Data Classification . 16

3.1.3 Nearest-Neighbor . 17

3.1.4 Clustering . 19

3.2 Models . 20

3.3 Conclusions . 20

4 Recurrent Neural Networks . 22

4.1 Introduction . 22

4.2 Recurrence . 23

4.3 Basic Recurrent Neural Network . 24

4.4 Training . 27

4.5 Long Short-Term Memory . 29

5 Anomaly Detection Using Recurrent Neural Networks 32

v

5.1 Introduction . 32

5.2 Sampling: Sliding Windows . 32

5.3 RNN Setup: Autoencoder . 34

5.4 Training: RMSprop . 35

5.5 Results and Discussion . 39

5.6 Conclusions . 48

6 Concluding Remarks . 50

6.1 Further Work . 52

A Reproducible Computational Infrastructure . 55

A.1 Introduction . 55

A.1.1 Motivation . 56

A.2 Solution Elements . 57

A.2.1 Solution Stack . 59

A.2.2 Partial Solutions . 60

A.3 Solution . 61

B Reproducing Results . 64

B.1 Introduction . 64

B.2 Manual Execution . 64

B.3 Automated Execution . 68

B.4 Reproduction of Figures . 73

Bibliography . 75

vi

List of Tables

Table Page

2.1 Point anomalies in sliding windows of various hop sizes 9

3.1 Neighbors of sliding windows . 17

5.1 Time series sample specifications . 34

A.1 Container-oriented computational technology stack 59

vii

List of Figures

Figure Page

2.1 Simple point anomaly . 5

2.2 Anomaly in a periodic context . 5

2.3 Discord anomaly in a periodic time series 6

2.4 Discord anomaly in an aperiodic time series 6

3.1 Simple anomaly distribution . 13

3.2 Complex anomaly distribution . 13

4.1 Recurrence graph views . 24

4.2 Recurrent neural network graph views . 26

4.3 Partial derivative chain for a basic RNN . 28

4.4 Long Short-Term Memory layer . 30

5.1 Training results . 39

5.2 Anomaly scores of series . 47

A.1 Generic infrastructure for distributed computation based on Docker 63

viii

Abstract

UNSUPERVISED ANOMALY DETECTION IN SEQUENCES USING LONG SHORT
TERM MEMORY RECURRENT NEURAL NETWORKS

Majid S. alDosari

George Mason University, 2016

Thesis Director: Dr. Kirk D. Borne

Long Short Term Memory (LSTM) recurrent neural networks (RNNs) are evaluated

for their potential to generically detect anomalies in sequences. First, anomaly detection

techniques are surveyed at a high level so that their shortcomings are exposed. The

shortcomings are mainly their inflexibility in the use of a context ‘window’ size and/or their

suboptimal performance in handling sequences. Furthermore, high-performing techniques for

sequences are usually associated with their respective knowledge domains. After discussing

these shortcomings, RNNs are exposed mathematically as generic sequence modelers that

can handle sequences of arbitrary length. From there, results from experiments using RNNs

show their ability to detect anomalies in a set of test sequences. The test sequences had

different types of anomalies and unique normal behavior. Given the characteristics of the

test data, it was concluded that the RNNs were not only able to generically distinguish rare

values in the data (out of context) but were also able to generically distinguish abnormal

patterns (in context).

In addition to the anomaly detection work, a solution for reproducing computational

research is described. The solution addresses reproducing compute applications based

on Docker container technology as well as automating the infrastructure that runs the

applications. By design, the solution allows the researcher to seamlessly transition from

local (test) application execution to remote (production) execution because little distinction

is made between local and remote execution. Such flexibility and automation allows the

researcher to be more confident of results and more productive, especially when dealing with

multiple machines.

Chapter 1: Introduction

In the modern world, large amounts of time series¬ data of various types are recorded.

Inexpensive and compact instrumentation and storage allows various types of processes to

be recorded. For example, human activity being recorded includes physiological signals,

automotive traffic, website navigation activity, and communication network traffic. Other

kinds of data are captured from instrumentation in industrial processes, automobiles, space

probes, telescopes, geological formations, oceans, power lines, and residential thermostats.

Furthermore, the data can be machine generated for diagnostic purposes such as web server

logs, system startup logs, and satellite status logs.

Increasingly, these data are being analyzed. Inexpensive and ubiquitous networking has

allowed the data to be transmitted for processing. At the same time, ubiquitous computing

has allowed the data to be processed at the location of capture.

While the data can be recorded for historical purposes, much value can be obtained from

finding anomalous data. However, it is challenging to manually analyze large and varied

quantities of data to find anomalies. Even if a procedure can be developed for one type of

data, it usually cannot be applied to another type of data.

Hence, the problem that is addressed can be stated as follows: find anomalous points in

an arbitrary (unlabeled) sequence. So, a solution must use the same procedure to analyze

different types of time series data.

The solution presented here comes from an unsupervised use of recurrent neural networks.

A literature search only readily gives two similar solutions. In the acoustics domain, [1]

¬ In this document, the terms ‘time series’ and ‘sequence’ are used interchangeably without implication
to the discussion. Strictly however, a time series is a sequence of time-indexed elements. So a sequence is
the more general object. As such, the term ‘sequence’ is used when a general context is more applicable.
Furthermore, the terms do not imply that the data are real, discrete, or symbolic. However, literature
frequently uses the terms ‘time series’ and ‘sequence’ for real and symbolic data respectively. Here, the term
‘time series’ was used to emphasize that much data is recorded from monitoring devices which implies that a
timestamp is associated with each data point.

1

transform audio signals into a sequence of spectral features which are then input to a

denoising recurrent autoencoder. Improving on this, [2] use recurrent neural networks

(directly) without the use of features (that are specific to a problem domain, like acoustics)

to multiple domains.

This work closely resembles [2] but presenting a single, highly-automated procedure

that applies to many domains is emphasized. First, some background is given on anomaly

detection that explains the challenges of finding a solution. Second, recurrent neural

networks are introduced as general sequence modelers. Then, experiments will be presented

to show that recurrent neural networks can find different types of anomalies in multiple

domains. Finally, concluding remarks are given.

Outlier, surprise, novelty, and deviation detection are alternative names used in literature.

2

Chapter 2: The Challenge of Anomaly Detection in

Sequences

2.1 Introduction

The goal of this chapter is to show that the solution to the general problem of anomaly

detection in time series is difficult. A typical general framework for anomaly detection in

time series is explained with two advanced solutions as examples and their issues. The

proposed solution, explained later in Chapter 5, fits into the framework providing a basis for

comparison.

Describing the variety of solutions puts the difficulty of finding a general solution in

context. Furthermore, few publications survey the problem of anomaly detection for time

series in particular [3, 4].

Solutions have been fragmented across a variety of application domains such as commu-

nication networks [5–15], economics [16–18], environmental science [11, 19–27], industrial

process [28–31], biology [32,33], astronomy [32,34], and transportation [35,36]. The fragmen-

tation of application domains led to a variety of problem formulations [4]. Furthermore, there

is no good understanding of how the solutions in different application domains compare to

each other [3]. Therefore, it is difficult to generalize the performance of a solution formulated

in one application domain to its performance in another although they might have some

commonalities.

Furthermore, adding to the difficulty of comparing solutions, the mechanics of anomaly

detection have come from two disciplines with different priorities: statistics and computer

science. Solutions from statistics focus on mathematical rigor while solutions from computer

science consider computational issues [4].

3

[4] offers a survey of anomaly detection solutions in a variety of settings such as streaming

data, distributed data, and databases. But to focus the solution presented here, the problem

will be stated as follows: Given a finite time series x,

x = {x(1),x(2),x(t), . . . ,x(T)}

x(t) ∈ Rv,

find points which can be considered anomalous where T is the length of the regularly spaced

sequence in time¬, t, and v is the number of variables of x. This statement is sensible only

when anomalous points are a small part of the data. Furthermore, anomalies may not even

be present.

So elements of any solution to this problem must answer the following questions:

1. What is normal (as an anomaly is defined as what is not normal)?

2. What measure is used to indicate how anomalous point(s) are?

3. How is the measure tested to decide if it is anomalous?

2.2 Anomaly Types

The presence of different anomaly types can be a challenge for anomaly detection techniques.

What follow are qualitative descriptions of anomalies classified in a way most relevant to

this work. However, a taxonomy of anomalies will never encompass all anomalies as well as

defining anomalies as points that are not normal.

2.2.1 Point Anomalies

Point anomalies are single points of interest that can be classified as follows.

¬Irregularly-spaced sequences might need a specific treatment. Of course, x can be treated as a sequence
not indexed by time provided that some coherence is revealed over the index.

4

Simple: Simple point anomalies are just defined by their value. They are trivial to

describe and detect. They are not of much interest in themselves but are mentioned because

anomalies in more complicated time series can be ‘converted’ to resemble this simple type.

t

x

Figure 2.1: Simple point anomaly

Context: Some point anomalies are defined within a context. In Figure 2.2, the

anomalous point’s value is within the range of typical values. But if the cyclic nature of the

series were removed, the anomaly is readily detected (‘converted’ to a simple point anomaly).

t

x

Figure 2.2: Anomaly in a periodic context

5

2.2.2 Discord

Anomalies over subsequences are called discords [3]. In Figure 2.3, about two cycles in

a periodic time series are unlike the other cycles. The repeated units do not have to be

periodic as in Figure 2.4.

t

x

Figure 2.3: Discord anomaly in a periodic time series

t

x

Figure 2.4: Discord anomaly in an aperiodic time series

6

2.2.3 Multivariate

Multivariate time series add another element of complication for detecting anomalies in

them and are not a focus in this work. [3] classifies multivariate time series according to a

combination of periodicity and synchronicity: Variables in a time series can be synchronous

and periodic, synchronous and aperiodic, asynchronous and periodic, asynchronous and

aperiodic. Therefore, any deviation from these properties are anomalies.

2.3 Procedure

In this section, a procedure to find anomalies in time series will be outlined to help answer

the questions posed in the introduction of this chapter. The focus will be on issues related

to time series as opposed to the general anomaly detection problem. However, there will

be a focus on the issues related to solving the general problem of finding anomalies in (an

arbitrary) time series as opposed to finding anomalies in a particular application domain.

But computational issues will not be emphasized.

By examining many detection techniques, a general procedure (Section 2.7 in [3]) can be

gleaned:

1. Compute an anomaly score for an observation (a point or a subsequence in a time

series). The anomaly score is a deviation from some ‘normal’ value such as the

prediction from a model or similarity to other observations.

2. Aggregate the anomaly scores for many observations.

3. Use the anomaly scores to determine whether an observation can be considered

anomalous. For example, an observation could be considered anomalous if its anomaly

score exceeds three standard deviations from the mean of the anomaly scores.

In this text, dimensionality of the time series will refer to the length of the time series as opposed to the
number of its variables. Time series anomaly detection literature is inconsistent in the terminology used to
refer to these two attributes.

7

At a high level, the procedure is rather straightforward. But, the process of finding what

is normal is not. This section is devoted to explaining why finding anomalies in time series

is particularly challenging. Addressing the stated problem, given an (single) arbitrary time

series, the process of finding normal behavior involves the following steps:

1. Extract samples

2. Transform samples

3. Apply detection technique

2.3.1 Sample Extraction

Many instances of data are needed to inform what is normal. So, subsequences need to be

extracted from a (long) sequence.

Samples can be extracted from a sliding a window over the time series. More precisely,

beginning at step t = 0, sliding a window of width w over a time series x of length T one

step at a time produces p = T − w + 1 windows, X = {W1,W2, . . . ,Wp}®.

Now, X contains all possible subsequences of x of length w and the value of p is typically

not much less than T . Having many subsequences helps to localize the anomaly; so the

window capturing the anomaly will have a higher anomaly score than adjacent windows.

But sometimes it is not desirable for computational reasons to process all subsequences.

p can be reduced by introducing a ‘hop’, h, that skips h steps when advancing the window

from the previous one (h = 1 gives all possible subsequences).

However, by introducing a large enough hop, anomalies could be missed. Consider the

sequence abccabcabc. The second c is an anomaly. Now inspect the windows generated by

various values of h in Table 2.1. The anomalous c is captured in a window when h is 1 or 2

but not when h is 3 or 4. As a general rule, when h = 1, an anomaly would never be missed.

But when h > 1, there is a chance that anomalies would be missed.

®In literature, this form corresponds to a time series database [4]

8

Table 2.1: Point anomalies in sliding windows of width 3 for various hop sizes for the
sequence abccabcabc are underlined (The c in the first cab for h = 1 cannot be considered
anomalous because it is not in its context). From [3].

hop (h) Ordered Windows

1 abc, bcc, cca, cab, abc, bca, cab, abc

2 abc, cca, abc, cab

3 abc, cab, cab

4 abc, abc

Another issue that needs to be considered when working with windows is that the

window size must be large enough to capture an anomaly. Consider the sequence

aaabbbccccaaabbbcccaaabbbccc where the fourth c is anomalous. The window width must be

at least 4 to capture the fourth c. In other words, the window size must be on the order of

the anomalous behavior.

Now given X for some w, the problem may be posed as a multidimensional anomaly

detection problem. In this setting, assuming that x is univariate, samples of X correspond

to w dimensions. However, doing so largely ignores the temporal nature of x. These issues

will be discussed within the forthcoming parts of this chapter.

Finally, subsequent steps taken in the anomaly detection process may put restrictions on

h and w. For example, if the window size is too large, there may not be enough samples to

properly apply an anomaly detection technique.

2.3.2 Transformation

Anomalies can be more easily detected if the time series are analyzed in a different rep-

resentation. Usually these representations are of lower fidelity but capture the essential

characteristics of the time series in certain cases. As a general example, a real-valued time

series could be or should be discretized into a finite set of symbols or numbers to make use

of techniques from bioinformatics. Or, it could be transformed into a different domain such

as the frequency domain to make use of techniques from signal processing. As an added

benefit, the tranformed time series need less computation given their reduced representation.

9

More specifically, the Symbolic Aggregate approXimation (SAX) [37] is an example of

time series discretization used to find anomalies in [32]. While the Haar transform represents

a transformation to the frequency domain for the same purpose in [31,38].

However, as a transformation only captures the essential characteristics of a time series,

more subtle anomalies could be lost in the transformation process. For example, the anomaly

in Figure 2.2 would be difficult to encode in terms of frequency because it is localized in

time while oscillations (representing frequencies) are not.

Another issue to consider is the similarity of the arrangment of time series ‘points’

(like elements of X in Rw) in the transformed space to that of the original space. Some

anomaly detection techniques rely on a certain distribution of points in a space. Suppose an

anomaly detection technique works in Rw by identifying points that are far away from some

normal cluster of points. This arrangement should also be present in the transformed space.

Anomaly detection techniques that rely on spaces are introduced in Section 3.1.

However, a recent empirical study [39] suggests that, in general, there is little to

differentiate between numerous time series representations. Only spectral transformations

applied to periodic series showed some advantage but only in certain cases.

2.3.3 Detection Technique

Choosing the anomaly detection technique is the final (involved) step in setting up an

anomaly detection process. Detection techniques are discussed as a separate chapter to allow

for more development.

10

Chapter 3: Detection Technique

The application of anomaly detection in a wide variety of domains has led to the development

of numerous detection techniques. Each of these applications defines anomalies in a different

way; some may only be interested in single anomalous points while others are more concerned

about anomalous subsquences (discords). Furthermore, techniques are developed drawing

on theory from statistics, machine learning, data mining, information theory, and spectral

theory.

A highest-level categorization of these techniques could be as follows. The categories are

not exhaustive but capture a wide variety of techniques discussed in literature.

Segmentation In segmentation-based techniques, the time series is first split into ho-

mogeneous segments. Then a finite-state automation is trained to learn transition

probabilities between segments. So, a segmented anomalous time series should not

have high transition probability [40–42].

Information Theory Information-theoretic techniques quantify a notion of information

content such as entropy. So, a point is considered an anomaly if its removal reduces the

information content significantly [43, 44]. That is, anomalous points increase disorder,

or require more information to be represented in the sequence.

Proximity Techniques based on proximity map time series onto a space. It is expected

that anomalous time series are ‘different’ because they are far from normal ones.

Model The difference between the (actual) values of a time series and its predicted values

from a model indicate how anomalous they are.

