LEARNING AND GENERALIZATION OF
STRUCTURAL DESCRIPTIONS: EVALUATION
CRITERIA AND COMPARITIVE REVIEW OS
SELECTED METHODS.

by

T. G. Deitterich
R. S. Michalski

Proceeding of the Sixth International Joint Conference on Artificial Intelligence, Tokyo,
pp.223-231, August 20-23. 1979.

UTIUCDCS=-R~80-1007

-4

LEARNING AND GENERALIZATION OF STRUCTURAL DESCRIFTIONS:
Evaluation Criteria and Comparative Review of Selected Methods

by

Thomas G. Dietterich and Ryszard 5. Michalski

February 1980

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

LEARNING AND GENERALIZATION OF STRUCTURAL DESCRIPTIONS:
Evaluation Criteria and Comparative Review of Selected Metheds

Thomas G. Dietterich Ryszard §. Michalski

Computer Science Department Department of Computer Science

Stanford University University of Illinois

Stanford, California 94305 Urbana, Illinois 61801
ABSTRACT

Some recent work im the area of learning structural descriptions from examples
is reviwed in light of the need in many diverse disciplines for programs which
can perform conceptual data analysis. Such programs describe complex data in
terms of logical, functional, and causal relationships which cannot be dis-
covered using traditional data analysis techniques. Various important aspects
of the problem of learning structural descriptions are examined and eriteria
for evaluating current work is presented. Methods published by Buchanan,

et. al. [1-3,20], Hayes-Roth [6-9], and Vere [22-25], are analyzed according
to these criteria and compared to a method developed by the authors. Finally
some goals are suggested for future research.

Key words: Machine Learning, Inductive Inference, Knowledge Acquisition,
Structural Learning Computer Inference

This research was supported in part by the National Scilence Foundation under
grants MCS-76-22940 and MCS-79-06614.

This report was submitted for publication in Artificial Intelligence Journal.

1. INTRODUCTION

1.1 Motivation and Basic Concepts

There are many problem areas where larpe volumes of data are generated
about a class of objects, the hehavior of a system, a process, etc. Seien-
tists in flelds as diverse as agriculture, chemistry, and psychology are
faced with the need to analyze such data in order to detect regularities
and common patterns. Traditional tools for data analysis include wvarious
staflstical techniques, curve-fitting techniques, numerical taxonomy, etc.
These methods, however, are often not satisfactory because they Impose an
overly restrictive mathematical framework on the scope of possible solu-
tions. For example, statistical methods describe the data in terms of pro-
bahility distribution functions placed on random variables. As a result,
the types of patterns which they can discover are limited to those which
can be expressed by placing constraints upon the parameters of various pro-
bability distribution functions. Because of the mathematical frameworks
upon which they are bhased, traditional metheds cannot detect conceptual
patterns such as the logical, causal, or functional relationships that are
typical of descriptions produced by humans. This is a well-known problem
in AT, namely that a system in order to learn something must first he able
to express 1t. The solution requires introducing more powerful representa-
tions for hypotheses and developing corresponding techniques of data
analysis and pattern discovery. Vork done in AT and related areas on com-
puter induction and learning structural descriptions from examples has laid
the groundwork for researh in this area. This is not accidental, because,

as Michie [17] has pointed out, the development of systems which deal with

problems in human conceptual terms 1s a Fundamental characteristic of AI

research.

Tn this paper, we examine some of the recent work in AT on the subject of
learning and generalization of structural descriptions. In particular, we
will review four recent methods of inductive generalization: Buchanan et.
al., Hayes-Roth, Vere, and our own work (Farlier well-known work by Winston
was recently reviewed by Fnapman [I0]). We also outline some goals for
research im this area. Attention is given primarily to the simplest form of
generalization, namely the maximally specific conjunctive statements which
characterize a single set of input events (called for short, conjunctive
ﬁeneralizatiuns}. The reason for this cholece is that most work done in
this area 1is addressing this, quite restricted, subject. Many of the
researchers whose work we review in this paper have done work on other as-
pects of machine learning including generalization using negative examples
{(Vere, Michalski) and developing discriminant descriptions of several
classes of objects (Michalski). Tue to space limitations, we have been un-
able to include these topiecs in this paper. Instead, these contributions
are mentioned in the sections concerning extensions. We begin the analysis
by first discussing several important aspects of the problem of learning
conceptual descriptions:

. types of descriptions: characteristic versus discriminant

. forms of descriptions

. types of generalization processes Involved in generalizing desecrip-

tions (rules of generalization)
. constructive versus non-constructive induction

. general versus problem-oriented methods of induction.

1.2 Types of Descriptions

We distinguish hetween characteristiec and discriminant descriptions [15].

A characteristic description 1is a description of a single set of objects

(examples, events) which is intended to diseriminate that set of objects
from all other possible objects. For example, a characteristic description
of the set of all tables would discriminate any table from all things which
are non-tabhles. Psychologists consider this problem under the name of con-
cept formation (e.g. Munt [9]). Since it is impossible to examine all oth=-
er possible objects, a characteristic description is usually developed by
specifying all characteristics which are true for all known objects of the
class (positive examples). Alternatively, in some problems there are
avallable so-called "near misses" which can be used to more precisely cir-

cumscribe the given class.

A discriminant description is a deseription of a single elass of objects in

the context of a fixed set of other classes of objects. It states only
those properties of objects in the class under consideration which are
necessary to distinguish them from the objects in the other classes. A
characteristic description can be viewed as a discriminant description 1in
which the given class is discriminated apainst infinitely many alternative

classes.

In this paper we restrict ourselves to the problem of determining charac-
teristie descriptions. The problem of determining discriminant descrip-

tions has been studied by Michalski and his collaborators [12-16]).

