Cloud Computing: Literature Review

Rakibul Hassan
Electrical and Computer Engineering Department
George Mason University
Fairfax, Virginia
rhassa2@gmu.edu

Abstract—Cloud computing has recently emerged as a new paradigm for hosting and delivering services over the Internet. Cloud computing is attractive to business owners as it eliminates the requirement for users to plan ahead for provisioning, and allows enterprises to start from the small and increase resources only when there is a rise in service demand. However, despite the fact that cloud computing offers huge opportunities to the IT industry, the development of cloud computing technology is currently at its infancy, with many issues still to be addressed. In this paper, we present a survey of cloud computing, highlighting its key concepts, architectural principles, state-of-the-art implementation as well as research challenges. The aim of this paper is to provide a better understanding of the design challenges of cloud computing and identify important research directions in this increasingly important area.

Index Terms—cloud, performance, cloud computing, architecture, scale-up, big-data

I. INTRODUCTION

Cloud computing provides a large variety of architectural configurations, such as the number of cores, amount of memory, and the number of nodes. The performance of a workload an application and its input can execute up to 20 times longer or cost 10 times more than optimal. The ready flexibility in cloud offerings has created a paradigm shift. Whereas before an application was tuned for a given cluster, in the cloud the architectural configuration is tuned for the workload. Furthermore, because the cloud has a pay-as-you-go model, each configuration (cluster size VM type) has running cost and execution time. Therefore, a workload can be optimized for least cost or shortest time which are different configurations.

Choosing the right cloud configuration for an application is essential to service quality and commercial competitiveness. For instance, a bad cloud configuration can result in up to 12 times more cost for the same performance target. The saving from a proper cloud configuration is even more significant for recurring jobs [5], [9] in which similar workloads are executed repeatedly. Nonetheless, selecting the best cloud configuration, e.g., the cheapest or the fastest, is difficult due to the complexity of simultaneously achieving high accuracy, low overhead, and adaptivity for different applications and workloads.

II. WHAT IS A CLOUD

A cloud can be defined as the software and services that run on the Internet, instead of locally on a local host system. These software and services can be accessed remotely. Example of cloud services include Netflix, Google Drive, and Microsoft Onedrive.

Also Amazon Web Service, Microsoft Azure, IBM cloud service, Google Cloud service are among the top cloud service provider. Most Common questions that’s need to answered in Cloud Computing are:

- How to setup new infrastructures so that applications are executed repeatedly. Nonetheless, selecting the best cloud configuration, e.g., the cheapest or the fastest, is difficult due to the complexity of simultaneously achieving high accuracy, low overhead, and adaptivity for different applications and workloads.

- How to integrate public cloud applications with in-premise and private cloud applications?
- How to integrate different cloud solutions?
- How to setup new infrastructures so that applications running on them can easily interoperate and move to public cloud, if required?

In this work a brief survey is presented to discuss the present research work addressing all these questions and their probable solutions.

III. WHAT IS CLOUD COMPUTING

A. The NIST Definition of Cloud Computing

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage,
B. Characteristics of Cloud Computing:

- On-demand self-service. A consumer can unilaterally provision computing capabilities, such as server time and network storage, as needed automatically without requiring human interaction with each service provider.
- Broad network access. Capabilities are available over the network and accessed through standard mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, tablets, laptops, and workstations).
- Resource pooling. The providers computing resources are pooled to serve multiple consumers using a multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to consumer demand. There is a sense of location independence in that the customer generally has no control or knowledge over the exact location of the provided resources but may be able to specify location at a higher level of abstraction (e.g., country, state, or datacenter). Examples of resources include storage, processing, memory, and network bandwidth.
- Rapid elasticity. Capabilities can be elastically provisioned and released, in some cases automatically, to scale rapidly outward and inward commensurate with demand. To the consumer, the capabilities available for provisioning often appear to be unlimited and can be appropriated in any quantity at any time.
- Measured service. Cloud systems automatically control and optimize resource use by leveraging a metering capability at some level of abstraction appropriate to the type of service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage can be monitored, controlled, and reported, providing transparency for both the provider and consumer of the utilized service.

According to Amazon, clouds enable 7 transformation of how applications are designed, built and used.

- Cloud makes distributed architectures easy
- Cloud enables users to embrace the security advantages of shared systems
- Cloud enables enterprises to move from scaling by architecture to scaling by command
- Cloud puts a supercomputer into the hands of every developer
- Cloud enables users to experiment often and fail quickly
- Cloud enables big data without big servers
- Cloud enables a mobile ecosystem for a mobile-first world

C. Service Models:

- Software as a Service (SaaS). The capability provided to the consumer is to use the providers applications running on a cloud infrastructure. The applications are accessible from various client devices through either a thin client interface, such as a web browser (e.g., web-based email), or a program interface. The consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, storage, or even individual application capabilities, with the possible exception of limited userspecific application configuration settings.
- Platform as a Service (PaaS). The capability provided to the consumer is to deploy onto the cloud infrastruc-
ture consumer-created or acquired applications created using programming languages, libraries, services, and tools supported by the provider. The consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, or storage, but has control over the deployed applications and possibly configuration settings for the application-hosting environment.

