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ABSTRACT
 
 
 

ANALYSIS OF THE RELATIONSHIP BETWEEN PARTIALLY DYNAMIC 
BAYESIAN NETWORK ARCHITECTURE AND INFERENCE ALGORITHM 
EFFECTIVENESS 
 
Stephen J. Cannon, M.S. 
 
George Mason University, 2007 
 
Thesis Director: Dr. Kathryn Blackmond Laskey 
 
 
 
This thesis examines the relationship between the architecture of partially dynamic 

Bayesian networks and the effectiveness of various inference algorithms using these 

Bayesian networks.  The algorithms studied were the symbolic probabilistic inference 

algorithm, the particle filter inference algorithm, and Boyen-Koller inference algorithm.  

The purpose of this research is to provide empirical support for theoretical models of the 

speed and accuracy of each of these inference algorithms as well as to develop statistical 

models that utilize computationally and conceptually simple factors.  The author shows 

that the empirical results for the speed of inference of each inference algorithm generally 

agrees with the theoretical complexity models of each algorithm.  The author also 

developed empirical models that predict the variance of speed of each of the inference 

algorithms explored in this research. 
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1. Background 

 
 

1.1 Problem Statement 

One of the most challenging problems in artificial intelligence is the problem of 

object classification.  Object classification is the problem of inferring the class of an 

object from information provided by sensor data or other sources.  However, the data 

used for classification may be unreliable and incomplete.  The data may not be very 

informative of the object’s class.  This same data may be copious and delivered at very 

high speed.  Nonetheless, in real time discrimination, only a limited amount of time may 

be available for processing the information and coming to a result. 

Any combination of these problems makes object classification a very difficult 

problem.  Consider as an example the scenario of a volley of intercontinental ballistic 

missiles (ICBM) coming towards an American city.  An ICBM normally travels at 

supersonic speeds, and hence, is an incredibly fast target relative to its size.   Thus, an 

ICBM is very difficult to neutralize as a threat; requiring an extremely rapid reaction time 

to deal with this threat.  Most modern ICBMs also have a variety of defense 

countermeasures to stymie missile defenses further.  Information collected by sensors 

regarding this missile attack may be incomplete and inaccurate due to these 

countermeasures, environmental conditions at the time of the attack, or simply random 
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errors.  Finally, because not every airborne object is necessarily a threat, a determination 

must be made as to what is a threat, what is expendable, and what must not be destroyed. 

The decisions facing those defending against airborne threats are more complex than 

whether or not to shoot.  Multiple threats must be separated and classified, and then a 

determination must be made as to how to respond to each threat.  There is a variety of 

possible responses that vary in effectiveness against missiles, and effectiveness against 

different countermeasures and collateral damage.  Also, decisions must be made as to 

where limited resources should be concentrated and the relative importance of different 

types of loss.  All these decisions must be made in real-time with copious amounts of 

data, some of which may be inaccurate or incomplete. 

 

1.2 Literature Review 

Bayesian networks can be applied to a wide range of problem domains where object 

classification is a serious issue.  Examples of such time-critical real-world applications 

include FAA flight tracking and management in dense environments, object identification 

of satellite imagery, and threat identification in missile defense.  This research attempts to 

provide results that can be generalized to any problem domain. 

A Bayesian network is a knowledge-based modeling approach, and thus, has the 

expressional power to model a wide range of problem domains.  The knowledge-based 

approach encompasses such modeling tools as the decision tree and the Bayesian 

network.  These models provide a means to describe the relationship between attributes 

of the object.  Furthermore, some kinds of knowledge-based models, including a class of 
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Bayesian networks called dynamic Bayesian networks, can describe the dynamics of a 

temporally evolving system.  This larger modeling vocabulary gives the modeler greater 

power to describe the system and, in turn, has the potential for more accurate 

classifications of objects because of this extra information in the model.  The knowledge-

based approaches are also amenable to novel problems that have similarities with 

existing, well understood problems. 

However, setting up the knowledge base for the model is more difficult than simply 

running a data set through a learning algorithm.  Furthermore, this extra power in 

articulating the system being modeled typically comes at the price of slower generation 

of useful results in comparison to other modeling approaches (Dunn, Holt, Laskey, 

Lyons, Takikawa, Tung, 2002).  Thus, the knowledge-based approach is not a panacea. 

