
10TH INTERNATIONAL COMMAND AND CONTROL RESEARCH AND TECHNOLOGY SYMPOSIUM

THE FUTURE OF C2

Modeling Insider User Behavior Using Multi-Entity Bayesian Network

Student Paper*

Information Operations/Assurance

*Ghazi A. AlGhamdi[1]
 Kathryn Blackmond Laskey [1]

 Edward J. Wright [2]

Daniel Barbará [3]
KC Chang [1]

Point of Contact: Ghazi AlGhamdi

galghamd@gmu.edu
Tel: (703) 625 0420

[1] George Mason University

Systems Engineering & Operations Research Department
4400 University Drive

Fairfax, VA 22030-4444
(703) 993-1644

galghamd@gmu.edu ; klaskey@gmu.edu ; kchang@gmu.edu

[2] Information Extraction and Transport, Inc.
1911 N. Ft. Myer Dr., Suite 600

Arlington, VA 22209
ewright@iet.com

[3] George Mason University
Information and Software Engineering Department

4400 University Drive
Fairfax, VA 22030-4444

(703) 993-1638
dbarbara@gmu.edu

 2

ABSTRACT
This paper tackles a key aspect of the information security problem: modeling the behavior

of insider threats. The specific problem addressed by this paper is the identification of malicious
insider behavior in trusted computing environments. Although most security techniques in
intrusion detection systems (IDS’s) focus on protecting the system boundaries from outside
attacks, defending against an insider who attempts to misuse privileges is an equally significant
problem for network security. It is usually assumed that users who are given access to network
resources can be trusted. However, the eighth annual CSI/FBI 2003 report found that insider
abuse of network access was the most cited form of attack or abuse. 80% of respondents were
concerned about insider abuse, although 92% of the responding organizations employed some
form of access control mechanism [7]. Therefore, though insider users are legally granted access
to network resources, it is essential to protect against misuse by insiders. This paper presents a
scalable model to represent insider behavior. We provide simulation experiments to demonstrate
the ability of the model to detect threat behavior. Information security objectives can be
accomplished through a layered approach that represents several lines of defense. This approach
constitutes one of these lines of defense.

1. INTRODUCTION
In today’s net-centric environment, information security is a vital concern for command and

control systems. Intentional or accidental misuse of C2 system resources may present a major
threat to the all three information security objectives: confidentiality, integrity, and availability.
Violation of any of these objectives can threaten the operation of a C2 system. Breaches of
confidentiality by an insider can occur when data are not handled in a way sufficient to protect
the confidentiality of information (i.e. leaking sensitive information). While integrity ensures that
the information is authentic and complete, a malicious insider can threaten the authenticity of
critical assets by illegally changing their contents. Availability assures that the C2 system
resources are accessible and available when needed. A denial-of-service attack, for example,
prevents legitimate users from using the system services. The impact of this attack can
effectively disable C2 system operations by disabling the system computers or network.

Detecting insider user misuse involves many challenges [10]. Because insiders understand their
organization's computer system and how it works, some of the most serious security violations
with the most damaging consequences take place through misuse of insider access privileges.
Insider users typically have greater knowledge than outsiders do about system vulnerabilities.
Therefore, the chances of a successful attack can be greater for an insider attack than for an
outsider attack. For instance, the knowledge that a malicious insider has about the sensitivity of
information gives him/her a better chance to breach information confidentiality. Even more
challenging is the malicious expert insider. This type of user can perform harmful actions while
behaving almost indistinguishably from normal users, making detection very difficult. This
problem increases the challenge for a variety of analysis, correlation, and data fusion methods.
Insider user misuse is different from outsider misuse with respect to the nature of the threats that
both cause. High authentication services can significantly reduce many outsider threats, while
leaving the system unprotected against many insider threats.1

1 Work for this paper was performed under funding provided by the Advanced Research and Development Activity (ARDA), under contract
NBCHC030059, issued by the Department of the Interior. Additional support was provided by the US Navy

2. METHODOLOGY
Because insider user behavior is such a complex problem, a systematic and structured process

is required to design, develop, and evaluate systems for mitigating insider threats. This paper
provides a methodology, based on multi-entity Bayesian networks, to develop a scalable and
extensible behavior model that can be applied in a wide range of computing environments. Our
methodology provides an approach to design, develop, and evaluate insider behavior models.
This systematic process employs the spiral lifecycle model [22]. Figure 1 shows the spiral
lifecycle model. At each phase, we develop a prototype model, evaluate the prototype, and
prioritize additional modeling activities for the next phase. This cyclic process of design,
development, evaluation, and modification is repeated as necessary.

Figure 1: Spiral Model Lifecycle

2.1. Bayesian Networks
Bayesian networks [1,2] have been used in a wide variety of application areas including

medical diagnostics, weather forecasting, classification systems, multi-sensor fusion, and legal
analysis for trials. Bayesian networks (BN) have become known as a powerful modeling
framework that combines graph theory with Bayesian probability. Bayesian networks allow the
construction of probability models involving large numbers of interrelated uncertain hypotheses.
While many methods make unrealistic independence assumptions, BNs can represent realistic
correlation patterns in a given problem domain. Bayesian networks have the ability to combine
qualitative expert knowledge with quantitative measures of plausibility and statistical data. This
ability facilitates the construction of realistic and practical models.