1.3 Forms of Descriptions

Descriptions, either characteristic or discriminant, may take several
forms. In this paper we cencentrate on generalizations in conjunctive
form. Other forms include disjunctions, exceptions, production rules of

various types, hierarchical and multilevel descriptions, semantic nets, and

frames.

1.4 Generalization Rules

The proc=ss of inducing a peneral description from examples can be viewed
as a process of applying certain generalization rules Eo the initial
descriptions to transform them inte more genergl output descriptions. This
wiewpoint permits ome to characterize various methods of induction by
specifying the rules of generalization which they use. Below is a brief re-

view of various generalization rules based on the paper [16].

i) Propping Condition Rule. If a description is viewed as a conjunc-

tion of conditions which must be satisfied, then one way to generalize it

is to drop one or more of these conditions. For example:
red(x) ~ big(x) K red(x)

{this reads: "the description “xs which are red and big” can be generalized

to the description °“xs which are red”; |< denotes the generalization

operator)

{1) Turning Constants to Variables Rule. If we have two or more

descriptions, each of which refers to a specific object (in a set to be

characterized), we can generalize these by creating one description which

contains a variable in place of the specific object:

tall{Fred) man(Fred) |
|« tall(x} man(x)
tall(Jim) man{Jim) |
assuming that the value set of x is {Fred, Jim, ... }» “x° can be inter-

preted as representing “a person from the group under consideration.’

These First two rules of generalization are the rules most commonly used im
the 1literature on computer induction. Both rules can, however, be viewed

as special cases of the following rule.

1i1) Gemeralizing by Internal Disjunction Rule. A description can be

generalized by extending the set of values that a descriptor (i.e. vari=-
able, function, or predicate) is permitted to take on in order that the
description 1s satisfied. This process involves an operation called the

internal disjunction. For example:

shape(x,square) |

|« shape(x, (square or triangle or rectangle))
shape(x,triangle) |
where statements on the left of |< describe some single objects in a class,

and the statement on the right is a plausible generalizatiom.

Using the notatien of variable-valued logic system VLZI [16] this rule can

be expressed somewhat more compactly:

[shape(x)=square] |
|« [shape(x)=square, triangle, rectangle]
[shape(x)=triangle] |

The *,” in the expression on the tight of the |¢ denotes the internal

disjunction. Although it may seem at first glance that the internal dis-

-5a

junction 13 just a notational abbreviation, this operation appears to be

one of the fundamental operations people use in generalizing deacriptions.

Tn general this rule can be expressed:

WL = R1] k WL = R2]

where W is some condition and where Rl and R2 are sets of values linked by

internal disjunction, and P1 R2.

There are two other important speclal cases of this rule. Fif#st, when the
deseriptor involved takes on values which are linearly ordered (a linear
descriptor) and the second when the descriptor takes on values which

represent concepts at various levels of generality (a structured

descriptor).

In the ecase of a linear descriptor we have:

iv) Closing Interval Rule. For example, suppose two objects of the

gsame class have all the same characteristics except that they have dif-
ferent sizes, a and b. Then, it is plausible to hypothesize that all
objects which share these characteristics but which have sizes between a
and b are also in this class.
Wisize(x1)=al] |
Wisize(x) = a..b]

Wisize(x2)=b]l |

In the case of structured descriptors we have:

v) Climbing CGenmeralization Tree Rule. Suppose the value set of the

shape descriptor is the tree of concepts:

ffi&pe geometric figure

polygon oval filgure

triangf: rectangle ellipse \\:ircle

t7ith this tree structure, values such as triangle and rectangle can be gen-
eralized by climhing the generalization tree:
[shape(x)=rectangle] |

|< [shape(x)=polygon]
[shape(x)=triangle] |

1.5 Constructive Induction

Most methods of induction produce descriptions which involve the same
descriptors which were present In the initial data. These methods operate
by selecting descriptors from the input data and putting them inte a form
which 1s an appropriate generalization. Sueh methods perform

non-constructive induction. A method performs constructive induction 1if it

ineludes mechanisms which can generate new descriptors not present in the
input data. These new descriptors are generated by applying rules of con-
atructive induction. Such rules may be written as procedures or as produc-
tion rules and may he based on peneral knowledge or on problem—oriented
knowledge (for examples of constructive generalization rules see [16])-
Constructive induction rules can interpret the input data In terms of
knowledge about the problem domain. Frequently, the solution to a problem
is dependent upon finding the proper description for the problem; as in the
mutilated checkerboard problem. An inductive program should contain facil-

jties For constructive induction ineluding a library of general construc-

tive induction rules. The user should be able to suggeat new rules for the
program to examine. In order to activate those rules which would be most
useful, the program must be able to efficiently search the space of possi-

ble constructive induction rules.

Programs which perform constructive induction are more likely to find use-
ful and interesting patterns in complex data since they have the ability to

examine the data using many different representations.

1.6 Ceneral versus Problem-oriented Methods

It is a common view that general methods of induction, although mathemati-
cally elegant and theoretically applicable to many problems, are in prac-
tice very inefficient and rarely lead to any interesting solutioms. This
opinion seems to have lead certain workers to abandon (at least temporari-
ly) work on general methods and concentrate on some specific problem (e.g.,
Buchanan, et. al. [1,2,3] or Lenat [11]}. This approach often leads to in-
teresting and practical solutions. On the other hand, it is often diffi-
cult to extract general principles of inductien from such problem-apecific
work. Tt is also difficult to apply such special-purpose programs o mnew

areas.

