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ABSTRACT 

THE RELATIONSHIP BETWEEN WILDLIFE-VEHICLE COLLISIONS, TRAFFIC 

VOLUME, AND HABITAT SUITABILITY-BASED WILDLIFE CROSSING AREAS 

IN VERMONT, USA 

Kate A. Blackwell, M.S. 

George Mason University, 2017 

Thesis Director: Dr. Paul L. Delamater 

 

Of the many negative effects roads can have on wildlife, wildlife-vehicle 

collisions are the most devastating. Efforts to predict where wildlife cross roads are vital 

for mitigation and prevention efforts. In this study, a Geographic Information Systems 

(GIS)-based approach was used to evaluate the relationship between wildlife-vehicle 

collisions, road traffic volume, and wildlife habitat suitability near roads. Road 

characteristics that potentially affect driver visibility and travel speeds, including the 

slope and curviness of the roads, were also considered. The robustness of the results was 

evaluated by varying the maximum length of the road segments in the spatial data and the 

distance from the roads used to estimate a wildlife crossing index based on habitat 

suitability. The case study evaluated moose (Alces alces) and black bear (Ursus 

americanus) collisions in VT from 1990 to 2006 for all roads in the state, three major 

roadways, and four functional classes of roadways. Habitat suitability had the most 
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consistent results across models, as road segments with better suitability had a higher 

collision density. The robustness analysis showed that as the buffer distance used to 

estimate the wildlife crossing index increased, the explained variation of wildlife-vehicle 

collision density increased as well. Road traffic volume demonstrated mixed results 

across models, as higher volume was associated with more collisions in the models with 

all roads, but was associated with fewer collisions in the roadway-specific and functional 

classification models. The length of the road segments in the spatial data layer affected 

the predictive power of the models, suggesting that scale may be an important factor in 

characterizing these relationships. The results offer an improved understanding of 

wildlife-vehicle collisions, which can potentially be used to develop mitigation and 

prevention efforts aimed at reducing the negative effects of roads on wildlife. 
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INTRODUCTION 

In 2014, there were approximately 6,759,000 kilometers (km) of road in the 

United States (US), increasing from roughly 6,276,000 km in 1980 (U.S. Department of 

Transportation 2014). Due to increased road construction, the U.S. Department of 

Transportation (1996) estimated that 4,784,351 hectares (ha) of land and water bodies 

have been lost, which is most likely an underestimate of the actual value (Trombulak and 

Frissell 2000). The effects from increasing transportation infrastructure have become one 

of the greatest threats to wildlife populations. One of the most devastating effects roads 

can have on wildlife is wildlife-vehicle collisions. Huijser et al. (2008) estimated that 1-2 

million collisions occur annually in the US at a cost of $8.3 billion, and the number of 

collisions has significantly increased since the 1990s (Austin et al. 2006; Slesar et al. 

2003; Synder et al. 2015).  

Roads fragment continuous blocks of habitat and become barriers that limit the 

movement of wildlife (Fahrig 2003; Forman et al. 2003). While wildlife generally avoids 

roads, crossings still occur as wildlife attempt to avoid surrounding development, follow 

established migration patterns, find food, or pursue mates, all of which may lead to 

wildlife-vehicle collisions (Alexander et al. 2005; Trombulak and Frissell 2000). 

Maintaining and improving habitat connectivity via road crossing structures can 

counteract the effects of an increasing transportation infrastructure, primarily by 
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preventing wildlife collisions (Mata et al. 2008). As more crossing structures are built, 

access to segmented areas of habitat increases and wildlife are able to resume their 

normal, if slightly altered, ranges of movement (Bissonette and Adair 2008; Mata et al. 

2008).  

Building crossing structures requires detailed knowledge of wildlife crossing sites 

(Eberhardt et al. 2013). As such, tracking wildlife movement to identify these sites can be 

time and cost intensive (Clevenger et al. 2002; Mata et al. 2008). The use of Geographic 

Information Systems (GIS) to conduct a suitability analysis in an effort to identify likely 

wildlife crossings along roadways provides a low-cost solution and has proven to be an 

adept approach (Clevenger et al. 2002; Malo et al. 2004). For example, Clevenger et al. 

(2002) successfully leveraged GIS capabilities to develop two habitat models to identify 

crossing sites for black bear (Ursus americanus) based on information collected from 

experts and a literature review. By integrating GIS-based approaches, mitigation planning 

to counteract the negative effects of roads has improved in capability and feasibility.  

Habitat based-crossing locations should not be the only criterion that guides 

mitigation efforts. If wildlife already successfully cross roads at a predicted crossing 

location, mitigation efforts at those sites would be wasted (Austin et al. 2006; Mata et al. 

2008). Instead, predicted locations should be used in conjunction with collision records 

(Austin et al. 2006). However, habitat-based crossing locations may not completely 

explain areas with high collision counts (Neumann et al. 2012). Most wildlife-vehicle 

collisions probably involve a combination of conditions that contribute to high animal 

abundance near roads, high road traffic volume, and reduced driver awareness (Farmer 
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and Brooks 2012; Seiler 2005). The complex relationships among these conditions and 

their effect on wildlife-vehicle collisions remains far from being settled in the academic 

literature. Clevenger et al. (2015) noted that the inconsistencies in findings may arise 

because the relationships are specific to a study site or species. As the understanding of 

relationships between the conditions that contribute to wildlife-vehicle collisions 

improves, mitigation efforts can be targeted on specific areas.  

This research leveraged GIS capabilities to determine whether variation in 

observed wildlife-vehicle collisions could be explained by road traffic volume, wildlife 

crossing areas based on habitat suitability, and road characteristics that affect travel 

speed. I hypothesized that roads located in better habitat suitability regions and having a 

greater traffic volume, reduced sinuosity (curviness), and lower slope would have a 

greater number of wildlife-vehicle collisions. The empirical evidence regarding the 

relationship among wildlife-vehicle collisions and each of the independent variables has 

been mixed, which may have been due to the geographic extent of the study region 

(Clevenger et al. 2015; Malo et al 2004). Thus, this research examined the effects of 

extent by conducting the analysis at both a state-scale and on individual roads within the 

state. Additionally, certain road types have also been observed to affect wildlife-vehicle 

collisions (Clevenger et al. 2003; Myers et al. 2008). Accordingly, this research examined 

the effects of road type by conducting the analysis on different types of road based on the 

federal highway classification system (FHWA 1989). Finally, previous research has not 

considered that the observed relationships among wildlife-vehicle collisions and the 

previously listed factors may be sensitive to 1) the distance from roads used to define 
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habitat suitability and 2) the maximum length of the road features used in the analysis. I 

included a robustness analysis to evaluate how changes in these parameters influenced 

the statistical outcomes. The research was performed using data from the state of 

Vermont (VT), where state agencies have been focusing efforts to address the effects of 

roads on wildlife (Austin et al. 2010; Kart et al. 2005). 
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LITERATURE REVIEW 

Increased development of road infrastructure threatens to fragment and destroy 

large, continuous areas of habitats. Fragmented habitat occurs when previously 

continuous areas of habitat become segmented into small, isolated patches; however, 

wildlife populations require a certain amount of habitat, which varies by species, to 

survive and reproduce (Fahrig 2003). Due to habitat loss and fragmentation from 

development, individuals within a population or populations within a species can become 

isolated, causing a considerable decline in reproductive ability and genetic diversity that 

eventually increases extinction rates (Fahrig 2003; Lode 2000). Roads exacerbate these 

issues by acting as semi-barriers that limit wildlife movement; further isolate populations; 

and limit access to food resources, water, mates, and suitable habitat (Coffin 2007; Mata 

et al. 2008).  

Wildlife may avoid roads due to their high density within a region, increased 

traffic volume, noise, or the physical qualities of the road (Coffin 2007). Brody and 

Pelton (1989) observed that black bears (U. americanus) in North Carolina moved their 

home ranges to be further away from high road density areas. Many species’ home ranges 

are bound by roads, with animals rarely crossing them unless food becomes scarce within 

the home range (Hammond 2002). Despite a general pattern of avoidance, wildlife has 

been observed to cross roads at specific locations based on surrounding development, 
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suitable habitat, and road conditions (Alexander et al. 2005; Gunson et al. 2011). For 

example, Lewis et al. (2011) observed that black bears (U. americanus) in Idaho only 

crossed highways at locations within forested areas with moderate to high amounts of 

forest and shrub cover, close to streams, and no human-made structures. However, the 

conditions that affect wildlife crossing occurrence may vary by species or location (Lewis 

et al. 2011). In contrast to Lewis et al. (2011), McCoy (2005) observed black bears (U. 

americanus) in Montana did not avoid crossing roads based on the presence of human 

development, likely because the bears scavenged for food close to human residences. 

Understanding the conditions that cause wildlife to cross or avoid crossing roads remains 

an area of ongoing study. 

When an animal males an attempt to cross a road, there is a risk of a wildlife-

vehicle collision.  The risk of collision increases in areas that have many crossing 

attempts, greater traffic volume, or higher speed limits (Alexander et al. 2005; Trombulak 

and Frissell 2000). While species with large populations may not be significantly affected 

by a high rate of collision mortality, threatened species and those with low fecundity are 

at greater risk (Alexander et al. 2005; Coffin 2007). For example, the endangered Florida 

panther (Felis concolor coryir) lost 10% of its population due to collisions (Forman and 

Alexander 1998). Efforts to limit or eliminate the risk of collisions are necessary to allow 

threatened species to recover and prevent others from becoming threatened. 

Collision mitigation and prevention efforts attempt to direct and prevent wildlife 

movement across specific sections of road with the goal of reducing collisions (Forman et 

al. 2003; Malo et al. 2004; Mata et al. 2008). These efforts take various forms, such as 
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passages above roads, fences, and modified culverts (Malo et al. 2004; Mata et al. 2008). 

For example, in response to swarming Northern Leopard frogs (Lithobates pipiens), VT 

officials launched one of the state’s first projects to mitigate wildlife-vehicle collisions by 

building a temporary fence along the roadway to keep the frogs from crossing (Hoffman 

2003).  Based on their efforts, collision numbers were reduced by 80%. In another 

example, Bissonette and Rosa (2012) observed a 98.5% decline in deer-vehicle collisions 

and increased habitat connectivity after mitigation efforts were taken along roads in Utah.  

After the first year, deer began to increasingly use the passages put in place to cross the 

roads during migration movements in the fall and spring.  Mitigation that directs 

movement across roads reestablishes wildlife movement, reconnecting landscapes and 

counteracting some of the negative effects from roads (Alexander et al. 2005; Clevenger 

2005; Mata et al. 2007).   

Mitigation measures are costly, however, and cannot be implemented along every 

section of road (Clevenger et al. 2002; Mata et al. 2008). Researchers and policy makers 

have sought to identify key areas where such efforts should be focused, which requires 

knowing where wildlife crossings are occurring (Lewis et al. 2011; Mata et al. 2008). To 

identify these areas, wildlife movement has been tracked using various approaches, 

including radio-tracking, capture-mark-recapture, remote cameras, genetic sampling, and 

tracking surveys (Clevenger et al. 2002; Kaminski et al. 2013). For example, McCoy 

(2005) tracked black bear (U. americanus) movement with GPS collars. These tracking 

methods are time intensive, costly, and not necessarily well-suited for analysis at the 

landscape scale (Clevenger 2005). Landscape scale has been defined as the interactions 
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between spatial patterns and ecological processes at a state, regional, national, or 

ecosystem scale (Turner et al. 2005). Henschel and Ray (2003) noted that studies using 

camera traps have high start-up costs and require long personnel hours both to set up the 

cameras and sort through thousands of hours of footage. Also, setting up cameras 

throughout a study area may not be possible due to cost or accessibility constraints. 

Silveira et al. (2003) collected 24,480 hours of data from camera traps over 44 days that 

required more months of analysis, whereas Clevenger et al. (2002) successfully used 

GIS-based models to develop habitat models for black bears (U. americanus) in two 

months. While tracking methods should not be discounted because they provide essential 

baseline information on wildlife at small scales, GIS-based models have been 

increasingly used to target initial mitigation efforts to reduce wildlife-vehicle collisions 

because of their applicability at landscape scales and speed of implementation (Clevenger 

et al. 2002). 

GIS-based models have been used at the landscape scale to identify sections of 

highway most likely crossed by wildlife (Hoctor et al. 2000). Many of the models rely on 

expert-based opinion to identify the conditions used to predict wildlife crossings when 

actual data is not available (Clevenger et al. 2002; Kaminski et al. 2013; Kilgo et al. 

2002). Some models employ a habitat suitability index, which ranks and evaluates habitat 

variables that factor into the location of possible crossing sites (Kaminski et al. 2013; 

Kilgo et al. 2002; Tirpak et al. 2009). The conditions determining the identification of 

crossing areas are often based on wildlife habitat and human activities; however, these 

conditions may vary by species (Kaminski et al. 2013; Lewis et al. 2011). At the 
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landscape scale, analyses often focus on wildlife groupings, rather than specific species, 

because it better supports policymakers and state conservation efforts (Clevenger et al. 

2002; Kaminski et al. 2013). The landscape scale also favors wildlife that range or are 

present over large spatial scales (Kaminski et al. 2013). No matter the findings of these 

analyses, some form of verification is required to test their validity (Clevenger et al. 

2002; Kaminski et al. 2013; Tirpak et al. 2009).  

Where wildlife cross roads, collisions can be expected to occur and therefore may 

act as validation of predicted crossing areas (Lewis et al. 2011; Neumann et al. 2012). 

While some studies have attempted to direct mitigation efforts solely based on collision 

sites, this does not account for all possible areas of conflict (Malo et al. 2004; Neumann 

et al. 2012; Ramp et al. 2005). Collision data is often collected based on opportunity 

rather than by designed surveys and thus does not present a true account of areas used by 

wildlife along roads (Alexander et al. 2005; Malo et al. 2004). For example, Austin et al. 