Given the variety of techniques applied in different application domains, it is not always

possible to use a solution developed for one problem and apply it to another. Finding a

11

general anomaly detection technique is difficult. To the author’s knowledge, only one study

[3] attempted to compare anomaly detection techniques over a wide variety of data. The

study showed, as expected, varying performance of the techniques. A combination of time

series characteristics and algorithm settings were sometimes used as explanations for the

varying performance. These explanations do not help to objectively determine a priori what

technique to use and how to adjust any parameters it might use.

It would be difficult to use information theoretic techniques because finding an information

theoretic measure sensitive enough to detect a few anomalies is challenging [45]. Segmentation-

based techniques require that a time series to be made of homogeneous segments. These

conditions are deemed too restrictive to be able to solve the general problem. In addition,

both are not well-studied. So, they are not further explored here.

This leaves model-based techniques and proximity-based techniques as potential solution

categories. Both are widely studied. Furthermore, it is possible to make a theoretical

comparison between model-based techniques and proximity-based techniques if they are

evaluated as, respectively, generative and discriminative models [46]. Model-based techniques

are usually preferred for anomaly detection [47] assuming enough training data are available.

Obviously, a good model is needed as well; recurrent neural networks will be introduced

in the next chapter. However, proximity-based solutions are explored in this chapter as

a benchmark for comparison as they are well-studied and have had numerous successful

applications. Also, the hidden Markov model is introduced as an example of model-based

solutions in this chapter as another benchmark.

3.1 Proximity

As previously mentioned, proximity-based techniques map time series as points of dimension

w in some space using some distance measure. The distance measure is used to evaluate how

close a test time series is to others; anomalous time series are those that are far (dissimilar)

from those considered normal.

This implies that the time series ‘points’ are arranged in a certain way in the space. In

12

two dimensions, the simplest distribution is portrayed in Figure 3.1. Normal points, N1, are

somewhat clustered. To test whether p1 is an anomaly, it is easy to see, and calculate, that

point p1’s nearest neighbor is larger than the nearest neighbor distances of all other points.

N1

p1

Figure 3.1: Simple anomaly distribution

Practically, this idealization never occurs. It is not as simple to objectively distinguish

p1 and p2 from N1 and N2 in the situations depicted in Figure 3.2.

N1

p1

p2

Figure 3.2 (a)

N1

p1p2

N2

Figure 3.2 (b)

Figure 3.2: Complex anomaly distribution

13

3.1.1 Effects on Point Distribution

Having complex distributions is the purview of anomaly detection in general and not a

problem particular to time series data. However, issues influenced by the temporal nature of

the data will be the focus of this subsection.

Distance Measure

The choice of distance measure is crucial for anomaly detection because it captures some

intuitive notion of similarity between a pair of time series. It is possible to use the ‘ordinary’

Eucilidean distance [48] but it does not always capture the desired similarity between a pair

of time series. The comparison between time series should be invariant to the following

factors:

Length

Sometimes it is desirable to be able to compare sequences of different lengths. Compare

the sequence, ababababab, to a shorter one, abababa. There is reason to believe that

both are at least highly similar.

Skew

Consider the sequence abaababaaabaabab and aaababaababaabab where occurrences of

b are padded by an unpredictable number of a’s. The sequences can be considered

similar even if they are not strictly periodic.

Dynamic Time Warping (DTW) [48] is capable of identifying similarity in such scenarios

by ‘warping’ the sequences to minimize dissimilarity (DTW is also capable of comparing

sequences of different lengths).

Translation

Typically, sequences that are shifted in time are considered similar. For example,

abababab is similar to babababa. Despite the sophistication of DTW, a warping transfor-

mation would not make these two sequences similar. Cross-correlation is a similarity

measure that can handle translations [49].

14

Amplitude

Sometimes it is desirable to ignore differences in amplitude if two time series are

otherwise similar. Distance measures are usually sensitive to differences in amplitude

unless the time series are normalized [48].

So simple measures, like the Euclidean distance, are not able to accommodate these

factors. However, recently, in a comprehensive study of similarity measures, [39] finds that,

in large data sets, the clustering accuracy of ‘elastic’ measures, such as DTW, converges

with that of the Euclidean distance. Nonetheless, the advantage of using DTW, as well as

other elastic measures, is maintained for smaller data sets.

Furthermore, in addition to addressing the previously mentioned factors, the distance

measure must be compatible with the time series representation [50]. So, for example, if a

symbolic representation is used, then the distance measure must be appropriate for symbolic

data.

Window Width

Section 2.3.1 introduced the use of sliding windows to extract samples of some width¬, w.

Here, the effect of the choice of w will be explained when combined with a distance measure.

Also in Section 2.3.1, it was mentioned that w should be, at least, on the order of the

length of the expected anomaly. But when w is too large the distance measure becomes

less effective at measuring similarity because the proportion of the anomalous subsequence

becomes small compared to w. Furthermore, pairs of points become more equidistant in

high-dimensional space [51, 52] which makes distinguishing between time series difficult

(though this could be mitigated by using a dimension-reducing transformation [53]).

Sliding Windows

The mere action of extracting samples with a sliding window (with a small h, in contrast

to non-overlapping windows) can have a profound effect on the distribution of the samples

¬Window ‘size’ or ‘length’ might also be used to refer to window width

15

in the space. The effects challenge assumptions about the organization of (sliding window)

points for the task of anomaly detection.

[32] demonstrates that anomalous points are not necessarily located in sparse space.

Conversely, repeated patterns are not necessarily located in dense space [54–56].

Furthermore, in a paper challenging the status quo, [57] makes the bold claim that

clustering of time series with sliding windows is meaningless. It found no similarity between

clusters found with a sliding window (h << w) and clusters found when the windows did

not overlap (h > w) which invalidated the results of previously published papers per its

argument. However, some constraints were identified that may allow some data sets to be

clustered. But a decade after the paper’s publication, the issue of clustering subsequences of

time series is unresolved [58].

These findings place restrictions on selecting a proximity-based anomaly detection

algorithm.

3.1.2 Data Classification

In the following subsections, data classification techniques (that facilitate anomaly detection)

will be discussed. The techniques are not particular to time series data. However, finding

anomalous windows of time series data is referred to as ‘discord detection’ in literature.

Local versus Global Techniques

First, it is instructive to make a general note about how data classification techniques work

before they are categorized.

Proximity-based anomaly detection techniques can use a global context (of all) data

points or a local context to test whether a point is an anomaly. Going back to Figure 3.1, it

was mentioned that it is trivial to find the anomalous point using all data points. However,

in Figure 3.2(b), it is not trivial to distinguish p1 and p2 as anomalous in this global view

due to their proximity to N1. An anomaly detection approach that considers the (local)

neighborhood of points p1 and p2 must be used.

16

3.1.3 Nearest-Neighbor

Nearest-neighbor techniques assume that normal points are in dense neighborhoods while

anomalies are far from them.

In the beginning of Section 3.1, it was noted how simple it is to determine that point p1

in Figure 3.1 is anomalous. However, given the discussion about sliding windows in Section

3.1.1, it is not as straightforward when dealing with data points generated from sliding

windows.

The problem comes from adjacent windows being close to each other in space. Consider

the windows of width equal to 3 for the sequence abcabcXXXabcababc [32] in Table 3.1.

Obviously, the subsequence XXX stands out as the most anomalous after bab. But XXX

has the nearest matches cXX and XXa one step away as can be seen in the subsequences

generated by advancing a window on every step (h = 1). This makes the subsequence bab

as more anomalous because it is different by two symbols from its nearest match aba. In

contrast, when examining windows with no overlap (h = 3), XXX is far from all other

subsequences.

Table 3.1: Neighbors of sliding windows of sequence abcabcXXXabcababc

h = 1 h = 3

abc abc
bca
cab

abc abc
bcX
cXX

XXX XXX
XXa
Xab

abc abc
bca
cab

aba aba
bab
abc

17

However, it is still possible to use overlapping windows to find subsequences like XXX.

The solution proposed by [32] is to use non-self matches. So when when calculating distances

(similarity) to neighbors of XXX, only those that are at least one window width away are

considered. In this calculation, XXX would not have any neighbors with the symbol X.

Furthermore, the solution in [32] improves upon the brute force discord search by

employing a heuristic called HOT SAX: Heuristically Ordered Time series using Symbolic

Aggregate approXimation. But the time series is discretized as part of its process.

If the issues with sliding windows can be mitigated, it is possible to use anomaly detection

techniques that are not specific to time series. Nearest-neighbor techniques can use either

the kth nearest neighbor (kNN) distance or the relative density of a region around a point

in the calculation of its anomaly score.

For example, the kNN distance can be used to identify that p1 and p2 are anomalies

in Figure 3.2(a). By choosing, say, k = 4, the fourth nearest neighbor of points p1 and p2

would be a point in far away in N1. While the fourth nearest neighbor for a point in N1 is

always a nearby point within N1.

The HOT SAX technique was introduced as, what is essentially, a k = 1 kNN technique.

But it can be generalized to an arbitrary k [34, 59].

However, kNN techniques cannot deal with data sets of varying density. Going back to

Figure 3.2(a), if N1 were denser, so that distances between points in N1 were less than the

distance between p1 and p2, then k can only equal to 2. Generally, k needs to be equal to

the number of anomalous points as long as the clustering of N1 is denser than the clustering

of pk. But since some distances between between pairs of points in N1 are similar to the

distance between p1 and p2, k has to be greater than 2. Furthermore, a further complication

can be considered if another normal set of points, N2, is included as in Figure 3.2(b). Here,

it is not simple to find a value of k that would not distinguish p1 and p2 due to the varying

densities in N1 and N2.

But by using local density information, techniques based on the relative density of a

point’s region can mitigate this problem. For example, [60] defines a Local Outlier Factor

18

(LOF) for a point that is the ratio of the average local density of its k nearest neighbors to

the local density of the point itself. The local density is defined as k divided by the volume

of the smallest hypersphere that contains k nearest neighbors. In other words, a point is

likely to be an anomaly if its neighbors are in dense regions while it is in a less dense region.

Applied to Figure 3.2(b), the LOF for points in N1 and N2 is similar. But for points p1

and p2, if two nearest neighbors are considered, the second nearest neighbor would be the

closest point in N1 where its local density is high compared to the local density of p1 and p2

resulting in a LOF that is higher than the LOF of points in N1 and N2. This is true for any

k > 2.

In any case, nearest neighbor techniques rely on normal points being in denser regions.

But given the discussion about the effect of sliding windows in Section 3.1.1, it is not clear

how these techniques would be generally applicable to time series data.

[45] provides a more thorough treatment for general data types.

3.1.4 Clustering

Clustering algorithms are used to group similar points. Typically they are not used to find

anomalies but they can be adapted to do so if some assumptions are made.

One assumption that could be made is that normal points belong to clusters while

anomalies do not. This requires algorithms that do not force all points to belong to a cluster

such as the well-known DBSCAN [61] algorithm where deviant points are considered noise.

Still, such algorithms are optimized to find clusters. So anomalous points could incorrectly

be included in a cluster.

Another assumption that could be made resembles nearest neighbor techniques; anoma-

lous points are far from their nearest cluster’s centroid while normal points are not. Any

clustering algorithm could be used such as K-means [62]. However, this assumption would

misclassify anomalous points that form clusters themselves.

A third assumption could be that normal points are in large and dense clusters while

anomalous points are in small and sparse clusters. In similar fashion to LOF, described

19

previously, a Cluster-Based Local Outlier Factor (CBLOF) was introduced in [63]. But,

again, given the discussion about sliding windows in Section 3.1.1, it is not clear how these

techniques would be generally applicable to time series data.

[45] provides a more thorough treatment for general data types.

3.2 Models

Instead of comparing a point to other points, like in proximity-based solutions, a point can

be compared to what is expected from a model.

For example, Hidden Markov Models (HMM) are advanced sequence modelers and

therefore can be used for anomaly detection [64–67]. To use in anomaly detection, first, a

HMM maximizes the probability of a set of training data. Then the probability of a test

instance is calculated for comparison. But the comparison is only meaningful if the training

data can be modeled by the hidden Markovian process.

Moreover, sequence modelers typically require training examples of fixed length which

restricts the ‘memory’ of the model.

3.3 Conclusions

Some general comments can be made regarding the strengths and weaknesses of general

anomaly detection techniques such as those in Section 11 of [45] for example. However this

does not provide any rigorous and objective evaluation. An objective evaluation is needed

in order to select the most appropriate algorithm for the problem a prioi. In [3] and [68]

some qualitative explanation is given for the performance of several time series anomaly

detection techniques over various data sets. Still, this does not objectively determine why

one technique performs better.

Exceptionally however, [69] outlines a theoretical framework for local outlier detection in

which different methods are assessed in this common view. Perhaps surprisingly, different

methods were found to be similar including those used in quite different application domains.

20

Similarly, [70] unify anomalies identified based on some distance with anomalies identified

based on a statistical model.

For the techniques discussed in Section 3.1, a number of issues specific to time series

data (as well as issues not specific to time series data) combine in the process of using a

proximity-based (discriminative) technique for anomaly discussion. The choices of similarity

measure, sliding window width, sliding window hop, and classification technique must be

compatible. Furthermore, defining a region for every normal behavior is difficult to begin

with.

So the case is made for generative model-based solutions due to these complications.

Models provide a better summary of data which gives it a robustness that is preferred for

the task of anomaly detection [47]. Given this preference, proximity-based methods would

only be preferable if modeling the time series is difficult (disregarding computational issues).

This work attempts to find anomalies in an arbitrary time series. So, an anomaly

detection process is sought that:

• models arbitrary time series,

• minimizes the effects of window width,

• and requires as few parameters as possible.

This guides the discussion in the next two chapters. The next chapter shows how recurrent

neural networks are general sequence modelers. In the following chapter, a procedure is

outlined that addresses window width and model parameters.

21

Chapter 4: Recurrent Neural Networks

4.1 Introduction

In the previous chapter, an argument was made for the use of models to for the purpose of

anomaly detection. In this chapter, recurrent neural networks [71], or RNNs, are introduced

as powerful sequence modelers of arbitrary length.

RNNs have achieved state-of-the-art performance in supervised tasks such as handwriting

recognition [72], and speech recognition [73]. RNNs can also be trained unsupervised to

generate music [74], text [75, 76], and handwriting [76]. Given these impressive feats, RNNs

can be effectively used for anomaly detection in sequences [1, 2].

Like HMMs, RNNs have hidden states. But, in contrast to HMMs, RNNs make a more

efficient use of its hidden state [77]. In a HMM, the hidden state depends only on the

previous state which must store possible configurations of the sequence. So to incorporate

information about an increasing window of previous states, the hidden state must grow

exponentially large making them computationally impractical. While in RNNs, the state is

shared over time; the hidden state of a RNN contains information from an arbitrarily long

window. The next section will explain this.

In addition, RNNs do not make a Markovian assumption. In fact, they are so general,

that RNNs have been shown to be equivalent to finite state automata [78], equivalent to

turing machines [79], and more powerful than turing machines [80] even.

In the next few sections, some essential concepts of RNNs will be presented as most

applicable to this work. Consult the RNN chapter in [81] for an in-depth treatment.

The precision from mathematical expressions will be used to understand how RNNs

operate but only concepts will be presented. To follow the expressions precisely, some

conventions are followed: 1) Due to the numerous interacting quantities, a typographic

22

distinction is made between vectors (v) and matrices (M). 2) Variables are time indexed

with superscripts enclosed in parentheses (x(t)) leaving subscripts available to index other

quantities.

4.2 Recurrence

Recurrence explains how a RNN stores a distributed state. Consider a dynamical system

driven by signal x(t) as in Equation 4.1.

s(t) = f(s(t−1),x(t);θ) (4.1)

The state, s(t), depends on the previous state, s(t−1), through some function f parame-

terized by θ. There is no restriction on the number of previous time steps. For example, for

four previous time steps

s(t) = f(f(f(f(s(t−4),x(t−3);θ),x(t−2);θ),x(t−1);θ),x(t);θ).

So the composite function, g, can be written as depending on an arbitrary number of

time steps, T .

s(T) = gT (x(T),x(T−1),x(T−2), . . . ,x(2),x(1))

In other words, the vector s(T) contains a summary of the of the preceding sequence,

(x(T),x(T−1),x(T−2), . . . ,x(2),x(1)), through gT .