An attractive possibility for solving this dilemma is to develop methods
which incorporate various general principles of induction (including con-
structive induction) together with mechanisms for using exchangeable pack-
ages of problem-specific knowledge. 1In this way a general method of indue-
tion, provided with an appropriate package of knowledge, could be both

easily applicable to different problems and also efficient and practically

useful. This idea underlies the development of the INDUCE programs

[13,15,16]-

2. COMPARATIVE REVIEW OF SELECTFD MFTHODS

2.1 BFvaluation Criteria

tle evaluate the selected methods of induction in terms of several criteria

considered especially important in view of the remarks in section 1.

1) Adequacy of the representation language. The language used to

represent inpnt data and cutput generalizations determines to a large ex-
tent the quality and usefulness of the output descriptions. Although it is
difficult to assess the adequacy of a representation language out of the
context of some specific problem, recent work 1n AI has shown that
languages which treat all phenomena uniformly must sacrifice descriptive
precision. For example, researchers who are attempting to build natural-
langpuage systems prefer the richer knowledge representations such as frames
and semantic nets (with their tremendous variety of syntactic forms) to
more uniform and less structured representations such as attribute-value
1ists and PLANYFR-style databases. In our own work on inductive learning,
we have chosen to use the representation languape Vizl {see below) which
has a wider variety of syntactic forms than our parlier language ULl.
Although languages with many syntactic forms do provide greater descriptive
precision, they alsoc make the induction process more complex. In order to
control this complexity, a compromise must be sought between uniformity and

richness of forms. In the evaluation of each method, a review of the

operators and syntactie forms of each description language 1s provided.

11) Pules of peneralization implemented. The generalization rules 1im-

plemented in each algorithm are listed.

111) Computational efficiency. The exact amalysis of the computational
efficiency of these algorithms is very difficult due both to the inherent
complexity of the algorithms and to the lack of precise formulatiens of the
algorithms in avallahle publications. However, it seems useful to have
some data comparing the efficiency of these alporithms even 1f that data 1is
approximate and based on hand-simulations. To get some inﬁicatian of the
efficiency we measure the total number of description generatiﬁns or com—
parisons required by each method to perform a test example (see Fig. 1}.
e also measure the ratio of the number of output conjunctive generaliza-
tions to the total number of generalizations examined on this example.
gince these numbers are derived from only one example, it is not appropri-
ate to draw strong conclusions from them concerning the general performance
of the algorithms. Our conclusions are hbased primarily on the general

behavior of the algorithms.

iv) Flexibility and extenmsibility. Mere conjunctive characteristic gen-

eralizations are not particularly useful for conceptual data analysis be-
cause of their limited format and their lack of formal mechanisms for han-
dling errors in the input data. It is important in evaluating these algo-

rithms to consider the ease with which each method could be extended to

a) discover descriptions with forms other than conjunctive generaliza-

tions (see section 1.3},

h) include mechanisms which facilitate the detection of errors in the in-

put data,

¢) provide a general facility for incorporating domain-specific knowledge
into the induction process as an exchangeable package (Ideally, the
domain-specific knowledge should be isclated from the general-purpose in-

ductive process.), and

d) perform constructive induction.

Tt is difficult to assess the flexihility and extensibility of the algo-
rithms presented here. We hase our evaluation on the general approaches of

the methods and on extensions which have already been made to them.

Tn the following sections, we describe each method by presenting the
description language used, sketching the underlying algorithm, and evaluat-
ing the method in terms of the above criteria. Fach method will be 1llus-

trated using the test example shown in Fig. 1.

JAY

@ @

Figure 1

2.2 Nata—driven Methods: Payes-Roth and Vere.

Methods can be divided inte bettom-up (data-driven), top-down (model-
driven), and mixed methods. Rottom-up methods generalize the input events

pairwise until the final conjunctive generalization is computed:

- 11 -

G4
c3
-::2/\
El-’é?"ﬁz B3 E4
c2? is the set of conjunctive generalizations of El and F2. Gi is the set
of conjunctive generalizations obtained by taking each element of Gi-l and

generalizing it with Ei.

We consider here only the methods described by Hayes-Roth and Vere. Other
bottom-up methods include the candidate elimination approach described by

Mitchell [18] and the Uniclass method deseribed by Stepp [20].
2.2.1 Haves-Roth: Program SPROUTER [5-%])

Hayes-Poth uses the term maximal abstractlon or interference match for max-
imally specifie conjunctive generalization. He uses parameterized struc-
tural representations (PSRs) to represent hoth the input events and thelr

generalizations. For example, consider the two events described in Fig. 2:

Q
O

El Ed

Figure 2
The PSRs for these could he:

El: {{circle:a}{square:b}{small:a}
{small:b}{ontop:a, under:b}}

E?: {{circle:e}{square:d}circle:e}

e

{smallzc}{large:d}{small:e}
{ontop:c, under:d}

{inside:e, outside:d}}

The expressions such as {small:a} are case frames made up of case labels
(small, cirele, etc.) and parameters (a, b, ¢, d). The PSR can be inter-
preted as a conjunction of predicates of the form small(a) where the param-
eters are existentially quantified variables which are assumed to be dis-

tinect.

