Designing Efficient Fraud Behavior Detection Method Based on Linguistic and Knowledge-guided Features for Online Recruitment Fraud

dc.contributor.advisorPurohit, Hemant
dc.contributor.authorAlQurashi, Asmaa Mohammed A
dc.creatorAlQurashi, Asmaa Mohammed A
dc.description.abstractResearch in topics such as fraud detection and prevention have received a lot of attention in the past few years, especially in the field of online recruitment systems. This surge in research activity can be attributed to the significant yearly losses in money, privacy, and sensitive data that are suffered by both job seekers and recruiting firms. A combination of a severe loss and a continued increasing number of victims makes online recruitment fraud a significant and timely research problem. Online Recruitment fraud is a sophisticated process of offering fake job opportunities using online platforms and tools to target job seekers (Vidros et al., 2017). The main goal is to cause loss of privacy for online users, economic damage, or damage to the reputation of the employee. Online recruitment fraud (ORF) is one of the most serious problems in recent times on the Internet, which uses Applicant Tracking Systems (ATS). Over the recent decades, the emergence and consolidation of ATS platforms have been adopted by many employers and organizations. ATS is cloud-based software that businesses and recruiters use to track candidates during the hiring and recruitment process. Utilizing applicant tracking software is primarily intended to streamline the hiring process. The company may be able to hire for several positions at a time and receive hundreds of resumes automatically. Businesses can use this software to filter, manage, and analyze candidates using simple database functionality and even full-service tools. This software stores many candidates' resumes which include their personal information. This thesis investigates novel linguistic and knowledge-based patterns associated with detecting job fraud and leverages a new feature extraction approach for the task of detecting fraudulent job advertisements. A novel features space to improve the detection accuracy of ORF shows improvement over various baselines. Finally, this work publishes comparative results of various feature engineering schemes using different machine learning methods. It conducts a critical analysis of errors by such models to inform future research on this emerging area of ORF in the field of cybersecurity. The application of this research study intends to positively contribute to the online fraud research area and help prevent fraudsters from continuing to deceive people online.
dc.subjectJob Advertisements
dc.subjectLexical Diversity
dc.subjectOnline Recruitment
dc.titleDesigning Efficient Fraud Behavior Detection Method Based on Linguistic and Knowledge-guided Features for Online Recruitment Fraud
dc.typeThesis Information Technology Mason University's of Science in Applied Information Technology


Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
1.55 MB
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
2.52 KB
Item-specific license agreed upon to submission