- Infrastructure as a Service (IaaS). The capability provided to the consumer is to provision processing, storage, networks, and other fundamental computing resources where the consumer is able to deploy and run arbitrary software, which can include operating systems and applications. The consumer does not manage or control the underlying cloud infrastructure but has control over operating systems, storage, and deployed applications; and possibly limited control of select networking components (e.g., host firewalls).

Fig. 4 shows the different cloud service models.

D. Deployment Models:

- Private cloud. The cloud infrastructure is provisioned for exclusive use by a single organization comprising multiple consumers (e.g., business units). It may be owned, managed, and operated by the organization, a third party, or some combination of them, and it may exist on or off premises.

- Community cloud. The cloud infrastructure is provisioned for exclusive use by a specific community of consumers from organizations that have shared concerns (e.g., mission, security requirements, policy, and compliance considerations). It may be owned, managed, and operated by one or more of the organizations in the community, a third party, or some combination of them, and it may exist on or off premises.

- Public cloud. The cloud infrastructure is provisioned for open use by the general public. It may be owned, managed, and operated by a business, academic, or government organization, or some combination of them. It exists on the premises of the cloud provider.

- Hybrid cloud. The cloud infrastructure is a composition of two or more distinct cloud infrastructures (private, community, or public) that remain unique entities, but are bound together by standardized or proprietary technology that enables data and application portability (e.g., cloud bursting for load balancing between clouds).

E. Challenges in Cloud Computing

There are several challenges for picking the best cloud configurations for big data analytics jobs.

Complex performance model: The running time is affected by the amount of resources in the cloud configuration in a non-linear way. For instance a regression job on SparkML (with fixed number of CPU cores) sees a diminishing return of running time at 256GB RAM. This is because the job does not benefit from more RAM beyond what it needs. Therefore, the running time only sees marginal improvements. In addition, performance under a cloud configuration is not deterministic. In cloud environments, which is shared among many tenants, stragglers can happen. [6] measured the running time of TeraSort-30GB on 22 different cloud configurations on AWS EC2 five times. In [6] they then computed the coefficient of variation (CV) of the five runs. Their results show that the median of the CV is about 10% and the 90 percentile is above 20%. This variation is not new [9].

Cost model: The cloud charges users based on the amount of time the VMs are up. Using configurations with a lot of resources could minimize the running time, but it may cost a lot more money. Thus, to minimize cost, we have to find the right balance between resource prices and the running time.

Fig. 5 shows the cost of running Regression on SparkML on different cluster sizes where each VM comes with 15 GBs of RAM and 4 cores in AWS EC2. We can see that the cost does not monotonically increase or decrease when we add more resources into the cluster. This is because adding resources...
may accelerate the computation but also raises the price per unit of running time.

The heterogeneity of applications: Diverse set of big-data applications and their resource requirement is another challenge for the cloud computing platform to maximize the performance by providing generalized resources.

IV. LITERATURE SURVEY ON CLOUD COMPUTING RESEARCH

Cloud Computing is a hot research area since couple of years. Good number of papers have been published in this domain. Some state-of-the-art work in cloud computing are described below.

Performance Prediction: There have been a number of recent efforts at modeling job performance in datacenters to support SLOs or deadlines. Techniques proposed in Jockey [9] and ARIA [15] use historical traces and dynamically adjust resource allocations in order to meet deadlines. In Ernest we build a model with no historic information and try to minimize the amount of training data required. Bazaar [12] proposed techniques to model the network utilization of MapReduce jobs by using small subsets of data. In Ernest we capture computation and communication characteristics and use high level features that are framework independent. Projects like MRTuner [16] model MapReduce jobs at very fine granularity and set optimal values for options like memory buffer sizes etc. In Ernest we use few simple features and focus on collecting training data will help us maximize their utility. Finally scheduling frameworks like Quasar [7] try to estimate the scale out and scale up factor for jobs using the progress rate of the first few tasks. Ernest on the other hand runs the entire job on small datasets and is able to capture how different stages of a job interact in a long pipeline.

Query Optimization: Database query progress predictors [14] solve a performance prediction problem similar to Ernest. Database systems typically use summary statistics of the data like cardinality counts to guide this process. Further, these techniques are typically applied to a known set of relational operators. Similar ideas have also been applied to linear algebra operators [11]. In Ernest we use advanced analytics jobs where we know little about the data or the computation being run. Recent work has also looked at providing SLAs for OLTP and OLAP workloads in the cloud and some of the observations in [6] about variation across instance types in EC2 are also known to affect database queries.

