Seasonality of the Tropical Intraseasonal Oscillations: Sensitivity to Mean Background State

Date

2017

Authors

Singh, Bohar

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This study investigates the seasonality of tropical intraseasonal oscillations (TISO) in Earths current climate and its relationship with the inter-hemispherical migration of the climatological mean maximum sea surface temperature (SST) and the tropical core of the low-level westerly wind. TISO is identified with anomalies of atmospheric convection with large spatial scale (10^5 km^2) that characteristically exist on the intra-seasonal time scale (20- 100 days period). A new method for tracking the large spatial scale features of convective anomalies, measured by outgoing long-wave radiation (OLR), is developed, based on a two-stage Kalman filter predictor-corrector method. Two dominant components of TISO (eastward-propagating and northward-propagating) are classified, and it is found that TISO remains active throughout the year, with eastward propagation of TISO events occurring from November to April and northward propagating events occurring from May to October. The eastward events have a phase speed of 4 m/s, while the northward events propagate at 2 m/s in both the Indian and Pacific Ocean basins. A composite analysis of the mean background states (zonal wind, SST and low-level moisture) reveals that the co-occurrence of warm climatological SST and mean westerly wind plays an important role in the direction of propagation and geographical location of TISO. It is hypothesized that the geographical location of TISO occurrences is coupled with SST, moisture and lower tropospheric circulation. The seasonal migration of the mean background state is a potential determinant of the seasonal changes in the characteristics of TISO. A Lagrangian composite analysis with respect to the center of mass of the each convective cloud system was done separately for eastward-propagating TISO events, northward propagating TISO events over the Indian Ocean and northward-propagating TISO events over the west Pacific Ocean. The analysis suggests that the average size of eastward propagating events is 10^6 km^2 and the OLR anomaly at the center of convection is -50 W/m2, and size of northward propagating events is 106 km2 and the OLR anomaly at the center of convection is -45 W/m2. The spatial asymmetry in the mean background state composite moisture, moist static energy, moisture convergence, and vertical velocity all suggest that the development phase of convection lies east of the convection center. A slight shift in moisture anomalies ahead of the convection center and moistening (drying) ahead of (behind) the convection is found in both eastward and northward propagating TISO events.

Description

Keywords

Atmospheric sciences, MJO, Seasonality, SpCAM, TISO, Tracking

Citation