(2006) obtained collision records from wildlife-vehicle collisions reported to the police 

and Department of Transportation. Another issue with only considering collision data 

arises when crossings occur at locations resulting in few, if any, collisions (Alexander et 

al. 2005). There could be only a few or no collisions at a section of road because the 

conditions contributing to collisions have been addressed. Another possibility is that 

wildlife populations have declined to the extent that crossing attempts either rarely or no 

longer occur (Clevenger et al. 2003). Crossing locations and collision records should both 

be used when directing mitigation efforts (Alexander et al. 2005; Eberhardt et al. 2013; 

Neumann et al. 2012). 
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Factors Affecting Wildlife-Vehicle Collisions 
As previously established, GIS-based models have employed habitat suitability to 

predict wildlife crossing areas (Kaminski et al. 2013; Lewis et al. 2011). For example, 

Clevenger et al. (2002), Kaminski et al. (2013), and Lewis et al. (2011) successfully 

predicted wildlife crossing areas based on habitat suitability for black bear (U. 

americanus). Only Lewis et al. (2011) recommended that its predicted crossing areas be 

used to mitigate bear-vehicle collisions; Clevenger et al. (2002) and Kaminski et al. 

(2013) did not broach the subject. In another study, Neumann et al. (2012) indirectly 

compared predicted crossing locations of moose (A. alces) based on habitat suitability 

data and observed collisions by using both to predict collision risk zones, but concluded 

the predicted crossings insufficiently explained the risk zones while observed collisions 

overestimated the risk. Studies rarely affirm the relationship between wildlife-vehicle 

collisions and the predicted crossing areas. 

Conditions such as housing density, forest coverage, and the location of water 

have been used to predict wildlife crossing areas, which are then used to predict wildlife-

vehicle collisions (Grilo et al. 2009; Malo et al. 2004). Yet, these efforts to determine the 

relationships among habitat conditions and wildlife-vehicle collisions have demonstrated 

mixed results (Clevenger et al. 2015). For example, a relationship was not found between 

deer (Odocoileus spp.) vehicle collisions and the amount of forest cover in Minnesota 

(Nielsen et al. 2003), but was found in Illinois and Iowa (Finder et al. 1999; Hubbard et 

al. 2000). While the mixed results have been attributed to regional, or even local, 

idiosyncrasies, investigation into the issue has been limited (Clevenger et al. 2015; Malo 

et al 2004).  
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Habitat conditions used to predict wildlife crossing areas or the sites of wildlife-

vehicle collisions have been examined at a variety of distances away from the roads used 

in the analysis. Clevenger et al. (2015) described habitat conditions within 100 m of a 

road, while Grilo et al. (2009) and Barthelmess (2014) used 500 m and 1,000 m, 

respectively. Only a few studies provided an explanation for how or why the distances 

were chosen or evaluated whether the distance chosen influenced the results of the 

analysis (Danks and Porter 2010; Finder et al. 1999). This is an issue because habitat 

conditions may significantly change as distance from a road is increased.  For example, if 

a grassy meadow gives way to forest at 225 meters away from a road, but the distance is 

set at 200 meters, the change in habitat conditions would not be included in the analysis 

and could possibly alter the predicted crossing areas. The extent to which changes in the 

distance from a road alter estimated habitat conditions (and therefore habitat suitability) 

remains sufficiently unexplored. 

Road traffic volume has also been utilized by many studies to predict wildlife-

vehicle collisions (Framer and Brooks 2012; Lewis et al. 2011; Mountrakis and Gunson 

2009). Previous studies were inconsistent about the relationship between road traffic 

volume and wildlife-vehicle collisions: no relationship (Shepard et al. 2008), a mixed 

relationship (Seiler 2005), or a positive relationship (Farmer and Brooks 2012). Road 

avoidance behavior by wildlife has been postulated as an explanation for the inconsistent 

results (Brockie et al. 2009; Seiler 2005). Species may cross roads until a certain 

threshold of road traffic volume has been reached, which has been estimated to be 1,200 

vehicles a night for carnivores (Grilo et al. 2009) and 3,000 vehicles a day for mammals 
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(Brockie et al. 2009). Alexander et al. (2005) estimated a range of 500-5,000 vehicles a 

day for ungulates. Further, the threshold may vary by species and possibly not even apply 

if the crossing area is part of a long-established migration route (Bruggeman et al. 2007). 

Variation at individual sites or along individual roads may also cause mixed results 

within a study if it uses a landscape scale without examination of individual parts of the 

road network under consderaion (Bissonette and Adair 2008; Clevenger et al. 2015). A 

comparison of the relationship between road traffic volume and wildlife-vehicle 

collisions at the landscape and local scales may provide a better understanding of the role 

of scale and extent. 

A relationship between vehicle speed and wildlife-vehicle collisions has been 

postulated by researchers, but the empirical evidence has also been mixed (Bissonette and 

Adair 2008). For example, Barthelmess (2014) observed no significant relationship 

between the pair, while Seiler (2005) observed a quadratic relationship with more 

mammal-vehicle collisions occurring on roads where vehicles traveled at intermediate 

vehicle speeds. An improved understanding of the relationship between vehicle speed and 

wildlife-vehicle collisions would be beneficial to researchers; however, observed vehicle 

speeds have proven difficult to obtain as spatial data.   

There are road characteristics widely available as spatial data that have the 

potential to affect vehicle speeds and, subsequently, wildlife-vehicle collisions. Two such 

road characteristics are the sinuosity and topography of a road. Sinuosity, or the curviness 

of a road, has been positively associated with mammal-vehicle collisions (Klocker et al. 

2006). However, Barthelmess (2014) did not observe a statistically significant 
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relationship, possibly because of issues with the length of the road features. When a road 

is curved, there is reduced driver visibility (Barthelmess 2014; Farmer and Brooks 2012), 

but also may lead to slower vehicle speeds. Topographic variation along the roads may 

affect travel speed and visibility (Clevenger et al. 2003). The relationship between road 

topography and wildlife-vehicle collisions has shown mixed results in the literature. 

Clevenger et al. (2003) observed raised and partially-raised roads had a high, negative 

relationship with wildlife-vehicles collisions, with more collisions occurring along level 

roads. In contrast, Barthelmess (2014) observed mammal-vehicle collisions were less 

likely to occur on buried and partially-buried roads than level roads. Road sinuosity and 

topography require further evaluation, with attention to road length, to determine each 

condition’s relationship with wildlife-vehicle collisions.  

Wildlife-Vehicle Collisions in VT, US 
The case study is conducted within the state of VT, which has a land area of 

approximately 24,800 km2 (U.S. Census Bureau 2012). Forestland encompasses 75% of 

the state, with coverage increasing from west to east due to extensive agricultural and 

developed land along the western border (Synder et al. 2015). VT forests face an 

increasing risking risk of fragmentation. Between 1982 and 1992, approximately 2,630 ha 

of open space and 202 ha of significant wildlife habitat were lost each year; a loss that 

has only increased since 1992 (Austin et al. 2010; Austin et al. 2013). The rising risk of 

forest fragmentation is due to an expansion of the transportation infrastructure, which 

includes roads, to accommodate an increasing population (Austin et al. 2013; Synder et 

al. 2015). In VT, the human population has increased by 10% during the past three 



14 

 

decades, matched by a 20% increase in automobile registration (Austin et al. 2013; 

Shilling et al. 2012). As of 2015, there are approximately 46,990 km of roads in VT; 

however, this number is projected to increase in the upcoming years, stemming from the 

need to connect dispersed residential and commercial communities and a rapidly 

increasing population (Austin et al. 2010; U.S. Department of Transportation 2014).   

While residents are aware of the significant occurrence of vehicle-wildlife 

collisions, there are few actual reports containing reported collision numbers and damage 

costs in VT (Austin et al. 2006; Slesar et al. 2003; Synder et al. 2015).  Hoffman (2003) 

reported 10,200 Northern Leopard frogs (L. pipiens) killed by vehicles daily along VT 

Route 2 during the summer months.  Austin et al. (2013) reported approximately 2,500 

White-tailed deer (Odocoileus virginanus) and moose (Alces alces) were struck by 

vehicles each year.  Romin and Bisoonette (1996) estimated $31,141,777 as the cost in 

damages from vehicle-deer collisions in VT between 1981 and 1991.  Austin et al. (2006) 

initiated the creation and maintenance of a collision database by the VT Fish and Wildlife 

Department, but so far records past 2006 have not been made public.  From the database, 

deer (O. virginanus), moose (Alces alces), and black bear (U. americanus) are the most 

commonly reported species involved in collisions (Austin et al. 2006).  Wildlife-vehicle 

collisions have increased nationwide and cost more in damages each year; VT has not 

been an exception to this trend (Huijser et al. 2008; Malo et al. 2004). 

Due to the rising concern of the potential effects roads have on local wildlife, VT 

initiated a series of studies to determine the extent of wildlife connectivity within its 

borders and to identify mitigation and prevention strategies in areas where it was lacking 
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(Austin et al. 2010; Slesar et al. 2003). These issues were acknowledged by VT in the 

state’s Wildlife Action Plan, which called for an examination of the effects of roads on 

wildlife (Kart et al. 2005). Austin et al. (2006) and Sorensen and Osborne (2014) 

successfully developed a model to identify potential wildlife linkage habitats associated 

with VT roads, which are areas where wildlife was most likely to cross based on suitable 

conditions. The two studies observed that habitat connectivity declined near urban areas, 

which coincided with higher numbers of wildlife-vehicle collisions. The findings from 

these and other studies caused VT state agencies to create and maintain management 

plans to restore wildlife habitat connectivity and make informed choices about 

transportation design (Shilling et al. 2012). VT state agencies have continued to address 

the effects of roads on wildlife by identifying wildlife-highway crossings and collecting 

data on wildlife-vehicle collisions to determine where mitigation and preventions efforts 

are required (Shilling et al. 2012; Sorensen and Osborne 2014). 
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MATERIALS AND METHODS 

Traffic Data 
A roads spatial data layer with average annual daily traffic (AADT), measured in 

vehicles/day for VT’s interstates, highways, and other major roads from 1990-2006, was 

acquired from the VT Center for Geographic Information (VCGI, 

http://vcgi.vermont.gov/opendata). The total length of roads represented in the data layer 

is approximately 6,200 km with an average road segment length of 1.8 km (range of 

approximately 8 m to 25.5 km). Following the methods in Austin et al. (2006), the road 

features in the AADT layer were split into segments having a maximum length of 800 m. 

Preliminary analysis suggested that the road segment length affected the analysis; 

therefore, two additional data layers were created with road features having a maximum 

segment length of 400 m and 1,600 m. After the roads layers were split, the feature 

lengths were recalculated and all road features with a length less than 200 m were 

removed from each layer, as the presence of extremely short road features led to 

processing errors and extreme values in later calculations. Removal of the short road 

features did not substantially affect the amount of data represented in the original roads 

layer; after removing road features with a length less than 200m, the spatial features used 

in the analysis represented 96.7% (400 m), 98% (800 m), and 98.6% (1,600 m) of the 

road features, by road length, in the original dataset. Following the spatial processing to 
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implement the maximum segment length, the mean AADT was calculated over 1990-

2006 to mirror the wildlife-vehicle collision data. 

Wildlife-Vehicle Collision Data  
A spatial data layer containing wildlife-vehicle collision records for VT during 

1990-2006 was acquired from the VCGI. This database was created and quality checked 

as described in Austin et al. (2006). For each wildlife-vehicle collision, the database 

includes the animal type and date reported. Records for moose (A. alces; n=1,333) and 

black bear (U. americanus; n=273) were subset from the data and used in the analysis, as 

these species were wide-ranging mammals upon which the habitat characteristics of the 

wildlife crossing index were based.  

A visual inspection of the collisions data revealed that it included events that 

occurred on roads not represented in the AADT roads layer. Because the two layers did 

not share attribute information that would allow them to be linked via a table join, the 

distance from each collision location to the nearest road feature in the AADT layer was 

measured. Of the 1,606 moose and black bear collisions, 1,562 collisions (97.26%) were 

within 200 m of a road feature represented in the AADT layer, while 15 (0.93%) were 

located 200-400 m, 6 (0.37%) were located 400-600 m, 7 (0.44%) were located 600-800 

m, 7 (0.44%) were located 800-1,000 m, and 7 (0.44%) were located more than 1,000 m 

from a road feature; thus the 44 collisions (2.74%) that were located outside of 200 m 

from the final roads layer were removed from the analysis, as this appeared to be an 

appropriate threshold to ensure the collisions occurred on a road represented in the 

AADT layer.  
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The final analytic dataset included 1,562 wildlife-vehicle collisions (267 bear and 

1,295 moose). The collision point features were spatially joined to the three road data 

layers, which resulted in a count of collisions per road feature. As the wildlife-vehicle 

collisions were opportunistically reported, any road features containing no reported 

collisions were removed from further analysis (Austin et al. 2006; Bissonette and Kassar 

2008). To standardize the values for variations in road feature length, the collision count 

for each road feature was divided by that road feature’s measured length to calculate a 

wildlife-vehicle collisions density (WVCD) value, measured in collisions/m. 

Habitat Suitability and Wildlife Crossing Index 
The wildlife crossing index is a road-level metric that captures the propensity of 

wildlife to cross at a given road segment, and is based on the wildlife habitat in the region 

near the segment; thus, a habitat suitability layer was first created. Austin et al. (2006) 

and Sorensen and Osborne (2014) detail the approach to model large mammal habitat 

suitability and calculate the wildlife crossing index, which was implemented in this 

research and is summarized in the following paragraphs.  

 The three landscape characteristics used to create the large mammal habitat 

suitability layer were land use / land cover (LULC), structure density, and core habitat 

areas. The 2006 data layer from the National Land Cover Dataset (30m2 cell resolution, 

https://www.mrlc.gov/nlcd2006.php) was used for the LULC layer. A point layer 

containing the locations of manmade structures was acquired from the VCGI. The points 

were converted to a structure density raster layer (30 m2 cell resolution) by counting the 

number of structures within a 500 m radius of every cell location and dividing by the area 
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of the circle (values were returned in structures/mi2). A core habitat polygon layer was 

acquired from the VCGI and used to create a core habitat raster layer. The approach 

implemented a variable distance buffer to create a set of five concentric rings surrounding 

each core habitat polygon. The specific buffer distance for each habitat polygon is based 

on the area of the habitat polygon, such that larger polygons have larger buffer distances. 

