Docking a Metal Nanoparticle to a Protein Surface
dc.contributor.advisor | Griva, Igor | |
dc.contributor.author | Perkins, Jonathan | |
dc.creator | Perkins, Jonathan | |
dc.date | 2014-11-17 | |
dc.date.accessioned | 2015-02-02T19:18:16Z | |
dc.date.available | 2015-02-02T19:18:16Z | |
dc.date.issued | 2015-02-02 | |
dc.description.abstract | This thesis develops a mathematical and computational methodology for modeling electrostatic interactions between a spherical electrode and the photosynthetic reaction center (PRC) of the Rhodobacter Sphaeroides bacteria. A PRC is a protein-pigment complex capable of photosynthetic reaction, converting light energy into chemical energy. Recent studies suggest it is possible to use PRCs in the construction of next generation photovoltaic devices. Modeling the electrostatic interactions between an electrode and a PRC to find a position that optimizes electron transfer could improve efficiency of technologies that use PRCs to generate electric current. The position is found by minimizing the total electrostatic energy of the PRC-electrode complex. The resulting nonlinear optimization problem can be solved reliably using a Sequential Quadratic Programming algorithm. The model will provide the PRC-electrode structure even as the problem grows in scope. It can be used as a tool for designing future technologies that take advantage of direct electron transfer between electrodes and proteins. | |
dc.identifier.uri | https://hdl.handle.net/1920/9140 | |
dc.language.iso | en | |
dc.subject | Docking | |
dc.subject | Protein | |
dc.subject | Photo voltaic | |
dc.subject | Electrode | |
dc.subject | Method of Images | |
dc.title | Docking a Metal Nanoparticle to a Protein Surface | |
dc.type | Thesis | |
thesis.degree.discipline | Mathematics | |
thesis.degree.grantor | George Mason University | |
thesis.degree.level | Master's | |
thesis.degree.name | Master of Science In Mathematics |