It can be difficult to follow recurrent computations by looking at mathematical expressions.

So recurrence can be graphically represented in two ways. One way, shown in Figure 4.1(a),

shows the state feeding back into itself through its parameters representing Equation 4.1.

The other way is to ‘unfold’ the recurrence in a flow graph as in Figure 4.1(b). Graphs offer

a convenient way of organizing computations. The (unfolded) graph shows every hidden

state, say s(t), is dependent on the current input, x(t), the previous state, s(t−1), and (fixed)

23

parameters θ. So it should be obvious that θ is shared over successive computations of s.

s

x

θ(−1)

Figure 4.1 (a) cyclic

s(...) s(t−1) s(t) s(t+1) s(...)

x(t−1) x(t) x(t+1)

θ θ θ θ

Figure 4.1 (b) acyclic (unfolded)

Figure 4.1: Recurrence graph views

4.3 Basic Recurrent Neural Network

The functionality of a basic RNN resembles that of a traditional neural network with the

addition of a state variable shared over time.

The core RNN functionality can be formulated as Equations 4.2 describe. Each equation

represents a ‘layer’ or, individually, in the scalar sense, ‘nodes’ in the network.

s(t) = tanh(Wsss
(t−1) + Wxsx

(t) + bs) (4.2a)

o(t) = Wsos
(t) + bo (4.2b)

The output at time t, o(t), depends on current state, s(t), which, in turn, depends on the

previous state, s(t−1), and the current input, x(t), through associated weight matrices, W.

The weight matrices are subscripted with two variables to associate an input with an output.

The input variable is the first subscript while the output variable is the second. For example,

Wso connects the input from s to output, o. Also, bias vectors, b, allow values to be

adjusted additively (offset). Finally, the hyperbolic tangent, tanh, provides a non-linearity,

in the range (-1,1), that allows the RNN to summarize arbitrarily complex sequences.

A ‘size’ can be specified that measures the capacity of s; the dimension of s is a

24

(free) parameter (obviously the dimensions of other quantities in Equation 4.2a need to be

compatible). No size is associated with o because it is restricted by the dimension of a given

output, y (read further).

The output, o, needs to be compared to a ‘target’, y, through a loss function, L. For

predicting sequences as targets, the mean squared error is a common choice for the loss

function. Squared differences are summed and averaged over and the number of variables of

the sequence resulting in a scalar as shown in Equation 4.3.

L(o,y) =
1

TV

∑
t

∑
v

(o(t)v − y(t)v)2, (4.3)

V and T are the number of variables and the length of the sequences respectively indexed

by t and v respectively.

Equations 4.3 and 4.2, together, define the framework for a basic RNN. One way to

enhance this is to ‘stack’ states so that the output from one state is input into another state

in the same time step. So the last, lth, layer produces o. There is evidence that stacking

the state layers leads to the network being able to learn time series at multiple time scales

[82,83].

25

y

L

o

sn

s2

s1

x

θxs1

θ(−1)
s1s1

θ(−1)
s2s2

θsno

θ(−1)
snsl

Figure 4.2 (a) cyclic

y(t−1) y(t) y(t+1)

L(t−1) L(t) L(t+1)

o(t−1) o(t) o(t+1)

s
(...)
l s

(t−1)
l s

(t)
l s

(t+1)
l s

(...)
l

s
(...)
2 s

(t−1)
2 s

(t)
2 s

(t+1)
2 s

(...)
2

s
(...)
1 s

(t−1)
1 s

(t)
1 s

(t+1)
1 s

(...)
1

x(t−1) x(t) x(t+1)

θslsl

θs2s2

θs1s1

θslo

θxs1

θslsl

θs2s2

θs1s1

θslo

θxs1

θslsl

θs2s2

θs1s1

θslo

θxs1

θslsl

θs2s2

θs1s1

Figure 4.2 (b) acyclic

Figure 4.2: Recurrent neural network graph views. Bias terms are omitted for clarity but
are included as elements in θ along with elements from W. The notation of θ follows that
of W but captures more variables by vectorizing each component for concatenation into a
single vector. θss = (W ss, bs), θxs = (W xs), and θso = (W so, bo) (operations to produce
the vector are implied). Inter-layer parameters, θsisi+1 , are omitted as well to focus on

operations in time (horizontally).

The stacking can be seen graphically in Figure 4.2. Notice that the unfolded view allows

one to see that information can flow through many paths in time and layers (horizontally

and vertically respectively). So ‘depth’ can be used to describe the number of operations in

these two directions with depth in the time direction being typically much greater¬.

¬This makes RNNs, among ‘deep learning’ architectures, the deepest networks!

26

4.4 Training

To train the network, the loss function is used to minimize (optimize) an objective function

given pairs of training examples, (x,y), by adjusting the parameters, θ. Unfortunately,

training neural networks in general, let alone recurrent neural networks, are challenging

optimization and computational problems [84]. However, a flavor of the relatively simple

mini-batch stochastic gradient descent (SGD) has remained successful in training a variety

of networks [85] despite the availability of other, perhaps more sophisticated, optimization

algorithms.

In plain mini-batch SGD, parameters are updated with a ‘learning rate’, α, for a selected

‘mini-batch’ example set (from the training set), M , according to Equation 4.4 until a

convergence criterion is met.

∆θ = −α 1

|M |
∑

(xm,ym)∈M

∂L(o,ym)

∂θ
(4.4)

Unfortunately, RNNs can suffer acutely from the vanishing (and exploding) gradient

problem which makes learning long range dependencies difficult [86–89].

The problem is understood through the calculation of ∂L/∂W ss for a ‘history’ of T

points prior to t. An involved application of the (backpropagated) differential chain rule to

the loss function using the basic (unfolded) RNN defined in Equations 4.2 leads to Equation

4.5.

∂L(t)

∂W ss
=

T∑
i=0

∂L(t)

∂o(t)
∂o(t)

∂s(t)

 T∏
j=i+1

∂s(j)

∂s(j−1)

 ∂s(i)

∂W ss
(4.5)

Equation 4.5 shows that there are multiplicative ‘chains’ of differentials for each preceding

time step.

27

y(t−4) y(t−3) y(t−2) y(t−1) y(t)

L(t−4) L(t−3) L(t−2) L(t−1) L(t)

o(t−4) o(t−3) o(t−2) o(t−1) o(t)

W ss s(t−4) s(t−3) s(t−2) s(t−1) s(t)

x(t−4) x(t−3) x(t−2) x(t−1) x(t)

∂L(t)

∂o(t)

∂o(t)

∂s(t)
∂o(t)

∂s(t)

∂s(t)

∂s(t−1)
∂s(t−1)

∂s(t−2)
∂s(t−2)

∂s(t−3)
∂s(t−3)

∂s(t−4)
∂s(t)

∂s(t−1)
∂s(t−4)

∂W ss

Figure 4.3: Partial derivative chain for a basic RNN for a history of 4 time steps (biases
not shown). Several quantities are distinguished. Dash-dotted lines are the independent
inputs, x, y, and W ss, to the loss function, L, while the dashed lines represent intermediate
quantities in the graph. The path formed by the curved solid lines follows the chain rule

to get one summand for ∂L(t)/∂W ss. Dotted quantities are not involved in the calculation
(for T = 4).

The computational graph in Figure 4.3 represents Equation 4.5 for T = 4. Now that

the graph is associated with the equation, the origin of the vanishing gradient can be seen;

the vanishing gradient is due to successive multiplications of the derivative of tanh which is

bound in (0, 1] (Again, see [86–89] for details).

[81] (sec. 10.7) lists ways in which the problem can be mitigated by applying different RNN

architectures or enhancing the optimization process. For example, Hessian-free optimization

[90] uses second order information that can make use of the ratio of small gradients to small

curvature to more directly find optimal parameters. [91] uses Hessian-free optimization to

train a basic RNN to achieve remarkable results. However, this comes at a computational

cost. For practical reasons, it might be preferable to use well-established SGD-based methods

28

over second order methods [92,93] as long as the RNN architecture facilitates learning long

range dependencies; the Long Short Term Memory (LSTM) RNN [94] uses a ‘memory cell’

to recall (past) information only when needed thereby working around the vanishing gradient

problem.

4.5 Long Short-Term Memory

LSTM models have achieved impressive benchmarks recently. Networks with LSTM elements

have been used for text-to-speech synthesis [95], language identification from speech [96],

large-vocabulary speech recognition [97], English-to-French text translation [98], identifying

non-verbal cues from speech [99], Arabic handwriting recognition [100], image caption

generation [101], video to text description [102], and generating realistic talking heads [103].

Furthermore, LSTM RNNs have remained competitive against other RNN types [104].

There are a few variants of LSTM but they all have a linear self-loop that gradients can

flow through for a long time. LSTM variants have not shown to differ greatly in performance

[105]. The equations describing the LSTM state involve significantly more steps than the

basic RNN state equation, Equation 4.2. So, the mathematical procedure for the LSTM

state is presented with a figure. The LSTM variant presented in Figure 4.4 is found in [76].

29

s(t)

c(t−1) � + c(t)

�

σ σ τ σ τ

s(t−1) � s(t)

x(t)

f (t)
i(t) o(t)

g(t)

Figure 4.4 (a) calculation flow diagram (biases omitted, adapted from [106])

i(t) = σ(Wi · (x(t), s(t−1), c(t−1)) + bi) (4.6a)

f (t) = σ(Wf · (x(t), s(t−1), c(t−1)) + bf) (4.6b)

g(t) = tanh(Wc · (x(t), s(t−1)) + bc) (4.6c)

c(t) = f (t) � c(t−1) + i(t) � g(t) (4.6d)

o(t) = σ(Wo · (x(t), s(t−1), c(t−1)) + bo) (4.6e)

s(t) = o(t) � tanh(c(t)) (4.6f)

Figure 4.4 (b) equations from [76]

Figure 4.4: Long Short-Term Memory layer. σ stands for the logistic sigmoid function
while τ stands for tanh. Element-wise multiplication is represented by the � symbol. For
brevity and clarity, a (single) weight matrix combines the weights associated with more than
one input to a single output (unlike the typical notation used in literature). For example,

Wi · (x(t), s(t−1), c(t−1)) = Wxix
(t) + Wsis

(t−1) + Wcic
(t−1) where the input vectors, x, s,

and c are concatenated into a vector and weight matrices Wxi, Wsi, and Wci are augmented
horizontally. In the diagram, the concatenation is represented by black dots combining single
lines into more than one line. Furthermore, Wci, Wcf , and Wco are diagonal matrices so
the number of weights associated with each c equals the LSTM ‘size’.

The size that can be attributed to the LSTM module is the dimension of i, f , g, c, o,

30

or s (which are equal).

Very briefly, the central element in a LSTM module is the ‘memory cell’, c, that works

to keep information unchanged over many time steps (likened to a conveyor belt through

time). Information flow is controlled through input, ‘forget’, and output ‘gates’, elements

i, f , and o respectively. The input gate controls information into the memory cell. The

output gate controls when information should flow to the next time step. The forget gate

zeros out elements in the memory cell. The gates make their decisions based on the input,

x, the ‘hidden’ state, s, and content already in the memory cell.

Unlike the recurrence of the basic RNN (Equation 4.2a), information can be kept for a

long time in the recurrence chain of c (Equation 4.6d). There is a way for information to

propagate without successive multiplication of fractions (as in the derivative of tanh): In

Equation 4.6d, consider an element in (vector) c(t−1) with a value of 1. It can be retained

indefinitely as long as the corresponding element in f (t) is 1 and the corresponding element

in i(t) is 0. In other words, the derivative is constant with respect to t.

Finally, note how the LSTM modules can be stacked (vertically) in similar fashion to

the basic RNN. The output of the lower module, s(t), becomes the input, x(t), of the upper

module.

With such configurations, the next chapter will show how LSTM RNNs can be used to

model time series to find anomalies.

31

Chapter 5: Anomaly Detection Using Recurrent Neural

Networks

5.1 Introduction

Chapters 2 and 4, separately, introduced anomaly detection in time series and recurrent

neural networks as time series modelers. This chapter outlines and tests a procedure for

finding anomalies using RNNs with the goal of mitigating many of the problems associated

with anomaly detection that were discussed in Chapters 2 and 3. As much as possible, the

same procedure is applied to each test time series to test the procedure’s generality.

The procedure outline describes:

sampling: the time series used for training and its associated sampling process

recurrent autoencoders: the specific form of the RNN

training: the training algorithm used on the RNN

Bayesian optimization: the search for optimized parameters for the procedure

After describing the procedure, the anomaly scores of the test time series are evaluated for

their ability to detect anomalies.

5.2 Sampling: Sliding Windows

Some univariate time series with anomalies were chosen or generated to test the anomaly

detection process named as follows:

spike: two generated sequences that are simply evenly-spaced ‘spikes’ of the same height.

32

sine: a generated sinusoidal signal.

power demand: a building’s electrical power usage data¬ referenced in the influencial

HOT-SAX paper [32] (for anomaly detection in time series). The data was scaled

down by dividing it by its median (to help in the training process).

electrocardiogram (ECG): a signal from the human heart taken from the PhysioNet

[107] database. Finding anomalies in ECG data has been used as a benchmark in

several studies at least [2, 3, 32,108–111].

polysomnography ECG (PSG-ECG): human ECG data [107] taken during a sleep

study.

The normal behaviour, as well as anomalous behaviour, of these time series can be seen in

the plots presented in Section 5.5.

While there is only one ‘source’ time series to train on (in each test), the RNN needs to

see many ‘samples’ from the source time series. The sliding window procedure, described in

Section 2.3.1, is used to get samples of some window width. Additionally, since RNNs do

not need a fixed window, sliding windows are obtained for more than one window width.

Furthermore, the samples are collected into ‘mini-batches’ (of the same window width) to

be more compatible with the training procedure. The window width is incremented (width

skip) from some minimum until it is not possible to obtain a mini-batch (so the largest

window will be close to the length of the time series).

Table 5.1 specifies the relevant sizes and increments for the sampling process. The

values were adjusted manually until a ‘reasonable’ number of samples were found. However,

the minimum window length was chosen such that meaningful dynamics were captured

(regardless of the scale of the anomaly).

¬http://www.cs.ucr.edu/~eamonn/discords/power_data.txt
University College Dublin Sleep Apnea Database, http://www.physionet.org/physiobank/database/

ucddb/, doi:10.13026/C26C7D, study id. ucddb002

33

http://www.cs.ucr.edu/~eamonn/discords/power_data.txt
http://www.physionet.org/physiobank/database/ucddb/
http://www.physionet.org/physiobank/database/ucddb/

Table 5.1: Time series sample specifications

series length min. win. slide skip width skip batch size ⇒ samples

spike-1 800 100 20 20 10 51

spike-2 800 100 20 20 10 51

sine 1000 100 10 10 30 96

power 7008 100 100 20 30 252

ECG 3277 300 20 20 30 300

PSG-ECG 2560 300 20 20 30 165

5.3 RNN Setup: Autoencoder

The RNN needs to learn what normal time series behavior is. So an autoencoder is used

which can learn expected behavior by setting the target, y, to be the input, x. The loss

function is the MSE (Equation 4.3). Furthermore, to prevent the RNN from learning trivial

identity functions, Gaussian noise is added to the input where the standard deviation is

equal to 0.75 times the standard deviation of the whole time series.

x̃ = x+N (0, (0.75σstd(x))2)

Note the comparison in the loss function is between the uncorrupted signal, x, and the

output from the network, o, given x: L(o(x̃),x).

With this setup, a denoising autoencoder, the data generating process, p(x), is implicitly

34

learned [112].

5.4 Training: RMSprop

SGD with RMSprop [113] for parameter updates has been demonstrated to provide results

that are similar to more sophisticated second-order methods but with significantly less

computational cost [93]. Another benefit of RMSprop is that it is designed to work with

mini-batch learning. Since the training data is highly redundant (from sliding windows), it

is expected that computing the gradient (to update parameters) from a subset of the data

(mini-batch) is more efficient than computing the gradient for all the data.

For each derivative in the gradient, RMSprop keeps an exponentially-weighted moving

average of derivative magnitudes which normalizes the derivative by its root-mean-squared.

More specifically, the (overall) RNN training procedure is outlined in the following box.