The five buffer layers were overlain with the original core area polygon layer to create a 

final layer containing core area habitat patches and concentric distance “bands” 

surrounding each. This layer was converted to a raster layer (30m2 cell resolution) for 

further processing. 

The three layers representing habitat suitability characteristics were each rescaled 

from 1-10 with one indicating low suitability and ten indicating high suitability (see 

Figure 1 and Supplementary Tables A.1-3). The layers were then combined (summed) 

using the following weighting scheme, LULC (27.5%), structure density (45%), and core 

habitat (27.5%), to create a final habitat suitability layer. Because the three weights used 

in this operation summed to one, the final habitat suitability layer had the same numeric 

scale and interpretation as the component layers.  
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Figure 1. Habitat suitability scores for the Land use/land cover (LULC), structure density, and core habitat 

layers used to create the wildlife crossing index (WCI). 

 

 

 

The wildlife crossing index (WCI) score was calculated for each road feature by 

creating a buffer around the feature and calculating the mean habitat suitability of all cells 

located within the buffered region. This process was completed individually for all road 

features in the 400 m, 800 m, and 1600 m maximum segment length road layers. In the 

operation, the buffers were capped such that they did not extend past the endpoints of the 

road features in an effort to only consider habitat along the side of each road. Per Austin 

et al. (2006), the buffers extended 800 m from each side of the road (i.e., a buffer 1,600 m 

wide, centered on the road feature). However, to evaluate the robustness of the specific 

buffer distance used to calculate the WCI value, the index scores were also calculated 

based on 400 m and 1,200 m (per side) buffers for each road feature. There was a lack of 

research to guide what distance from the road should be considered to evaluate for 

robustness, thus 400 m was subtracted and added to the 800 m buffer offered by Austin et 
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al. (2006). Figure 2 shows the final WVCD, AADT, and habitat suitability layers used in 

the analysis.  

 

 

 

 

Figure 2. Wildlife-vehicle collision density (WVCD), average annual daily traffic (AADT) for 1990-2006, and 

habitat suitability for VT. 

 

 

 

Road Characteristics 
Speed limit data for the roads containing AADT information were not available. 

Therefore, two characteristics of the roads that had the potential to affect vehicle speeds 

were calculated for this study. Road sinuosity was calculated for each road feature by 

dividing the feature’s length by the straight-line distance connecting the endpoints of the 

feature (Barthelmess 2014). Using this formula, roads that are meandering or curved have 

a higher sinuosity value than straight roads. Topographic variation along the roads may 
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also affect travel speed and visibility; hence, the mean slope (Slope) was calculated for 

each road feature. While Barthelmess (2014) used a field observation approach to collect 

topographic information at collision locations, this was not possible given the scope of 

this research. Therefore, slope was used as a proxy for topographic change over a 

segment of a road. A slope (%) data layer (10m2 cell resolution) was downloaded from 

VCGI. A 5 m buffer was created around each road feature (10 m total width) in an effort 

to capture a continuous set of slope values along each feature. The mean slope was then 

calculated using the slope of all cells located within each road feature’s buffer. 

Data Analysis 
The relationships between wildlife-vehicle collision density (WVCD), average 

annual daily traffic (AADT), and wildlife crossing index (WCI) were evaluated using 

multiple ordinary linear squares (OLS) regression. In the model, WVCD was the 

dependent variable, and AADT and WCI were independent variables. Sinuosity, Slope, 

and (road segment) Length were also included as independent variables in the regression 

model an effort to control for road characteristics. The individual road features with 

WVCD greater than zero functioned as the observation units in the model. 

Separate regression models were constructed for the three maximum road 

segment lengths used to partition the roads data (400 m, 800 m, and 1,600 m). Further, 

for each maximum segment length model, separate models were also constructed for the 

three different buffer distances used to calculate the WCI values (400 m, 800 m, and 

1,200 m), which resulted in a total of nine models. Basic descriptive statistics for the 

input data in the all roads models are presented in Table 1. 
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Table 1. Descriptive statistics for variables used in the all roads multiple regression models. 

Model variables Minimum Maximum Mean Std. Devation

All Roads, 400 m (n=1,037)

WVCD 0.003 0.028 0.004 0.003

AADT 122.941 47,313.529 5,410.565 6,312.081

WCI (400 m) 1.017 9.880 6.917 1.840

WCI (800 m) 1.192 10.000 7.460 1.735

WCI (1200 m) 1.240 10.000 7.739 1.681

Sinuosity 1.000 2.142 1.012 0.043

Slope 2.000 101.158 11.407 7.298

Segment length 203.094 400.000 392.853 30.356

All Roads, 800 m (n=919)

WVCD 0.001 0.025 0.002 0.002

AADT 122.941 47,313.529 5,475.550 6,311.519

WCI (400 m) 1.032 9.902 6.783 1.809

WCI (800 m) 1.028 10.000 7.345 1.718

WCI (1200 m) 1.049 10.000 7.613 1.680

Sinuosity 1.000 1.809 1.025 0.048

Slope 2.000 62.416 10.813 5.641

Segment length 203.094 800.000 760.314 120.019

All Roads, 1600 m (n=758)

WVCD 0.001 0.025 0.002 0.002

AADT 122.941 47,313.529 5,459.665 6,259.832

WCI (400 m) 1.057 9.881 6.605 1.745

WCI (800 m) 1.061 10.000 7.190 1.677

WCI (1200 m) 1.500 10.000 7.483 1.638

Sinuosity 1.000 1.562 1.040 0.062

Slope 2.000 54.075 10.890 5.028

Segment length 205.097 1,600.000 1,422.851 352.919  
 

 

 

To examine the effects of local and regional characteristics of roadways, the nine 

regression models were also constructed separately using data from three main roadways 

in VT: Interstate 91 (I-91), U.S. Route 2 (US-2), and VT Route 114 (VR-114). These 

three roadways were selected because of their differing directional orientation and 

relative location within the state. The roadways are mapped in Figure 3. Descriptive 

statistics for the roadway-specific data are presented in Supplementary Tables A.4-6. To 
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illustrate how WVCD, AADT, WCI, and Slope vary along a specific roadway, the values 

are graphed along the extent of I-91 (from north to south) in Figure 4.  

 

 

 

 
Figure 3. Map of Interstate 91 (I-91), U.S. Route 2 (US-2), and VT Route 114 (VR-114). 
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Figure 4. Graph of WVCD (collisions per km), AADT (average over 1990-2006, average number of vehicles per 

day / 1,000), WCI (800 m), and Slope (%) along I-91. Distance on the x-axis is distance along the roadway, 

measured from the northern-most endpoint. 

 

 

 

The nine regression models were also constructed separately using data from four 

functional classes of roadway in VT: Functional 7 (F7), Functional 6 (F2), Functional 2 

(F2), and Functional 1 (F1). These groups were selected because the other functional 

classes (not listed) contained less than 20 total road features. The functional classification 

system for the four groups is presented in Table 2 (FHWA 1989; VGIS 2005), and the 
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four functional roadway classes are mapped in Figure 5 (descriptive statistics of the 

functional-specific models can be found in Supplementary Tables A.7-10).  

 

 

 
Table 2. Descriptions of the four functional roadway classes. 

Functional Functional Class

7 (F7)

Rural Major Collector

6 (F6)

Rural Minor Arterial

2 (F2)
Rural Principal Arterial

1 (F1)

Rural Principal Arterial - Interstate

Provide interstate and regional service to large towns and traffic 

generators that attract travelers. Spaced at intervals based on 

population density to ensure developed areas are near a 

principal arterial highway.

Class Description

Acts as an integrated network in urban areas totaling more than 

25,000-50,000 people.

Acts as an integrated network in urban areas totaling more than 

25,000-50,000 people. Official interstate highway number has 

been assigned.

Serve intra-regional travel corridors. Link large towns to major 

traffic generators (schools and employment centers), larger 

towns, and cities.
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Figure 5. Map of Functional 7 (F7), Functional 6 (F6), Functional 2 (F2), and Functional 1 (F1). 
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Prior to performing the regressions, the values for WVCD and AADT were log 

transformed, as the distributions of these variables were positively skewed. All regression 

models were evaluated for multicollinearity among the independent variables using 

Variance Inflation Factor (VIF). For the all roads models, the I-91 models, the US-2 

models, the F7 models, the F6 models, the F2 models, and the F1 models, all independent 

variables had a VIF < 2 (Tables 3-10), which indicates strong independence within the 

independent variable set (Graham 2003). In the VR-114 models, the VIF values for WCI 

were slightly larger than 2 in the models using a maximum road feature length of 1,600 

m, indicating slight, but non-problematic multicollinearity. The same finding occurred in 

the F6 models using a maximum road feature length of 1,600 m and buffer distances of 

400 m and 800 m. All regression models were evaluated for heteroskedasticity among the 

regression residuals using the Studentized Breusch-Pagan (BP) test (Tables 3-10). Some 

of the preliminary regression results demonstrated heteroskedastic regression residuals, 

so a White adjustment was employed to account for heteroskedasticity by adjusting the 

standard errors of the regression coefficients and their resulting p-values (White 1980; 

Zeileis 2004). The resulting coefficients for the independent variables were standardized, 

thus allowing for the relative magnitude of the variables to be evaluated within each 

model. 
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Table 3. Results of the Studentized Breusch-Pagan (BP) and Variance Inflation Factor (VIF) tests for the all 

roads regression models. The p-values are represented as follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

BP 49.577 *** 47.596 *** 47.257 *** 68.108 *** 61.036 *** 64.231 *** 71.309 *** 65.043 *** 60.070 ***

VIF

AADT 1.338 1.404 1.374 1.415 1.502 1.427 1.430 1.529 1.492

WCI 1.357 1.419 1.392 1.456 1.540 1.482 1.531 1.610 1.550

Sinuosity 1.029 1.029 1.029 1.069 1.069 1.069 1.102 1.102 1.103

Slope 1.032 1.024 1.022 1.054 1.043 1.045 1.084 1.068 1.062

Length 1.014 1.018 1.019 1.056 1.058 1.065 1.102 1.096 1.073

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 
 

 

 
Table 4. Results of the Studentized Breusch-Pagan (BP) and Variance Inflation Factor (VIF) tests for I-91 

regression models. The p-values are represented as follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

BP 15.856 ** 16.239 ** 17.324 ** 11.9676 * 12.826 * 13.647 * 12.940 * 13.616 * 12.761 *

VIF

AADT 1.284 1.300 1.272 1.245 1.264 1.194 1.196 1.246 1.201

WCI 1.322 1.319 1.278 1.319 1.339 1.281 1.390 1.465 1.283

Sinuosity 1.137 1.130 1.122 1.072 1.074 1.068 1.161 1.130 1.098

Slope 1.058 1.053 1.052 1.026 1.019 1.020 1.055 1.039 1.037

Length 1.037 1.025 1.022 1.072 1.066 1.083 1.204 1.246 1.147

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 
 

 

 
Table 5. Results of the Studentized Breusch-Pagan (BP) and Variance Inflation Factor (VIF) tests for US-2 

regression models. The p-values are represented as follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

BP 16.562 ** 14.802 * 12.442 * 17.001 ** 16.049 ** 13.559 * 13.062 * 11.796 * 10.535

VIF

AADT 1.229 1.303 1.374 1.248 1.390 1.523 1.305 1.534 1.485

WCI 1.217 1.269 1.337 1.310 1.412 1.526 1.365 1.515 1.409

Sinuosity 1.097 1.091 1.089 1.195 1.179 1.173 1.076 1.066 1.070

Slope 1.056 1.058 1.071 1.144 1.166 1.167 1.092 1.063 1.074

Length 1.072 1.072 1.073 1.064 1.046 1.039 1.100 1.088 1.079

1600

400 800 1200

400

400 800 1200

800

400 800 1200
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Table 6. Results of the Studentized Breusch-Pagan (BP) and Variance Inflation Factor (VIF) tests for VR-114 

regression models. The p-values are represented as follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

BP 4.524 4.021 4.989 2.087 2.201 1.769 4.828 2.645 4.574

VIF

AADT 1.345 1.355 1.463 1.553 1.679 1.488 1.463 1.545 1.663

WCI 1.331 1.338 1.445 1.605 1.741 1.459 2.071 2.342 2.118

Sinuosity 1.008 1.004 1.004 1.066 1.065 1.063 1.066 1.084 1.088

Slope 1.039 1.036 1.038 1.119 1.116 1.090 1.301 1.320 1.304

Length 1.045 1.048 1.045 1.194 1.187 1.189 1.531 1.618 1.300

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 
 

 

 
Table 7. Results of the Studentized Breusch-Pagan (BP) and Variance Inflation Factor (VIF) tests for Functional 

7 regression models. The p-values are represented as follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

BP 16.473 ** 14.690 * 17.065 ** 24.421 *** 16.012 ** 22.727 *** 32.345 *** 23.961 *** 14.778 *

VIF

AADT 1.256 1.202 1.245 1.310 1.265 1.338 1.397 1.331 1.335

WCI 1.320 1.247 1.294 1.415 1.339 1.423 1.514 1.384 1.380

Sinuosity 1.015 1.015 1.015 1.035 1.034 1.034 1.085 1.085 1.085

Slope 1.065 1.047 1.048 1.091 1.064 1.058 1.094 1.076 1.074

Length 1.026 1.032 1.030 1.046 1.050 1.059 1.084 1.063 1.057

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 
 

 

 
Table 8. Results of the Studentized Breusch-Pagan (BP) and Variance Inflation Factor (VIF) tests for Functional 

6 regression models. The p-values are represented as follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

BP 21.656 *** 18.247 ** 17.061 ** 25.267 *** 20.947 ** 21.013 *** 34.880 *** 29.200 *** 25.441 ***

VIF

AADT 1.659 1.622 1.426 1.807 1.784 1.773 1.977 1.963 1.693

WCI 1.722 1.696 1.528 1.899 1.902 1.961 2.135 2.090 1.799

Sinuosity 1.020 1.020 1.016 1.046 1.048 1.045 1.102 1.103 1.102

Slope 1.058 1.053 1.058 1.064 1.069 1.083 1.092 1.078 1.057

Length 1.035 1.044 1.064 1.072 1.089 1.120 1.128 1.131 1.135

1600

400 800 1200

400

400 800 1200

800

400 800 1200
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Table 9. Results of the Studentized Breusch-Pagan (BP) and Variance Inflation Factor (VIF) tests for Functional 