Tuning and Benchmarking: Ideas related to experiment design, where we explore a space of possible inputs and choose the best inputs, have been used in other applications like server benchmarking [17]. Related techniques like Latin Hypercube Sampling have been used to efficiently explore file system design space [8]. Autotuning BLAS libraries like ATLAS [19] also solve a similar problem of exploring a state space efficiently.

V. OVERVIEW OF STATE-OF-THE-ART CLOUD COMPUTING LITERATURE

In this section a brief discussion is presented on recently published work on cloud computing.

A. Clearing the Clouds

In this work [8], they observe that scale-out workloads share many inherent characteristics that place them into a distinct workload class from desktop, parallel, and traditional server workloads. They perform a detailed micro-architectural study of a range of scale-out workloads, finding a large mismatch between the demands of the scale-out workloads and today’s predominant processor microarchitecture. They observe significant over-provisioning of the memory hierarchy and core micro-architectural resources for the scale-out workloads. Moreover, continuing the current processor trends will result in further widening the mismatch between the scale-out workloads and server processors. Conversely, they find that the characteristics of scale-out workloads can be leveraged to gain area and energy efficiency in future servers.

The key contributions of this paper are:

- an experimental characterization of performance trade-off of various VM types for realistic workloads across Amazon AWS and Microsoft Azure.
- a novel hybrid offline and online data collection and modeling framework which eliminates the O(n^2) data collection overhead while providing accurate performance predictions across cloud providers.
- a detailed experimental evaluation demonstrating that PARIS accurately estimates multiple performance metrics and their variabilities (P90 values), for several real-world workloads across two major public cloud providers, thereby reducing user cost by up to 45 percent relative to strong baseline techniques.

B. Scout: An Experienced Guide to Find the Best Cloud Configuration

Selecting the best cloud configuration from the service provider is a challenge. Several methods have been proposed to find the best cloud configuration [15], [6], [17], [18], [9].
These methods can be broadly classified into (1) prediction which uses elaborate offline evaluation to generate a machine learning model that predicts the performance of workloads and (2) search-based techniques which successively evaluate configurations looking for one that is near optimal [8, 16]. Prediction, as proposed in PARIS [30], is not reliable because of high variance in prediction results. A search-based method does not require an accurate model but can have a high evaluation cost (measured in terms of configurations evaluated). They choose the search-based method because it better tolerates prediction error and delivers effective solutions. Any search-based method has two aspects.

- Exploration: Gather more information about the search space by executing a new cloud configuration.
- Exploitation: Choose the most promising configuration based on information collected.

Additional exploration incurs higher search cost, and insufficient exploration may lead to sub-optimal solutions. This is the exploration-exploitation dilemma appeared in many machine learning problems. For example, CherryPick requires a good exploration strategy to characterize the search space [6]. In this paper, They argue that it is possible to trade exploration with exploitation without settling for a suboptimal configuration. The central insight of this paper is that the cost of the search for the right cloud configuration can be significantly reduced if They could learn from the historical dataexperiences of finding the right cloud configuration for other workloads. In this paper, They present a SCOUT, which uses historical data to find the best cloud configuration for a workload. In doing so, They (1) enable practitioners to find a near-optimal cloud configuration (2) with a lower search cost than state of the art. Additionally, They answer the following questions about improving the performance of the search-based method and reducing the search-cost. Their key contributions are:

- They propose a novel method, SCOUT, that finds (near) optimal solutions and solves the shortcomings of the prior work.
- They present a novel way to represent the search space, which can be used to transfer knowledge from historical measurements
- They evaluate SCOUT and other state-of-the-art methods using more than 100 workloads on three different data processing systems.
- They make their performance data available for encouraging research of system performance.

C. CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics

CherryPick is a system that leverages Bayesian Optimization to build performance models for various applications, and the models are just accurate enough to distinguish the best or close-to-the-best configuration from the rest with only a few test runs. Our experiments on five analytic applications in AWS EC2 show that CherryPick has a 45-90% chance to find optimal configurations, otherwise near-optimal, saving up to 75% search cost compared to existing solutions.
applications and services on an on-demand basis and at commodity prices. Amazon Web Services offerings are accessible over HTTP, using REST and SOAP protocols. Amazon Elastic Compute Cloud (Amazon EC2) enables cloud users to launch and manage server instances in data centers using APIs or available tools and utilities.

EC2 instances are virtual machines running on top of the Xen virtualization engine [4]. After creating and starting an instance, users can upload software and make changes to it. When changes are finished, they can be bundled as a new machine image. An identical copy can then be launched at any time. Users have nearly full control of the entire software stack on the EC2 instances that look like hardware to them. On the other hand, this feature makes it inherently difficult for Amazon to offer automatic scaling of resources.