The interference match attempts to find the longest one-to-one match of
parameters and case frames (i.e., the longest common subexpression). This
is accomplished in two steps. First the case relations in E1 and E2 are
matched in all possible ways to cobtain the set M. Two case relations match
if all of their case labels march. Each element of M 18 a case relation
and a list of parameter correspondences which permit that case relation to

match in both events:

M = {{circle:((a/c)(a/e))}{square:((b/d))}
{small:((a/c)(b/e)(ale)(b/e))}

{ontop,under: ((a/c b/d)}}}

The second step involves selecting a subset of the parameter correspon-
dences in M such that all parameters can be bound consistently. This is
conducted by a breadth-first search of the space of possible bindings with

pruning of unpromising nodes. The search can be visualized as a node-

- 13 -

building process. Here is one such (pruned) search:

M Interference match

{eircle}
afe
ale

{square}
h/d -

{small}
ale

ble .2
{ontop,under} ‘;’f,f’f
ale b/d 1

The nodes are numbered in order of generation. One at a time, a node 1is

examined and joined with all other consistent nodes which have already been
examined. The nodes 5, 8, and 9 are conjunctive generalizations. Node 9

hinds a to ¢ (to give 1) and b to 4 (to give 2) to produce the conjunction:

{{circle:1}{square:2)}{small:1}

{ontop:1, under:2}}

The node-building process is guided by computing a utility value for each
candidate node to be built. The nodes are pruned by setting an upper limit
on the total number of possible nodes and pruning nodes of low utility when

that 1imit is reached.

Bvaluation:
1) Representational adequacy. The algorithm discovers the following

conjunctive generalizations of the example in Fig. 1:

1. {{ontop:1, under:2}{medium:1}{clear:1}}

There is a medium clear object ontop of

- 1§ =

something.

2. {{ontop:1, under:2}{medium:1}{large:2}
{clear:2}}
There is a medium object ontop of a

large, clear ohject.

3. {{medium:l}{clear:1}{large:3}{cleﬂr=3}
{shaded:2}}
There is a medium sized clear object,
a large sized clear object, and a

shaded ohject.

PSRs provide two symbolic forms: parameters and case labels. The case la-
bels can express ordinary predicates and relation; easily. Symmetric rela-
tions may be expresed by using the same label twice as In {sa@f!size:a,
samelsize:h}. The only operator is the conjunctien. The language has no
disjunction or internal disjunction. As a result, the fact that the top
element 1in Fig. 1 1is always either a square or a diamond cannot be

discovered.

1{1) Rules of peneralization. The method uses the dropping condition

and turning constants to variables rules.

{1i) Computational efficiency. On our test example, the algorithm re-
quires 22 comparisons and generates 20 candidate conjunctive generaliza-
tions of which 6 are retained. This gives a figure of 6/20 or 30% for com—
putational efficiency. Four separate Interference matches are required

since the first match of El1 and E2 produces three possible conjunctive gen-

- 15 -

eralizations.

iv) Flexibility and extensibility. Rayes-Roth has indicated (personal
communication) that this methed has been extended to produce disjunctive
generalizations and to detect errors in data. Hayes-Roth has applied this
method te various problems in the design of the speech understanding system
Rearsay II. However, no facility has been developed for incorporating

domain-specific knowledge into the generalizatlon process.

Also, no facility for constructive induction has been incorporated although
Hayes-Roth has developed a technique for converting a PSR to a lower-level
finer-grained uniform PSR. This transformation permits the program to

develop descriptions which involve a many-to-one binding of parameters.
2.2.2 Vere: Program Thoth [21-24]

Vere uses the term maximal comjunctive generalization or maximal unifying
generalization to denote the maximally specific conjunctive generalization.
Each event is represented as a conjunction of lifernlu. A 1literal 1s a
parenthesized 1ist of constants called terms. For example, the cbjects in
Fig. 1 would he described:
F1: (circle a)(square b)(small a)(small b)
(ontop a b)
®2: (cirele c¢) (square d)(eirele e)
(small c){large d)(small e)
(ontop ¢ d)(inside e d)

Although these resemble Hayes-Roth’s PSRs, they are quite different. There

are no distinguished symbols. All terms are treated uniformly.

The algorithm operates in four steps. First, the literals in each of the

- 16 =

two events to be generalized are matched in all possible ways to generate
the set of matching pairs MP. Two literals match if they contain the same

numbher of constants and they share a common term in the same position. For

the example of Fig. 2,

up= { ((circle a),(cirele c)),

((circle a),(circle e)),

{ (square b),(square d)),

((small a),(small c}),

((small a),(small e}),

((small b),{small c)),

{(small b),(small e)},

{(ontop a b),(ontop ¢ d)} }
The second step involves selecting all possible subsets of MP such that no
single literal of ome event is paired with more than one literal in another
event. Fach of these subsets eventually forms a new generalization of the

original events.

In the third step, each subset of matching pairs selected in srep 2 is ex-
tended by adding to the subset additional pairs of literals which did not
previously match. A new pair p is added to a subset S5 of MP if each
literal in p is related to some other pair q in S by a common constant in a
common position. For example, if 5 contained the pair {((square b),(square
d)) then we could add to S the pair ((ontop a b),(inside e d)) because the
third element of (ontop a b) is the second element of {square b) and the
third element of (inside e d) is the second element of (square d) (Vere
calls this a 3-2 relationship). We continue adding new pairs until no more

can be added.

In step 4 the resulting set of pairs is converted into a new conjunction of

literals by merging each pair to form a single literal. Constants which do

e 17 -

not match are turned into new constants which may be viewed as variables.

For example, ((eircle a),(circle ¢)) would be converted to (circle 1).

Fvaluation:
1) PRepresentational adequacy. When applied to the test example (Fig-

1) this algorithm produces many generalizations. A few of the sgipgnificant

ones are listed here:

1. (ontop 1 2)(medium 1)(large 2)(clear 2) (clear 3)(shaded 4)(5 &)
: y
There is a medium object on top of a large clear object. Another ob-
ject 1is clear. There 1s a shaded object. (Note also the vacuous re-

lationship 5 derived from unifying circle and triangle).