2 regression models. The p-values are represented as follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

BP 12.257 * 11.839 * 10.785 15.314 ** 13.908 * 14.117 * 12.200 * 11.167 * 12.774 *

VIF

AADT 1.139 1.133 1.126 1.228 1.235 1.216 1.201 1.211 1.212

WCI 1.155 1.158 1.154 1.278 1.280 1.246 1.279 1.305 1.293

Sinuosity 1.033 1.037 1.037 1.108 1.112 1.107 1.260 1.267 1.264

Slope 1.045 1.047 1.050 1.115 1.111 1.115 1.242 1.243 1.246

Length 1.016 1.016 1.016 1.046 1.038 1.026 1.091 1.094 1.082

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 
 

 

 
Table 10. Results of the Studentized Breusch-Pagan (BP) and Variance Inflation Factor (VIF) tests for 

Functional 1 regression models. The p-values are represented as follows: p < 0.001 (***), p < 0.01 (**), and p < 

0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

BP 8.150 14.108 * 17.293 ** 8.994 12.421 * 14.288 * 4.997 7.503 9.827

VIF

AADT 1.159 1.106 1.064 1.162 1.106 1.055 1.135 1.089 1.051

WCI 1.228 1.152 1.081 1.216 1.151 1.078 1.336 1.322 1.193

Sinuosity 1.100 1.089 1.075 1.061 1.056 1.045 1.043 1.034 1.025

Slope 1.028 1.024 1.023 1.025 1.021 1.024 1.033 1.022 1.019

Length 1.024 1.021 1.013 1.050 1.053 1.044 1.184 1.237 1.163

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 
 

 

 

Only a few studies that examined wildlife-vehicle collisions using regression-

based approaches have assessed and corrected for spatial autocorrelation in the regression 

residuals (Clevenger et al. 2015; Farmer and Brooks 2102; Grilo et al 2009; Neumann et 

al. 2012). However, none of these studies used line features in the models, so they 

provided no guidance on how address spatially autocorrelated residuals. Specifically, the 

definition of neighborhood features for line data was of concern because distance-based 

neighbors would not enforce road connectivity, but methods to establish connectivity-

based neighbors were not available for line features. Further review of the literature did 
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not uncover a method that was developed specifically for line features. Therefore, in this 

study, the OLS regression residuals were assessed for spatial autocorrelation using 

Moran’s I with neighborhoods defined using an inverse distance squared relationship 

with no enforced maximum distance. Inverse distance squared was selected because the 

closer road features were in space, the more they influenced each other. Neighborhoods 

were row standardized to account for features having an unequal set of neighboring 

features (Aneslin 2004). Of the 72 OLS regression models, 49 (68%) demonstrated 

significant spatial autocorrelation in the residuals (Tables 11-18).  

 

 

 
Table 11. Moran’s I results for the all roads models. The p-values are represented as follows: p < 0.001 (***), p < 

0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Moran's I 0.174 *** 0.179 *** 0.176 *** 0.185 *** 0.187 *** 0.192 *** 0.179 *** 0.184 *** 0.184 ***

Expected Value -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001

Variance 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Z-score 7.110 7.292 7.152 7.442 7.504 7.709 6.923 7.098 7.094

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 
 

 

 
Table 12. Moran’s I results for I-91 models. The p-values are represented as follows: p < 0.001 (***), 

p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Moran's I 0.206 ** 0.204 ** 0.200 ** 0.043 0.037 0.053 0.163 * 0.167 * 0.147

Expected Value -0.007 -0.007 -0.007 -0.008 -0.008 -0.008 -0.010 -0.010 -0.010

Variance 0.005 0.005 0.005 0.006 0.006 0.006 0.007 0.007 0.007

Z-score 2.897 2.866 2.805 0.655 0.586 0.790 2.013 2.059 1.825

1600

400 800 1200

400

400 800 1200

800

400 800 1200
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Table 13. Moran’s I results for US-2 models. The p-values are represented as follows: p < 0.001 (***), p < 0.01 

(**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Moran's I 0.083 0.131 0.147 0.143 0.151 0.158 0.052 0.076 0.084

Expected Value -0.012 -0.012 -0.012 -0.015 -0.015 -0.015 -0.020 -0.020 -0.020

Variance 0.009 0.009 0.009 0.013 0.013 0.013 0.023 0.023 0.023

Z-score 0.993 1.500 1.666 1.386 1.455 1.518 0.478 0.637 0.690

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 

 

 

 
Table 14. Moran’s I results for VR-114 models. The p-values are represented as follows: p < 0.001 (***), p < 0.01 

(**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Moran's I 0.193 * 0.206 * 0.221 * 0.098 0.073 0.143 0.001 0.020 -0.043

Expected Value -0.012 -0.012 -0.012 -0.017 -0.017 -0.017 -0.025 -0.025 -0.025

Variance 0.008 0.008 0.008 0.010 0.010 0.010 0.018 0.018 0.017

Z-score 2.266 2.413 2.571 1.124 0.876 1.557 0.195 0.340 -0.139

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 

 

 

 
Table 15. Moran’s I results for Functional 7 models. The p-values are represented as follows: p < 0.001 (***), p < 

0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Moran's I 0.282 *** 0.293 *** 0.293 *** 0.274 *** 0.278 *** 0.267 *** 0.265 *** 0.275 *** 0.275 ***

Expected Value -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.004 -0.004 -0.004

Variance 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Z-score 6.324 6.569 6.559 5.934 6.025 5.795 5.414 5.598 5.618

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 
 

 

 
Table 16. Moran’s I results for Functional 6 models. The p-values are represented as follows: p < 0.001 (***), p < 

0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Moran's I 0.088 0.096 0.097 0.118 * 0.136 * 0.136 * 0.129 * 0.139 * 0.147 *

Expected Value -0.004 -0.004 -0.004 -0.005 -0.005 -0.005 -0.006 -0.006 -0.006

Variance 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Z-score 1.683 1.829 1.849 2.097 2.398 2.399 2.285 2.445 2.585

1600

400 800 1200

400

400 800 1200

800

400 800 1200
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Table 17. Moran’s I results for Functional 2 models. The p-values are represented as follows: p < 0.001 (***), p < 

0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Moran's I 0.185 ** 0.201 ** 0.196 ** 0.322 *** 0.335 *** 0.338 *** 0.277 ** 0.287 ** 0.284 **

Expected Value -0.006 -0.006 -0.006 -0.007 -0.007 -0.007 -0.009 -0.009 -0.009

Variance 0.005 0.005 0.005 0.005 0.005 0.005 0.007 0.007 0.007

Z-score 2.805 3.030 2.963 4.481 4.671 4.702 3.321 3.436 3.402

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 

 

 

 

Based on the method described by Aneslin (2004), each of OLS regression 

models with spatially autocorrelated residuals was assessed for spatial dependence using 

the Lagrange Multiplier (LM) test.  The results of the test determined whether a spatial 

error or spatial lag regression model was the most appropriate. A spatial lag model was 

selected because 33 of the 48 (69%) tested models were significant for 1) Lag; or 2) both 

Error and Lag, of which Lag had the higher test value (Supplementary Tables A.11-17). 

As with the Moran’s I tests, neighborhoods were conceptualized as inverse distance 

squared for all spatial lag regression models. The model residuals were evaluated for 

heteroskedasticity using the BP test. Some of the models demonstrated heteroskedastic 

regression residuals, so a White adjustment was employed for these specific models 

(Table 19). As with the OLS regression models, the resulting coefficients for the 

independent variables of the spatial regression models were standardized. 
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Table 18. Moran’s I results for Functional 1 models. The p-values are represented as follows: p < 0.001 (***), p < 

0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Moran's I 0.131 * 0.116 * 0.101 0.151 ** 0.116 * 0.105 0.201 ** 0.168 ** 0.147 *

Expected Value -0.004 -0.004 -0.004 -0.005 -0.005 -0.005 -0.006 -0.006 -0.006

Variance 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004

Z-score 2.424 2.156 1.875 2.671 2.074 1.888 3.159 2.652 2.333

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 

 

 

 
Table 19. Results of the Studentized Breusch-Pagan (BP) test for all spatial regression models. The p-values are 

represented as follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 
Max Road Feature Length

Buffer distance (WCI)

Roads Models

All Roads 48.969 *** 46.785 *** 46.690 *** 67.335 *** 59.639 *** 63.097 *** 75.808 *** 67.713 *** 61.843 ***

I-91 16.600 ** 17.121 ** 18.217 ** - - - 13.859 * 13.280 * -

VR-114 7.007 6.624 7.723 - - - - - -

F7 16.256 ** 14.462 * 17.261 ** 23.487 *** 15.242 ** 23.075 *** 32.888 *** 24.307 *** 13.941 *

F6 - - - 25.143 *** 20.513 ** 20.663 *** 34.265 *** 27.884 *** 23.380 ***

F2 12.433 * 12.115 * 11.244 * 16.431 ** 15.295 ** 15.574 ** 12.564 * 11.463 * 13.241 *

F1 8.911 14.615 * - 10.379 14.002 * - 4.970 0.258 0.164

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 
 

 

 

Software 
The GIS processing and analysis steps were completed using ArcGIS v10.3 (ESRI 

2012) and QGIS v2.4 (Quantum GIS Development Team 2017).  All statistical analysis 

was performed using R v3.2.3 (R Core Team 2015). 
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RESULTS 

All Roads Models 
The results for the regression models with all roads are presented in Tables 20 

(OLS) and 21 (Spatial Regression). Spatial regression models were only presented when 

the residuals of the OLS regression models demonstrated significant spatial 

autocorrelation. Since the residuals of all nine of the all roads OLS regression models 

demonstrated significant spatial autocorrelation, there was a total of nine spatial 

regression models. Therefore, the following description of the results are drawn from the 

spatial regression models, except where noted. 

 

 

 
Table 20. Original regression results for the all roads models. The p-values are represented as 

follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Observations 1037 1037 1037 919 919 919 758 758 758

F 20.59 *** 19.89 *** 20.14 *** 41.44 *** 38.45 *** 42.56 *** 56.32 *** 50.57 *** 47.95 ***

Adjusted R2 0.086 0.084 0.085 0.181 0.169 0.185 0.268 0.247 0.237

Coefficients

AADT 0.071 * 0.082 * 0.077 * 0.107 ** 0.111 ** 0.114 *** 0.172 *** 0.175 *** 0.156 ***

WCI 0.283 *** 0.283 *** 0.283 *** 0.328 *** 0.311 *** 0.339 *** 0.422 *** 0.392 *** 0.364 ***

Sinuosity -0.035 * -0.033 -0.038 * -0.070 ** -0.074 ** -0.079 ** -0.047 -0.051 * 0.057 *

Slope -0.106 *** -0.098 *** -0.097 *** -0.130 *** -0.117 *** -0.123 *** -0.129 *** -0.108 *** -0.099 **

Length -0.175 *** -0.178 *** -0.180 *** -0.362 *** -0.359 *** -0.369 *** -0.475 *** -0.462 *** -0.445 ***

1600

400 800 1200

400

400 800 1200

800

400 800 1200
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Table 21. Spatial regression results for the all roads models. The p-values are represented as follows: 

p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Rho 0.360 *** 0.366 *** 0.362 *** 0.378 *** 0.378 *** 0.370 *** 0.433 *** 0.433 *** 0.431 ***

LR 32.857 *** 33.951 *** 33.098 *** 41.29 *** 40.851 *** 39.35 *** 60.077 *** 58.803 *** 57.591 ***

AIC 2,826.2 2,828.1 2,827.7 2,393.6 2406.1 2,390.5 1,865.0 1,887.6 1,898.6

AIC for LM 2,857.0 2,860.1 2,858.8 2,432.9 2445.0 2,427.9 1,923.1 1,944.4 1,954.2

Coefficients

AADT 0.101 ** 0.112 ** 0.106 ** 0.134 *** 0.136 *** 0.139 *** 0.205 *** 0.206 *** 0.185 ***

WCI 0.258 *** 0.259 *** 0.257 *** 0.300 *** 0.280 *** 0.309 *** 0.391 *** 0.358 *** 0.329 ***

Sinuosity 0.030 0.030 0.036 0.063 * 0.068 * 0.074 ** 0.041 0.045 0.052

Slope -0.100 *** -0.093 *** -0.092 *** -0.117 *** -0.104 *** -0.110 *** -0.110 *** -0.090 *** -0.081 **

Length -0.178 *** -0.181 *** -0.182 *** -0.358 *** -0.354 *** -0.364 *** -0.466 *** -0.453 *** -0.436 ***

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 
 

 

 

All spatial regression models had highly positive, significant spatial dependence 

parameter (p < 0.001), and were improved by the inclusion of the spatially-lagged values 

as the Likelihood Ratio (LR) tests were highly significant (p < 0.001). For all spatial 

regression models, AIC was lower than the AIC for the OLS models, indicating an 

improved model fit from the original regression models, which were statistically 

significant (p < 0.001). The explanatory power of the OLS models increased concurrently 

with the maximum road segment in the data, i.e., roughly 0.08 (400 m), 0.18 (800 m), and 

0.25 (1,600 m). The spatial regression models were an improved fit from the OLS 

models, so the explanatory power of the spatial regression models was slightly improved.  

The standardized coefficients presented in Table 21 show that the effects of each 

independent variable were quite consistent across changes in the maximum road feature 

length and buffer distance for the WCI variable. Specifically, AADT and WCI had 

positive, statistically significant relationships with WVCD across all spatial regression 
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models. The influence of WCI on WVCD was much stronger than AADT, varying from 

roughly 2x to 3x more influence across models. The statistical strength of the relationship 

between WVCD and AADT was variable across the models. Specifically, AADT was 

weakly significant in the 400 m road length models (p < 0.01), but increased as the 

maximum segment length increased to 1,600 m (p < 0.001). WCI did not demonstrate 

variation across models (p < 0.001 in all models). 