In Bayesian networks, the graph expresses qualitative structural relationships including
conditional independence, cause and effect, and correlation. Local distributions provide
quantitative information about the strength of the relationships. Together the graph and local
distributions specify a joint probability distribution over all variables in a Bayesian network.

The graph is a directed acyclic graph (DAG) that captures relationships between a set of
variables which are relevant to specific domain. These relations can be stochastic, uncertain, or
imprecise. Each node in the network represents a variable of interest and each edge represents a
direct probabilistic relationship between the variables it connects. According to Jensen [2], a
Bayesian network consists of:

• A set of random variables.
• A finite set of mutually exclusive states for each variable.
• A directed acyclic graph (DAG) with a node corresponding to each variable2.

2 A directed graph is called acyclic if there is no direct path A1 � A2 …� An such that A1=An.

 4

• A potential table P(A|B1… Bn) for each node, where B1… Bn are the parents of A
in the DAG.

Figure 2: User Intention Bayesian network Model3

Table 1: Conditional Probability Table for the CurrentSessionBehav Variable
CurrentSessionBehav Distribution

UserIntention

PreSessnBehav Normal Abnormal
Normal Normal 0.99996 4.00008e-005
Normal Abnormal 0.9 0.1
Threat Normal 0.9 0.1
Threat Abnormal 0.8 0.2

Table 2: CPT for the UserIntention Variable

UserIntention
UserIntention
Distribution

Normal 0.99
Threat 0.01

Table 3: CPT for the CurrentSessionBehav.PREV Variable

CurrentSessionBehav.PREV

CurrentSessionBehav.PREV
Distribution

Normal 0.99
Abnormal 0.01

An edge between two nodes can represent any of the following kinds of dependency:

• The parent node is a cause of the child node;
• The parent node is a partial cause or predisposing factor for the child node;
• The parent and child nodes are functionally related; or
• The parent and child nodes are statistically correlated.

For example, let us consider the BN model shown in Figure 2. The node UserIntention is a
random variable that represents the overall intention of a user. This variable has two states:
Normal and Threat. The variable CurrentSessionBehav represents session behavior for the user
in the current session. PrevSessnBehav represents session behavior for the user in the previous

3 Screen shots were taken using NeticaTM, developed by Norsys Software Corp. (www.norsys.com)

 5

session. Each of these variables has two states: Normal and Abnormal. The local distribution of
the CurrentSessionBehav node depends on both PrevSessnBehav and UserIntention. The
conditional probability table for the CurrentSessionBehav node is shown in Table 1.

 The conditional probability table represents the quantitative relationships in this model. A user
with a threatening intention is more likely to act abnormally while using the system than a user
who has a normal intention. Furthermore, if a user acts abnormally in both the previous session
(PrevSessnBehav) and the current session (CurrentSessionBehav) this increases the probability
that the user’s intention is threatening (UserIntention).

2.2. Partially Dynamic Bayesian Networks (PDBN)
Partially dynamic Bayesian Networks (PDBNs), also called temporal Bayesian networks [13],

provide a powerful representation framework for temporal reasoning under uncertainty.
Temporal reasoning is important in a wide variety of domain including cyber-security. Inference
in PDBNs is based on an input stream of reports about observable features of the situation.
PDBNs can contain both static and dynamic nodes. A static node is a node whose value is
constant over time. A dynamic node is a Bayesian network node whose value changes over time.
Static nodes in a PDBN may have dynamic children but dynamic nodes may not have static
children.

A user behavior that changes dynamically over time requires dynamic modeling. To illustrate
how we to apply PDBNs to modeling the insider behavior we re-examine the user intention
model shown in Figure 2.

Figure 3 shows the user intention PDBN. The model contains a static variable and two time
steps of a dynamic variable. The static variable is UserIntention, which influences the value of
the dynamic variable. The figure shows two time steps of the dynamic variable, labeled
CurrentSessnBehav and PrevSessnBehav. The model says the probability distribution of the
user’s behavior in the current session is influenced both by his/her behavior in the previous
session and the his/her intention.

Figure 3: PDBN user intention model for two time slices

Figure 4 shows PDBNs for the user intention model. The PrevSessnBehav node is the initial
time step. The CurrentSessnBehav.1 node represents an instance created to capture the behavior
during session 1 while CurrentSessnBehav.0 plays the role of previous session behavior for the
same user. In the next session, CurrentSessnBehav.1 node will be the previous session behavior
for the current session behavior variable CurrentSessnBehav.2, and so on. The importance of this
is that we can extend the model as many sessions as required to represent the user session
behavior by only specifying the three belief tables shown in Table 1, Table 2, and Table 3.

 6

Figure 4: A three-time Steps PDBN for the User Intention

2.3. Hidden Markov Model (HMM)
Hidden Markov Models (HMM) are dynamic models of systems whose behavior depends on

an unobservable, hidden, state that changes in time and satisfies a Markov property. The Markov
property means that conditional on the present, past states have no influence on future states.
HMM is a rich class of models that provide a good balance between tractability and accuracy for
many problems involving systems that evolve in time.

In our user intention BN model shown in Figure 2, we define a first order Markov process for
the dynamic variable (CurrentSessnBehav node) as follows:

• States: We define two states for the variable CurrentSessnBehav: Normal and
Abnormal.