The Theanets [114] implementation® of RNNs and RMSprop was used. Theanets is based

on the mathematical expression compiler, Theano [115]. Gradients were computed using

Theano’s automatic differentiation feature instead of explicitly-defined backpropagation [71].

While the training procedure optimizes θ, there are other parameters that could be

adjusted to minimize the loss. The number of layers, l, and the ‘size’ of each layer, n,

corresponding to the dimension of vector s (which equals the cell state memory dimension

as well), were chosen as ‘hyper-parameters’ for optimization in a Bayesian optimization

process. Bayesian optimization is suited for optimizing RNN training because 1) it tries

to minimize the number of (expensive) objective function calls, which, in this case, is the

training procedure, and 2) it considers the stochasticity of the function, which, in this case,

the selection of training and validation data are random in addition to the training data

shuffling on each epoch.

The Spearmint [116] package was used to drive the hyper-parameter optimization process.

Spearmint takes a parameter search space and a maximum number of optimization iterations.

®With every calculation of o, the RNN states are initialized to 0.

35

Training Procedure

{obtain mini-batches (as Section 5.2)}
X ← sampling(x)

{randomly split mini-batches into training and validation sets}
Xt ← choose(75%,X)
Xv ← X −Xt

{initialize}
θ ← 0 {initial RNN parameters are 0}
{set training parameters}
α = 10−4 {learning rate}
h = 14 {RMS ‘halflife’}
γ ← e

−2
h

r = 10−8 {RMS regularizer}
patience = 5 {stopping criterion parameter}
min improvement = .005 {stopping criterion parameter}

for epoch i do
Xt ← shuffle(Xt)
for mini-batch M in Xt do

for parameter p in θ do
{per-parameter, update p according to RMSprop [76] (indices to p omitted)}

fi+1 ← γfi + (1− γ)
∂L

∂p

gi+1 ← γgi + (1− γ)

(
∂L

∂p

)2

pi+1 ← pi −
α√

gt+1 − f2t+1 + r

∂L

∂p

end for
end for
{compute average loss on validation set}
vi ← 1

|Xv |
∑

xv∈Xv
L(xv,o)

{stop when no improvement more than patience times}
if vmin − vi > vmin ·min improvement then
vmin ← vi
imin ← i

end if
if i− imin > patience then

STOP {return θ}
end if
i← i+ 1

end for

36

The process was programmed to save RNN parameters after every optimization iteration.

However, the process was stopped until the RNN with the minimum validation loss was

subjectively able to detect anomalies¯.

For every sample, Figure 5.1 shows the results of the Bayesian optimization process and

the training progress of the best network. In the training progress figures, the validation and

training losses are close throughout the training process. This is expected since the training

and validation sets are highly redundant and perhaps the RNN, by nature, interprets them

to be almost identical (invariance to translation and sequence length).

1 3 10 13 16 17 19 20
n

10−3

10−2

10−1

L
v

l

1
2

0 20 40 60 80 100 120

epoch

10−3

10−2

10−1

100

L

training
validation

Figure 5.1 (a) spike-1

1 14 16 17 18 19 20
n

10−4

10−3

10−2

10−1

L
v

l

1
2

0 20 40 60 80 100 120 140 160

epoch

10−3

10−2

10−1

100

L

training
validation

Figure 5.1 (b) spike-2

¯ Further optimization may have been possible with increasing RNN size but loss reduction diminished
relative to the associated increase in computational expense.

37

1 4 10 15 16 20
n

10−2

10−1

100

L
v

l

1
2

0 10 20 30 40 50 60

epoch

10−1

100

L

training
validation

Figure 5.1 (c) sine

6 8 12 20 33 36 42 50
n

0.006

0.008

0.010

0.012

0.014

L
v

l

1
2

0 20 40 60 80 100 120 140 160

epoch

10−2

10−1

L

training
validation

Figure 5.1 (d) power

38

1 5 9 15
n

10−2

10−1

100

L
v

l

1
2

0 20 40 60 80 100 120 140

epoch

10−1L

training
validation

Figure 5.1 (e) ECG

1 5 6 7 11 19 20
n

0.00

0.01

0.02

0.03

0.04

0.05

L
v

l

1
2

0 50 100 150 200 250 300 350

epoch

10−2

10−1

100

101

L

training
validation

Figure 5.1 (f) PSG-ECG

Figure 5.1: Bayesian optimized validation loss (left) and training progress of best RNN
(right). Each point in the Bayesian optimization plot is the average validation loss since
more than on training session could have been launched with the same parameters. If so,
the points have a 95% confidence interval bar through them.

5.5 Results and Discussion

The optimal RNN has some expectation of the typical series. So, a ‘reconstruction error’

is the difference between the test input and the output. Therefore, the square of the

reconstruction error can be used as an anomaly score [117]. This section will show how

the various calculations of error can be used to detect point anomalies as well as discord

anomalies introduced in Section 2.2. However, the particular (objective) anomaly detection

technique will not be discussed; only the anomaly score, that would be used in such a

technique, is presented. Nonetheless, the argument is made for the ability of autoencoding

RNNs to detect anomalies.

39

Although the order of the anomaly scores should not be important to the anomaly

detection technique, sequences of error calculations can be made in two ways for a test

series: 1) the MSE of a sliding window and 2) the squared error of every point in the test

series where the whole sequence is input to the optimal RNN. While the MSE from a sliding

window can detect both point anomalies and discords, it is preferable not to have to specify

a window size. Ideally, high anomaly scores for points close together signal a discord while

a lone high anomaly score signals a point anomaly. But both types of calculations are

evaluated in this discussion.

Error calculations are presented graphically in Figure 5.2 for each series (see Figure

caption after the last subfigure). The errors are summarized by their maximum, kernel

density estimate, and the 5 percentile mark. Together, with the error plot, the efficacy of

the RNN in distinguishing anomalies can be evaluated; normal data should correspond to

the bulk of the error calculations while anomalies should correspond to extreme high values.

It should be noted that as the window size is increased, fractionally less points are

included in the, normal, 95 percentile (and vice versa). The kernel density estimate might

change significantly accordingly.

What follows is a discussion of the ability of the (optimal) RNN to detect anomalies

referencing subfigures of Figure 5.2.

40

spikes-1

0.00

0.25

0.50

0.75

1.00

x

5%

max

ε

5%

max

ε

350 400 450 500 550 600 650 700 750 800

t

max

ε

Figure 5.2 (a) spikes-1

This series can be considered discrete with a point anomaly. The point anomaly takes

on an improbable value but is not extreme. Clearly, the anomalies are distinguished in all

error calculations.

Note the error increases as soon as the sliding window (from the left) encounters the

anomaly. This observation can be used to analyze the other series.

41

spikes-2

0.00

0.25

0.50

0.75

1.00

x

0.0

max

ε

5%

max

ε

350 400 450 500 550 600 650 700 750 800

t

max

ε

Figure 5.2 (b) spikes-2

This spike series tests if the error becomes significant where the spike is out of place; a

discord. The anomaly is definitely detected in the windowed error plot but not the point

error plot.

42

sine

−0.8

0.0

0.8

x

5%

max

ε

5%

max

ε

5%

max

ε

690 720 750 780 810 840 870 900 930

t

5%

max

ε

Figure 5.2 (c) sine

This series tests discord because no single point is anomalous. For the windowed errors,

the anomalous and normal regions are distinguished by a range of values for each. But,

there was a transition region with errors higher or lower than the anomalous region. In the

point error plot, the extreme values correspond to extreme values in the test plot. So, given

43

these results, the windowed error can be more attributed to the extreme values of the test

series than to its anomalous behavior. In any case the RNN found a tight expectation for

typical values.

power

0.9

1.2

1.5

x

5%

max

ε

5%

max

ε

1800 2000 2200 2400 2600 2800 3000

t

5%

max

ε

Figure 5.2 (d) power

The power series normally shows a demand profile over a five-day work week. The

windowed error distribution has a long tail because high errors were given to normal areas

of test series (not shown within the plot, possibly due to some drift in the series). In fact,

the first windowed error plot does not contain the highest error unlike the second windowed

error plot. Nonetheless, both windowed errors distinguished the anomalous region. But,

44

obviously, the point errors cannot be used to detect the anomalous region.

ECG

−2

0

2

x

5%

max

ε

5%

max

ε

5%

max

ε

1320 1380 1440 1500 1560 1620 1680 1740 1800

t

5%

max

ε

Figure 5.2 (e) ECG

The ECG is a challenging series because, while there is a repeating element, the element

does not precisely have the same period. There is also noise in the signal that has to be

distinguished from its significant features.

45

In the point error plot, the most prominent values correspond to points on the test series

that are simply lower than a baseline. The same cannot be said about the error plot with the

smallest window; although the areas with extreme values are the most prominent, areas that

have different behavior, but not extreme in value, are distinguished as well. For example, a

particularly subtle anomaly was detected within the highest 5 percentile at around t = 1380

despite the fact that the more anomalous region contributed extreme values. The same could

be said about anomaly at around t = 1470. This window size was chosen to be about the

size of the repeating unit since the effect of these anomalies on the error is diluted for larger

windows. The larger windows detected the most anomalous region but it is not apparent

whether the extreme error values were due to deviant values or deviant behavior.

46

PSG-ECG

4.8

5.6

6.4

x

5%

max

ε

5%

max

ε

1380 1440 1500 1560 1620 1680 1740 1800 1860 1920

t

5%

max

ε

Figure 5.2 (f) PSG-ECG

Figure 5.2: Anomaly scores of series. In the top pane, a portion of the input series is shown
with an anomaly. While the focus is on the anomaly, enough normal data is shown for
subjective comparison. This is accompanied by a kernel density estimate, plotted on the
ordinate (vertically), to evaluate the normality of the data by value as opposed to behavior.
The lower panes show series of squared error, ε, where each pane is associated with a sliding
window size. The window size is represented by a highlighted vertical span in the error
plot as well as a corresponding box in the input series plot to give a sense of scale to
the anomaly relative to the window. Sliding a window over the test series that calculates
its MSE generates the error series (error calculation type 1). The locations of the MSE
points correspond with the center of the sliding window. However, error plots with just
a vertical line as a ‘window’ are just individual squared errors (error calculation type 2).
Furthermore, a kernel density estimate for all the errors (including ones outside the plot) is
plotted (vertically) on the ordinate. The highest 5 percentile and the maximum of (all) the
errors are marked on the ordinate also.

47

In this ECG, the point errors do not reveal much about the anomalous region because

every spike in the error plot plot corresponds to a normal spike in the ECG, normal or

otherwise. However, the anomalous region is clearly detected in both windowed error plots.

Again the error in the anomalous region is well beyond the normal range of error fluctuations

albeit the test series values are slightly above average (as can be seen from the density

estimate).

5.6 Conclusions

Given the results, which are influenced by the described training process and RNN architec-

ture, some general statements can be made about how well the RNNs can find anomalies.

• Using the point errors, extreme, but not necessarily rare, values may be found.

• The windowed errors are a versatile way of finding both point and discord anomalies

at multiple scales. However, this means that the window size must be about the

same scale as the anomaly. Else, the effect of the anomaly would not be pronounced.

Furthermore, the minimum window size must be long enough to contain meaningful

dynamics.

• Pursuant to the previous two points, windowed errors are more reliable in finding

anomalies.

• The training data can have some anomalous data.

• The RNNs were insensitive to variations in sequence length and translation.

• With minor variation, the same process can be used to find anomalies in a variety of

series.

In general, subject to effective training, the RNNs ‘learned’ the typical behavior of

the series which includes information about their typical values as well as their ordering.

48

Concludingly, the autoencoding recurrent neural network can be used to detect anomalies in

sequences.

49

Chapter 6: Concluding Remarks

Now that proximity-based and model-based anomaly detection techniques have been intro-

duced in Chapter 2, some comparisons can be made with them given the results from the

previous chapter. From there, some qualified conclusions can be made. Mind that, from the

start, the comparison is made with techniques that do not require labeled data. Also, the

comparison is made as general statements of advantages of RNNs over the alternative.

Hidden Markov Models (model).

Chapter 4, explained how, fundamentally, RNNs store states more efficiently. By itself,

this does not provide a functional advantage over HMMs, but this requires an HMM

for every sequence length, unlike RNNs. Furthermore, while HMMs are powerful,

RNNs are fundamentally sequence modelers.

HOT SAX (proximity).

The HOT SAX [32] technique (and its variants) is considered a proximity-based

technique optimized for sequences that is sensitive to window size. While the results

show in the previous chapter that window size is important, RNNs have the advantage

that, the same RNN can be used to find anomalies at different scales. In HOT SAX, a

comparison is made for many pairs of windows for one window size. This thorough

comparison may be tolerable for short sequences, but a trained RNN can analyze a

long sequence for anomalies based on a shorter sample. Furthermore, the mathematics

of RNNs naturally accept multivariate sequences.

Through the previous discussion, the advantage of using autoencoding RNNs as described

in this work, in comparison to other techniques, can be summarized in a few questions. A

negative response to the following questions for the alternative gives RNNs an advantage.

50

• Is only the test sequence needed to determine how anomalous it is?¬ (Is a summary

of the data stored?)

• Is it robust against some window length?

• Is it invariant to translation? (Is it invariant to sliding a window?)

• Is it fundamentally a sequence modeler?

• Can it handle multivariate sequences?

• Can the model prediction be associated with a probability [76]?

• Can it work with unlabeled data? If not, is it robust to anomalous training data?

• Does it not require domain knowledge?

Finding a technique with all these advantages is difficult. But, as mentioned in the

Introduction chapter, the work in [2] is the closest to the work described here so some

comparison is merited. In [2], the RNN is trained to predict a set length of values ahead for

every (varying length) subsequence that starts at the first point. Although this training

setup was used to avoid dealing with windows (as an advantage), the choice of the prediction

length remains arbitrary and its effect on finding anomalies at different scales is not studied.

In this work, although windows were found to be needed to detect anomalies, the only

choice made regarding their length was to set some minimum meaningful length for the

training samples® (not the scale of the anomaly). In fact, specifying a window size for the

prediction errors (as in Section 5.5) can be seen as an advantage because it allows detection

of anomalies at different scales as a desired choice for the investigator. Furthermore, [2]

uses normal data for training thereby not providing evidence that their process can tolerate

¬This is related to generative versus discriminative models. Generative models are preferred for anomaly
detection.

Clarification provided in electronic exchange with author, P. Malhotra.
®Another way of seeing the difference in the mode of operation between the two RNN setups is by

considering their mappings. In [2], an arbitrary subsequence is mapped to a fixed length sequence while in
this work an arbitrary subsequence is mapped to itself.

51

anomalous data. But in contrast to this work, evidence for anomaly detection in multivariate

time series is provided.

Unfortunately, the power of RNNs comes at high computational expense in the training

process. Not only is there a cost in finding RNN parameters (θ), but there is also a cost in

finding RNN hyper-parameters which can include parameters specifying RNN architecture

as well as parameters specifying training algorithm parameters.

Given the results of this work and how it compares to other techniques, it can be

concluded that autoencoding RNNs can be used to detect anomalies in arbitrary sequences,

provided that an initial training cost can be managed.

6.1 Further Work

The text ends with a list of further work directions with potential to strengthen the case for

using autoencoding RNNs in anomaly detection. As the list is mainly concerned with the

RNNs, and much progress has been made in RNN research recently, the list is not exhaustive.

Furthermore the rapid progress might render items in the list as outdated in the near future.

Better optimize presented work. More training epochs and more LSTM layers could

have found more optimized parameters. Also, variations in the training data on the

length scale of the sequence (trends) should be removed. These optimizations are

important to effectively learn normal sequence patterns.

Use autocorrelation to determine a minimum window width. In the sampling

process, the minimum window length was manually determined such that the length

captured meaningful dynamics. This length can be systematically determined by using

information from the sequence’s autocorrelation.

Accelerate training.

Normalize input. Although not required, some carefully chosen normalization of

data could help. Another normalization scheme to consider is found in a recent

52

paper [118] which suggests using normalization based on mini-batch statistics to

accelerate RNN training.

Find an optimum mini-batch size. Some redundancy in the mini-batch is desired

to make smooth progress in training. However, if the mini-batch size is too

large (too redundant), a gradient update would involve more computations than

necessary.