2. (ontop 1 2)(clear 1)(medium 1)(9 1) (5 3 &)(shaded 3)(7 3)(6 3)(clear
4) (large 4)(8 4)
There is a medium, clear object on top of some other object and there
are two objects related in some way (5) such that one is shaded and
the other is large and clear. (Note the vacuous relationships 6, 7,

8, and 9).

3. (ontop 1 2)(medium 1)(elear 2)(large 2)(5 2) (shaded 3)(7 3)(clear
4) (6 4)
There is a medium object on top of a large clear object. There is a
shaded object and there is a clear object. (Note the vacuous rela-

tionships 5, 6, and 7).

The representation is very general. By convention the first symbol of a
literal can he Iinterpreted as a predicate symbol. The algorithm, however,

treats all constants uniformly. This creates difficulties. For instance

o I

the algorithm generates vacuous literals in certain situations. Literals
can he formed by pairing (red x) with (big y) to produce meaningless gen-
eralizations. One advantage of this relaxation of semantic constraints is
that the program can discover conjunctive generalizations invelving a

many-to-one binding of variables.

The language contains only a conjunctien operator. No disjunction or

internal disjunction is included.

1i) Rules of generalization. The algorithm implements the dropping

condition rule and the turning constants to variables rule.

111) Computational efficiency. Frem the published articles [21-24] 1t
is not clear how to perform step 2. The space of possihilities 1s very
large and an exhaustive search could not possibly give the computation
times which Vere has published. Tt would be interesting to find out what

heuristics are being used to guide the search.

iv) Flexihility and extensibility. Vere has published algoritt=~
which discover descriptions with disjunctions [23] and exceptions [24]. PFe
has also developed techniques to generalize relational production rules
[22,23]). The method has been demonstrated using the traditional AT toy
problems of IN analogy tests and blocks-world sequences. A faecility for us-
ing background information to assist the induction process has also been
developed. It uses a spreading activation technique to extract relevant
relations from a knowledge base and add them to the input examples prior to
generalizing them. Since the method has been extended to discover disjunc-

tions and exceptions, it would be expected that the method could also

- 19 =

operate in noisy environments.

2.3 Model-driven Methods: Buchanan et. al., and Michalski.

Model-driven methods search a set of possible generalizaticns in an attempt
te find a few "best" hypotheses which satisfy certain requirements. The
two methods discussed here search for a small number of conjunctions which
together cover all of the input events. The search proceeds by choasing as
the initial working hypothesis some starting point in the partially ordered
set of all possible descriptions. TIf the working hypotheses satisfy cer-
tain termination eriteria, then the search halts. Otherwise, the current
hypotheses are modified by slightly generalizing or specializing them.
These new hypotheses are then checked to see 1f they satisfy the termina-
tion eriteria. The process of modifying and checking continues until the
ecriteria are met. Top-down techniques typically have better noise immunity
and can easily be extended to discover disjunctions. The prinecipal disad-
vantage of these techniques is that the working hypotheses must repeatedly

be checked to determine whether they subsume all of the input events.
2.9.1 Puchanan, et. al.: Program Meta-DENDRAL [1-3,19]

The algorithm which we describe here is taken from the RULEGEN program
(part of the Meta-NENNRAL system) . Meta-DENDRAL was designed to discover
cleavage rules to explain mass spectrometry data. The descriptive language
is based on the ball-and-stick model of chemical molecules. Each input
event is a bond environment which describes some portion of a molecule.
The environment is represented by a graph of the atoms in the molecule with

four descriptors attached to each atom and forms the left hand side of a

- 20 =

cleavage rule. The right hand side of the rule predicts a cleavage based
on the existence in a molecule of the left-hand side of the rule (breakbond
(**) indicates that the ** bond is predicted to be broken) . A typical

c¢leavage rule (with atoms w, X, ¥, and z) is:

LEFT=HAND SIDE (BOND ENVIRONMFNT):

¥Molecule graph: wRk X ——§ —— 2 ==
Atom descriptors:
atom type nhs nbrs dots
w carbon 3 1 1]
x carbon 2 2 o
¥ nitrogen 1 2 0
z carbon 2 2 0

RICHT=HAMP SINE (CLEAVAGE PREDICTION):
=> Breakbond (*%*)
The algorithm chooses as its starting point the most general bond enviro-
ment (x ** y) with no properties specified for either atom. During the
search, this description is grown by successively specializing a property
of one of the atoms 1in the graph or by adding a new atom to the graph.
After each specialization, the new graph is checked to see if it 1is
"hetter" than the parent graph from which is was derived. A daughter graph
is hetter than its parent if it still covers at least half of the input
rules (it’s general enough) and still focusses on only one cleavage process
(it"s specific emough). The cleavage rules built by this algorithm are

furcher improved by the program RULFMOD.

Pyvaluation:
i) Representational adequacy. The representation was adequate for the
specific task of developing cleavage rules. It was not intended to be a

gene- 1 representation for objects outside of the chemical world. The

o

descriptions can be viewed as conjunctions. Individual rules developed by

the program can be considered to be linked by disjunction.

11) Rules of generalization. The dropping condition and turning con-
stants to variables rules are used "in reverse" during the specialization
process. RULEGFN does not seem to have the ability to handle an internal
disjunction but RULFMOD apparently does. For example, it can indicate that
the type of atom is "anything except hydrogen". In similar work on nuclear
magnetic resonance (NMR), Mitchell presents an example in which the value

of nhs is listed as "greater than or equal to one" (which indicates an

internal disjunction).