• Initial state vector: This vector defines the probability of the states at time zero.
• State transition matrix: This matrix defines the probability of the user current session

behavior given the previous session behavior.
Figure 5 shows all possible state transitions probabilities for the user’s session behavior

dynamic variable. The variable will move from one state to another based on a transition matrix
that defines the probability of transition conditioned on user intention.

Figure 5: States transition for user session behavior

To specify the state transition probabilities we need to define two transition matrices
conditioned on user intention. Thus, our model of session behavior is actually two hidden
Markov models, one for normal user and one for threats. The transition matrix in Figure 6 shows
the probabilities for all possible transition states for the user intention model conditioned on
Threat user intention. This state transition matrix specifies that if the user behavior in the
previous session was Normal then there is a 90% chance that it will be Normal in the current
session, and 10% chance it will be Abnormal. However, if the user behavior in the previous
session was Abnormal then the probability is 80% chance that it will be Normal in current
session is and 20% chance it will be Abnormal. These probabilities mean that Abnormal behavior
in the previous session will result in Abnormal behavior in the current session 2 times as often

 7

(0.2/0.1) than if the user’s behavior was Normal in the previous session. Note that because the
numbers are probabilities the sum of the entries for each row is one.

��
�

�
��
�

�

20.080.0
10.090.0

Figure 6: States Transition Matrix for User Session Behavior

 Conditioned on Threat Intention

The state transition matrix shown in Figure 7 defines the state transition probability
conditioned on Normal user intention. If the previous session is Normal, the chance of being
normal in the current session is 99.996% and abnormal with chance of 0.004%. However, if the
previous behavior is Abnormal the probabilities will be 0.9 and 0.1 for current session behavior.

��
�

�
��
�

�

1.09.0
00004.099996.0

Figure 7: States Transition Matrix for User Session Behavior

Conditioned on Normal Intention

To initialize a HMM, we need to state what the initial probability of the session behavior is.
We define this in a vector of initial probabilities shown below to be Normal with probability 0.99
and Abnormal with probability 0.01.

()01.099.0

2.4. Multi-Entity Bayesian Networks (MEBN)
Bayesian networks are well suited for problems in which the same set of random variables

apply to all instances, and only the evidence is different from problem to problem. However,
insider user behavior is a complex problem that requires reasoning about many different kinds of
entities and their relationships such as user access behavior, user skills, and attack tactics. In such
complex problems, using a single, fixed Bayesian network to encompass all problem instances is
infeasible. The number of objects to be reasoned about may be large and the relationships
between these objects differs from one problem instance to another problem instance. Therefore,
we need a more flexible representation. Multi-entity Bayesian networks (MEBNs) expand upon

 8

standard Bayesian networks in their ability to encode repeated, parameterized argument
structures called MEBN Fragments (MFrags).

Multi-Entity Bayesian Network (MEBN) logic [8,18] extends standard BNs to provide first-
order expressive power. This permits the kind of replication and combination needed to reason
about complex problems. Similar to BN, MEBN logic uses acyclic directed graphs to specify
joint probability distributions for a collection of interrelated random variables. An MTheory is a
collection of Bayesian Network Fragments (called MFrags) that satisfy consistency criteria such
that the collection specifies a probability distribution over attributes of and relationships among a
collection of interrelated entities.

An MFrag consists of random variables, a fragment graph, and a set of local distributions.
Each MFrag has an associated set of random variables that are partitioned into context, input, and
resident random variables. While probability distributions for resident random variables are
defined in the MFrag itself, probability distributions for context and input random variables are
defined in other MFrags. Context random variables specify conditions under which the local
distributions for the resident random variables apply. Input and context random variables are
represented as root nodes in the fragment graph. There is an implicit arc connecting each context
random variable with each resident random variable. For each resident random variable, there is a
local distribution to specify how to assign probabilities to possible values of any instance as a
function of the values of instances of its parents, given that the context constraints are satisfied.

An MFrag represents characteristics of a type of entity and the relationships among types of
entities. For a given type, an MFrag can be instantiated multiple times to represent different
entities of a given type. A collection of MFrags can be instantiated and assembled to construct a
situation-specific Bayesian network [19] to reason about a particular problem. The following
section shows how MFrags can be applied to reasoning about insider threats.

2.5. Insider MFrags Knowledgebase
Our model of insider behavior characterizes insider users in terms of attributes and activities

that distinguish relevant categories of user from one another. A preliminary version of this model
was presented previously [9]. The model was evaluated by expert review and computational
experiments, refined on the basis of the evaluation results, and extended to include additional
features. The model includes features such as software skill, access privileges, attack tactics, and
motivation [14], and activities such as document access and software installation. The insider
Bayesian network (IBN) model relates a category of user to the attributes of the category and the
activities typically performed by users of the given category. Observable attributes and activities
are represented as evidence nodes in IBN. Observable activities include events that can be logged
and recorded by a monitoring system.

The fundamental modeling unit in designing IBN is the MFrag. Each MFrag defines general
properties that hold for a specific type of entity. The first task in building IBN model is to design
the knowledge base of MFrags to represent entities in the domain. The IBN MFrags
knowledgebase is shown in Figure 8. This section presents the IBN MFrag knowledgebase that
represents user attributes and activities.