Ultimately, the knowledge-based approach tends to be well suited to problems where 

some speed reduction can be accepted for an improvement in accuracy and there is a 

good understanding of the system being modeled.  In this situation, one can take 

advantage of the full power of the knowledge-based approach models.  A knowledge-

based approach is generally not suitable for problems where there isn’t a great deal of 

understanding of the system being modeled unless that knowledge can be acquired 

through sophisticated learning methods. 

At this time, however, the application of the knowledge-based approach is relatively 

new to most problem domains.  There is little published literature on performance 

characteristics of the types of models being considered.  Hence, there is a need for 

systematic studies of performance parameters and the effectiveness of the various 
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knowledge-based methods.  Consequently, this was the approached I used in this research 

study.  The knowledge-based modeling approach I have selected is the Bayesian network. 

A Bayesian network is an acyclic directed graph in which each node represents the 

value of an uncertain hypothesis and arcs between the nodes represent dependency 

relationships. These dependencies can represent cause and effect relationships as well as 

statistical associations or logical relationships.  Figure 1 shows an example of a Bayesian 

network representing the relationship between a class of object, features of the object, 

and observations of the features. 

 

 
Figure 1:  Bayesian Network 
 

In a Bayesian network the direction of the arc depicts the direction of the dependence 

such that the node receiving the arc is dependent on the node the arc is coming from.  For 

example, the observed size of the object in Figure 1 depends probabilistically on its 

actual size.  This probabilistic relationship is described using a conditional probability 

table (CPT) like the one shown in Figure 2 that displays the CPT for the node 
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ObservedSize.  In this table, the first column represents the states of the parent node Size 

and the first row represents the states of the node we are examining, ObservedSize.  The 

probabilities in the table represent the conditional probabilities of the node ObservedSize 

given the state of the parent node Size.  Thus, the probability we observe the size of the 

object we are examining to be small given that the object is actually large is 30%, as seen 

in the third row and second column of the table.  Nodes that have no parent nodes (such 

as the node Class in Figure 1) have only one row of probabilities.   

 
Figure 2:  Conditional Probability Table of Node ObservedSize 
 

One can use the Bayesian network in Figure 1 to draw inferences from sensor reports 

about which type of object is being observed.  A conditional probability distribution like 

the one in Figure 2 is associated with each node in a Bayesian network and defines the 

probability of each state of the node as a function of the values of its parent nodes (Pearl, 

1988; Jensen, 2001). 

To infer useful information from any kind of Bayesian network, one must use an 

inference algorithm.  Inference is the process by which one incorporates evidence into a 

model to produce revised conclusions.  An inference algorithm is the algorithm that 

produces these new conclusions using the model.  An inference algorithm for a Bayesian 

network takes evidence about the values of some nodes and draws new conclusions about 

the values of other nodes.  These new conclusions are in the form of updated distributions 

for each variable each node represents. 
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Figure 3 provides an example of this.  Here, network A is a Bayesian network where 

no evidence is applied, network B is a Bayesian network where evidence is applied and a 

new conclusion is inferred about the remaining nodes, and network C is an alternative set 

of evidence and inferences.  Nodes where evidence has been applied are colored grey 

while those nodes that new conclusions must be inferred for are off-white.  Each network 

has different findings applied to it, and hence, have inferred different outcomes from that 

evidence. 

 

 
Figure 3:  A Bayesian Network with Different Evidence Applied 
 
 
To understand the resulting probabilities given the different sets of evidence 

displayed in Figure 3, one must first understand what distinguishes each of the 5 classes 
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of objects we are trying to identify.  Class A, C, and E objects tend to be small while 

class B and D objects tend to be large.  Also, class A objects tend to be very dull (low 

brightness), class B objects are slightly brighter, class C objects are brighter still, and 

class D objects are the brightest of all the classes.  Class E objects, however, can be any 

brightness level.  Therefore, one cannot easily discriminate class E objects simply by 

looking at the objects brightness. 

Given this information, we can intuitively deduce that a small unidentified object 

with medium brightness is likely to be a class C object.  From the brightness we could 

expect a class B or D object but they are both large objects.  The results of Network B in 

Figure 3 match our assessment.  In this scenario, there is approximately a 62% chance the 

object given is a class C object. 