111) Cromputational efficiency. Because this is a problem-specific al-
gorithm, we cannot supply comparison fipgures here for how this algorithm
would work on our test example. The current program is consldered to be

relatively inefficient [2].

iv) Flexibility and extensibility. Meta-DENDRAL has been extended to
handle MNMR spectra- The program works well in an errorful environment.
It uses domain-specific knowledge extensively. However, there 18 no strict
separation between a general-purpose induction component and a speclal-
purpose knowledge component. It is not clear whether the methods developed
for Meta-DENDRAL could he easily applied te any non-chemical domain. The
program does not perform constructive induction in any general way. Howev-
er, the INTSUM program does perform sophisticated transformations on the

input spectra in order to develop the bond-environment descriptions.

2.3.2 Michalski and Dietterich: Program INDUCE 1.2

- 9% =

The algorithm described here is one of three algorithms designed by Michal-
ski and his collaborators. The others are a data-driven method deacribed
by Stepp [20] and a mixed method described by Larson and Michalski [12,13].
The language used to describe the input events is szl’ an extension to
first-order predicate logic (FOPL) [16]. Each event 1s represented as a
conjunction of selectors. A selector typically contains a function or
predicate descriptor (with variables as arguments) and a list "of wvalues
that the descriptor may assume. The selector [aize(x]1)=small, medium] as-
Eerts that the size of x] may take the values small or mediwm. The events
in Fig. 2 are represented as:
Fl: [size(x!)=small][size(x2)=small]
[shape(xl}-circlel[shape(x?}-square]
[ontop(x1,x2)]
£2: [size(x1)=small] [size(x2)=large]

{size(x3)=small] [shape(x]l)=circle]

[shape(x2)=square] [shape(x3)=circle]

[ontop(x1,x%2)] [inside(x3,x2)]
In this method, descriptors are divided into two classes: attribute
descriptors and structure-specifying descriptors. Attribute descriptors
describe attributes such as size or shape or distance which are applicable
to all variables (representing, e.g., object parts). Structure-specifying
descriptors include all other descriptors. They typically represent rela-
tionships among variables such as ontop or inside. Fach input conjunction
is broken into two conjuncts--one built of selectors containing only attri-

hute descriptors (the attribute conjunct) and one built of selectors com-

taining only structure-specifying descriptors (the structure conjunct).

The algorithm is based on the observation that the structure-specifying

desecriptors are responsible for the computational complexity of generaliz-

o Y

ing structural descriptions. If we could determine conjunctions of
structure-specifying selectors which were relevant for describing a partic-
ular class of objects, then the generalization of the attribute conjuncts
could be handled quickly by an appropriate covering algorithm. The algo-
rithm seeks to determine such a set of structure conjunets which appear
1ikely to be part of a maximally specific conjunctive generalization of all
of the input events. It does this by finding conjunctions which are maxi-
mally specific generalizations of the input structure conjuncts considered
alone. Such conjunctive generalizations of the structure conjuncts must be
contained 1in some maximally specific generalizations of the entire set of
input events. However, there may be maximally specific conjunctive gen-
eralizations of the input events which contain few if any structure-
specifying selectors. This algorithm also finds these generalizations by

considering structure conjuncts which are less than maximally specific.

The algorithm operates in two phases. The first phase is the structure-
determining phase. A random sample of the input structure conjuncts is
taken. This sample becomes the initial set of generalizations ﬂn. In each
step, Gi is first pruned to a fixed size by removing unpromising generali-
zations. Then Gi is checked to see if any of 1ts generalizations covers
all of the structure conjuncts. If any do, they are removed from G1 and
placed in the set C of candidate conjunctive generalizations. Lastly, Gi

is pgeneralized to form ﬂ1+1 by taking each element of Gi and generalizing

it in all possible ways by dropping single selectors. When the set of can-

didates C reaches a prespecified size, the search stops.

The second phase is the attribute-determining phase. In this phase, the

- %% =

problem is converted to a multiple-valued logic covering problem using the
VLI propositional calculus [14,15]. FEach candidate cover A in C is matched
against all input events and the relevant variables are identified. For
each match, the appropriate attribute conjuncts are extracted and used to

form a VLI event. For example,

if A = [ontop(pl,p2)] amnd

Fl = [ontop(pl,p2)] [ontop(p2,p3)]
[size(pl)}=1] [size(p2)=3] [size(p3)=5]
[color(pl)=red] [color(p2)=green]
[eolor(p3)=blue]

then we pet two ‘f-'I.1 events:

Vi= (1, 3, red, greemn) and

v2= (3, 5, green, blue).

These are vectors of attributes which correspond here to the descriptors:
(size(pl), size(p2), coler(pl), color(p2))

for pl and p2 in A.

All input events are converted inte ﬂLl events in this manner. In general,
more than one le event is created from each input event. The set of le
events can be covered using a covering algorithm. A cover could be ob-
tained by forming the union of the values taken on by each VLI attribute.
Such an approach usually leads to overgeneralization since only one vLI

event derived from each input event need be covered. We use a beam-search

technique to select a subset of the VLI events to be covered.

This two-phase algorithm provides two computational advantages. First, the

time required to compare expressioms in the structure-determining phase is

= 25 -

reduced because the structure comjuncts are usually much smaller than the

full dinput conjuncts. Second, the manipulation of le formulas 1s very
easy since they may be represented as bit strings and manipulated using
fast bit-parallel operations. The chief disadvantage of this algorithm 1s
that it is difficult to decide when to terminate the structure-determining

phase.

Fvaluation:

1) . Representational adequacy. The alporithm discovers, among others,

the following generalizations of the events in Fig. I:

1. [ontop(pl,p2)][size(pl)=medium] [shape(pl)=circle,square,rectangle]
[size(p2)=large] [shape(p2?)=box,rectangle,ellipse] [texture(p2)=clear]
There is a medium-sized circle, rectangle or square on top of a

larpe, clear box, rectangle, or ellipse.