 9

Figure 8: Insider User Behavior MFrags

To compute with MEBN models we used the Quiddity*Suite probabilistic relational modeling
toolkit, developed by IET (www.iet.com). Quiddity*Suite uses frames, a commonly used
knowledge representation in Artificial Intelligence applications, to specify MFrags and combine
them on the fly into of large-scale situation-specific models. In Quiddity, a frame represents a
type of entity. Each slot in the frame represents attributes of that entity. An uncertain slot in a
frame is a template for a Bayesian network node. Quiddity* Modeler provides a scripting
language for defining parents and local distributions of slots in frames. Whenever an instance of
a frame is created, a BN node is constructed for each uncertain slot in the frame. In addition, slots
can refer to slots in other frames, providing the ability to specify complex interrelationships.

Entity Type MFrag
 The first MFrag is the Entity Type. This MFrag is used to formally declare the possible types of
entities in the model. We have four entity types: User, Session, Query, and Document. Although
our model employs only simple typing, the flexibility of MEBN logic allows accommodating

 10

more complex typed systems, with sub-typing, polymorphism, and multiple inheritance [18].
Future versions of our model may make use of these more powerful features.

User Intention MFrag
 This MFrag models the user intention toward the system given his/her motive. This MFrag has
one context variable and two resident variables. The context random variable Isa(User, u)
represents the assumption that the MFrag applies to entities of type User. That is, instances of
this MFrag can be created by replacing the variable u by the identifiers of entities of type User,
and we can make as many instances as we have users. The assumption of this MFrag is that we
expect a threat user to be motivated in order to make some sort of adverse affect against the
system. This motivation will influence the user’s overall intention toward the system. A normal
user, however, is not expected to be maliciously motivated and, therefore, his/her threat intention
against the system is expected to be very low.

Session Behavior MFrag
The session behavior MFrag focuses on modeling the insider user behavior during the logged

in sessions. It contains the user overall intention as an input variable that is defined in user
intention MFrag, session behavior, and session behavior in the previous session. The context
random variables Isa(Session,s) and u=User(s) specify that s refers to a session, and u refers to
the user who is logged in for that session. The input variable Initial Time Step specifies if the
session is the first session or not. It has two values True or False. When this variable is True then
the SessionBehav(u, s) becomes the initial state of this variable (i.e. SessionBehav(u, Prv(s))).

Assigned Topic MFrag
The objective of assigning a topic for each user in the system is to ensure that users are

assigned access to the system resources in accordance with the requirements of their job function.
Each user is assigned a topic that requires access to several system resources related to his/her
topic. The system security policy usually defines which users should be assigned to what topics.

Assigned topic is an essential item of information required to infer user behavior. The
assumption is that a normal user will tend to perform activities that are related to his/her assigned
job function. We also assume that assignments are constant within a given time step. Examples
of these activities can be accessing documents, maintaining software, or installing hardware. This
is represented in the assignment MFrag as the UserNormalAssignment(u) node shown in
Assigned Topic MFrag in Figure 8. This information is provided by the system security policy,
and is assumed to be known. Therefore, its value is provided as evidence in this MFrag. Given
that the normal assignment node has no parents, we can easily increase the numbers of job
functions as necessary. A threat user will tend to perform activities that are not related to his/her
assigned job function. We call this “Clandestine Job Function”. This is defined as the type of
malicious activities that a threat user is covertly pursuing. By definition, a normal user will not
have a clandestine job. A threat user clandestine topicis represented in assignment MFrag as the
UserClndstnAssgnmt(u) node. As before, the context random variable Isa(User,u) specifies that
the variable u refers to a user.

Query Topic MFrag
The purpose of the Query Topic MFrag shown in Figure 8. is to capture the user interest in any

topic in the system. We assume that for any given query that the user is seeking information

 11

about a specific topic. The QueryTopic(q) variable in this MFrag has three input variables:
SessionBehav(u), UserNormalAssignment(u), and UserClandestineAssignment(u). Distributions
for these random variables are defined in the previously described MFrags. The context random
variables state that q refers to a query, s refers to the session in which the query was performed,
and u refers to the user who is logged in for that session.

Document Relevance MFrag
The aim of this MFrag is to model the relevance of documents stored in the system to each

assigned topic. Each document d has a relevance rating to all assigned topics t. The relevance
DocumentRelevance(d,t) of document d to topic t depends on the topic QueryTopic(q) that the
user had in mind when performing the query. The QueryTopic(q) node in Figure 8 is defined in
the Query Topic MFrag. The context random variables state that t is a topic, d is a document, and
q is the query that resulted in retrieval of d.

User Attack Tactics
This MFrag focuses on modeling the attack tactics that a threat user may follow. The Preferred

Tactic(u) node in the user attack MFrag shown in Figure 8 represents the tactics that insider users
may follow to attack the system resources. Its parents are the input variables
OverallUserIntention(u) and JobFunction(u). The underlying assumption is that normal users
will have no attack tactics against the system while threat users will follow high sophistication,
medium sophistication, and low sophistication types of attacks.

The UserActivityCategory(u,s) node shown in the Attack Tactics MFrag is an evidence node
that captures users activities during a given session. A normal user behavior is defined with
respect to assigned job function. For example, an office administration user is expected to access
administration documents but running codes or installing software may indicate abnormal
behavior for this type of user.
The SessionThreatLevel(u,s) identifies the threat level for a particular user u and a specific
session s. It has three states: low, medium, and high; and its value is defined as a deterministic
function of its parents. The parents for this variable are PreferredTactic(u), SessionBehavior(u,s),
and AppTamperAbility(u). The context nodes indicate that s refers to a session and u refers to the
user logged in during that session.