Use dropout to guard against overfitting. In this work, to guard against overfitting,

a corrupting signal is added which depends on the value of the data. In dropout,

regardless of the values of the data, a small portion of nodes in a layer can be deactivated

allowing other nodes to compensate. Dropout was first applied to non-recurrent neural

networks but recent study [119] explains how dropout can be applied to RNNs.

Experiment with different RNN architectures.

Experiment with alternatives to the LSTM layer. Over a basic RNN, the LSTM

imposes more computational complexity as well as more storage requirements (for

the memory cell). Gated Recurrent Units (GRU) [120] are gaining in popularity

as a simpler and cheaper alternative to LSTM layers.

Experiment with bi-directional RNNs. Bi-directional RNNs [121] incorporate

information in the forward as well as reverse direction. They have been successfully

used with LSTM for phoneme classification [122].

Experiment with more connections between RNN layers. A better model

might be learned if non-adjacent layers are connected [82] (through weights)

because it allows for more paths for information to flow through.

Incorporate uncertainty in reconstruction error. The output from a RNN can be

interpreted to have an associated uncertainty [76]. It follows that it should be possible

to get high or low error signals associated with high uncertainty which should affect

53

the interpretation of the existence of an anomaly (see Reconstruction Distribution,

Section 13.3, in [81]).

Objectively compare anomaly detection performance against other techniques

over a range of data. While certain disciplines might have benchmark datasets

to test anomaly detection, measuring the generality of a technique by evaluating its

performance over a wide variety of data is not widespread¯. To solve this problem,

Yahoo recently offered a benchmark (labeled) dataset [123] which includes a variety of

synthetic and real time series.

Methods based on non-linear dimensionality reduction might be competitive [124].

Find anomalies in multivariate sequences. The NASA Shuttle Valve Data [125] is an

example which was used in [111] and the well-known HOT SAX [32] technique.

¯Perhaps this is due to the difficulty in finding a general technique.

54

Chapter A: Reproducible Computational Infrastructure«

A.1 Introduction

There has been much attention recently paid to reproducible computational research [126].

In some cases, just providing the computational code and data, along with some instructions,

is sufficient to be able to reproduce a computational experiment. However, typically code

relies on libraries and other support facilities which complicates the computational setup.

So, just providing the computational code is not sufficient to ensure reproducibility (at least

not easily). Some domains have managed this complexity somewhat by providing specific

solutions. As examples, Galaxy is used in genome analysis [127], Madagascar in geophysics

[128], WaveLab in signal processing [129], and Bioconductor in computational biology and

bioinformatics [130]. These solutions can be seen as platforms onto which instructions can

be provided to reproduce results.

However, these solutions do not address computational infrastructure setup in addition to

being limited to their domains. ‘Infrastructure’ here means aspects related to both hardware

and software. While the importance of hardware is not emphasized as much as software

in reproducibility¬, it is best to think of hardware as clean slates onto which software is

installed, beginning with the operating system. In fact, some computational code requires

certain hardware like graphics processing units (GPUs). Furthermore, computational codes

might interact with (non-computational) services provided by the operating system and/or

non-computational services that perhaps are closely associated with the operating system.

Therefore providing instructions, in the form of code, that specify the hardware and software

«The code described in this chapter is referenced under DOI 10.5281/zenodo.45950
¬This is because the quantitative programmer is usually highly removed from hardware details. The same

cannot be said of software dependencies.

55

has much value for reproducibility. The benefit from having such instructions is not limited

to ensuring integrity of results; the iterative work process is greatly enhanced because this

level of reproducibility implies automation.

Many software tools from information technology (not specific to high-performance

computing) automate infrastructure setup. As such, the results presented in Chapter 5, were

obtained by using an automated process that used some of these information technology

tools. Furthermore, while being motivated by a problem encountered in this work, the

process has been separated out as an independent solution applicable to any computational

problem.

The following sections describe the problem and, in turn, its solution.

A.1.1 Motivation

The Bayesian optimization process, explained in Section 5.4, requires the coordination of

many components. The general problem is explained here but refer to Chapter B for the

specific solution components. The components must satisfy the following requirements:

• the provisioning of a MongoDB database so that Spearmint could store its optimization

progress in it

• the provisioning of a database to store RNN parameters after every training iteration

• the coordination of training runs on potentially multiple compute machines where a

RNN training run is for certain hyper-parameters (a coarse form of parallelization)

Furthermore, two operational requirements can be added as well:

• There should be an automated (reproducible) process that sets up these components.

• The investigator should be able to seamlessly transition from testing and development

on his/her local machine to ‘production’ execution on a remote machine. That is, the

investigator’s workflow should be uninterrupted.

56

So the challenge is twofold: the reproducibility of each component and the reproducibility

of the setup. This implies that the setup should occur in clean, isolated environments.

A.2 Solution Elements

Some solutions solve certain parts of the previously listed requirements. They can be

evaluated based on their degree of reproducibility and automation.

local virtual machine: VirtualBox. This software virtualizes all the workings of a ma-

chine into a process running on a (local) host operating system.

However, on its own, VirtualBox does not provide a systematic and generic way of

provisioning the machine as well as provisioning software on the machine.

local virtual machine automation: Vagrant. By providing Vagrant with instructions

in a file, virtual machine setup can be automated.

Vagrant can control VirtualBox by specifying virtual machine hardware as well a

machine image (file) which typically includes an operating system installation at least.

While a virtual machine provisioned automatically provides an isolated, reproducible

environment for work, it needs to exist in the context of being a part of a network of

machines. So, ideally, after a minimal initial provisioning, the virtual machine should

be treated as just another machine regardless of the fact that it exists virtualized

locally.

application reproducibility: Docker. From instructions in a file, Docker can create an

isolated application image.

Docker has recently emerged as an easy yet powerful way to work with (isolated)

application containers. Furthermore, the image execution is portable as long as

the destination machine has compatible hardware architecture which has obvious

advantages when working with multiple machines. Also, by persisting the image, the

application can be started swiftly since the image is the result of potentially lengthy

57

software installation processes. In the context of computational research, it is possible

to have isolated, reproducible containers for, as examples, databases, computational

code, and computational task management. While Docker provides a great deal of

application reproducibility, it is not involved in machine provisioning.

distributed Docker support: Weave and CoreOS. Weave and CoreOS facilitate the dis-

tributed operation of Docker containers.

Given that Docker was identified as an important solution component, it follows

that Docker-specific solutions should be chosen that facilitate distributed application

execution. Weave provides global private network addressing for each container. CoreOS

is a Linux operating system designed for distributed, containerized applications. As

such, it is delivered with minimal software and services as containers are assumed to

be the primary method by which software and services are added. In the context of

computational research, this ensures the fastest possible execution of computational

code since the operating system is not running unnecessary processes.

remote machine facility: Amazon Web Services (AWS). AWS provides high-

performance compute machines, including machines equipped with GPUs, running

CoreOS.

What is important for the purpose of automation is that AWS provides a programmatic

interface for the provisioning of machines. However, the choice of AWS is not critical

because AWS can be substituted by other providers with comparable facilities.

global automation: Ansible. Ansible is the highest-level automation software that can

orchestrate the infrastructure setup process (in full).

Ansible can be used to generically provision machines, local or remote, virtual or physical.

Ansible can also be used to provision software, containerized or not. Furthermore, the

provisioning of hardware and software can occur in a coordinated fashion.

58

A.2.1 Solution Stack

The solution elements can be organized into a ‘stack’ to help understand their place in an

overall solution. As depicted in Table A.1, the stack represents a technology dependency

where higher elements depend on lower elements. The goal is to be able to automatically

recreate this technology stack anywhere. As such, Ansible is not shown because it is an

automation tool that sets up the stack.

Table A.1: Container-oriented computational technology stack. Technologies in shaded cells
are under the influence of automation by Ansible. The parentheses around x64 indicate that
the hardware architecture is virtualized (under type-2 hypervisor). Table cells containing
ellipses are immaterial to the discussion.

application

container network Weave
app. containerization Docker

operating system CoreOS

machine (x64) x64

hypervisor VirtualBox . . .
hypervisor interface Vagrant AWS

host operating sys. Windows|OS X|Linux . . .

hardware x64 x64

local remote

The reproducibility of results from computation (at the application layer) is generally

not influenced by technologies lower in the stack. In fact, they can be swapped with other

technologies as long as the technology stack is compatible. But the automation ensures the

compatibility of the stack.

For reproduciblity of results, it is more a matter of convenience that the layers above

the hypervisor can be recreated locally and remotely. However, the technologies selected

facilitate portability of execution in several ways which allows for easier collaboration and

reproducibility of results starting at different levels. At the lowest level, the automation

code can recreate the full stack, locally and remotely, perhaps with different hypervisors.

So, at the container level, the highest level, Docker instructions can be used to recreate the

59

application image. Alternatively, the image (itself) can be transferred to any compatible

machine for execution. At the application level, only the most independent codes are truly

portable. Practically all modern computational codes have complex dependencies which are

handled in a variety of ways. But by using Docker, dependencies are handled in the most

general way.

In fact, the level of encapsulation that Docker offers has been compared to that of

virtual machines (inaccurately). But unlike a virtual machine, it does not suffer from

the additional overhead incurred by running an operating system and possibly virtualizing

hardware as well. In fact, the overhead of running Docker is negligible. So if the concern is

just running a typical application, transferring a Docker image is preferable to transferring a

virtual machine image®.

But speaking of a ‘stack’ on a machine, individually, does not address distributed

computing. Using multiple machines to accelerate computing is highly-desirable, if not

essential, depending on the application. This is where automating the entire stack on

any compute provider, homogeneously, becomes advantageous since the automation code

embodies the distributed environment. Therefore, even the distributed environment can be

reproducible.

A.2.2 Partial Solutions

Research-oriented cluster computing facilities were found to not satisfy the requirements

previously mentioned. Typically, the machines are provided with an operating system

installed with a restricted user account. This restricts the ease in which some software can be

installed although this can be mitigated somewhat if Docker is installed. Most importantly,

is that the use of research-oriented clusters does not facilitate a seamless transition from

local development to remote execution because the local and remote environments do not

match (unless the local environment is restricted to use the same technologies as the facility

which would limit portability of the setup process). So treating cluster computing providers

It is best to think of Docker containers as encapsulated processes.
® Applications requiring specialized hardware such as GPUs are not as transferable.

60

as just providers of machines is advantageous because it allows the investigator to generically

automate the setup of the same computing environment on any facility.

While automating the setup on a research-oriented cluster is possible, StarCluster is

notable for automating the setup on AWS. Although the setup is convenient, StarCluster

otherwise is much like a research-oriented cluster computing facility but with more control

given to the user since administrative privileges on the operating systems are granted. Not

only is StarCluster restricted to AWS, but its technology stack is not designed for the primary

usage of Docker. Furthermore, the argument holds that StarCluster does not facilitate the

seamless transition from local development to remote execution due to the mismatch between

the environments.

A.3 Solution

Section A.2.1 discussed the advantages of having a homogeneous computing stack on any

hardware based on Docker solutions. This section will exhibit a ‘base’ infrastructure onto

which complex distributed applications can run. The end result is that the investigator gains

control of multiple machines all of which have almost identical environments. Figure A.1

depicts the base infrastructure in a technology layer-oriented view. Machines occupying the

top row in the diagram are designated as ‘compute’ machines.

The general infrastructure setup procedure, controlled by Ansible, is as follows:

1. File Share Setup

The base infrastructure begins with setting up resources on a user’s local machine to

enable the execution of applications on remote machines.

Central to this is sharing local files which provides persistence of data and executables

between instantiations of machines. The file share also provides convenience for

developing code on any machine which is especially powerful when using version

controlled code.

2. init Machine Setup

61

The purpose of the init machine is to provide coordination services and other low

resource services to other machines in the network. In the base setup the init machine

provides two services:

File Share Expose

Through the use of Weave, the init machine sets up, transparently, local or

remote, access to the file share.

Docker registry

The init machine runs a Docker registry (of Docker images) so that any machine

can download service and computation applications for execution.

The images are built from code (in ‘Dockerfiles’) in an initialization process.

The images can modularly build on one another. For example, app1 and app2

(shown in Figure A.1) can build on a common lib image.

3. Compute Machine Provisioning

After the init machine is set up, compute machines can be brought into the set

of machines controlled by Ansible. Local compute¯ machines can be provisioned by

Vagrant which are well-suited for testing. Remote compute machines can be acquired

as well from AWS° for accelerated execution.

After the setup, the investigator can expect that the same commands will work on any

machine. Moreover, the set up can be executed on any (local) machine. This is demonstrated

in Chapter B.

More details on the setup and its use can be found in the code repository https:

//github.com/majidaldo/personal-compute-cloud.

¯ Non-virtualized local computing resources can be added to the network like app3 running on localhost
as shown in Figure A.1. But such operation is not the purview of the automation code.

° Other providers can be integrated by creating and modifying Ansible scripts.

62

https://github.com/majidaldo/personal-compute-cloud
https://github.com/majidaldo/personal-compute-cloud

a
p
p
3

V
ir
tu
al
B
ox

D
o
ck
er

V
ag
ra
n
t

sh
ar
e:
/
p
r
o
j
e
c
t

W
in
d
ow

s|L
in
u
x|O

S
X

l
o
c
a
l
h
o
s
t

re
g
is
tr
y

sv
c1

C
or
eO

S

D
o
ck
er

/
p
r
o
j
e
c
t

i
n
i
t

a
p
p
1

a
p
p
2

a
p
p
3

lib

/
p
r
o
j
e
c
t

D
o
ck
er

C
or
eO

S

‘
v
a
g
r
a
n
t
1
’

a
p
p
4

D
o
ck
er

/
p
r
o
j
e
c
t

C
or
eO

S

‘
v
a
g
r
a
n
t
2
’

a
p
p
1

a
p
p
2

a
p
p
3

lib

/
p
r
o
j
e
c
t

D
o
ck
er

C
or
eO

S

a
w
s
1

a
p
p
4

D
o
ck
er

/
p
r
o
j
e
c
t

C
or
eO

S

a
w
s
2

W
ea
ve

N
et

W
ea
ve

N
et

V
ir
tu
al
B
ox
/
V
ag
ra
n
t

lo
ca
l

re
m
o
te

(A
W

S
)

F
ig

u
re

A
.1

:
G

en
er

ic
in

fr
as

tr
u
ct

u
re

fo
r

d
is

tr
ib

u
te

d
co

m
p
u
ta

ti
on

b
as

ed
on

D
o
ck
er

.
D

as
h
ed

b
ox

es
gr

ou
p

n
et

w
or

k
s.

T
h
e

(d
ot

te
d
)
W
ea
ve

n
et

w
or

k
cr

os
se

s
n

et
w

or
k

b
ou

n
d

a
ri

es
.

63

Chapter B: Reproducing Results

B.1 Introduction

This chapter shows the commands that were issued to obtain the results shown in Chapter 5.

The commands build on the infrastructure setup explained in Chapter A. Also, the commands

(themselves) specifically address requirements of the Bayesian optimization process driven by

Spearmint as described in Section A.1.1. As such they are the highest-level commands that

can be automated as well but were not to give the investigator some control over execution.

But the control is only operational as similar results should be obtained regardless of how

the computations are executed.

However, first, a set of ‘manual’ instructions are provided as well that are more typical of

instructions accompanying computational publications (if at all!). The manual instructions,

in contrast to the automated instructions, are not straightforward to extend for distributed

execution. Nonetheless, the automated execution is just encapsulating the manual procedure

with an automated one which embodies a distributed environment. So, becoming familiar

with the manual process helps with understanding the automated process.

In any case, all software used was current as of January, 2016. So, if the software version

is not identified, it can be assumed that it was current as of January 2016. So newer software

may work.

B.2 Manual Execution

0. Install prerequisite software.

Install the following. Using the versions indicated ensures reproduction of results ¬:

¬ Each has its own, possibly multiple, methods of installation! Furthermore, the listed software can

64

Python: 2.7.11

NumPy: 1.10.1

SciPy: 0.16.0

scikit-learn: 0.16.1

MongoDB: 3.1.9

PyMongo: 2.8

psutil: 3.2

modified Spearmint: Git commit ccc503ae08798cb5ed9fd6090310de89b6d9b39f

from the repository at

https://github.com/majidaldo/Spearmint

Theano: Git commit fe58ada7cbf8b6fd031d9ad9b3c6c570b1717f9b

from the official repository at

https://github.com/Theano/Theano

Theanets: Git commit ae588cfd6b7b04c02a603ecfee4ba14c68d46ca2

from the official repository at

https://github.com/lmjohns3/theanets

1. Obtain main program code.

The main computational code is available at https://github.com/majidaldo/tsad.