Of the control variables, Sinuosity had the weakest relationship with WVCD, as 

this variable was insignificant in six models (p > 0.05) and weakly significant in two 

models (p < 0.05), and slightly more significant in one model (p < 0.01). When 

significant, Sinuosity had a weak positive relationship with WVCD. The Slope variable 

was highly significant in eight models (p < 0.001) and slightly less significant in one 

model (p < 0.01), while having a consistently negative relationship with WVCD. In this 

case, WVCD was higher on roads that had a lower Slope (were flatter), which may also 

reflect higher average vehicle speeds due to the flat terrain. The relationship between 

WVCD and Slope was similar in magnitude to WVCD and AADT for the 400 m and 800 

m maximum road length models, but was lesser in magnitude for the 1,600 m models.  

In all spatial regression models, the control variable for Length was statistically 

significant (p < 0.001) and negatively related to WVCD. Since a single WVC event can 

result in varying WVCD values based on the road feature’s length (e.g., a single WVC 

produces higher a WVCD for shorter road features), the negative relationship was not 

surprising. Importantly, while not tied to a specific physical process, these results 

confirmed the importance of controlling for variations in road feature length, even when 
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many of the features are of a similar length (i.e., normalized via the process of splitting 

the original roads layer into segments having a specific maximum length). 

 

Models of Specific Roads 
Results of the I-91, US-2, VR-114 regression models are presented in Tables 22, 

24, and 25 (OLS) and Tables 23 and 26 (spatial lag). As previously stated, spatial 

regression model results were only presented when the residuals of the OLS regression 

models demonstrated significant spatial autocorrelation of the residuals. For I-91, five of 

the OLS models were replaced by spatial regression models. None of the US-2 OLS 

models demonstrated significant spatial autocorrelation. Three of the VR-114 OLS 

regression models were replaced by spatial regression models. Spatial regression models 

took the place of their OLS counterparts when appropriate. Therefore, the results below 

describe a mixture of the OLS and spatial regression models. 

 

 

 
Table 22. Original regression results for I-91 models. The p-values are represented as follows: p < 

0.001 (***), p < 0.01 (**), and p < 0.05 (*). 
Max Road Feature Length

Buffer distance (WCI)

Observations 147 147 147 127 127 127 104 104 104

F 5.915 *** 5.957 *** 5.801 *** 12.320 *** 12.950 *** 12.800 *** 14.27 *** 13.24 *** 11.85 ***

Adjusted R2 0.144 0.145 0.141 0.310 0.322 0.319 0.3918 0.3727 0.345

Coefficients

AADT -0.184 * -0.180 * -0.190 ** -0.143 -0.127 -0.150 * -0.092 -0.079 -0.114

WCI 0.212 ** 0.215 ** 0.200 ** 0.287 *** 0.315 *** 0.302 *** 0.464 *** 0.448 *** 0.377 ***

Sinuosity -0.060 -0.063 -0.070 -0.135 *** -0.130 *** -0.135 *** -0.001 -0.031 -0.072

Slope -0.126 * -0.117 * -0.109 * -0.194 ** -0.177 ** -0.163 ** -0.256 *** -0.221 ** -0.203 **

Length -0.193 *** -0.186 *** -0.182 *** -0.394 *** -0.396 *** -0.404 *** -0.530 *** -0.540 *** -0.479 ***

1600

400 800 1200

400

400 800 1200

800

400 800 1200
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Table 23. Spatial regression results for I-91 models. The p-values are represented as follows: p < 

0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Rho 0.257 0.255 0.258 0.295 * 0.321 *

LR 2.673 2.621 2.687 4.376 * 5.205 *

AIC 401.5 401.4 402.0 248.9 251.3

AIC for LM 402.2 402.0 402.7 251.2 254.5

Coefficients

AADT -0.114 -0.111 -0.120 -0.033 -0.013

WCI 0.191 ** 0.193 ** 0.178 * 0.439 *** 0.427 ***

Sinuosity 0.058 0.061 0.067 -0.025 -0.001

Slope -0.132 ** -0.123 ** -0.117 * -0.227 *** -0.191 **

Length -0.203 *** -0.197 *** -0.193 *** -0.543 *** -0.556 ***

400

400 800 1200 400 800

1600

 
 

 

 
Table 24. Original regression results for US-2 models. The p-values are represented as follows: p < 

0.001 (***), p < 0.01 (**), and p < 0.05 (*). 
Max Road Feature Length

Buffer distance (WCI)

Observations 84 84 84 69 69 69 52 52 52

F 4.852 *** 4.061 ** 3.654 ** 4.612 ** 3.903 ** 4.058 ** 5.058 *** 3.906 ** 3.932 **

Adjusted R2 0.188 0.156 0.138 0.210 0.176 0.184 0.285 0.222 0.223

Coefficients

AADT -0.175 -0.173 -0.171 -0.314 ** -0.334 *** -0.303 ** -0.287 ** -0.329 ** -0.330 *

WCI 0.378 *** 0.332 *** 0.307 ** 0.254 ** 0.158 0.194 0.315 ** 0.156 0.157

Sinuosity 0.030 0.045 0.052 -0.047 -0.022 -0.024 -0.147 -0.123 -0.127

Slope -0.107 -0.077 -0.062 -0.227 * -0.219 * -0.213 * -0.284 ** -0.241 * -0.221

Length -0.078 -0.082 -0.082 -0.261 *** -0.238 *** -0.235 *** -0.372 *** -0.345 *** -0.332 *

1600

400 800 1200

400

400 800 1200

800

400 800 1200
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Table 25. Original regression results for VR-114 models. The p-values are represented as follows: p < 

0.001 (***), p < 0.01 (**), and p < 0.05 (*). 
Max Road Feature Length

Buffer distance (WCI)

Observations 83 83 83 61 61 61 41 41 41

F 3.527 ** 3.169 * 3.318 ** 4.129 ** 2.753 * 3.054 * 3.896 ** 3.070 * 1.785

Adjusted R2 0.134 0.117 0.124 0.207 0.127 0.146 0.266 0.206 0.089

Coefficients

AADT -0.068 -0.081 -0.048 0.070 0.043 0.007 -0.013 -0.010 0.064

WCI 0.336 ** 0.304 * 0.331 ** 0.522 *** 0.411 * 0.408 ** 0.715 *** 0.674 ** 0.442

Sinuosity 0.159 0.178 0.182 0.121 0.127 0.146 -0.051 -0.057 -0.027

Slope -0.103 -0.096 -0.099 -0.326 ** -0.301 * -0.284 * -0.408 * -0.395 * -0.329

Length -0.186 -0.190 -0.186 -0.260 * -0.230 -0.238 -0.579 ** -0.575 ** -0.390 *

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 
 

 

 
Table 26. Spatial regression results for VR-114 models. The p-values are represented as follows: p < 

0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Rho -0.860 -0.910 -0.927

LR 3.297 3.643 3.840

AIC 230.3 231.6 230.7

AIC for LM 231.6 233.2 232.5

Coefficients

AADT -0.208 -0.227 -0.198

WCI 0.281 * 0.250 * 0.280 *

Sinuosity -0.161 -0.177 -0.181

Slope -0.068 -0.061 -0.063

Length -0.206 * -0.211 * -0.208 *

400

400 800 1200

 

 

 

 

Roadway-specific OLS regression models using roads with a larger maximum 

feature length best explained the variation in WVCD density. Of the OLS regression 

models, variation in WVCD was best explained on the I-91 roadway. The resulting R2 

values were generally similar to the other roadway models for the 400 m maximum road 
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length models, but appreciably higher in the 800 m and 1,600 m maximum road length 

models.  

The I-91 and VR-114 OLS models were not improved by the inclusion of the 

lagged values in the spatial lag models. Spatial dependence was insignificant (p > 0.05), 

which was not unexpected because the LR tests were not significant (p > 0.05). An 

exception to this trend were the 1,600 m maximum road length spatial regression models 

of I-91. For these models, spatial dependence was significant (p < 0.05) and the model fit 

was improved by the inclusion of the lagged values. Overall, AIC was lower than the 

AIC for the OLS models for all spatial regression models, indicating an improved model 

fit from the OLS regression models.  

Results were variable across the three different roadways in VT, but had some 

similarity with the results of the all roads models. For WCI, the results were semi-

consistent across the roadway-specific models and congruent with the results of the all 

roads models. Specifically, WCI had a positive, significant relationship with WVCD in 

22 of 27 models. The results for AADT were not as strong in the roadway-specific 

models, showing a significant relationship with WVCD in only 7 of 27 models. 

Surprisingly, the direction of the relationship between AADT and WVCD was negative 

when significant, meaning that an increase in traffic volume was associated with a 

decrease in collision density.  

The results for Sinuosity were largely insignificant across the roadway-specific 

models, with an exception in the negative results of the three 800 m max road feature 

length models for I-91. As Sinuosity captures the “curviness” of a road segment, this 
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relationship can be interpreted inversely; WVCD is slightly higher on straighter roads, 

which may be due to higher average vehicle speeds on these roads. Slope was significant 

in 19 of 27 models. Interestingly, in this set of models, while the directionality of the 

relationship between Slope and WVCD was consistent with the all roads models 

(negative), the magnitude of the relationship with was much higher, meaning changes in 

the Slope along these main roadways had a much more pronounced effect on WVCD 

than in the all roads models.  

The control variable for Length was statistically significant (p < 0.05) and 

negatively related to WVCD in 22 out of 27 regression models. Exceptions in 

significance were all three 400 m max road feature length models for US-2 and two of the 

800 m max road feature length models for VR-114. In all significant regression models, 

Length had the highest or second highest impact on WVCD. As stated previously, the 

negative relationship was not surprising. As with the all roads models, these results 

confirmed the importance of controlling for variations in road feature length. 

Models of Functional Roadway Classes 
Results of the F7, F6, F2, and F1 regression models are presented in Tables 27, 

29, 31, and 33 (OLS) and Tables 28, 30, 32, and 34 (Spatial Regression). Similar to the 

previous results, spatial regression models were only presented when the residuals of the 

OLS regression models demonstrated significant spatial autocorrelation. For F7, all nine 

of the OLS models were replaced by spatial regression models. Six of the F6 models 

demonstrated significant spatial autocorrelation and were replaced by spatial regression 

models. All nine of the F2 OLS models were replaced by spatial regression models. 
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Seven of the F1 OLS regression models demonstrated significant spatial autocorrelation 

and were replaced by spatial regression models. As stated previously, spatial regression 

models took the place of their OLS counterparts. Therefore, OLS and spatial regression 

models were used in the following description of the results as appropriate. 

 

 

 
Table 27. Original regression results for Functional 7 models. The p-values are represented as 

follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 
Max Road Feature Length

Buffer distance (WCI)

Observations 340 340 340 299 299 299 256 256 256

F 7.651 *** 6.643 *** 7.512 *** 12.880 *** 10.680 *** 13.500 *** 20.950 *** 18.320 *** 16.610 ***

Adjusted R2 0.089 0.077 0.088 0.166 0.140 0.173 0.281 0.254 0.234

Coefficients

AADT 0.043 0.017 0.039 0.052 0.016 0.066 0.034 -0.008 -0.024

WCI 0.313 *** 0.277 *** 0.306 *** 0.353 *** 0.288 *** 0.368 *** 0.421 *** 0.353 *** 0.314 ***

Sinuosity -0.059 * -0.051 -0.054 * -0.100 * -0.104 * -0.106 ** -0.152 *** -0.145 *** -0.146 ***

Slope -0.074 -0.058 -0.063 -0.103 -0.076 -0.082 -0.094 -0.071 -0.064

Length -0.172 ** -0.176 ** -0.177 ** -0.333 *** -0.326 *** -0.345 *** -0.460 *** -0.435 *** -0.425 ***

1600

400 800 1200

400

400 800 1200

800

400 800 1200

  

 

 

 
Table 28. Spatial regression results for Functional 7 models. The p-values are represented as follows: 

p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Rho 0.383 *** 0.397 *** 0.388 *** 0.383 *** 0.391 *** 0.373 *** 0.417 *** 0.420 *** 0.417 ***

LR 20.991 *** 22.846 *** 21.73 *** 22.627 *** 23.298 *** 21.302 *** 29.739 *** 29.584 *** 28.582 ***

AIC 921.6 924.42 921.6 780.8 789.4 779.5 621.7 631.5 639.0

AIC for LM 940.6 945.3 941.3 801.4 810.7 798.8 649.4 659.1 665.58

Coefficients

AADT 0.041 0.021 0.038 0.062 0.029 0.072 0.059 0.020 0.001

WCI 0.273 *** 0.248 *** 0.270 *** 0.317 *** 0.257 *** 0.326 *** 0.388 *** 0.323 *** 0.281 ***

Sinuosity 0.044 0.036 0.039 0.067 0.070 0.073 * 0.100 ** 0.093 ** 0.094 *

Slope -0.066 -0.053 -0.057 -0.095 -0.071 -0.076 -0.084 -0.062 -0.055

Length -0.175 *** -0.177 *** -0.177 *** -0.334 *** -0.328 *** -0.344 *** -0.468 *** -0.446 *** -0.435 ***

1600

400 800 1200

400

400 800 1200

800

400 800 1200
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Table 29. Original regression results for Functional 6 models. The p-values are represented as 

follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*).