User Skills and Knowledge MFrag
This MFrag focuses on the user skills and the knowledge that the insider user has of the internal

system domain. The job function node indicates the role to which the insider user is assigned. In
our model, this node has four states: office administration, analyst, system programmers, and
system administrator. The user’s software skill level is represented in this MFrag as the
SoftwareSkills(u) node. The level of the software skills that a user may possess depends on the
assigned job function and ranges from average to sophisticated. This is why we have
JobFunction(u) variable as a parent to the SoftwareSkills(u) variable, which means that the user
job function will mostly influence the user skills.

The level of access is different from a one user to another. A system administrator usually has
access to most of the network resources whereas an office administrator will have a limited
access privileges. The level of access for each user, represented as AppAccessLevel(u), is based
on the job function of the user. This is why we have the JobFunction(u) as parent of this node.

 12

This variable represents the level of access of the assigned user to modify application code. The
access level variable has three states High, Partial, and Minimal.

The last resident variable in this MFrag refers to the ability of insiders to tamper with system
resources such applicant code or operating system kernel. The ability of insider to perform this
type of activities is dependent on both the software skills and the level of access to system
resources. This is represented via the App Tamper Ability (u) node.

Finally, the context constraint for this MFrag specifies that u refers to a user.

User Login Times
The purpose of this MFrag is to model user login times shown in the Login Times MFrag in

Figure 8. It consists of four resident variables LogInTimesBehavior(s), AttemptedLogin(,s),
SessionDuration(s), and FailLogin(s). The variable LogInTimesBehavior(s) is a dynamic node.
Its parent is SessionBehavior (s). It represents an intermediate node between the log in nodes and
is SessionBehavior(s) node. It consists of three states Normal, Abnormal, and Masquerader.

A login session time outside working hours may indicate suspicious activities or abnormal
behavior. The variable that captures this event is the AttemptedLogin(s). It consists of two states:
within normal working hours and outside normal working hours. System security policy usually
determines if it is allowed for users to log in to the system outside working hours. For our model,
we assume that a login session time outside working hours indicates abnormal behavior (but not
necessarily a masquerader).

The SessionDuration(s) variable captures the session duration of the each logged in session
time. Abnormal session duration is based on the historical pattern of users. We assume that if the
login session duration is abnormal then this increases our belief of Abnormal session behavior.
For example, based on historical data if the average session duration for a particular user is 20
minutes and the current logged in duration is 90 minutes then this may indicate abnormal session
behavior for this user.

FailLogin(s) captures the number of failed login attempts at any given session. If a user either
succeeds on the first attempt or fails only once, then this does not increase the belief of being
abnormal (normal users often misspell their passwords). However, if a user failed to login more
than one time then this increases our belief that s/he may be a masquerader.

3. SIMULATION EXPERIMENTS
Computer-based simulation is a popular modeling technique used in engineering design. It

enables a representation of the real system to be manipulated when manipulation of the real
system is impossible or costly [15]. Simulation can provide us with a better understanding of the
real system. In a simulation, model parameters or variables can be controlled and manipulated,
which is often not possible with the real system. Simulation also allows us to predict how the
system would respond to conditions that have never been observed, but might be anticipated in
the future.

 Careful advance planning and sound experimental design can greatly improve efficiency of a
simulation and utility of the results. Design includes defining the goal of the experiments,
developing hypotheses, determining the factors to be manipulated, and planning the data analysis
strategy

 13

3.1. Objective of the Experiments
The objective of the computational simulation experiments is to evaluate the detection capability
of the IBN model with respect to user activities. Within that constraining scenario, we identified
information useful for distinguishing normal users from those who pose a threat. Our
fundamental hypothesis states that given the insider user’s set of actions over a period of time,
we can identify insider threats using our Bayesian network model

The experiments reported here were conducted on the part of the IBN model related to
document relevance problem [23]. Figure 9 shows an example of the document relevance IBN
model that we used for the simulation experiments. The model shown in this figure is for 4
topics, 1 query, and 2 document access events. This model was created by making instances of
some the MFrags and assembling them into a unified Bayesian network.

Figure 9: Document Relevance Model for 4 topics, 1 query, and 2 documents

3.2. Design of Experiments
The simulation concept that we implement is based on comparing the model’s inferences

against simulated ground truth information about the user intention (normal/threat). Each
simulation experiment is implemented by creating two identical Bayesian networks (generative
network and inference network) operating simultaneously. The generative network is used to
simulate observations of each user given his/her simulated intention. The user’s intention is set
by design to normal or threat, and conditional on the user’s intention, a sequence of actions is
simulated. The inference network is then used to infer on the basis of the simulated actions
whether or not the user is a threat. For each complete run, the simulated intentions, the simulated
actions, and the model’s inferences about users’ intentions are stored in output files for analysis.

We conducted three computational simulation experiments using different design factors. For
every simulation run, different design factors were used to test the model. These design factors
include:

• Number of Normal Users
• Number of Threat Users
• Number of Sessions
• Number of Queries per user/session
• Number of Accessed Documents per query

 14

Table 4 shows the design factors for each computational simulation experiment run.