Simply knowing one piece of information about the object, that the object is large, is 

not enough information to be certain of the object’s classification.  However, this 

observation does lend further credence to the possibility that the given object is either of 

class B or of class D (both large objects).  Comparing the node Class in Network A to 

Network C in Figure 3, we can see that the probabilities of both class B and class D have 

gone up.  As we can see from these two examples, what our minds are able to do with 

intuition regarding the classification of objects, Bayesian networks are able to do 

quantitatively using conditional probability tables. 

There are two classes of inference algorithms, exact and approximate.  Exact 

inference algorithms are guaranteed to provide the exact conditional distribution of any 

node in the Bayesian network given current observations.  Approximate inference 
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algorithms, on the other hand, only approximate the distribution for any node in the 

Bayesian network.  Common approximation methods include structure simplification 

(i.e., ignoring some dependencies) or Monte Carlo simulation.  The advantage of 

approximate inference algorithms is that they are faster than exact inference algorithms 

when performing inference over large and complex Bayesian networks. 

The inference algorithms examined in this research study are Particle Filtering (Ng, 

Peshkin, Pfeffer, 2002), the Boyen-Koller algorithm (Boyen, Koller, 1999), and the 

dynamic symbolic probabilistic inference (SPI) algorithm (D’Ambrosio, Li, 1994, 

Takikawa, D’Ambrosio, Wright, 2002).  Both the Particle Filtering and Boyen-Koller 

inference algorithms are approximate algorithms, and hence, were added to the study to 

examine inference algorithms that satisfy the speed objective at the cost of accuracy.  The 

Particle Filtering algorithm uses Monte Carlo simulation while the Boyen-Koller 

algorithm uses structure simplification.  The SPI algorithm, however, is an exact 

inference algorithms, and thus, examines the opposite side of the spectrum; inference 

algorithms that satisfy the accuracy objective at the cost of speed. 

The SPI method of inference increases the speed of the computation by reducing the 

number of calculations required to do inference.  The SPI method approaches the 

problem of inference as the computation of sums of products.  Examining the problem of 

inference from this perspective, the algorithm is then able to use the distributive law to 

organize these sums of products in a way that is computationally efficient when 

performing inference. 
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To understand how the SPI algorithm might achieve this, one must understand that 

the probability distribution of any variable or set of variables given some evidence is the 

joint probability distribution of the target variables and the evidence variables divided by 

the joint probability distribution of the evidence variables: 

   
 m

mn
mn EEP

EETTPEETTP
,...,

,...,,,...,
,...,|,...,

1

11
11   Equation 1 

The joint distribution over all the variables in the Bayesian network is simply the product 

of all the conditional probabilities in the Bayesian network.  This property of Bayesian 

networks is known as the chain rule (Jensen, 2001).  Using the chain rule, the two 

massive probabilities shown on the right side of Equation 1 become a series of small 

probabilities that must all be multiplied together. 

One can then remove variables from the joint distribution, thus simplifying the 

computation of inference, by marginalizing the joint probability distribution over the 

variables one wishes to remove.  Marginalizing is an operation by which one sums or 

integrates over the variables to be removed from the joint probability.  The advantage of 

marginalizing variables is that one can remove variables from the inference equation that 

do not influence the inference query.  Marginalization also serves to organize the 

inference equation into an equation structure that has more products of sums than sums of 

products in the equation.  This structure facilitates more efficient computation.  The 

following is a formula for marginalizing a joint distribution P(W, X, Y, Z) over the 

variables Y and Z to obtain the marginal distribution P(W, X): 
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,,,,
,

  Equation 2 

The joint probability over all the variables in the Bayesian network could in principle be 

obtained by computing the numerator and the denominator of Equation 1, which 

describes how to get the joint probability of a set of target nodes given the evidence.  

However, this is tractable only for very small networks. 

The calculations required to compute the probability of interest given evidence, 

therefore, consist of a series of multiplication and addition operations.  The complexity of 

this computation depends on the order in which one performs these operations.  Ideally, it 

is better to calculate the product of sums rather than the sum of products whenever 

possible.  The approach of the symbolic probabilistic algorithm is to find a way of 

arranging these factors to achieve this goal when calculating a conditional probability 

(D’Ambrosio, Li, 1994). 