2. lentop(pl,p2)](size(pl)=medium] [shape(pl)=polygon]
[texture(pl)=clear] [size(p2)=medium,large]
[shape(p2)=rectangle,circle]
There is a clear, medium-sized polygon on top of a medium or large

circle or rectangle.

3. [ontop(pl,p2)][size(pl)=medium] [shape(pl)=polygon]
[size(p2)=medium,large] [shape(p2)=rectangle,ellipse,circle]
There 1s a medium-sized polygon on top of a large or medium rectan-

gle, ellipse or circle.

4. [size(pl)=small,medium] [shape(pl)=circle,rectangle]

[texture(pl)=shaded]

- 96 =

There is a shaded object which is either medium or small in size and

has a circular or rectangular shape.

This algorithm implements the comjunction, disjunction and dinternal dis-
junction operators. It provides a fairly non-uniform set of representa-
tional facilities. Descriptors, wvariables, and wvalues are all dis-
tinguished. Descriptors are further analyzed into struﬂturg—apecifying
descriptors and attribute descriptors. The current method provides for
_descriptors which have unordered, linearly ordered, and tree ordered value
gets. This variety of possible representations permits a better "fit"

between the description language and any specific problem.

11} Rules of generalization. The algorithm uses all rules ment ioned
in section 1.4 and also a few constructive induction rules (see below) .
All constants are coded as variables. The effect of the turning-constants
to varlahles rule is achieved as a special case of the generalization by

internal disjunction rule.

111) Computational efficiency. The algorithm requires 28 comparisons
and builds 13 rules during the search to develop the descriptions listed
above. Four rules are retained so this gives an efficiency ratio of &/13°

or 30X.

iv) TFlexibility and extensibility. The algorithm can easily discover
disjunctions by altering the termination criteria for the structure=
deternining phase to accept structure conjuncts which do not necessarily
cover all of the 1input events. The same general two-phase approach can

also be applied to problems of determining discriminant generalizations.

- 27 =

Larson and Michalski have done work on determining discriminant classifica-

tion rules [12,13,14].

The algorithm has good noise immunity. Noise events can be discovered be-

cause the algorithm tends to place them in separate terms of a disjunction.

Nomain-specific knowledge can be incorporated into the program by defining
the domains of descriptors, specifying the structures of these domains,
specifying certain simple productioen rules, and by providing constructive
induction rules. These forms of knowledge representation are not always
convenient, however. Further work should provide other faecilities for

knowledge representation.

A few simple constructive induction rules have been incorporated into the
current inplementation as a preprocessor. other constructive induction
rules can be specified by the user. Using the bullt-in constructive induc-
tion rules, the program produces the following conjunctive generalization

of the input events in Fig. 1:

[# p“s with texture clear=2] [top-most(pl)]

[ontop(pl,p2)] [size(pl)=medium]

[shape(pl)=polygon] [texture(pl)=clear]

(size(p2)=medium,large]

[shape(p2)=circle,rectangle]

There are exactly two clear objects in each event. The top mest object
is a medium sized, clear polygon and it is on top of a large or medium

sized eircle or rectangle.
We hope to expand this constructive induction facility in the future.

- 28 -

2.4 Summary

The comparison of various methods is summarized in Fig. 3. The table shows
the distinet advantages and disadvantages of top-down methods as opposed to
bottom-up methods. Bottom—up methods tend to be faster but noise immunity
and flexibility suffer as a consequence. Top-down methods have good noise
immunity and are easily modified to discover disjunctive and other forms of
generalization. They do tend to be computationally more expensive. By
separating the structure-determining phase from the attribute-determining

phase in our methed, & considerable speed-up has been achieved.

3.0 CONCLUSION

tme of the problems of current research on i{nduction is that each research
group 1s using a different formal language and terminology. This makes the
exchange of information difficult. This paper was intended to help readers

get a better understanding of the state of the art in this area.

Some important problems to be addressed in future research include:

1) the development of adequate formal languages and knowledge represen-

tations for hypothesis formulation and modification:

11) extension of the scopes of operators and forms which an inductive

program can efficiently use during hypothesis formulation;

111) the development of general mechanisms of induction which can be

guided by problem-specific packets of knowledge; and

iv) incorporation in the program of extensive facilities for construc-

tive induction and multi-level schemes of description. In particular, an

SN T

to

Method: Hayes-Foth Vere Buchanan et.al. Michalskl
Ceiterion
Intended application: general general discovering general
mass spectro-
metry rules
Language: Parameterized Muantifier=- Chemical model Variable-valued
Structural free FOPL logic system VL2I
Representation
syntactic concepts: case frames literals molecule graph selectors
parameters constants attributes descriptors
case labels constants in dummy variables
in value sets constants in
value sets
operators: N A AV, AV
internal AV internal %
Ceneralization Pules:
dropping condition? yes yes yes yes
constants to variables? yes yes yes yes
seneralizing by internal v? no no yes yes
climbing tree? no no no yes
closing intervals? ne no no yes
Ffficiency:
comparisons: 22 complete not applicable 28
algorithm
conjunctions not known
penerated during search: 20 ——— not applicable 13
ratio output to total: 6/20=30% —-——- not applicable &/13=302
Extensibilicy:
applications speech none mase spectro- soybean disease
analysis metry, NMR diagnosis
disjunctive forms? no yes yes yes
noise Iimmunity low probably good excellent very good
domain knowledge? no ves yea, built=in yesg
to program
constructive induction? no no no limited
facility
Figure 3.

30 -

inductive program should be able to assign names to various subdescriptions
and use these names 1in the formulation of hypotheses (i.e. generate

hierarchical forms).