Table 4: Computational Experiments Design Factors

Experiment

Run

No. of
Users

Ground
Truth

Number of
Sessions

(Each User)

No. of
queries

(each
session)

No. of
documents

(each
query)

45 Normal 100 4 6

1

90 Users 45 Threat 100 4 6

45 Normal 100 2 5

2

90 Users 45 Threat 100 2 5

45 Normal 100 6 10

3

90 Users 45 Threat 100 6 10

4. RESULTS
We will first visually examine representative model outputs over 100 sessions. Then, we will

plot a ROC curve for probability of detection (PD) and probability of false alarms (PFA) over
different threshold values. The area under the ROC curve is used as a threshold-independent
measure of the performance of our model.

4.1. Selected Users
Figure 10 through Figure 13 show time series plots4 of the inferred intention probabilities for a

few typical simulated users. The horizontal axis – labeled 1 through 100 - corresponds to 100
sessions for each user. The vertical axis corresponds to probability. The red line indicates the
inferred probability of threat intention; the green line indicates the inferred probability of normal
intention.

Figure 10 shows sample time series plots for simulated user #13. The ground truth for this user
is “threat.” During the first 20 sessions, the IBN model did not detect anything suspicious enough
to raise an alarm (although note that the probability of threat begins increasing somewhat after a
few sessions). The probability of threat (red line) increases dramatically at session 20 and
remains high for the remaining sessions. Figure 11 shows a plot for simulated user #33, who is a
normal user. For the first 50 sessions, the probability of threat stays low until session 55 where
we see an increase in threat belief. Note that the probability of threat decreased to indicate that
this user went back to the normal activities. Another typical plot is user 56 shown Figure 12. This
is an example of a threat user that the model was not able to detect. Figure 13 shows a typical
plot for a normal user where the probability of threat stays low through all 100 sessions.

4 User behavior and ROC Plots are generated using the statistical computing and graphics R language (www.r-project.org).

 15

Figure 10: Plot for Detected Threat User

Figure 11: Plot for a Normal User

Figure 12: Typical Plot for Undetected Threat User

Figure 13: Plot for Normal User

 16

4.2. Statistical Analysis of Threat Probabilities
To declare that a user’s behavior is sufficiently suspicious to trigger an alarm, we used the

following rule: if the average belief of a threat over a given time window is higher than a given
threshold then declare threat, otherwise declare as normal. As our time window, we used the last
80 out of 100 sessions (given the low initial belief in threat, belief in threat for the first 20
sessions tends to be low regardless of the user type). The overall results of the three simulation
experiments are shown in Figure 14 through Figure 16. The x-axis is the threshold value for
declaring a user to be a threat. The y-axis is the number of users declared to be threats. The red
bars are the number of threat users the model correctly detected as threats. The blue bars are the
number that the model declared to be threats while their ground truths are normal (false alarms).
In the three plots, note that as we increase the detection threshold the number of false alarms
decreases. For example, Figure 14 shows that the model was able to detect 37 out of the 45 threat
users at threshold 0.6 while Figure 16 shows that the model detected 30 out of the 45 threat users.

Experiment Results for 90 Users: 45 Threat, 45 Normal

0

5

10

15

20

25

30

35

40

45

50

0 0.01 0.05 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 0.99 1

Detection Thresholds

N
um

be
r

of
 D

et
ec

te
d

Th
re

at
 U

se
rs

 Detected Threat | GT=Threat Declared Threat | GT= Normal

Figure 14: Combined Users Results for Experiment 1

0

5

10

15

20

25

30

35

40

45

50

0 0.005 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 0.99 1

Detection Threshold

N
o.

 o
f

U
se

rs
 D

ec
la

re
d

 T
h

re
at

Declared Threat | GT = Threat Declared Threat | GT = Normal

Figure 15: Combined Users Results of Experiment 2

0

5

10

15

20

25

30

35

40

45

50

0 0.005 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 0.99 1

Detection Threshold

N
um

be
r

U
se

rs
 D

ec
la

re
d

 T
hr

ea
t

Declared Threat | GT=Threat Declared Threat | GT=Normal

Figure 16: Combined Users Results for Experiment 3

 17

4.3. ROC Curves
Although visualization gives us useful information about the model performance at the user

level, it does not provide much information about the overall model detection capability. A
receiver operating characteristic (ROC) curve shows the relationship between probability of
detection (PD) and probability of false alarm (PFA) for different threshold values [20]. The two
numbers of interest are the probability of detection (true positives) and the probability of false
alarms (false positives). The probability of detection (PD) is the probability of correctly detecting
a Threat user. the probability of false alarm (PFA) is the probability of declaring a user to be a
Threat when s/he is Normal. The detection threshold is varied systematically to examine the
performance of the model for different thresholds. Varying the threshold produces different
classifiers with different (PD) and probability of false alarm (PFA). By plotting PD and PFA for
different thresholds values, we get a ROC curve. The area under the ROC curve (AUC) it is a
threshold-independent measure of classifier performance. The ROC curves along with the AUC’s
are used for analyzing the results of the computational simulation.

We have developed two types of ROC curves: frequency and Bayesian ROC curves. For the
frequency ROC, we estimated the probability of detection by counting the number of detected
threats for a given threshold value and dividing this number by the total number of threat users.
For example, if 30 out of 100 threat users were detected for a threshold of 0.5, then the
probability of detection for this threshold value is estimated as 30/45. The probability of false
positive is estimated in a similar way.

To provide a conservative estimate of the area under the ROC curve, we calculated the
posterior expected value of PD and PFA under the assumption that PD and PFA are uniformly
distributed independently of the threshold. The posterior distribution under this assumption is a
Beta distribution with expected value given in Table 5.