Max Road Feature Length

Buffer distance (WCI)

Observations 231 231 231 210 210 210 181 181 181

F 7.805 *** 7.316 *** 7.359 *** 17.030 *** 15.610 *** 15.690 *** 22.310 *** 20.940 *** 19.930 ***

Adjusted R2 0.129 0.121 0.122 0.277 0.259 0.260 0.372 0.357 0.345

Coefficients

AADT -0.181 * -0.207 ** -0.223 *** -0.077 -0.123 -0.121 -0.088 -0.126 -0.182 *

WCI 0.202 * 0.164 * 0.159 ** 0.282 *** 0.214 ** 0.223 ** 0.319 *** 0.261 ** 0.195 **

Sinuosity 0.017 0.015 0.010 -0.009 -0.008 -0.017 0.024 0.030 0.025

Slope -0.084 -0.076 -0.078 -0.110 * -0.102 * -0.108 * -0.142 ** -0.128 * -0.112 *

Length -0.229 *** -0.230 *** -0.238 *** -0.491 *** -0.487 *** -0.496 *** -0.596 *** -0.588 *** -0.582 ***

1600

400 800 1200

400

400 800 1200

800

400 800 1200

  

 

 

 
Table 30. Spatial regression results for Functional 6 models. The p-values are represented as follows: 

p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

 

Max Road Feature Length

Buffer distance (WCI)

Rho 0.222 * 0.220 * 0.213 * 0.279 ** 0.278 ** 0.278 **

LR 4.665 * 4.523 * 4.239 * 8.547 ** 8.345 ** 8.074 **

AIC 533.1 538.4 538.5 430.7 435.3 438.9

AIC for LM 535.7 541.0 540.7 437.3 441.6 445.0

Coefficients

AADT -0.036 -0.082 -0.085 -0.036 -0.072 -0.129

WCI 0.282 *** 0.214 *** 0.217 ** 0.322 *** 0.267 *** 0.200 *

Sinuosity 0.002 0.002 0.012 -0.022 -0.029 -0.023

Slope -0.105 * -0.097 * -0.102 -0.122 * -0.108 * -0.092

Length -0.495 *** -0.491 *** -0.499 *** -0.589 *** -0.583 *** 0.576 ***

800

400 800 1200

1,600

400 800 1200
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Table 31. Original regression results for Functional 2 models. The p-values are represented as 

follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 
Max Road Feature Length

Buffer distance (WCI)

Observations 168 168 168 145 145 145 108 108 108

F 4.820 *** 5.094 *** 4.895 *** 6.526 *** 6.216 *** 6.598 *** 7.172 *** 6.503 *** 6.506 ***

Adjusted R2 0.103 0.109 0.104 0.161 0.153 0.163 0.224 0.205 0.205

Coefficients

AADT -0.174 -0.171 -0.177 * -0.189 -0.198 -0.189 -0.234 * 0.251 * -0.250 *

WCI 0.226 ** 0.242 *** 0.231 ** 0.208 ** 0.184 ** 0.211 ** 0.262 *** 0.214 ** 0.214 **

Sinuosity -0.038 -0.045 -0.044 -0.069 -0.072 -0.069 0.034 0.035 0.037

Slope -0.149 ** -0.152 ** -0.154 * -0.199 ** -0.194 ** -0.200 ** -0.189 ** -0.188 ** -0.190 *

Length -0.067 -0.066 -0.059 -0.195 *** -0.187 *** -0.180 *** -0.284 *** -0.275 ** -0.270 **

1600

400 800 1200

400

400 800 1200

800

400 800 1200

  

 

 

 
Table 32. Spatial regression results for Functional 2 models. The p-values are represented as follows: 

p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Rho 0.360 ** 0.365 ** 0.360 ** 0.424 *** 0.428 *** 0.430 *** 0.372 *** 0.375 *** 0.372 ***

LR 9.139 ** 9.476 ** 9.134 ** 16.178 *** 16.437 *** 16.802 *** 12.25 *** 12.246 *** 12.008 ***

AIC 459.4 457.8 459.1 379.9 380.9 379.0 276.5 279.2 279.42

AIC for LM 466.5 465.3 466.2 394.1 395.4 393.8 286.8 289.5 289.43

Coefficients

AADT -0.095 -0.090 -0.098 -0.081 -0.086 -0.076 -0.132 -0.145 -0.147

WCI 0.221 ** 0.240 ** 0.225 ** 0.199 ** 0.182 ** 0.210 ** 0.262 *** 0.222 *** 0.217 **

Sinuosity 0.008 0.015 0.014 0.040 0.043 0.039 -0.015 -0.014 -0.017

Slope -0.148 ** -0.152 ** -0.154 ** -0.185 ** -0.180 ** -0.187 ** -0.178 ** -0.177 ** -0.180 *

Length -0.042 -0.041 -0.035 -0.157 *** -0.149 *** -0.143 *** -0.251 *** -0.244 *** -0.238 **

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 
 

 

 



47 

 

Table 33. Original regression results for Functional 1 models. The p-values are represented as 

follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 
Max Road Feature Length

Buffer distance (WCI)

Observations 252 252 252 216 216 216 171 171 171

F 4.084 ** 5.104 *** 5.616 *** 8.328 *** 10.170 *** 11.950 *** 13.650 *** 15.600 *** 15.410 ***

Adjusted R2 0.058 0.076 0.084 0.146 0.176 0.203 0.271 0.300 0.298

Coefficients

AADT 0.047 0.045 0.029 0.081 0.076 0.049 0.153 * 0.134 * 0.099

WCI 0.190 ** 0.232 *** 0.245 *** 0.250 *** 0.305 *** 0.340 *** 0.430 *** 0.469 *** 0.442 ***

Sinuosity 0.044 0.049 0.044 -0.003 0.002 -0.008 0.040 0.030 0.005

Slope -0.149 * -0.147 ** -0.144 ** -0.173 ** -0.173 ** -0.182 ** -0.189 ** -0.179 ** -0.173 **

Length -0.191 ** -0.195 *** -0.190 *** -0.339 *** -0.353 *** -0.355 *** -0.519 *** -0.558 *** -0.521 ***

1600

400 800 1200

400

400 800 1200

800

400 800 1200

 
 

 

 
Table 34. Spatial regression results for Functional 1 models. The p-values are represented as follows: 

p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

Rho 0.369 *** 0.347 ** 0.391 *** 0.361 *** 0.354 *** 0.331 *** 0.319 **

LR 11.421 *** 9.967 ** 14.493 *** 12.154 *** 14.186 *** 12.395 *** 11.163 **

AIC 698.6 695.3 574.4 569.0 426.5 421.4 423.5

AIC for LM 708.0 703.3 586.9 579.1 438.7 431.8 432.7

Coefficients

AADT 0.045 0.043 0.074 0.072 0.119 0.104 0.074

WCI 0.159 * 0.194 ** 0.190 ** 0.241 ** 0.363 *** 0.398 *** 0.369 ***

Sinuosity -0.034 -0.038 0.032 0.026 -0.053 -0.043 -0.019

Slope -0.144 * -0.142 ** -0.164 ** -0.165 ** -0.168 ** -0.161 ** -0.155 *

Length -0.203 *** -0.206 *** -0.333 *** -0.345 *** -0.511 *** -0.544 *** -0.509 ***

1600

400 800 1200400 800 400 800

400 800

 
 

 

 

Like the all roads and roadway-specific models, explanation for the variation in 

WVCD in the OLS regression models improved when using roads with a larger 

maximum feature length. Of all the functional roadway class models, variation in WVCD 

was best explained in the F6 models. For all the spatial regression functional class 

regression models, spatial dependence was significant and the inclusion of the lagged 
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values improved model fit since the LR tests were significant. All spatial regression 

models had a lower AIC than the AIC for the OLS models, indicating an improved model 

fit from the OLS regression.  

The results for each of the independent variables were somewhat consistent across 

the functional roadway class models, similar to the results of the all roads and roadway-

specific regression models. As with previous models, WCI had a positive, significant 

relationship with WVCD in all models. Surprisingly, AADT was only significant in 3 of 

the 36 functional class regression models, specifically the three 400 m max road feature 

length F6 models. In these three models, AADT had a negative relationship with WVCD, 

which was also observed for 7 of the I-91 and US-2 OLS regression models.  

The results for Sinuosity were insignificant in of 32 the 36 functional roadway 

class models. Exceptions in significance were the 1,200 m buffer distance of the 800 m 

max road feature length model and three 1,600 m max road feature length models for F7. 

Slope had a negative, significant relationship with WVCD in 22 of the 36 functional 

roadway class models. It was not significant in the spatial regression F7 models, the 400 

m max road feature length original regression models for F6, and the 1,200 m buffer 

distance of the 800 m and 1,600 max road feature length spatial regression models. The 

negative relationship between Slope and WVCD was consistent with the all roads and 

road-specific models, but the magnitude of the relationship in the F2 and F1 spatial 

regression models was much higher than in the all roads spatial regression models. 

 In 33 out of 36 regression models, the control variable for Length was 

statistically significant (p < 0.05) and negatively related to WVCD. Exceptions in 
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significance were all three 400 m max road feature length regression models for F2. As 

with the all roads and roadway-specific regression models, Length had the highest or 

second highest impact on WVCD compared to the other coefficients and the negative 

relationship was not surprising. These results conclusively confirmed the importance of 

controlling for variations in road feature length. 

Summary 
Each of the independent variables affected the probability of a wildlife-vehicle 

collision in the multiple regression models as summarized in Table 35. AADT generally 

did not demonstrate a significant relationship with WVCD; when the results did show 

significance, the relationship was nearly perfectly balanced between positive and 

negative. WCI had the most consistent relationship with WVCD, demonstrating a strong, 

positive relationship in 67 of 72 models. Sinuosity largely had little effect on WVCD, as 

it was only significant in 10 of 72 models. In contrast, Slope and Length had consistently 

negative relationships with WVCD; each demonstrated significant results in more than 50 

of the 72 models. 

 

 

 
Table 35. Summary of multiple regression models. The p-values considered to be significant were p < 

0.05. 

Coefficients Total Significant Positive Significant Negative Insignificant

AADT 72 9 10 53

WCI 72 67 0 5

Sinuosity 72 7 3 62

Slope 72 0 51 21

Length 72 0 61 11  
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DISCUSSION 

The regression models explained a relatively low, but significant portion of the 

variability of the observed rate of wildlife-vehicle collisions. Generally, the predictive 

power of the models was greater for the models using roads data with a longer maximum 

segment length. The models for I-91 had the highest predictive power, with the 1,600 m 

maximum road length models accounting for 35-40% of the variation in collision density. 

The directionality and magnitude of each relationship between AADT, WCI, Sinuosity, 

Slope, and Length and WVCD was dependent on the location and functional 

classification of the road. 

The models may have been affected by the nature of the dataset used in the 

analysis. As the collision data in VT were collected based on opportunity, it does not 

represent a complete data set (Austin et al. 2006). Some studies caution that WVCs are 

underreported and therefore any reports should be considered minimum estimates pf the 

true number of collisions (Bissonette and Kassar 2008; Brockie et al. 2009; Mountrakis 

and Gunson 2009). However, Snow et al. (2015) observed that predicted relationships 

between conditions and moose-vehicle collisions remained robust until underreporting of 

collisions exceeded 70%. For this research, the percent of unreported collisions was 

unknown, but underreporting in some areas of VT was acknowledged by Austin et al. 

(2006).  
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The use of wildlife crossing areas based on predicted habitat suitability may have 

also affected the models. However, Clevenger et al. (2002), compared field empirical 

models to those based on expert-opinion and literature review and concluded expert-

opinion and literature-based models were suitable replacements for empirical models. 

While models using field-collected data would be preferable, time or financial constraints 

on collecting such data may prevent that from being possible (Barthelmess 2014; 

Clevenger et al. 2002; Mata et al. 2008). The significant portion of the WVCD variability 

explained by the predicted WCI affirms that prediction-based data may be successfully 

used to explain variation in wildlife-vehicle collisions. 

Collisions will occur where wildlife gather to cross roads as predicted by suitable 

habitat (Farmer and Brooks 2012). The findings of this study confirm this expectation as 

the wildlife-crossing index was found to be a significant, positive predictor of the rate of 

wildlife-vehicle collisions in 67 of the 72 models that were constructed for this analysis. 

Based on the standardized coefficients from the models, WCI had a strong effect 

compared with the other factors in the models. Interestingly, the results of the regression 

models did vary across the 400, 800, and 1,200 m buffer distances from the roads to 

calculate WCI. The models using the 1,600 m buffer distance WCI appear to be the 

strongest (highest coefficient in 15 of 16 model sets), which suggests that habitat 

suitability outside of the immediate vicinity of the road does potentially affect where 

wildlife will cross roads; hence, only considering habitat suitability near to the roadway 

(e.g., within 400 m) may not be prudent for predicting where collisions will occur. The 

extent of habitat suitability that should be considered may rely on the range of movement 
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specific to a species (Danks and Porter 2010; Finder et al. 1999). It may also depend on 

the presence of pre-established migration routes, which may only be detectible using a 

larger buffer distance (Austin et al. 2006; Clevenger et al. 2015). Future research is 

warranted to better understand the how relationship between distance (from the road) and 

habitat suitability affects the ability to accurately predict wildlife-vehicle collisions. 

Specifically, this provides an opportunity that is well suited for GIS-based analysis, such 

that numerous distance measurements can be examined with relatively low costs. 

While collision data may be used to identify wildlife crossing areas, some would 

be missing because of the opportunistic nature of many collision data sources. In this 

study, a GIS-based method was implemented to determine a wildlife-crossing index value 

based on habitat suitability near roads. As the results demonstrate that changes in the 

wildlife-crossing index are strongly related with wildlife-vehicle collision density, it 

behooves those working on collision mitigation efforts to make use of both pieces of 

information. Validation is a consistent issue across studies predicting wildlife crossing 

areas or wildlife-vehicle collisions (Clevenger et al. 2002; Kaminski et al. 2013; Lewis et 

al. 2011). Given the nature of the data available, this research struggled with the same 

issue. One way to extend the findings of this research would be to use the model results 

to predict the locations of wildlife-vehicle collisions along sections of roads in VT and 

conduct field surveys to validate the predicted sites. 

Interestingly, traffic volume was not a consistently strong predictor of wildlife-

vehicle collision density. This result contradicted previous research that has shown traffic 

volume to have the greatest impact on wildlife of all road-based threats (Eberhardt et al. 
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2013; Gunson et al. 2011; Jaarsma et al. 2006; Jaeger et al. 2005). While traffic volume 

was a significant, positive predictor in the all roads models, the magnitude of its effect on 

collision density was much smaller than the wildlife crossing index. The results of the 

major roadway-specific models demonstrated highly mixed results. For the I-91 and VR-

114 models, traffic volume was either insignificant or not strongly significant in the 

models. In the US-2 models, traffic volume was a significant predictor, but demonstrated 

a negative relationship with collision density. In the functional classification models, 

traffic volume was not a significant predictor at all, except for the 400 m maximum road 

length F6 models. While somewhat confusing, these results do provide evidence that the 

relationship between wildlife-vehicle collisions and traffic density may be more complex 

and nuanced than a simple positive relationship (i.e., more vehicles on a road increases 

the chance of a collision). Specifically, increased traffic volume has been observed to 

increase road avoidance for some species, preventing any road-crossing attempts (Danks 

and Porter 2010; Jaarsma et al. 2006). Further, Danks and Porter (2010) observed that 

high volumes of traffic increased the probability of wildlife-vehicle collisions on roads 

having lower speed limits and decreased the probability on roads having higher limits. 