Use Git commit 37703f3d10cf5ff26cc72cc8b7dff639cffda78c.

2. Set up.

1. Configure RNN storage.

With local execution of MongoDB, the server host must be set to localhost in

config.yml in the program code.

have their own prerequisites possibly with version restrictions. Therefore, using Conda from Continuum
Analytics is recommended for installing Python-based computational software. Conda can be obtained from
http://conda.pydata.org/miniconda.html.

65

https://github.com/majidaldo/Spearmint
https://github.com/Theano/Theano
https://github.com/lmjohns3/theanets
https://github.com/majidaldo/tsad
http://conda.pydata.org/miniconda.html

rnndb: localhost

2. Start MongoDB.

Usually, this involves some kind of invocation of the mongod command. Refer to

MongoDB documentation for specific instructions.

The MongoDB instance will store RNN parameters and Spearmint progress.

3. Change to sequence directory.

Each sequence optimization is associated with two executables and a Spearmint

configuration file in a directory in the experiments directory. The correspondence

between the names used in Section 5.2 to the directory names is as follows:

spike-1 spikelv

spike-2 spikereg

sine sin

power power

ECG ECG

ECG-PSG sleep

4. Configure Spearmint.

Ensure that Spearmint runs the non-distributed executable, o.py, by modifying

the contents of the configuration file, config.json, if needed. "o.py" should be

the value for the main-file attribute of the configuration file. Also, the address

attribute for database should be set to "localhost" since it is assumed that

a local MongoDB is running. With these settings, config.json should be as

follows.

{

"experiment-name": "power",

"database": {"address":"localhost"},

"language" : "PYTHON",

"resources" : {

"my-machine" : {

66

"scheduler" : "local",

"max-concurrent" : 1,

"max-finished-jobs" : 20

}

},

"tasks": {

"main" : {

"type" : "OBJECTIVE",

"likelihood" : "GAUSSIAN",

"main-file" : "o.py",

"resources" : ["my-machine"]

}

},

"variables" : {

"nl" : {

"type" : "INT",

"size" : 1,

"min" : 1,

"max" : 2

},

"n" : {

"type" : "INT",

"size" : 1,

"min" : 1,

"max" : 10

},

"iter" : {

"type" : "FLOAT",

"size" : 1,

"min" : 0,

"max" : 1

}

}

}

In addition, the parameter space for the Bayesian optimization search can be set

by changing the min and max under the variables attribute. nl is the variable

name for number of RNN layers, l, while n is the number of nodes in a layer, n.

3. Run Spearmint.

python /path/to/Spearmint/spearmint/main.py .

67

B.3 Automated Execution

1. Obtain automation code.

The code is available at https://github.com/majidaldo/tsad-sys. It is made of

several submodules so git should be used with the recursive option.

git clone --recursive https://github.com/majidaldo/tsad-sys

Then, change into the code directory and checkout the appropriate version.

git checkout 8f20b9768cd4c4ae83bbb8e156e5d7aa9fbb2565

The automation code also contains the computational code as a submodule in the

tsad directory.

2. Set up.

1. Set up automation.

Follow instructions according to the README file https://github.com/majidaldo/

personal-compute-cloud/tree/thesis0/README.md to initialize the automa-

tion, provision the init machine, and provision compute machines. There is no

need to change any system variable set in the automation code.

2. Start services.

ssh into the init machine to run services on it. The services (and compute

applications) are all Docker applications. Each application corresponds to a

directory within the docker directory in the automation code. The application

directories contain shell scripts to run the application.

1. Start MongoDB.

Change into the /project/docker/1111-mongodb directory and execute

./run.sh.

 Unfortunately the reproducibility of the automated computation is flawed because for most of the
software listed in Step 0 of the manual execution instructions, the version is not specified in the code.
Consequently, the most recent version is installed by default. However, the versions can be fixed easily by
modifying the appropriate command in the file docker/0100-computer/Dockerfile in the automation code
for CPU operation or docker/0111-computer-gpu/Dockerfile for GPU operation.

68

https://github.com/majidaldo/tsad-sys
https://github.com/majidaldo/personal-compute-cloud/tree/thesis0/README.md
https://github.com/majidaldo/personal-compute-cloud/tree/thesis0/README.md

2. Start the IPython controller®.

Similarly, change into the /project/docker/0200-ipycontroller directory

and execute ./run.sh.

The IPython controller handles the distribution of computational tasks across

workers. Its data is configured for storage in MongoDB as well.

3. Configure RNN storage.

Just like in manual execution, the RNNs are configured for storage in a MongoDB

database. So similarly, confirm that the database host is set to mongodb in

tsad/config.yml.

4. Configure Spearmint.

Again, like in manual execution, change into a sequence directory in tsad/

experiments. Ensure that Spearmint runs the distributed executable, po.py, by

modifying the contents of the configuration file, config.json, if needed. po.py

should be the value for the main-file attribute of the configuration. Furthermore,

set the number of concurrent compute workers Spearmint controls by changing

the value of the max-concurrent attribute.

Also, the address attribute for database should be set to "mongodb" since it is

assumed that a remote instance of MongoDB is running. With these settings,

config.json should be as follows.

{

"experiment-name": "power",

"database": {"address":"mongodb"},

"language" : "PYTHON",

"resources" : {

"my-machine" : {

"scheduler" : "local",

"max-concurrent" : 5,

"max-finished-jobs" : 20

}

® The IPython controller is part of IPython Parallel. Version 4.0.2 of IPython Parallel was used.

69

},

"tasks": {

"main" : {

"type" : "OBJECTIVE",

"likelihood" : "GAUSSIAN",

"main-file" : "po.py",

"resources" : ["my-machine"]

}

},

"variables" : {

"nl" : {

"type" : "INT",

"size" : 1,

"min" : 1,

"max" : 2

},

"n" : {

"type" : "INT",

"size" : 1,

"min" : 1,

"max" : 10

},

"iter" : {

"type" : "FLOAT",

"size" : 1,

"min" : 0,

"max" : 1

}

}

}

In addition, the parameter space for the Bayesian optimization search can be set

in the same manner described in manual execution.

3. Run Spearmint.

In distributed operation, Spearmint is run as a coordinating ‘service’ so it is recom-

mended that the following steps are run on the init machine.

1. Enter compute environment.

Change into the docker directory that represents the computing environment,

70

/project/docker/0100-computer. Then, start the environment with the follow-

ing command¯.

./run.sh ipykernel

Now, enter the environment by issuing the following Docker command.

docker exec -ti init-ipykernel-1 bash

Notice that the command includes init because the run.sh command assigns a

name to the Docker container that includes the hostname.

2. Execute.

Now inside the Docker container, change into the sequence directory in /data/

experiments and execute the following.

python ~/spearmint/spearmint/main.py .

4. Join compute workers.

The workers are IPython engines that connect to the IPython controller. Running com-

pute workers on compute machines provisioned by the automation is straightforward.

However, other workers can join as long as their environment is the same as that

described in the manual execution section. Instructions are provided for both.

Join automated workers.

ssh into a compute worker and run the following in the /project/docker/

0100-computer directory to start a compute container.

./run.sh ipyengine 1

The 1 indicates that just one worker will be started but the number can be

increased.

A NVIDIA GPU-equipped machine can start a GPU accelerated worker by running

the same command in the /project/docker/0111-computer-gpu directory.

¯This runs an IPython kernel but it is irrelevant.

71

Computation progress can be monitored by issuing a docker logs command for

the container.

docker logs compute-machine-name-ipyengine-1

The 1 stands for the first worker started from the previous ./run.sh command.

The container name can be found from the list output from the command,

docker ps.

Manually join worker.

An IPython engine can join the group of workers if it establishes connectivity to

the MongoDB database and the IPython controller. Assuming the worker is on

the local machine setup as per the manual execution instructions in Section B.2,

connect the worker as follows.

1. Forward MongoDB and IPython controller network ports to the init

computer.

Instead of communicating to local services, local communication is forwarded

to services running on the init machine. Since the ports are forwarded from

the local machine, in the main program code directory (say, tsad) confirm

that the RNN code is communicating with MongoDB as if it were local; check

the contents file config.json so that it is as follows.

rnndb: localhost

Then, also in the tsad directory, navigate to the docker directory. In

the docker directory, the port.sh script forwards network ports. Forward

the MongoDB port with ./port.sh 27017. In another command console,

forward (one of) the IPython controller ports with ./port.sh 4321. Keep

the consoles open.

2. Start IPython engine.

From the tsad directory, start the IPython engine as follows.

72

ipengine \

--file=/path/to/tsad-sys/files/\

.ipython/profile_default/security/ipcontroller-engine.json \

--ssh="core@init"\

--sshkey=/path/to/.vagrant.d/insecure_private_key

The tsad-sys directory is the automation code directory. In this command,

the IPython engine is making a SSH network tunnel to the IPython controller

residing in the init machine. The IPython controller writes its (dynamic)

network configuration to the ipcontroller-engine.json file on its start.

This information is available on the (outside) local machine through the

file share. For the location of the insecure_private_key file, check your

Vagrant installation.

B.4 Reproduction of Figures

The figures shown in Chapter 5 are produced in a separate process associated with the

production of this document. Figure production is not fully automated but the previously

described computation environment can used as a basis for producing the figures by following

the steps below.

1. Install data analysis and plot tools.

Install the following in a compute environment:

matplotlib 1.5.1

Seaborn 0.6.0

pandas 0.17.1

2. Obtain code for this document.

Download the code from https://github.com/majidaldo/tsad-docs. Then check-

out the appropriate version as follows.

73

https://github.com/majidaldo/tsad-docs

git checkout c524238ba7a4e514e6cb155afe42c3b4808048ed

3. Configure location of main computation code.

In the document code, change the path in figs/tsad.py to the location of the main

computation code.

4. Generate figures.

Assuming MongoDB is running, from the figs directory execute the following com-

mand.

python figs.py all

The figures will be produced as files written to the same directory.

74

Bibliography

75

Bibliography

[1] E. Marchi, F. Vesperini, F. Eyben, S. Squartini, and B. Schuller, “A novel approach for
automatic acoustic novelty detection using a denoising autoencoder with bidirectional
LSTM neural networks,” in Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on, vol. 289021, no. 289021, apr 2015, pp. 1996–2000.

[2] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long Short Term Memory Networks
for Anomaly Detection in Time Series,” in European Symposium on Artificial Neural
Networks, no. April, 2015, pp. 22–24.

[3] D. Cheboli, “Anomaly Detection of Time Series,” Ph.D. dissertation, The University
of Minnesota, 2010. [Online]. Available: http://udc.umn.edu/handle/11299/92985

[4] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier Detection for Temporal
Data : A Survey,” Ieee Transactions on Knowledge and Data Engineering,
vol. 25, no. 1, pp. 1–20, 2013. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=6684530$\delimiter”026E30F$nhttp:
//www.morganclaypool.com/doi/abs/10.2200/S00573ED1V01Y201403DMK008http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6684530

[5] G. Jiang, H. Chen, and K. Yoshihira, “Modeling and tracking of transaction flow
dynamics for fault detection in complex systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 3, no. 4, pp. 312–326, 2006.

[6] B. Szymanski and Y. Zhang, “Recursive data mining for masquerade detection and
author identification,” Proceedings from the Fifth Annual IEEE SMC Information
Assurance Workshop, 2004., no. i, pp. 424–431, 2004.

[7] N. Ye, “A markov chain model of temporal behavior for anomaly detection,” Proceedings
of the 2000 IEEE Systems, Man, and Cybernetics Information Assurance and Security
Workshop, no. 4, pp. 171–174, 2000.

[8] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with unlabeled data using
clustering,” Proceedings of ACM CSS Workshop on Data Mining Applied to Security
Philadelphia PA, pp. 1–25, 2001. [Online]. Available: http://freeworld.thc.org/root/
docs/intrusion{ }detection/nids/ID-with-Unlabeled-Data-Using-Clustering.pdf

[9] G. Zhen, G. Jiang, H. Chen, and K. Yoshihira, “Tracking probabilistic correlation of
monitoring data for fault detection in complex systems,” in International Conference
on Dependable Systems and Networks. IEEE, 2006, pp. 259–268.

76

http://udc.umn.edu/handle/11299/92985
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6684530$\delimiter "026E30F $nhttp://www.morganclaypool.com/doi/abs/10.2200/S00573ED1V01Y201403DMK008 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6684530
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6684530$\delimiter "026E30F $nhttp://www.morganclaypool.com/doi/abs/10.2200/S00573ED1V01Y201403DMK008 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6684530
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6684530$\delimiter "026E30F $nhttp://www.morganclaypool.com/doi/abs/10.2200/S00573ED1V01Y201403DMK008 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6684530
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6684530$\delimiter "026E30F $nhttp://www.morganclaypool.com/doi/abs/10.2200/S00573ED1V01Y201403DMK008 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6684530
http://freeworld.thc.org/root/docs/intrusion{_}detection/nids/ID-with-Unlabeled-Data-Using-Clustering.pdf
http://freeworld.thc.org/root/docs/intrusion{_}detection/nids/ID-with-Unlabeled-Data-Using-Clustering.pdf

[10] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using system calls:
alternative data models,” in Proceedings of the 1999 IEEE Symposium on Security and
Privacy (Cat. No.99CB36344). IEEE Comput. Soc, 1999, pp. 133–145. [Online].
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=766910

[11] F. Angiulli and F. Fassetti, “Detecting Distance-based Outliers in Streams of Data,”
in Proceedings of the ACM Sixteenth Conference on Information and Knowledge
Management, 2007, pp. 811–820.

[12] T. Lane and C. E. Brodley, “Temporal sequence learning and data reduction for
anomaly detection,” ACM Transactions on Information and System Security, vol. 2,
no. 3, pp. 295–331, 1999.

[13] ——, “An Application of Machine Learning to Anomaly Detection,” Computer
Engineering, pp. 366–377, 1997. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.112.9537{&}amp;rep=rep1{&}amp;type=pdf

[14] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection using Sequences of
System Calls,” Journal of Computer Security, vol. 6, no. 3, pp. 151–180, 1998.

[15] K. Sequeira and M. Zaki, “ADMIT: anomaly-based data mining for intrusions,” ACM
SIGKDD international conference on Knowledge discovery and data mining, pp.
386–395, 2002. [Online]. Available: http://dl.acm.org/citation.cfm?id=775103

[16] M. Gupta, J. Gao, Y. Sun, and J. Han, “Community trend outlier detection using
soft temporal pattern mining,” in Machine Learning and Knowledge Discovery in
Databases. Springer, 2012, pp. 692–708.

[17] M. E. Otey, A. Ghoting, and S. Parthasarathy, “Fast Distributed Outlier
Detection in Mixed-Attribute Data Sets,” Data Mining and Knowledge
Discovery, vol. 12, no. 2-3, pp. 203–228, 2006. [Online]. Available: http:
//www.springerlink.com/index/10.1007/s10618-005-0014-6

[18] Y. Zhu and D. Shasha, “Efficient elastic burst detection in data streams,” Proceedings
of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining - KDD ’03, p. 336, 2003. [Online]. Available: http://www.scopus.com/inward/
record.url?eid=2-s2.0-77952383186{&}partnerID=tZOtx3y1

[19] D. J. Hill and B. S. Minsker, “Anomaly detection in streaming environmental
sensor data: A data-driven modeling approach,” Environmental Modelling
and Software, vol. 25, no. 9, pp. 1014–1022, 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.envsoft.2009.08.010

[20] D. J. Hill, B. S. Minsker, and E. Amir, “Real-time Bayesian anomaly detection in
streaming environmental data,” Water Resources Research, vol. 46, no. 4, pp. 1–16,
2010.