Table 5: Posterior Expected Values for PD and PFA for Uniform Prior Distribution

Ground Truth
Detected
Behavior

Threat (n) Normal (m)

Threat (k) 2

1
][

+
+=

n
k

PDE
2
1

][
+
+=

m
k

PFAE

Figure 17, Figure 18, and Figure 19 show the frequency and Bayesian ROC curves for

experiments 1, 2, and 3 respectively. The upper and the further left a curve is, the better it is. The
black line shows the frequency ROC values and the red line shows the Bayesian ROC values.

Figure 17 displays ROC curves for the first experiment. While the detection rate increases to
reach 80% the false alarms rates stays low. As the detection rate increases (more than 80%), we
start seeing an increase in the false alarm rate. Between about 2% and 18% false alarm rates, the
detection rate does not change much but starts to increase slightly as the false alarms increases.
The area under the ROC curves for frequency and Bayesian were calculated to be 0.9217 and
0.8653.

Figure 18 shows the ROC curve for the second experiment. The model detection rates increases
until about 78% while keeping the false alarm rate low. The false alarm rate begins to increase

 18

until it reaches 15% while the detection rate stays at the same level. The areas under the curves
are 0.9121 and 0.8565.

Figure 19 displays the ROC curve for the third experiment. Note that the false alarm rate
remains low as the detection rate increases to more that 85%. The areas under the curves are
0.9358 and 0.8782. Table 6 summarizes the results for the three simulation experiments.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability of False Alarm

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

Frequency ROC
Bayesian ROC

ROC Curves for Experiment 1

Figure 17: ROC Curves for Experiment 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability of False Alarm

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

Frequency ROC
Bayesian ROC

ROC Curves for Experiment 2

Figure 18: ROC Curves for Experiment 2

 19

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability of False Alarm

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

Frequency ROC
Bayesian ROC

ROC Curves for Experiment 3

Figure 19: ROC Curves for Experiment 3

Table 6: Summary of Simulation Experiments

Exp
Run

No.
of

topics

No. of
queries/
session

No. of
document/

query

AUC
Frequency

AUC
Bayesian

1 6 4 6 0.9217 0.8653
2 6 2 5 0.9121 0.8565
3 6 6 10 0.9358 0.8782

5. RELATED WORK
The three most commonly applied mechanisms for detecting user behaviors related to computer

network security are Statistical anomaly detection, Signature Based Detection, and Hybrid
Detection [11]. Statistical anomaly detection usually consists of comparing measurable
indicators against a statistical profile estimated from user behavior data recorded over a period of
time. Signature based detection, or rule-based detection, is a method that applies sets of
generalized rules to represent and store usage patterns. Hybrid Detection combines statistical and
rule based detection systems.

In the Ninth Annual IEEE International Conference and Workshop on Engineering of
Computer-Based Systems for the year 2002, J. Pikoulas, W. Buchanan, M. Mannion, and K.
Triantafyllopoulos published a paper titled: “An Intelligent Agent Security Intrusion System”
[16]. Their paper presents a distributed approach to network security. They developed a Bayesian
statistical model to predict user actions. Invalid behavior is determined by comparing users’
current behavior with their typical behavior. This comparison is based on a set of general rules,
obtained from system administrators, that characterize typical user behavior patterns.

In a workshop on preventing, detecting, and responding to malicious insider misuse,
approximately 40 researchers and government research met in August 1999 to address and
recommend technical research to mitigate the insider threat [21]. The workshop provided key

 20

recommendations that include insider threat and vulnerabilities, preventions techniques,
detections algorithms, and response measures.

Daniel Burroughs, Linda Wilson, and George Cybenko [17] provided an analysis of distributed
intrusion detection systems using Bayesian methods to classify intrusion detection system events
into attack sequences. The main concept of their work is to defend computer networks against
outsider attackers. Information provided by intrusions detection systems (IDS) are gathered and
divided into its component parts such that the activity of individual attackers is made clear. The
approach involves the application of Bayesian methods to data being gathered from distributed
IDS in order to improve the capabilities for early detection of distributed attacks against
infrastructure and the detection of the preliminary phases of distributed denial of service attacks.

Security Situation Assessment and Response Evaluation (SSARE) [12] is a mixed-initiative
system for wide-area cyber attack detection, situation assessment, and response evaluation.
SSARE is designed to detect a large-scale attack in progress, display an assessment of the
situation, and identify responses. Hierarchies of dynamic Bayesian network models were
developed to estimate the likelihood of an attack situation. The SSARE models are applied by
dynamically supplying evidence to a Bayesian reasoner, which constructs a problem-specific
Bayesian network and uses Bayes Rule to compute the probability that an attack is occurring.
SSARE provides understanding and timely management of rapidly changing cyber battle space
through the application of dynamic, knowledge-intensive, Bayesian and decision-theoretic
methods. It dynamically composes models in a data-driven way to develop situation-specific
hypotheses about potential breaches in security, thus providing essential support for the central
task of cyber command and control.