Finally, an important principle which should guide future research is what

we call the principle of comprehensibility. This principle states that the

descriptions which an AI program uses and the concepts which 1t_ penerates
should be easily comprehensible by people. Tn the context of work on in-
duction, the comprehensihility principle requires that the descriptions he
short and use operators which can be easily interpreted in natural
language. Furthermore, sjstema should be designed to provide Flexihle in-
teractive facilities. This approach has been adopted in our work hecause
ve expect that the most sipnificant applications of AT inductive programs
will he as interactive tools for conceptual data analysis and corputer-

aided acquisition of rules for knowledge-based expert systems.

4. ACPNOWLFPGEMENTS

The authors gratefully acknowledge the partial support of NSF under grant:

MOS=TA=-22040 and MCS-79-06614.

5. PEFERFEMCES

{11 ®Zuchanan, ®. ., F. A. Feigenbaum, J. lederherg, "# T'euristic Program-
ming Study of Theory Tormation in ccience," in Proc. TJCAI-2, 1971, pp.

4N=48.

[2] Tuchanan, R.C., N. M. Smith, W. C. Vhite, E. J. Critter, T. A. Feligen—

haum, J. lederhery, C. DNjerassi, .J. Am. Chem. Soc. o8 (1976) p. H16E.

[3] Puchanan, ®. C., E. A. Feigenbaum, "Nendral and Meta-Nendral, Their

Arplications Timension," Artif. Intell. 11 (1978) pp. 5=24.

[4] ™etterich, T., "User’s fuide for TMUCEL.1," internal report, Tept.

of Corp. fei., Univ. of Illneis, U'rhana, 197%.

[5] vayes-Poth, F., "Collected Papers on the Learning and Recognition of

~truccured Patterns”, Tept. of Comp. Sel., Carnegle-lellon mive, Jan.

1975.

[£] Tayes-Toth, T., "Patterns of Tnduction and Associated TFnouwledge Ac-

quisition Alporithms,” Tept. of Comp. Sei., rarnepie-t=llon Univ., May

1976.

[7] vayes-Toth, F., J. McTermott, ""novledge Acquisition from Structure

nescriptions”, Tn Proc. T.JCAT=5, 1977, pp. 356-362.

[F] Yayes=Roth, F., J. McPermott, "An Interference Matching Technique for

Tndueing Abstractions'™, CACM 21:5, 1972, pp. 401=410.

[?] “unt, T.F., Fxperiments in Induction, Academic Tress, 196f.

[1N] Pnapman, John, "# Critical Peview of "{nston’s Tearnine Structural

Pescriptions from TFxamples,” ATSR Cuarterly Issue 11, September 1978, pp-

319-320.

[11] Tenat, P., "AM: An artificial intelligence approach to discovery in
mathematics as heuristic search," Comp. Sci. Dept., Fept. STAN-CS-76-570,

Stanford Tniv., July 1976.

- 32 -

[12] larson, J., and R.S. Michalski, "Inductive Inference of VL Decision

Pules,” SIGART Newsletter, June 1977, pp. 38-44.

[13] Larson, J., ‘Inductive Inference 1in the Variable Valued Predicate lop-
ic System VL21 : Yethodology and Computer Implementation®, Rept. Mo, B60,

Nept. of fomp. Sei., Univ. of 111., Tirbana, May 1977.

[14] Michalski, R. S., "Variahle-valued lopic and its application to pat-

tern recopnition and machine learning," Tn Comp. Sci. and Multiple-Valued

loric, ed. M. . Rine, Morth-Polland, 1977, pp. S06-5234.

§—eh i Sl]

[15] VWichalski, R.%5., "Toward Computer-aided Inductiom: a brief review of

Currently Implemented ANMVAL programs,” In Proc. LJCAI-S, 1977.

[1A] Michalski, R.S. "Pattern Recognition as ¥nowledge=Cuided Induction,"
vept. ©27, Dept. of Comp. Sei., Univ. of T11. Urhana, 1978 (an updated

version to appear in TEFF Trans. on Pattern Analysis and Machine Learning,
19mn) .

[17] Michie, ™., "Mew Face of AI," Txperimental Programming Pepts.: Mo. 33,

MIRY, Tmiv. of Fdinburph, 1277.

[1R] Mitchell, T. M., "Version Spaces: A Candidate Flimination Appreoach to

Pule Tearning,” In Proc. IJCAI-5, WIT, 1977.

[19] Schwenzey, C. M., T. M. Mitchell, "Computer-assisted Structure Tluci-
dation Tsing Automatiically Acquired Carbon-13 MMR Fules," in ACS Symposium
Series, Mo. 54, "Computer-assisted EStructure Tlucidation,” T.H. Smith (ed),

1977.

g

[20] Stepp, R. '"Learning without Negative Examples via Variable-Valued Logic
Characterizations: The Uniclass Inductive Program AQ7UNI," Rept. No. 982,

Dept. of Comp. Sci., Univ. of Ill., Urbana, 1979.

[21] Vere, S.A., "Induction of Concepts in the Predicate Calculus,"” In

Proc. TJCAT-4, 1975.

[27] Vere, S. A., "Induction of Relational Productions in the TPresence of

Background Information," In Proe. LJCAI-5, 1977.

[23] Vere, 5. A., "Inductive Learning of Relational Productiens", in

pattern-Mrected Inference Systems, N.A. Waterman and F. Hayes-Toth (eds),

Acadenic Press, 1978.

[24] Vere, S. A., "Multilevel Counterfactuals for CGeneralizations of Rela-
tional Concepts and Productions,” Tept. of Inf. Fng’g, Tmiv. of T1l., Chi-

capo Circle, 1978.

— g -