Importantly, while traffic volume may indeed affect the probability of a wildlife-vehicle 

collision, the directionality and importance of this relationship will likely be variable 

depending on location, animal behavior, and road characteristics. This research showed 

highly mixed results across models, thus further examination of how traffic volume 

affects collisions across may help to disentangle this complex relationship. 
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As spatial data on vehicle speed proved difficult to obtain, two road 

characteristics that affect a driver’s speed and visibility were used instead in this research 

(Clevenger et al. 2003; Klocker et al. 2006). Previous research has found the sinuosity of 

a road to be both a significant and insignificant predictor of wildlife-vehicle collisions 

(Barthelmess 2014; Klocker et al. 2006). Barthelmess (2014) had noted the maximum 

length of a road segment might affect the significance of sinuosity as a predictor variable. 

Specifically, this is because the sinuosity calculation uses the road segment length in the 

calculation and is potentially influenced by scale. Different maximum lengths of the road 

segments were evaluated in this research and 7 of the 10 (70%) models where sinuosity 

was a significant predictor had maximum road segment lengths of 800 m. Despite the 

evaluation of different maximum road segment lengths, sinuosity was largely an 

insignificant predictor of wildlife-vehicle collisions though and may not be capturing the 

nature of the driving conditions along each road feature. In contrast, the slope of a road 

was a consistently significant predictor of wildlife-vehicle collisions, whereby collisions 

increased as the slope decreased. This observation agreed with the results of Barthelmess 

(2014) and Clevenger et al. (2003). Slope was a significant predictor across the models, 

but the magnitude of its effect on collisions was highly variable. This was particularly 

evident among the individual roadways and functional classifications models. The 

variation in magnitude most likely is related to changes in driver visibility or speed; 

however, this relationship was not examined. A future comparison of how sinuosity and 

slope affect vehicle speed could potentially elicit a more complete understanding of how 
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these three predictors are related to each other, as well as their effect on wildlife-vehicle 

collisions. 

The results of the robustness test on the maximum road segment length in the 

roads data provide another interesting finding. In the all roads, the roadway-specific, and 

functional classification data, the predictive power of the models generally increased as 

the maximum segment length increased from 400 to 1,600 m. This finding suggests the 

presence of the Modifiable Areal Unit Problem (MAUP). The MAUP describes the 

scenario when a change in the “partitioning scheme” of spatial data affects the results of a 

statistical analysis (Openshaw and Taylor 1979). In this case, while the data are not areal 

units, varying the maximum length of the segments in the roads data did have a very clear 

effect on the model results, even when segment length is used as a control variable in the 

model. While these results may be simply due to central tendency leveling occurring in 

the larger spatial features (longer road segments), they also indicate that the spatial 

variation in wildlife-vehicle collisions may operate at a larger scale (e.g., the width of 

wildlife crossing areas).  

The MAUP is commonly present in analysis using spatial data and aggregated 

units. Therefore, prior to a robustness analysis, the maximum lengths of the road 

segments should be determined by ecology or wildlife managers. Wildlife may cross 

roads at specific points because of an existing wildlife corridor (Austin et al. 2006). 

Depending on the size of road segment, multiple corridors or crossing locations may be 

captured by a single segment. This presents a challenge to management strategies if 

policymakers are trying to target individual crossing locations. Mitigation efforts are 



56 

 

dependent on the type of wildlife and crossing location (Mata et al. 2008). This research 

demonstrated very clearly that the maximum road segment length in the data affected the 

results. While only three maximum lengths were tested here, a more expansive 

examination of how maximum road segment length affects the observed relationships 

with collision density is warranted in further studies. While initial selection of the length 

should be based on the ecology of the wildlife or management strategies, this is another 

opportunity in which GIS-based analysis can assist in informing the proper approach.  

Roads were investigated by functional classification as a proxy for road 

characteristics, such as the width and number of lanes of the roads. The relationship 

between each of the independent variables and WVCD differed by functional 

classification, which warrants further investigation. Consideration of additional road 

characteristic-based independent variables in future studies may clarify the differences in 

WVCD between classifications of road. 

By evaluating wildlife-vehicle collisions for all roads in VT as well as for specific 

roadways and functional classifications, this analysis solidified the importance of 

considering place and classification in understanding the conditions that affect collisions. 

While the wildlife crossing index had a consistently positive and significant effect on 

collision density, the other variables demonstrated varying levels of inconsistency across 

models. Traffic volume and slope showed variation in sign and magnitude (respectively) 

across models. These findings demonstrate that the conditions influence wildlife-vehicle 

collisions are not consistent across space and may be due to specific local characteristics 

of regions or roads. Although this analysis did not investigate the genesis of these 
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variations, the results do highlight the importance of understanding the place-to-place 

variation of these relationships for developing effective prevention or mitigation efforts.  

Limitations 
 There were several limitations to this research. While habitat-based wildlife 

crossing areas, traffic density, sinuosity, and slope are commonly used predictors of 

wildlife-vehicle collisions, further analysis should consider additional conditions: the 

presence of median strips, the speed of vehicles the width and height of a road, habitat 

diversity, or the number of the road lanes (Clevenger et al. 2003; Mata et al. 2004; Malo 

et al. 2005). Some of these conditions may be collinear or linked back to the functional 

classification of a road. However, additional conditions describing animal abundance 

near roads, high road traffic volume, and reduced driver awareness may explain a larger 

portion of the variability of the observed rate of wildlife-vehicle collisions (Farmer and 

Brooks 2012; Seiler 2005). Notably though, time and cost are the main drivers of GIS-

based analysis for wildlife-vehicle collisions. Obtaining data for these additional 

conditions as spatial layers may not be easy or even possible for some study areas. Any 

future research should consider standardizing the procurement and evaluation of each 

theoretical condition as one of its objectives, as the previous literature demonstrated a 

high amount of variation in attempts to measure or model them using existing data.  

This research examined collisions over a long temporal period and did not 

incorporate how temporal factors might have an effect on the findings. Wildlife 

populations in some areas may have declined to the extent that crossing attempts rarely or 

no longer occurred (Clevenger et al. 2003). However, without extensive historical data, it 
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is difficult to account for the effect of past events. One resolution to this issue and an 

avenue for future research is to extend this study using a robustness analysis that accounts 

for time by comparing model results among decades or at different time scales (e.g., one 

year worth of collisions). The relationships between the evaluated conditions and 

wildlife-vehicle collisions may also vary by season and species (Clevenger et al. 2003; 

Grilo et al. 2009). However, the methods used in this research were partly driven by 

suitability for policymakers and state conservation efforts, which is why it was conducted 

at the landscape scale, for large mammals, and over a long-time period. While a more in-

depth examination of the temporal aspects discussed here but not examined (length of 

time period and seasonality) would likely provide additional information, the results of 

this research do provide a base from which future studies focused on targeted areas or 

species can be launched. 
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CONCLUSION 

Successful mitigation and recovery efforts have the potential to alleviate the 

negative consequences for wildlife caused by increasing road infrastructure. As these 

efforts are costly and time-intensive, extensive consideration is required to determine the 

sites at which action should be taken (Clevenger et al. 2002; Clevenger 2005; Mata et al. 

2008). The ability to predict and verify these sites using GIS has dramatically improved 

mitigation efforts (Clevenger et al. 2002; Clevenger 2005).  

Predicting wildlife-vehicle collision sites requires an understanding of which 

landscape and road conditions contribute to the occurrence of collisions. Using GIS 

capabilities, this research demonstrated that road traffic volume, wildlife crossing areas 

based on habitat suitability, and specific road characteristics do help to explain the 

variation in wildlife-vehicle collisions; however, their effects did vary across the models, 

highlighting the roadway- and place-specific variation in the processes that lead to 

collisions. Controlling for the length of the road was demonstrated to be of vital 

importance as it had a significant relationship with wildlife-vehicle collisions across the 

models.  

This research extended previous studies of wildlife-vehicle collisions in several 

important aspects. First, wildlife crossing areas were calculated based on habitat 

suitability at three separate spatial extents to evaluate whether the results of the statistical 
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analysis were sensitive to changes in extent. Specifically, a wildlife crossing index value 

was calculated based on habitat suitability within 400, 800, and 1,200 meters (m) of each 

spatial line feature used to represent roads. Second, this study acknowledged that the 

length of the road features might have an influence on the statistical results. Therefore, 

rather than simply using the original data, the road features were split into segments 

based on maximum segment lengths of 400, 800, and 1,600 m.  This split permitted an 

evaluation of the MAUP and whether the statistical results are sensitive to changes in the 

maximum length of the road features in the data. Previous studies did not perform such 

tests of robustness. The significant results of the robustness tests in this research signify 

the need for such consideration in future research. Third, this study compared the 

relationship of wildlife-vehicle collisions and each factor at the state-scale and on 

individual roads, which few previous studies have done (Clevenger et al. 2015; Malo et al 

2004). Lastly, this analysis considered specific classifications of road based on the federal 

highway classification system (FHWA 1989). In previous studies, road type was 

observed to be a positive indicator of wildlife-vehicle collisions (Clevenger et al. 2003; 

Myers et al. 2008). The empirical evidence has been mixed regarding the relationship 

between wildlife-vehicle collisions and each of the conditions tested in this research, 

possibly due to the scale or road classification used by previous studies (Clevenger et al. 

2003; Clevenger et al. 2015; Malo et al 2004; Myers et al. 2008). In this research, 

differences were evident between the whole road network, individual roads, and road 

classifications, demonstrating the need to consider scale and road classification during 

analysis.  



61 

 

This research used a case study set in the state of VT, where state agencies have 

been focusing efforts to address the effects of roads on wildlife (Austin et al. 2010; Kart 

et al. 2005). 

As this study focused on a single state, further analysis is required to extrapolate 

these results for other species or regions. Although an extensive analysis should be 

performed prior to any mitigation effort, this study has demonstrated that it is possible to 

use existing spatial data, GIS, and statistical analysis to better understand the 

relationships among wildlife-vehicle collisions, wildlife habitat suitability, and road 

characteristics. 
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APPENDIX 

Table A.1. Land Use Land Cover (LULC) reclassification scheme for habitat suitability model. 

LULC class Score 

Deciduous Forest 10 

Evergreen Forest 10 

Mixed Forest 10 

Woody Wetlands 10 

Emergent Herbaceous Wetlands 10 

Shrub/Scrub 9 

Grassland/Herbaceous 9 

Cultivated Crops 6 

Pasture/Hay 5 

Barren Land (Rock/Sand/Clay) 5 

Open Water 5 

Developed, Open Space 3 

Developed, Low Intensity 1 

Developed, Medium Intensity 1 

Developed, High Intensity 1 
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Table A.2. Core area reclassification scheme for habitat suitability model. 

Definition Score 

Large core (+10,000 acres) 10 

Medium core (1,500-10,000 acres) 8.875 

Small core (0-1,500 acres) 7.75 

Buffer 1 6.625 

Buffer 2 5.5 

Buffer 3 4.375 

Buffer 4 3.25 

Buffer 5 2.125 

Outside core area and buffer 1 
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Table A.3. Structure density reclassification scheme for habitat suitability model. 

Structure density (houses #/mi2) Score 

0 10 

0.1 - 10 9 

10.1 - 20 8 

20.1 - 30 7 

30.1 - 40 6 

40.1 - 50 5 

50.1 - 60 4 

60.1 - 70 3 

70.1 - 80 2 

80.1 - 5000 1 

 

 

 
  



65 

 

Table A.4. Descriptive statistics for variables used in the I-91 multiple regression models. 

Model variables Minimum Maximum Mean 

Std. 

Devation 

          I-91, 400 m (n=147)         

WVCD 0.003 0.018 0.004 0.003 

AADT 3,417.353 24,180.882 8,920.268 5,023.778 

WCI (400 m) 1.895 8.992 6.322 1.839 

WCI (800 m) 2.110 9.377 6.584 1.786 

WCI (1200 m) 2.074 9.530 6.762 1.730 

Sinuosity 1.000 1.023 1.002 0.004 

Slope 2.000 34.341 11.580 6.770 

Segment length 203.094 400.000 395.045 27.774 

          I-91, 800 m (n=127)         

WVCD 0.001 0.015 0.002 0.002 

AADT 3,417.353 25,997.059 9,228.455 5,220.475 

WCI (400 m) 1.055 9.056 6.104 1.782 

WCI (800 m) 1.028 9.415 6.337 1.724 

WCI (1200 m) 1.247 9.541 6.599 1.768 

Sinuosity 1.000 1.061 1.006 0.011 

Slope 3.000 27.605 11.323 5.190 

Segment length 203.094 800.000 770.169 114.935 

          I-91, 1600 m (n=104)         

WVCD 0.001 0.009 0.001 0.001 

AADT 3,417.353 25,997.059 9,370.057 5,210.005 

WCI (400 m) 1.057 8.832 5.920 1.715 

WCI (800 m) 1.061 9.223 6.139 1.677 

WCI (1200 m) 2.459 9.436 6.385 1.597 

Sinuosity 1.000 1.122 1.015 0.020 

Slope 2.728 22.617 11.630 4.348 

Segment length 271.094 1,600.000 1,499.133 285.150 
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Table A.5. Descriptive statistics for variables used in the US-2 multiple regression models. 

Model variables Minimum Maximum Mean 

Std. 