6. CONCLUSION AND FUTURE WORK
We presented a model to detect insider threat behavior using multi-entity Bayesian networks

(MEBN). MEBN technology permits us to represent the knowledge about the insider user
behavior in a flexible way. It is essential to mention, however, that while the MFrags that we
developed are broadly applicable to users of almost any computing systems, the specific
applications may vary from one organization to another and even from one user to another.
Therefore, the model will need to be tailored to the organization requirements. The simulation
experiments have demonstrated the ability of the IBN model to draw reasonable inferences by
using data generated from the model. The IBN model was able to detect threats with reasonably
high reliability and low false alarm rate. Additional indicators would increase the ability to detect
threats. Future work will evaluate the benefit of including the other factors modeled in our
MFrags. Currently we are conducting sensitivity analysis to test the robustness of the IBN mode.
The sensitivity analyses include generating observations from one model and do inference using
a different model. A future research direction is learning the parameters of the IBN model from
field data and test the model against field data not used to train the model.

7. ACKNOWLEDGMENT
Sincere appreciation goes to the Royal Saudi Naval Forces for supporting Ghazi AlGhamdi
during his Ph.D. at George Mason University. We thank James H. Jones for his expert evaluation
of the IBN model that greatly helped in improving it. The comments and suggestions provided by
Paulo Costa, Tomas Shackelford, Mehul Revankar, and the GMU decision theory seminar
participants in many discussions are also gratefully acknowledged.

 21

References
1. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Series in Representation and Reasoning. Morgan Kufmann Publishers, San Francisco, CA.
2. Finn V. Jensen, “Bayesian Networks and Decision Graphs”, Springer-Verlag 2001.
3. Kathryn Laskey and Suzanne Mahoney, “Network Fragments: Representing Knowledge for

Constructing Probabilistic Model”, 13th Conference on Uncertainty in Artificial Intelligence,
1997.

4. Menezes, P Oorschot, and S. Vanstone, “Handbook of applied cryptography” CRC Press
LLC, 1997.

5. Laskey, K.B.; Mahoney, S.M.; “Network engineering for agile belief network models”, IEEE
Transactions on Knowledge and Data Engineering, Volume: 12 Issue: 4, Jul/Aug 2000,
Page(s): 487 -498.

6. Judea Pearl, “Decision Making Under Uncertainty”. ACM Computing Surveys, Vol. 28, No.
1, March 1996.

7. The eighth annual CSI/FBI 2003 report: “Computer Crime and Security Survey”.
8. Kathryn Laskey. MEBN: logic for Open-World Probabilistic Reasoning.

http://ite.gmu.edu/∼klaskey/index.html.
9. Kathryn Laskey, Ghazi AlGhamdi, Xun Wangg, Daniel Barbará, Tom Shackelford, Ed

Wright, Julie Fitzgerald. Detecting Threatening Behavior Using Bayesian Networks. BRIMS
04.

10. Neumann, Peter. The Challenges of Insider Misuse, August 1999, SRI Computer Science
Lab.

11. Chris Herringshaw, “Detecting Attacks on Networks”, Industry Trends, December Computer
Volume: 30 Issue: 12, Page(s): 16 -17 1997.

12. D'Ambrosio, B.; Takikawa, M.; Fitzgerald, J.; Upper, D.; Mahoney, S.; “Security Situation
Assessment and Response Evaluation (SSARE)”, Proceedings of DARPA Information
Survivability Conference & Exposition II, 2001. DISCEX '01. Volume: 1, 2001. Page(s): 387
-394 vol.1.

13. Masami TAKIKAWA, D'Ambrosio, and Ed Wright; “Real-Time Inference with Large Scale
Temporal Bayes Nets”, Uncertainty in Artificial Intelligence, Page(s) 477-484.

14. Bradley J. Wood. An Insider Threat Model for Adversary Simulation. SRI International
Cyber Defense Research Center, System Design Laboratory Albuquerque, New Mexico
(USA).

15. Ayyub, B. and McCuen, R. Probability, Statistics, and Reliability for Engineers and Scientist.
By Chapman & Hall/CRC Press LLC, 2003.

16. J. Pikoulas, W. Buchanan, M. Mannion, and K. Triantafyllopoulos. “An Intelligent Agent
Security Intrusion System”. Engineering of Computer-Based Systems, 2002. Proceedings.
Ninth Annual IEEE International Conference and Workshop, 2002. Page(s): 94 -99.

17. Daniel Burroughs, Linda Wilson, and George Cybenko. “Analysis of Distributed Systems
Using Bayesian Methods”. Performance, Computing, and Communications Conference,
2002. 21st IEEE International , 2002 Page(s): 329 -334.

18. Paulo C. G. da Costa and Kathryn B. Laskey. “Multi-Entity Bayesian Networks Without
Multi-Tears”. Draft Version 3/06/2005.

19. Mahoney, S. M. and Laskey, K. B. 1998. Constructing Situation Specific Networks.
Uncertainty in Artificial Intelligence: Proceedings of the Fourteenth Conference, San Mateo,
CA, Morgan Kaufmann.

 22

20. Marchette, D.J. 2001. Computer Intrusion Detection and Network Monitoring. Springer-
Verlag New York, Inc.

21. Result of a Three-Day Workshop: Research and Development Initiatives Focused on
Preventing, Detecting, and Responding to Insider Misuse of Critical Defense Information
Systems. August 1999.

22. Andrew Sage, System Management for Information Technology and Software Engineering.
Wiley Series in Systems Engineering / Andrew P. Sage, Series Editor 1995.

23. Shacelford, Thomas, 2005, Using Data Mining Techniques to Develop Measures of
Document Relevance, PhD Dissertation, George Mason University.