[21] D. Birant, “Spatio-Temporal Outlier Detection in Large Databases,” Journal of
Computing and Information Technology, vol. 14, no. 4, pp. 291–297, 2006. [Online].
Available: http://cit.zesoi.fer.hr/browsePaper.php?paper=952

77

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=766910
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.9537{&}amp;rep=rep1{&}amp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.9537{&}amp;rep=rep1{&}amp;type=pdf
http://dl.acm.org/citation.cfm?id=775103
http://www.springerlink.com/index/10.1007/s10618-005-0014-6
http://www.springerlink.com/index/10.1007/s10618-005-0014-6
http://www.scopus.com/inward/record.url?eid=2-s2.0-77952383186{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-77952383186{&}partnerID=tZOtx3y1
http://dx.doi.org/10.1016/j.envsoft.2009.08.010
http://cit.zesoi.fer.hr/browsePaper.php?paper=952

[22] T. Cheng and Z. Li, “A multiscale approach for spatio-temporal outlier detection,”
Transactions in GIS, vol. 10, no. 2, pp. 253–263, 2006. [Online]. Available:
http://discovery.ucl.ac.uk/76163/

[23] S. Yuxiang, X. Kunqing, M. Xiujun, J. Xingxing, P. Wen, and G. Xiaoping, “Detecting
spatio-temporal outliers in climate dataset: a method study,” in Proceedings. 2005
IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05.,
2005, pp. 760–763. [Online]. Available: http://dx.doi.org/10.1109/igarss.2005.1525218

[24] E. Wu, W. Liu, and S. Chawla, “Spatio-temporal outlier detection in precipitation data,”
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 5840 LNCS, pp. 115–133, 2010.

[25] W. Drosdowsky, “An Analysis of Seasonal Rainfall Anomalies - 1950-1987,” Interna-
tional Journal of Climatology, vol. 13, pp. 1–30, 1993.

[26] R. Lasaponara, “On the use of principal component analysis (PCA) for evaluating inter-
annual vegetation anomalies from Spot/Vegetation NDVI temporal series,” Ecological
Modelling, vol. 194, no. 4, pp. 429–434, 2006.

[27] C. T. Lu and L. R. Liang, “Wavelet fuzzy classification for detecting and tracking
region outliers in meteorological data,” GIS ’04: Proceedings of the 12th annual
ACM international workshop on Geographic information systems, pp. 258–265, 2004.
[Online]. Available: http://dx.doi.org/10.1145/1032222.1032260

[28] S. Basu and M. Meckesheimer, “Automatic outlier detection for time series: An
application to sensor data,” Knowledge and Information Systems, vol. 11, no. 2,
pp. 137–154, 2007. [Online]. Available: http://link.springer.com/article/10.1007/
s10115-006-0026-6

[29] A. Nairac, N. Townsend, R. Carr, S. King, P. Cowley, and L. Tarassenko,
“A system for the analysis of jet engine vibration data,” Integrated Computer-
Aided Engineering, vol. 6, no. 1, pp. 53–66, 1999. [Online]. Available:
http://iospress.metapress.com/content/YWAUBUE89WBW8X9L

[30] D. Dasgupta and S. Forrest, “Novelty detection in time series data using ideas from
immunology,” Proceedings of the International Conference on Intelligent Systems, pp.
82–87, 1996. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.57.3894{&}amp;rep=rep1{&}amp;type=pdf

[31] Y. Bu, T. Leung, A. Fu, E. Keogh, J. Pei, and S. Meshkin, “Wat: Finding top-k
discords in time series database,” In Proceedings of the 2007 SIAM International
Conference on Data Mining (SDM’07), pp. 26–28, 2007. [Online]. Available:
http://www.cse.cuhk.edu.hk/{∼}adafu/Pub/sdm07.pdf

[32] E. Keogh, J. Lin, and A. Fu, “HOT SAX: Efficiently finding the most unusual time
series subsequence,” Proceedings - IEEE International Conference on Data Mining,
ICDM, pp. 226–233, 2005.

78

http://discovery.ucl.ac.uk/76163/
http://dx.doi.org/10.1109/igarss.2005.1525218
http://dx.doi.org/10.1145/1032222.1032260
http://link.springer.com/article/10.1007/s10115-006-0026-6
http://link.springer.com/article/10.1007/s10115-006-0026-6
http://iospress.metapress.com/content/YWAUBUE89WBW8X9L
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.3894{&}amp;rep=rep1{&}amp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.3894{&}amp;rep=rep1{&}amp;type=pdf
http://www.cse.cuhk.edu.hk/{~}adafu/Pub/sdm07.pdf

[33] L. Wei, E. Keogh, and A. Xi, “SAXually explicit images: Finding unusual shapes,”
Proceedings - IEEE International Conference on Data Mining, ICDM, pp. 711–720,
2006.

[34] D. Yankov, E. Keogh, and U. Rebbapragada, “Disk aware discord discovery: Finding
unusual time series in terabyte sized datasets,” Knowledge and Information Systems,
vol. 17, no. 2, pp. 241–262, 2008.

[35] X. Li, Z. Li, J. Han, and J.-g. Lee, “Temporal Outlier Detection in Vehicle Traffic Data,”
in IEEE 25th International Conference on Data Engineering, no. July, 2009, pp. 1319–
1322. [Online]. Available: http://web.engr.illinois.edu/{∼}hanj/pdf/icde09{ }xli.pdf

[36] Y. Ge, H. Xiong, Z.-h. Zhou, H. Ozdemir, J. Yu, and K. C. Lee, “TOP-EYE : Top- k
Evolving Trajectory Outlier Detection,” in Proceedings of the 19th ACM international
conference on Information and knowledge management, 2010, pp. 1733–1736.

[37] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: A novel symbolic
representation of time series,” Data Mining and Knowledge Discovery, vol. 15, no. 2,
pp. 107–144, 2007.

[38] A. W.-c. Fu, O. T.-W. Leung, E. Keogh, and J. Lin, “Finding time series discords
based on haar transform,” in Proceedings of the Second international conference on
Advanced Data Mining and Applications. Springer-Verlag, 2006, pp. 31–41.

[39] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh, “Experi-
mental comparison of representation methods and distance measures for time series
data,” Data Mining and Knowledge Discovery, vol. 26, no. 2, pp. 275–309, 2013.

[40] S. Salvador and P. Chan, “Learning states and rules for detecting anomalies in time
series,” Applied Intelligence, vol. 23, pp. 241–255, 2005.

[41] M. V. Mahoney and P. K. Chan, “Trajectory boundary modeling of time series for
anomaly detection,” 2005.

[42] P. K. Chan and M. V. Mahoney, “Modeling multiple time series
for anomaly detection,” IEEE International Conference on Data
Mining, pp. 90–97, 2005. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=1565666$\delimiter”026E30F$nhttp:
//ieeexplore.ieee.org/xpls/abs{ }all.jsp?arnumber=1565666

[43] S. Muthukrishnan, R. Shah, and J. Vitter, “Mining deviants in time series
data streams,” Proceedings. 16th International Conference on Scientific and
Statistical Database Management, 2004., pp. 41–50, 2004. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1311192

[44] H. V. Jagadish, N. Koudas, and S. Muthukrishnan, “Mining Deviants in a Time Series
Database,” in Proceedings of the 25th International Conference on Very Large Data
Bases. Morgan Kaufmann Publishers Inc., 1999, pp. 102–113.

[45] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A Survey,”
ACM Computing Surveys, vol. 41, no. 3, pp. 1–58, jul 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1541880.1541882

79

http://web.engr.illinois.edu/{~}hanj/pdf/icde09{_}xli.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1565666$\delimiter "026E30F $nhttp://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=1565666
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1565666$\delimiter "026E30F $nhttp://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=1565666
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1565666$\delimiter "026E30F $nhttp://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=1565666
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1311192
http://portal.acm.org/citation.cfm?doid=1541880.1541882

[46] B. Ng, “Survey of Anomaly Detection Methods,” 2006. [Online]. Available:
http://www.osti.gov/scitech/biblio/900157-VDshbd/

[47] M. Längkvist, L. Karlsson, A. Loutfi, M. L. Ã. Ngkvist, L. Karlsson, and
A. Loutfi, “A review of unsupervised feature learning and deep learning
for time-series modeling,” Pattern Recognition Letters, vol. 42, no. C, pp.
11–24, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.patrec.2014.01.008$\
delimiter”026E30F$npapers3://publication/doi/10.1016/j.patrec.2014.01.008

[48] E. Keogh and S. Kasetty, “On the need for time series data mining benchmarks,”
Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining - KDD ’02, p. 102, 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=775047.775062

[49] P. Protopapas, J. M. Giammarco, L. Faccioli, M. F. Struble, R. Dave, and C. Alcock,
“Finding outlier light-curves in catalogs of periodic variable stars,” Monthly Notices
of the Royal Astronomical Society, vol. 369, no. 2, p. 16, 2005. [Online]. Available:
http://arxiv.org/abs/astro-ph/0505495

[50] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani, “Locally adaptive dimen-
sionality reduction for indexing large time series databases,” ACM Transactions on
Database Systems, vol. 27, no. 2, pp. 188–228, 2002.

[51] A. Hinneburg, C. C. Aggarwal, and D. a. Keim, “What is the Nearest Neighbor in
High Dimensional Spaces?” Proceedings of the 26th VLDB Conference, pp. 506–515,
2000. [Online]. Available: http://www.informatik.uni-halle.de/{∼}hinnebur/PS{ }
Files/vldb2000{ }hd{ }similarity.pdf

[52] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is nearest neighbor
meaningful?” Database TheoryICDT’99, pp. 217–235, 1999. [Online]. Available:
http://link.springer.com/chapter/10.1007/3-540-49257-7{ }15

[53] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality
Reduction for Fast Similarity Search in Large Time Series Databases,” Knowledge
and Information Systems, vol. 3, no. 3, pp. 263–286, 2001. [Online]. Available:
http://research.microsoft.com/pubs/79074/time{ }series{ }indexing.pdf

[54] S. Kitaguchi, “Extracting feature based on motif from a chronic hepatitis dataset,” in
Proceedings of 18th Annual Conference of the Japanese Society for Artificial Intelligence
(JSAI04), 2004.

[55] B. Chiu, E. Keogh, and S. Lonardi, “Probabilistic discovery of time series motifs,”
Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining KDD 03, vol. 304, p. 493, 2003. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=956750.956808

[56] J. Bentley and R. Sedgewick, “Fast algorithms for sorting and searching strings,”
Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms, pp.
360–369, 1997. [Online]. Available: http://dl.acm.org/citation.cfm?id=314321

80

http://www.osti.gov/scitech/biblio/900157-VDshbd/
http://dx.doi.org/10.1016/j.patrec.2014.01.008$\delimiter "026E30F $npapers3://publication/doi/10.1016/j.patrec.2014.01.008
http://dx.doi.org/10.1016/j.patrec.2014.01.008$\delimiter "026E30F $npapers3://publication/doi/10.1016/j.patrec.2014.01.008
http://dl.acm.org/citation.cfm?id=775047.775062
http://arxiv.org/abs/astro-ph/0505495
http://www.informatik.uni-halle.de/{~}hinnebur/PS{_}Files/vldb2000{_}hd{_}similarity.pdf
http://www.informatik.uni-halle.de/{~}hinnebur/PS{_}Files/vldb2000{_}hd{_}similarity.pdf
http://link.springer.com/chapter/10.1007/3-540-49257-7{_}15
http://research.microsoft.com/pubs/79074/time{_}series{_}indexing.pdf
http://portal.acm.org/citation.cfm?doid=956750.956808
http://dl.acm.org/citation.cfm?id=314321

[57] E. Keogh, E. Keogh, J. Lin, and J. Lin, “Clustering of Time Series Subsequences is
Meaningless:,” 2004. [Online]. Available: http://citeseer.ist.psu.edu/670978

[58] S. Zolhavarieh, S. Aghabozorgi, and Y. W. Teh, “A Review of Subsequence Time
Series Clustering.” TheScientificWorldJournal, vol. 2014, p. 312521, 2014. [Online].
Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4130317{&}
tool=pmcentrez{&}rendertype=abstract

[59] E. Keogh, J. Lin, S.-H. H. Lee, and H. Van Herle, “Finding the most unusual time
series subsequence: Algorithms and applications,” Knowledge and Information Systems,
vol. 11, no. 1, pp. 1–27, 2007.

[60] M. Breunig, H. Kriegel, R. Ng, and J. Sander, “Optics-of: Identifying local
outliers,” Principles of Data Mining and . . . , pp. 262–270, 1999. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-540-48247-5{ }28

[61] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise,” Second International
Conference on Knowledge Discovery and Data Mining, pp. 226–231, 1996. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.2930

[62] G. Münz, S. Li, and G. Carle, “Traffic anomaly detection using k-
means clustering,” in GI/ITG Workshop MMBnet, 2007. [Online]. Available:
http://www.decom.ufop.br/menotti/rp122/sem/sem3-luciano-art.pdf

[63] Z. He, X. Xu, and S. Deng, “Discovering cluster-based local outliers,” Pattern Recog-
nition Letters, vol. 24, no. 9-10, pp. 1641–1650, 2003.

[64] X. Zhang, P. Fan, and Z. Zhu, “A new anomaly detection method based on
hierarchical HMM,” in Proceedings of the 8th International Scientific and Practical
Conference of Students, Post-graduates and Young Scientists. Modern Technique and
Technologies. MTT’2002 (Cat. No.02EX550), 2003, pp. 249–252. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1236299

[65] Y. Qiao, X. Xin, Y. Bin, and S. Ge, “Anomaly intrusion detection method based
on HMM,” Electronics Letters, vol. 38, no. 13, p. 663, 2002. [Online]. Available:
http://digital-library.theiet.org/content/journals/10.1049/el{ }20020467

[66] Y. Qiao, X. W. Xin, Y. Bin, and S. Ge, “Anomaly intrusion detection method based
on HMM,” Electronics Letters, vol. 38, no. 13, pp. 663–664, 2002.

[67] G. Florez-Larrahondo, S. M. Bridges, and R. B. Vaughn, “Efficient Modeling
of Discrete Events for Anomaly Detection Using Hidden Markov Models,”
Information Security, vol. 3650, pp. 506–514, 2005. [Online]. Available:
http://dx.doi.org/10.1007/11556992{ }38

[68] V. Chandola, V. Mithal, and V. Kumar, “Comparative Evaluation of Anomaly Detec-
tion Techniques for Sequence Data,” 2008 Eighth IEEE International Conference on
Data Mining, pp. 743–748, 2008.

81

http://citeseer.ist.psu.edu/670978
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4130317{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4130317{&}tool=pmcentrez{&}rendertype=abstract
http://link.springer.com/chapter/10.1007/978-3-540-48247-5{_}28
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.2930
http://www.decom.ufop.br/menotti/rp122/sem/sem3-luciano-art.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1236299
http://digital-library.theiet.org/content/journals/10.1049/el{_}20020467
http://dx.doi.org/10.1007/11556992{_}38

[69] E. Schubert, A. Zimek, and H. P. Kriegel, “Local outlier detection reconsidered: A
generalized view on locality with applications to spatial, video, and network outlier
detection,” Data Mining and Knowledge Discovery, vol. 28, no. 1, pp. 190–237, 2014.

[70] E. M. Knorr and R. T. Ng, “A unified approach for mining outliers,” in Proceedings
of the 1997 conference of the Centre for Advanced Studies on Collaborative research.
IBM Press, 1997, p. 11.

[71] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[72] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber,
“A novel connectionist system for unconstrained handwriting recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 5, pp. 855–868,
2009.

[73] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech Recognition with Deep Recurrent
Neural Networks,” Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on. IEEE, no. 3, pp. 6645–6649, 2013. [Online]. Available:
http://arxiv.org/abs/1303.5778

[74] N. Boulanger-Lewandowski, P. Vincent, and Y. Bengio, “Modeling Temporal Depen-
dencies in High-Dimensional Sequences: Application to Polyphonic Music Generation
and Transcription,” Proceedings of the 29th International Conference on Machine
Learning (ICML-12), no. Cd, pp. 1159–1166, 2012.

[75] J. Martens, “Generating Text with Recurrent Neural Networks,” Neural
Networks, vol. 131, no. 1, pp. 1017–1024, 2011. [Online]. Available: http:
//www.icml-2011.org/papers/524{ }icmlpaper.pdf

[76] A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint
arXiv:1308.0850, pp. 1–43, 2013. [Online]. Available: http://arxiv.org/abs/1308.0850

[77] Zachary C. Lipton, “A Critical Review of Recurrent Neural Networks for Sequence
Learning,” pp. 1–35, 2015. [Online]. Available: http://arxiv.org/abs/1506.00019v2

[78] M. L. Minsky, Computation: Finite and Infinite Machines. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1967.