The Bayesian network of Figure 1 represents a static snapshot of the object being 

examined. Symbolic probabilistic inference algorithms are designed to handle this kind of 

static Bayesian network that models static situations.  However, many problem domains 

have variables that are dynamic.  These algorithms are not suitable to handle dynamic 

system without modification.  Furthermore, both the particle filtering and the Boyen-

Koller inference algorithms are exclusively for use with dynamic systems.  For situations 

where a changing system is observed repeatedly over time, a partially dynamic Bayesian 

network (PDBN) is required to model the time evolution of the object’s features and 

observations. 
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A partially dynamic Bayesian network is used to model problems in which the system 

being modeled changes over time.  Variables of the modeled system whose value remains 

constant are called static variables, and are represented as ordinary Bayesian network 

nodes.  Variables that change with time are called dynamic variables.  A PDBN contains 

multiple copies, or instances, of each dynamic node; one for each time step.  Each 

instance of the dynamic node represents the value of the dynamic variable at that time 

step.  Figure 4 gives an example of a partially dynamic Bayesian network.  This example 

is a dynamic version of the Bayesian network in Figure 1.
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Figure 4:  Partially Dynamic Bayesian Network (6 Time Steps Shown) 
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In Figure 4, brightness and observed size are two variables that are represented by 

dynamic nodes.  Dynamic nodes can be separated further into two groups.  Transitional 

nodes, such as those nodes representing the brightness of the object, are those nodes that 

have arcs that are directed into the next time step.  Other dynamic nodes, such as those 

nodes in Figure 4 representing the observed size of the object, are referred to as non-

transitional dynamic nodes. 

There are rules that dictate how one can connect nodes in a PDBN.  Static nodes 

cannot have dynamic parents.  The reasoning behind this rule is that for one to consider a 

variable static, that variable cannot be a function of a dynamic variable within the scope 

of the system being modeled.  If a variable were directly influenced by another variable 

that changed over time, that variable would have to be dynamic.  Dynamic nodes, 

however, can have either static or dynamic parents. 

Together, the static nodes that have dynamic children and the transitional nodes 

constitute what is called the interface.  It is these nodes that influence the next time step.  

The Bayesian network in Figure 4 is an order one partially dynamic Bayesian network.  It 

is partially dynamic because there exists some static nodes in the network.  It is referred 

to as order one because the furthest extent into the future a node directly influences 

another node is one time step.  An order N PDBN is a PDBN where the furthest extent 

into the future a node directly influences another node is N time steps.  An order N 

PDBN (N being a variable integer) is also an order N Markov chain with stationary 

transition probabilities, where the state space of the Markov chain is the cross product of 
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the state spaces of the static nodes and the dynamic nodes at a given time step (Takikawa 

et al., 2002). 

Partially dynamic Bayesian networks are useful for problems in which observational 

evidence is received over time about a moving object or set of objects.  Static nodes 

represent intrinsic unchanging properties of the object or objects (e.g., object type; 

material composition; length).  Time-varying properties of the object (e.g., velocity; 

position; orientation with respect to the sensor) are represented by transitional or non-

transitional dynamic nodes. Sensor reports are also represented as dynamic nodes. 

Dynamic Bayesian networks and partially dynamic Bayesian networks represent a 

particularly difficult class of Bayesian networks.  Recall that in a dynamic Bayesian 

network (DBN) or a partially dynamic Bayesian network, there is a copy of each dynamic 

node for each time step.  If the system is followed for many time steps, this results in an 

extremely large network. 

The temporal rollup method was developed to make PDBN inference more efficient 

by exploiting the Markov property of PDBNs in inference.  The Temporal rollup method 

takes advantage of the fact that dynamic nodes of the present time step are related to 

nodes several time steps ago only through the interface nodes of the immediately 

preceding time step (Takikawa et al., 2002).  For example, the “ObservedSize” variable 

in the fourth time step in Figure 4 is only related to the “Brightness” variable in the first 

time step through the “Brightness” variable in the fourth time step.  This property allows 

the information from all previous time steps to be summarized or rolled up through the 

interface nodes as shown in Figure 5.  Figure 5 displays the 2-PDBN representation of the 
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partially dynamic Bayesian network in Figure 4.  Here, the interface nodes that separate 

the dynamic nodes in the present time step form all nodes in previous time steps are the 

static node “Class” and the dynamic transitional node “Brightness_Prev”.  The joint 

distribution over the interface variables is collectively called the past expression.  The 

past expression contains all the information from the previous time steps relevant to 

future predictions.  The inference algorithm uses the past expression to infer the 

probabilities for nodes in the current time step.  Hence, instead of explicitly representing 

each node in every previous time step, all the information represented in the past time 

steps are rolled up into a joint probability distribution called the past expression. 

