Welcome to the new-look MARS. See something that needs attention? Use our "Send Feedback" link at page bottom.
 

Signaling Pathways Involved in Striatal Synaptic Plasticity are Sensitive to Temporal Pattern and Exhibit Spatial Specificity

Date

2013-03-14

Authors

Kim, BoHung
Hawes, Sarah L.
Gillani, Fawad
Wallace, Lane J.
Blackwell, Kim T.

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science

Abstract

The basal ganglia is a brain region critically involved in reinforcement learning and motor control. Synaptic plasticity in the striatum of the basal ganglia is a cellular mechanism implicated in learning and neuronal information processing. Therefore, understanding how different spatio-temporal patterns of synaptic input select for different types of plasticity is key to understanding learning mechanisms. In striatal medium spiny projection neurons (MSPN), both long term potentiation (LTP) and long term depression (LTD) require an elevation in intracellular calcium concentration; however, it is unknown how the post-synaptic neuron discriminates between different patterns of calcium influx. Using computer modeling, we investigate the hypothesis that temporal pattern of stimulation can select for either endocannabinoid production (for LTD) or protein kinase C (PKC) activation (for LTP) in striatal MSPNs. We implement a stochastic model of the post-synaptic signaling pathways in a dendrite with one or more diffusionally coupled spines. The model is validated by comparison to experiments measuring endocannabinoid-dependent depolarization induced suppression of inhibition. Using the validated model, simulations demonstrate that theta burst stimulation, which produces LTP, increases the activation of PKC as compared to 20 Hz stimulation, which produces LTD. The model prediction that PKC activation is required for theta burst LTP is confirmed experimentally. Using the ratio of PKC to endocannabinoid production as an index of plasticity direction, model simulations demonstrate that LTP exhibits spine level spatial specificity, whereas LTD is more diffuse. These results suggest that spatio-temporal control of striatal information processing employs these Gq coupled pathways.

Description

Keywords

Calcium signaling, Depolarization, Glutamate, Biochemical simulations, Neuronal dendrites, Simulation and modeling, Synaptic plasticity, Voltage-gated calcium channels

Citation

Kim B, Hawes SL, Gillani F, Wallace LJ, Blackwell KT (2013) Signaling Pathways Involved in Striatal Synaptic Plasticity are Sensitive to Temporal Pattern and Exhibit Spatial Specificity. PLoS Comput Biol 9(3): e1002953. doi:10.1371/journal.pcbi.1002953