[79] H. Siegelmann and E. Sontag, “On the Computational Power of Neural Nets,”
Journal of Computer and System Sciences, vol. 50, no. 1, pp. 132–150, 1995. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0022000085710136

[80] ——, “Analog computation via neural networks,” [1993] The 2nd Israel Symposium
on Theory and Computing Systems, pp. 1–2, 1993.

[81] Y. Bengio, I. J. Goodfellow, and A. Courville, “Deep Learning,” 2015. [Online].
Available: http://www.iro.umontreal.ca/{∼}bengioy/dlbook

[82] M. Hermans and B. Schrauwen, “Training and Analyzing Deep Recurrent Neural
Networks,” Advances in Neural Information Processing Systems, pp. 190–198, 2013.

82

http://arxiv.org/abs/1303.5778
http://www.icml-2011.org/papers/524{_}icmlpaper.pdf
http://www.icml-2011.org/papers/524{_}icmlpaper.pdf
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1506.00019v2
http://www.sciencedirect.com/science/article/pii/S0022000085710136
http://www.iro.umontreal.ca/{~}bengioy/dlbook

[83] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to Construct Deep Recurrent
Neural Networks,” arXiv preprint arXiv:1312.6026, pp. 1–10, 2013. [Online]. Available:
http://arxiv.org/abs/1312.6026

[84] A. L. Blum and R. L. Rivest, “Training a 3-node neural network is NP-
complete,” Neural Networks, vol. 5, no. 1, pp. 117–127, 1992. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608005800103

[85] Y. Bengio, “Practical recommendations for gradient-based training of deep archi-
tectures,” Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7700 LECTU, pp.
437–478, 2012.

[86] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen Netzen,” 1991. [Online].
Available: http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:
Untersuchungen+zu+dynamischen+neuronalen+Netzen{#}0

[87] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient
descent is difficult,” IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157–166,
1994.

[88] K. Doya, “Bifurcations in the learning of recurrent neural networks,” [Proceedings]
1992 IEEE International Symposium on Circuits and Systems, vol. 6, pp. 1–4, 1992.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.
5278{&}rep=rep1{&}type=pdf

[89] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural
networks,” in International Conference on Machine Learning, no. 2, 2013, pp. 1310–
1318. [Online]. Available: http://jmlr.org/proceedings/papers/v28/pascanu13.pdf

[90] J. Martens, “Deep learning via Hessian-free optimization,” 27th International
Conference on Machine Learning, vol. 951, pp. 735–742, 2010. [Online]. Available:
http://www.cs.toronto.edu/{∼}asamir/cifar/HFO{ }James.pdf

[91] J. Martens and I. Sutskever, “Learning recurrent neural networks with Hessian-free
optimization,” Proceedings of the 28th International Conference on Machine Learning,
ICML 2011, pp. 1033–1040, 2011.

[92] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in Optimizing
Recurrent Networks,” 2012. [Online]. Available: http://arxiv.org/abs/1212.0901

[93] Y. Dauphin, H. de Vries, and Y. Bengio, “Equilibrated adaptive learning rates for
non-convex optimization,” in Advances in Neural Information Processing Systems 28,
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett, and R. Garnett, Eds.
Curran Associates, Inc., 2015, pp. 1504–1512. [Online]. Available: http://papers.nips.
cc/paper/5870-equilibrated-adaptive-learning-rates-for-non-convex-optimization.pdf

[94] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

83

http://arxiv.org/abs/1312.6026
http://www.sciencedirect.com/science/article/pii/S0893608005800103
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Untersuchungen+zu+dynamischen+neuronalen+Netzen{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Untersuchungen+zu+dynamischen+neuronalen+Netzen{#}0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.5278{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.5278{&}rep=rep1{&}type=pdf
http://jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://www.cs.toronto.edu/{~}asamir/cifar/HFO{_}James.pdf
http://arxiv.org/abs/1212.0901
http://papers.nips.cc/paper/5870-equilibrated-adaptive-learning-rates-for-non-convex-optimization.pdf
http://papers.nips.cc/paper/5870-equilibrated-adaptive-learning-rates-for-non-convex-optimization.pdf

[95] Y. Fan, Y. Qian, F. Xie, and F. K. Soong, “TTS Synthesis with Bidirectional LSTM
based Recurrent Neural Networks,” in Interspeech-2014, 2014, pp. 1964–1968.

[96] J. Gonzalez-Dominguez, I. Lopez-Moreno, H. Sak, J. Gonzalez-Rodriguez, and P. J.
Moreno, “Automatic Language Identification using Long Short-Term Memory Recur-
rent Neural Networks,” in Interspeech-2014, 2014, pp. 2155–2159.

[97] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory Based Recurrent
Neural Network Architectures for Large Vocabulary Speech Recognition,” arXiv
preprint arXiv:1402.1128, no. Cd, 2014.

[98] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural
Networks,” NIPS, p. 9, 2014. [Online]. Available: http://arxiv.org/abs/1409.3215

[99] R. Brueckner and B. Schulter, “Social signal classification using deep blstm recurrent
neural networks,” in 2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2014, pp. 4823–4827.

[100] T. Bluche, J. Louradour, M. Knibbe, B. Moysset, M. F. Benzeghiba, and C. Kermorvant,
“The A2iA Arabic Handwritten Text Recognition System at the Open HaRT2013
Evaluation,” in Document Analysis Systems (DAS), 2014 11th IAPR International
Workshop on, apr 2014, pp. 161–165.

[101] O. Vinyals and A. Toshev, “Show and Tell : A Neural Image Caption Generator,”
Cvpr, 2015.

[102] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and K. Saenko,
“Translating Videos to Natural Language Using Deep Recurrent Neural Networks,”
arXiv2014, 2014. [Online]. Available: http://arxiv.org/abs/1412.4729

[103] B. Fan, L. Wang, F. K. Soong, and L. Xie, “PHOTO-REAL TALKING HEAD WITH
DEEP BIDIRECTIONAL LSTM.” IEEE Institute of Electrical and Electronics
Engineers, apr 2015. [Online]. Available: http://research.microsoft.com/apps/pubs/
default.aspx?id=238346

[104] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An Empirical Exploration of
Recurrent Network Architectures,” in Proceedings of The 32nd International
Conference on Machine Learning, 2015, pp. 2342–2350. [Online]. Available:
http://jmlr.org/proceedings/papers/v37/jozefowicz15.html

[105] K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink, and J. Schmidhuber,
“LSTM: A Search Space Odyssey,” arXiv, p. 10, 2015. [Online]. Available:
http://arxiv.org/abs/1503.04069

[106] Colah, “Understanding LSTM Networks,” 2015.

[107] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G.
Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “PhysioBank,
PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex
Physiologic Signals,” Circulation, vol. 101, no. 23, pp. e215—-e220, 2000.

84

http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1412.4729
http://research.microsoft.com/apps/pubs/default.aspx?id=238346
http://research.microsoft.com/apps/pubs/default.aspx?id=238346
http://jmlr.org/proceedings/papers/v37/jozefowicz15.html
http://arxiv.org/abs/1503.04069

[108] Z. Li, W. Xu, A. Huang, and M. Sarrafzadeh, “Dimensionality reduction for anomaly
detection in electrocardiography: A manifold approach,” in Wearable and Implantable
Body Sensor Networks (BSN), 2012 Ninth International Conference on. IEEE, 2012,
pp. 161–165.

[109] L. Wei, N. Kumar, V. Lolla, E. Keogh, S. Lonardi, and C. Ann, “Assumption-
free anomaly detection in time series,” Siam, pp. 1–4, 2005. [Online].
Available: http://www.cs.ucr.edu/{∼}wli/publications/WeiL{ }AnomalyDetection.
doc$\delimiter”026E30F$nwww.cs.ucr.edu/{∼}ratana/SSDBM05.pdf

[110] M. Chuah and F. Fu, “ECG Anomaly Detection via Time Series Analysis,” Frontiers
of High Performance Computing and Networking ISPA 2007 Workshops SE -
14, vol. 4743, pp. 123–135, 2007. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-74767-3{ }14

[111] M. Jones, D. Nikovski, M. Imamura, and T. Hirata, “Anomaly Detection in
Real-Valued Multidimensional Time Series,” ASEBSC, pp. 1–9, 2014. [Online].
Available: http://ase360.org/handle/123456789/56

[112] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized de-
noising auto-encoders as generative models,” Advances in Neural
. . . , pp. 1–9, 2013. [Online]. Available: http://papers.nips.cc/paper/
5023-generalized-denoising-auto-encoders-as-generative-models

[113] T. Tieleman and G. Hinton, “Neural Networks for Machine Learning (lecture 6.5),”
2012.

[114] L. Johnson, “theanets,” 2015. [Online]. Available: http://theanets.readthedocs.org/
en/stable/

[115] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian,
D. Warde-Farley, and Y. Bengio, “Theano: a CPU and GPU math compiler in Python,”
in 9th Python in Science Conference, no. Scipy, 2010, pp. 1–7. [Online]. Available: http:
//www-etud.iro.umontreal.ca/{∼}wardefar/publications/theano{ }scipy2010.pdf

[116] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization of machine
learning algorithms,” in Advances in neural information processing systems, 2012, pp.
2951–2959.

[117] S. M. Erfani, Y. W. Law, S. Karunasekera, C. a. Leckie, and M. Palaniswami, “Privacy-
preserving collaborative anomaly detection for participatory sensing,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 8443 LNAI, no. PART 1, pp. 581–593, 2014.

[118] C. Laurent, G. Pereyra, P. Brakel, Y. Zhang, and Y. Bengio, “Batch Normalized
Recurrent Neural Networks,” arXiv preprint arXiv:1510.01378, 2015.

[119] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent Neural Network Regularization,”
arXiv:1409.2329 [cs], 2014. [Online]. Available: http://arxiv.org/abs/1409.2329$\
delimiter”026E30F$nhttp://www.arxiv.org/pdf/1409.2329.pdf

85

http://www.cs.ucr.edu/{~}wli/publications/WeiL{_}AnomalyDetection.doc$\delimiter "026E30F $nwww.cs.ucr.edu/{~}ratana/SSDBM05.pdf
http://www.cs.ucr.edu/{~}wli/publications/WeiL{_}AnomalyDetection.doc$\delimiter "026E30F $nwww.cs.ucr.edu/{~}ratana/SSDBM05.pdf
http://dx.doi.org/10.1007/978-3-540-74767-3{_}14
http://dx.doi.org/10.1007/978-3-540-74767-3{_}14
http://ase360.org/handle/123456789/56
http://papers.nips.cc/paper/5023-generalized-denoising-auto-encoders-as-generative-models
http://papers.nips.cc/paper/5023-generalized-denoising-auto-encoders-as-generative-models
http://theanets.readthedocs.org/en/stable/
http://theanets.readthedocs.org/en/stable/
http://www-etud.iro.umontreal.ca/{~}wardefar/publications/theano{_}scipy2010.pdf
http://www-etud.iro.umontreal.ca/{~}wardefar/publications/theano{_}scipy2010.pdf
http://arxiv.org/abs/1409.2329$\delimiter "026E30F $nhttp://www.arxiv.org/pdf/1409.2329.pdf
http://arxiv.org/abs/1409.2329$\delimiter "026E30F $nhttp://www.arxiv.org/pdf/1409.2329.pdf

[120] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation,” arXiv, pp. 1724–1734, 2014. [Online]. Available:
http://arxiv.org/abs/1406.1078

[121] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE
Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs{ }all.jsp?arnumber=650093

[122] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirectional
LSTM networks,” Proceedings of the International Joint Conference on Neural Net-
works, vol. 4, pp. 2047–2052, 2005.

[123] N. Laptev and I. Flint, “Generic and Scalable Framework for Automated Time-series
Anomaly Detection,” Kdd, 2015.

[124] M. Lewandowski, J. Martinez-del Rincon, D. Makris, and J. C. Nebel, “Temporal
extension of Laplacian Eigenmaps for unsupervised dimensionality reduction of time
series,” in Proceedings - International Conference on Pattern Recognition. Istanbul,
Turkey: IEEE Institute of Electrical and Electronics Engineers, 2010, pp. 161–164.

[125] B. Ferrel and S. Santuro, “NASA Shuttle Valve Data,” 2005. [Online]. Available:
http://www.cs.fit.edu/{∼}pkc/nasa/data

[126] V. Stodden, J. Borwein, and D. Bailey, “Setting the default to reproducible,” Compu-
tational Science Research. SIAM News, vol. 46, pp. 4–6, 2013.

[127] B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski, P. Shah, Y. Zhang,
D. Blankenberg, I. Albert, J. Taylor, W. Miller, W. J. Kent, and A. Nekrutenko,
“Galaxy: A platform for interactive large-scale genome analysis,” Genome Research,
vol. 15, no. 10, pp. 1451–1455, 2005.

[128] S. Fomel, P. Sava, I. Vlad, Y. Liu, and V. Bashkardin, “Madagascar: open-source
software project for multidimensional data analysis and reproducible computational
experiments,” Journal of Open Research Software, vol. 1, no. 1, p. e8, 2013. [Online].
Available: http://openresearchsoftware.metajnl.com/article/view/jors.ag/20

[129] J. Buckheit and D. Donoho, “WaveLab and Reproducible Re-
search,” Wavelets and Statistics, vol. 103, pp. 55–81, 1995. [On-
line]. Available: http://link.springer.com/chapter/10.1007/978-1-4612-2544-7{ }
5$\delimiter”026E30F$nhttp://link.springer.com/10.1007/978-1-4612-2544-7

[130] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit,
B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus,
R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith,
G. Smyth, L. Tierney, J. Y. H. Yang, and J. Zhang, “Bioconductor: open software
development for computational biology and bioinformatics.” Genome biology, vol. 5,
no. 10, p. R80, 2004. [Online]. Available: http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=545600{&}tool=pmcentrez{&}rendertype=abstract

86

http://arxiv.org/abs/1406.1078
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=650093
http://www.cs.fit.edu/{~}pkc/nasa/data
http://openresearchsoftware.metajnl.com/article/view/jors.ag/20
http://link.springer.com/chapter/10.1007/978-1-4612-2544-7{_}5$\delimiter "026E30F $nhttp://link.springer.com/10.1007/978-1-4612-2544-7
http://link.springer.com/chapter/10.1007/978-1-4612-2544-7{_}5$\delimiter "026E30F $nhttp://link.springer.com/10.1007/978-1-4612-2544-7
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=545600{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=545600{&}tool=pmcentrez{&}rendertype=abstract

Biography

EDUCATION

MSc. Mechanical Engineering 2008 - 2012
Vanderbilt University

Thesis: Thermal Properties of Yttrium Aluminum Garnett From Molecular Dynamics Simula-

tions

BSc. Mechanical Engineering and Economics 1999 - 2003
Vanderbilt University

EXPERIENCE

Intern 2013
Continuum Analytics

Teaching Assistant 2011 - 2012
Vanderbilt University

Power Plant Operations Engineer 2006 - 2007
Saudi ARAMCO

Project Engineer 2003 - 2006
Saudi ARAMCO

87

	List of Tables
	List of Figures
	Abstract
	 Introduction
	 The Challenge of Anomaly Detection in Sequences
	Introduction
	Anomaly Types
	Point Anomalies
	Discord
	Multivariate

	Procedure
	Sample Extraction
	Transformation
	Detection Technique

	 Detection Technique
	Proximity
	Effects on Point Distribution
	Data Classification
	Nearest-Neighbor
	Clustering

	Models
	Conclusions

	 Recurrent Neural Networks
	Introduction
	Recurrence
	Basic Recurrent Neural Network
	Training
	Long Short-Term Memory

	 Anomaly Detection Using Recurrent Neural Networks
	Introduction
	Sampling: Sliding Windows
	RNN Setup: Autoencoder
	Training: RMSprop
	Results and Discussion
	Conclusions

	 Concluding Remarks
	Further Work

	 Reproducible Computational Infrastructure
	Introduction
	Motivation

	Solution Elements
	Solution Stack
	Partial Solutions

	Solution

	 Reproducing Results
	Introduction
	Manual Execution
	Automated Execution
	Reproduction of Figures

	Bibliography