EC2 provides the ability to place instances in multiple locations. EC2 locations are composed of Regions and Availability Zones. Regions consist of one or more Availability Zones, are geographically dispersed. Availability Zones are distinct locations that are engineered to be insulated from failures in other Availability Zones and provide inexpensive, low latency network connectivity to other Availability Zones in the same Region.

EC2 machine images are stored in and retrieved from Amazon Simple Storage Service (Amazon S3). S3 stores data as objects that are grouped in buckets. Each object contains from 1 byte to 5 gigabytes of data. Object names are essentially URI pathnames. Buckets must be explicitly created before they can be used. A bucket can be stored in one of several Regions. Users can choose a Region to optimize latency, minimize costs, or address regulatory requirements. Amazon Virtual Private Cloud (VPC) is a secure and seamless bridge between a company's existing IT infrastructure and the AWS cloud. Amazon VPC enables enterprises to connect their existing infrastructure to a set of isolated AWS compute resources via a Virtual Private Network (VPN) connection, and to extend their existing management capabilities such as security services, firewalls, and intrusion detection systems to include their AWS resources. For cloud users, Amazon CloudWatch is a useful management tool which collects raw data from partnered AWS services such as Amazon EC2 and then processes the information into readable, near real-time metrics. The metrics about EC2 include, for example, CPU utilization, network in/out bytes, disk read/write operations, etc.

B. Microsoft Windows Azure platform

Microsoft's Windows Azure platform [3] consists of three components and each of them provides a specific set of features.
services to cloud users. Windows Azure provides a Windows-based environment for running applications and storing data on servers in data centers; SQL Azure provides data services in the cloud based on SQL Server; and .NET Services offer distributed infrastructure services to cloud-based and local applications. Windows Azure platform can be used both by applications running in the cloud and by applications running on local systems. Windows Azure also supports applications built on the .NET Framework and other ordinary languages supported in Windows systems, like C, Visual Basic, C++, and others. Windows Azure supports general-purpose programs, rather than a single class of computing. Developers can create web applications using technologies such as ASP.NET and Windows Communication Foundation (WCF), applications that run as independent background processes, or applications that combine the two. Windows Azure allows storing data in blobs, tables, and queues, all accessed in a RESTful style via HTTP or HTTPS. SQL Azure components are SQL Azure Database and Huron Data Sync. SQL Azure Database is built on Microsoft SQL Server, providing a database management system (DBMS) in the cloud. The data can be accessed using ADO.NET and other Windows data access interfaces. Users can also use on-premises software to work with this cloud-based information. Huron Data Sync synchronizes relational data across various on-premises DBMSs.

C. Google Cloud

Google Cloud [2] is a platform for traditional web applications in Google-managed data centers. Currently, the supported programming languages are Python and Java. Web frameworks that run on the Google App Engine include Django, CherryPy, Pylons, and web2py, as well as a custom Google-written web application framework similar to JSP or ASP.NET. Google handles deploying code to a cluster, monitoring, failover, and launching application instances as necessary. Current APIs support features such as storing and retrieving data from a BigTable non-relational database, making HTTP requests and caching. Developers have read-only access to the filesystem on App Engine.

VII. Conclusion

Several papers studied the performance of big data applications on scale-out platform and clouds [21, 22, 23, 24, 25, 26]. All of these works use performance counters to monitor the performance and behavior of applications. In [27, 28, 29, 30, 31], authors perform a set of comprehensive experiments to analysis the impact of memory subsystem on the performance of data intensive applications running on cloud environment. In [32, 33], author uses compress sensing to improve data movement after finding the performance bottleneck using performance counters. Performance counters also can be used to trace the applications behavior in order to find the malicious behavior [34, 35, 36, 37, 38]. Moreover, there are new approaches to improve the performance of modern computing systems such as hardware acceleration [39, 40, 41, 42], and cloud computing.

Cloud computing has recently emerged as a compelling paradigm for managing and delivering services over the Internet. The rise of cloud computing is rapidly changing the landscape of information technology, and ultimately turning the long-held promise of utility computing into a reality. However, despite the significant benefits offered by cloud computing, the current technologies are not matured enough to realize its full potential. Many key challenges in this domain, including automatic resource provisioning, power management and security management, are only starting to receive attention from the research community. Therefore, I believe there is still tremendous opportunity for researchers to make groundbreaking contributions in this field, and bring significant impact to their development in the industry.

In this paper, I have surveyed the state-of-the-art of cloud computing, covering its essential concepts, architectural designs, prominent characteristics, key technologies as well as research directions. As the development of cloud computing technology is still at an early stage, I hope this work will provide a better understanding of the design challenges of cloud computing, and pave the way for further research in this area.

REFERENCES

