Properties of rings and of ring extensions that are invariant under group action
Date
2015
Authors
Schmidt, Amy Dannielle
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We expand the work in invariant theory inspired by Hilbert's Fourteenth Problem. Given a commutative ring with identity $R$ and a subgroup $G$ of the automorphism group of $R$, the \textit{fixed ring} is $R^G:=\{r\in R\,|\,\sigma(r)=r\;\text{for all}\;\sigma\in G\}$. That is, $R^G$ is the collection of elements of $R$ that are fixed by all automorphisms in $G$. Properties of $R$ inherited by $R^G$ and properties of the extension $R^G\subseteq R$ have been studied extensively. We call properties of $R$ that are inherited by $R^G$ \textit{invariant (under the group action by $G$)}.
Description
Keywords
Mathematics, Fixed ring, Group action, Invariant, Minimal ring extension