Devation 

          US-2, 400 m (n=84)         

WVCD 0.003 0.028 0.005 0.004 

AADT 2,190.000 20,322.353 4,055.560 2,857.394 

WCI (400 m) 1.245 9.339 6.828 1.849 

WCI (800 m) 1.618 10.000 7.542 1.628 

WCI (1200 m) 1.578 10.000 7.835 1.571 

Sinuosity 1.000 1.091 1.009 0.016 

Slope 2.000 36.842 10.507 5.891 

Segment length 207.479 400.000 386.569 40.479 

          US-2, 800 m (n=69)         

WVCD 0.001 0.016 0.003 0.003 

AADT 2,190.000 20,322.353 4,193.116 2,901.967 

WCI (400 m) 1.304 9.168 6.748 1.868 

WCI (800 m) 1.498 10.000 7.581 1.554 

WCI (1200 m) 1.626 9.810 7.619 1.569 

Sinuosity 1.000 1.089 1.018 0.021 

Slope 2.056 25.675 8.719 4.476 

Segment length 244.146 800.000 726.304 163.042 

          US-2, 1600 m (n=52)         

WVCD 0.001 0.014 0.002 0.003 

AADT 2,190.000 20,322.353 4,608.829 3,191.386 

WCI (400 m) 1.866 9.161 6.455 1.953 

WCI (800 m) 1.677 10.000 7.352 1.653 

WCI (1200 m) 1.846 10.000 7.666 1.588 

Sinuosity 1.000 1.156 1.033 0.034 

Slope 2.056 28.435 9.275 5.141 

Segment length 244.146 1,600.000 1,323.454 454.370 
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Table A.6. Descriptive statistics for variables used in the VR-114 multiple regression models. 

Model variables Minimum Maximum Mean 

Std. 

Devation 

          VR-114, 400 m (n=83)         

WVCD 0.003 0.028 0.006 0.005 

AADT 604.412 3,734.706 939.245 643.044 

WCI (400 m) 2.557 9.318 7.914 1.409 

WCI (800 m) 3.179 9.635 8.395 1.318 

WCI (1200 m) 4.665 9.747 8.685 1.080 

Sinuosity 0.927 1.000 0.991 0.012 

Slope 2.195 32.732 11.726 6.337 

Segment length 204.479 400.000 393.595 29.802 

          VR-114, 800 m (n=61)         

WVCD 0.001 0.015 0.004 0.003 

AADT 604.412 3,734.706 964.368 659.707 

WCI (400 m) 2.557 9.432 7.813 1.340 

WCI (800 m) 3.1150 9.70 8.299 1.315 

WCI (1200 m) 5.101 9.788 8.736 0.896 

Sinuosity 1.000 1.114 1.018 0.022 

Slope 4.049 26.506 11.242 5.489 

Segment length 285.139 800.000 775.051 88.217 

          VR-114, 1600 m (n=41)         

WVCD 0.001 0.014 0.003 0.003 

AADT 604.412 3,734.706 1,033.271 758.158 

WCI (400 m) 2.557 9.379 7.559 1.420 

WCI (800 m) 3.179 9.662 8.153 1.257 

WCI (1200 m) 3.070 9.763 8.389 1.348 

Sinuosity 1.001 1.106 1.029 0.029 

Slope 4.625 25.891 11.222 4.905 

Segment length 285.139 1,600.000 1,434.070 360.850 
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Table A.7. Descriptive statistics for variables used in the Functional 7 multiple regression models. 

Model variables Minimum Maximum Mean 

Std. 

Devation 

          Functional 7, 400 m 

(n=340)         

WVCD 0.003 0.028 0.004 0.003 

AADT 122.941 4,851.765 1,146.866 854.870 

WCI (400 m) 2.142 9.880 7.625 1.571 

WCI (800 m) 2.237 10.000 8.192 1.415 

WCI (1200 m) 2.907 10.000 8.406 1.334 

Sinuosity 1.000 2.142 1.018 0.068 

Slope 2.000 60.667 11.786 7.451 

Segment length 203.637 400.000 393.456 29.059 

          Functional 7, 800 m 

(n=299)         

WVCD 0.001 0.015 0.002 0.002 

AADT 122.941 4,851.765 1,185.240 877.613 

WCI (400 m) 2.557 9.872 7.528 1.496 

WCI (800 m) 2.856 10.000 8.127 1.342 

WCI (1200 m) 2.856 9.946 8.308 1.241 

Sinuosity 1.000 1.809 1.033 0.0063 

Slope 2.000 53.038 11.112 56.043 

Segment length 215.821 800.000 765.703 110.989 

          Functional 7, 1600 m 

(n=256)         

WVCD 0.001 10.014 0.001 0.002 

AADT 122.941 4,851.765 1270.941 949.910 

WCI (400 m) 2.147 9.881 7.266 1.493 

WCI (800 m) 2.331 10.000 7.911 1.361 

WCI (1200 m) 1.500 10.000 8.178 1.309 

Sinuosity 1.000 1.508 1.049 0.067 

Slope 2.000 54.075 11.121 5.628 

Segment length 215.821 1,600.000 1,427.757 339.255 

 

 

 
  



69 

 

Table A.8. Descriptive statistics for variables used in the Functional 6 multiple regression models. 

Model variables Minimum Maximum Mean 

Std. 

Devation 

          Functional 6, 400 m 

(n=231)         

WVCD 0.003 0.028 0.004 0.003 

AADT 625.294 14,227.647 2,910.024 2,327.265 

WCI (400 m) 1.876 9.850 6.874 1.785 

WCI (800 m) 3.274 9.967 7.555 1.605 

WCI (1200 m) 3.124 9.985 7.916 1.530 

Sinuosity 1.000 1.087 1.016 0.027 

Slope 2.00 101.158 10.845 7.981 

Segment length 214.609 400.000 390.247 34.728 

          Functional 6, 800 m 

(n=210)         

WVCD 0.001 0.025 0.002 0.003 

AADT 625.294 14,227.647 3,051.018 2,384.773 

WCI (400 m) 1.876 9.902 6.778 1.715 

WCI (800 m) 3.158 9.974 7.487 1.535 

WCI (1200 m) 3.056 9.984 7.811 1.472 

Sinuosity 1.000 1.455 1.033 0.048 

Slope 2.000 62.416 10.129 5.226 

Segment length 214.609 800.000 749.530 132.273 

          Functional 6, 1600 m 

(n=181)         

WVCD 0.001 0.025 0.002 0.002 

AADT 625.294 14,227.647 3,249.770 2,481.834 

WCI (400 m) 1.876 9.784 6.578 1.676 

WCI (800 m) 3.282 9.954 7.322 1.472 

WCI (1200 m) 3.954 9.988 7.694 1.410 

Sinuosity 1.000 1.285 1.045 0.048 

Slope 2.056 40.051 10.170 4.265 

Segment length 214.609 1,600.000 1,385.918 388.467 
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Table A.9. Descriptive statistics for variables used in the Functional 2 multiple regression models. 

Model variables Minimum Maximum Mean 

Std. 

Devation 

          Functional 2, 400 m 

(n=168)         

WVCD 0.003 0.028 0.004 0.003 

AADT 2,190.000 12,995.588 5,052.043 2,582.670 

WCI (400 m) 2.285 9.583 7.072 1.675 

WCI (800 m) 2.630 10.000 7.707 1.439 

WCI (1200 m) 1.621 10.000 8.016 1.433 

Sinuosity 1.000 1.236 1.011 0.025 

Slope 2.140 59.744 11.300 7.127 

Segment length 229.967 400.000 393.668 27.283 

          Functional 2, 800 m 

(n=145)         

WVCD 0.001 0.016 0.002 0.002 

AADT 2,190.000 12,995.588 5,219.795 2,540.025 

WCI (400 m) 2.594 9.721 6.918 1.678 

WCI (800 m) 2.885 10.000 7.579 1.456 

WCI (1200 m) 3.869 10.000 7.859 1.368 

Sinuosity 1.000 1.344 1.027 0.045 

Slope 2.537 53.610 10.507 6.149 

Segment length 244.146 800.000 766.949 110.808 

          Functional 2, 1600 m 

(n=108)         

WVCD 0.01 0.014 0.002 0.002 

AADT 2,190.000 12,995.588 5,534.047 2,615.607 

WCI (400 m) 2.562.670 9.447 6.798 1.559 

WCI (800 m) 2.552 10.000 7.457 1.449 

WCI (1200 m) 1.557 10.000 7.706 1.529 

Sinuosity 1.000 1.562 1.051 0.094 

Slope 3.553 37.225 10.774 5.305 

Segment length 244.146 1,600.000 1,433.181 329.437 
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Table A.10. Descriptive statistics for variables used in the Functional 1 multiple regression models. 

Model variables Minimum Maximum Mean 

Std. 

Devation 

          Functional 1, 400 m 

(n=252)         

WVCD 0.003 0.018 0.004 0.003 

AADT 3,417.353 26,629.412 12,286.370 6,750.259 

WCI (400 m) 1.895 8.992 6.229 1.721 

WCI (800 m) 2.110 9.377 6.612 1.655 

WCI (1200 m) 2.074 9.530 6.905 1.608 

Sinuosity 1.000 1.025 1.002 0.004 

Slope 2.000 34.341 11.386 6.217 

Segment length 203.094 400.000 395.897 24.342 

          Functional 1, 800 m 

(n=216)         

WVCD 0.001 0.015 0.002 0.002 

AADT 3,417.353 26,629.412 12,344.450 6,716.599 

WCI (400 m) 1.055 9.056 6.086 1.677 

WCI (800 m) 1.028 9.415 6.445 1.604 

WCI (1200 m) 1.247 9.541 6.853 1.667 

Sinuosity 1.000 1.072 1.007 0.014 

Slope 2.000 27.605 11.506 5.166 

Segment length 203.094 800.000 774.348 102.566 

          Functional 1, 1600 m 

(n=171)         

WVCD 0.001 0.009 0.002 0.001 

AADT 3,417.353 26,629.412 12,246.214 6,704.722 

WCI (400 m) 1.057 8.832 5.943 1.600 

WCI (800 m) 1.061 9.223 6.288 1.563 

WCI (1200 m) 2.459 9.436 6.600 1.506 

Sinuosity 1.000 1.372 1.018 0.034 

Slope 2.000 23.692 11.634 4.530 

Segment length 205.097 1,600.000 1,500.733 290.739 
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Table A.11. Results of Lagrange Multiplier test for the all roads models. The p-values are represented as follows: 

p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

LM-Error 39.334 *** 41.824 *** 39.687 *** 48.633 *** 48.034 *** 47.217 *** 79.506 *** 78.909 *** 77.452 ***

LM-Lag 44.874 *** 46.896 *** 45.434 *** 58.873 *** 58.272 *** 55.573 *** 86.315 *** 83.968 *** 81.889 ***

Robust LM-Error 0.149 0.104 0.227 0.137 0.257 0.0002 1.390 1.635 1.667

Robust LM-Lag 5.689 * 5.177 * 5.974 * 10.378 ** 10.495 ** 8.355 ** 8.198 ** 6.694 ** 6.103 *

1600

400 800 1200

400

400 800 1200

800

400 800 1200
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Table A.12. Results of Lagrange Multiplier test for I-91 models. The p-values are represented as follows: p < 

0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

LM-Error 3.938 * 4.024 * 3.986 * 4.730 * 7.174 **

LM-Lag 3.052 2.986 3.066 5.039 * 6.111 *

Robust LM-Error 1.048 1.307 1.110 0.184 1.099

Robust LM-Lag 1.620 0.269 0.190 0.493 0.036

400

400 800 1200 400 800

1600
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Table A.13. Results of Lagrange Multiplier test for VR-114 models. The p-values are represented as follows: p < 

0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

LM-Error 1.643 1.923 1.862

LM-Lag 2.013 2.208 2.325

Robust LM-Error 0.289 0.147 0.335

Robust LM-Lag 0.659 0.432 0.799

400

400 800 1200
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Table A.14. Results of Lagrange Multiplier test for Functional 7 models. The p-values are represented as 

follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

LM-Error 22.998 *** 26.221 *** 24.285 *** 23.417 *** 25.397 *** 21.354 *** 29.113 *** 30.273 *** 29.709 ***

LM-Lag 25.274 *** 28.078 *** 26.472 *** 26.021 *** 27.099 *** 24.266 *** 33.735 *** 33.487 *** 32.532 ***

Robust LM-Error 0.002 0.010 0.001 0.056 0.138 0.023 0.031 0.144 0.101

Robust LM-Lag 2.776 1.867 2.188 2.659 1.839 2.935 4.653 * 3.358 2.925

1600

400 800 1200

400

400 800 1200

800

400 800 1200
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Table A.15. Results of Lagrange Multiplier test for Functional 6 models. The p-values are represented as 

follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

LM-Error 2.988 3.317 * 3.097 6.818 ** 7.363 ** 7.446 **

LM-Lag 4.6222 * 4.4479 * 4.115 * 8.764 ** 8.537 ** 8.231 **

Robust LM-Error 0.337 0.079 0.047 0.000004 0.069 0.147

Robust LM-Lag 1.972 1.210 1.066 1.946 * 1.244 0.932

400 800 1200

800 1600

400 800 1200
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Table A.16. Results of Lagrange Multiplier test for Functional 2 models. The p-values are represented as 

follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

LM-Error 11.950 *** 12.458 *** 11.024 *** 20.269 *** 21.785 *** 22.510 *** 14.517 *** 15.048 *** 14.911 ***

LM-Lag 10.396 ** 10.887 *** 10.561 ** 20.775 *** 21.295 *** 21.771 *** 14.719 *** 14.871 *** 14.700 ***

Robust LM-Error 1.645 1.677 0.494 0.350 0.799 1.000 0.424 0.524 0.517

Robust LM-Lag 0.091 0.107 0.031 0.856 0.310 0.261 0.626 0.347 0.306

1600

400 800 1200

400

400 800 1200

800

400 800 1200
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Table A.17. Results of Lagrange Multiplier test for Functional 1 models. The p-values are represented as 

follows: p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*). 

Max Road Feature Length

Buffer distance (WCI)

LM-Error 16.945 *** 13.296 *** 18.817 *** 13.165 *** 16.473 *** 13.326 *** 11.091 ***

LM-Lag 15.925 *** 13.499 *** 20.718 *** 16.771 *** 21.276 *** 18.283 *** 26.116 ***

Robust LM-Error 1.024 0.221 0.025 0.165 0.064 0.108 0.267

Robust LM-Lag 0.004 0.424 1.925 3.771 4.867 * 5.065 * 5.292 *

1600

400 800 1200400 800 400 800

400 800
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