Stability and classification of polygon spaces

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

We study the spaces of closed linkages of line segments in $\R^d$, called polygon spaces, and the action on them by the orthogonal and special orthogonal groups of matrices. A polygon space $V_d(\ell)$ is determined by an ordered list of edge lengths $\ell=(l_1, \ldots, l_n)$ and the dimension $d\geq 2$ of the ambient space. It is well-known \cite{millson} that the space of admissible edge lengths, given by a generalization of the triangle inequalities, is a combinatorial object whose components determine certain features of $V_d(\ell)$ and of the moduli space $M_d(\ell)=V_d(\ell)/SO(d)$. We expand upon this classification program by describing explicitly the variety $V_d(\ell)$ in terms of those components. We define the ``dimension'' of a polygon to be the dimension of the smallest affine space containing the polygon's edges. The interplay between dimension of polygons and the dimension of the ambient space gives a new approach to the study of the moduli spaces $M_d(\ell)$. In particular, we show that these spaces form a directed system for increasing $d$, and that this system stabilizes at $d=n$, where $n$ is the number of edges of the polygons in $V_d(\ell)$. As a tool toward this end we use a ``diagonals'' map that sends a polygon to its ordered list of diagonal lengths, and show that this map is injective on polygons of relatively small dimension. We also take a detailed look at $4$-gons, and construct the spaces $M_d(\ell)$ as $CW$-complexes for all possible $\ell$ and $d$. These constructions expand upon known constructions for low dimension. They also serve as an example of results presented earlier in the paper, and as evidence for conjectures presented later.

Description

Keywords

Citation