 

 
Figure 5:  2-PDBN (Present Time Step and Interface showing) 
 
 

Thus, if we are interested only in static nodes and the current values of dynamic 

nodes, then only the current time steps and the interface nodes from the previous time 
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step need to be explicitly represented for a first order PDBN.  N order PDBNs require the 

explicit representation of the current time step and the past N time steps.  The PDBN in 

Figure 5 is a first order PDBN, and therefore, only requires explicit representation of the 

current dynamic nodes, static nodes, and the dynamic transitional previous time step 

nodes. 

At each step of the temporal rollup procedure, the current nodes are rolled up with the 

past interface nodes to form a new interface, and the network is then rolled forward so 

that the next time step becomes the new current time step.  Hence, given a network such 

as the one in Figure 5, one applies evidence to nodes in the present time steps such as 

“ObservedSize” and “Brightness”.  This new evidence will change the probability 

distributions of other nodes such as the nodes “Size” and “Class” in Figure 5.  To infer 

the new distribution of a node such as “Size” that is directly influenced by an interface 

node, one uses the past expression for this time step.  This is done by marginalizing this 

joint probability distribution to determine the joint probability of all the variables that 

directly influence the variable in question.  In this case the past expression consists of 

“Class” and “Brightness_Prev” with only the static node “Class” directly influencing the 

node “Size”.  In this situation one would marginalize the past expression to obtain only 

the distribution of the variable “Class”.  Once evidence has been applied and the new 

distributions of the remaining nodes inferred, the rollup procedure can begin.  The nodes 

that will form the interface in the next time step, the static node ”Class” and the dynamic 

transitional node “Brightness”, will be combined into a joint probability distribution.  

This new past expression will contain all the information gathered in the past time steps 
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as well as the information collected in this time step.  The network for the next time step 

will then contain the dynamic transitional nodes of this time step and any static nodes and 

any dynamic nodes in the next time step.  In this way, the only nodes that need to be 

explicitly represented each time step are the static nodes, the dynamic nodes in the 

present time step, and the dynamic nodes from the previous time steps that directly 

influence nodes in the present time step (Takikawa et al, 2002). 

The temporal rollup procedure is the basis of all the inference algorithms considered 

in this study.  I used the temporal rollup procedure in conjunction with the symbolic 

probabilistic inference algorithm by applying the algorithm to the rolled-up version of the 

dynamic Bayesian network.  Applying an efficient exact inference algorithm such as the 

SPI algorithm allows the modeling of dynamic systems using Bayesian networks to be 

tractable for PDBNs of a limited size and complexity.  However, for real-time inference 

in most problem domains, approximate inference algorithms must be used.  This is 

because the size of the past expression when using the temporal rollup procedure scales 

as the product of the number of states of each node in the interface.  Hence, the number 

of elements in the past expression of the PDBN represented in Figure 5 will be the 

product of five states from the “Class” node and three states from the “Brightness_Prev” 

node or 15 elements.  Networks with many more nodes in the interface or nodes with 

many more states will result in a combinatorial explosion in the size of the past 

expression, and hence, make inference intractable using exact inference methods on large 

and complex networks. 
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One approximation to the temporal rollup procedure is particle filtering.  Particle 

filtering is an approximate inference algorithm that makes use of the Monte Carlo 

method.  Rather than use the full joint distribution on transition nodes from the previous 

time step, a sample set of node-value pairs, or particles, is selected.  Each particle 

represents an instance of a set of values of all the nodes in the interface.  Collectively, the 

set of particles approximates the joint probability distribution over the nodes in the 

interface at a given time step conditional on all evidence received to that point.  As more 

particles are used, accuracy improves, but at the cost of more computation.  The sample 

of particles is used in the rollup into the next time step rather than the full joint 

distribution.  The particles are then weighted based on the evidence at the next time step, 

where weights are proportional to the likelihood of the evidence given the particles.  The 

set of nodes to be used as particles in the next time step is then resampled based on the 

likelihood weights just collected.  This is repeated every time step to speed up rollup of 

the previous time step into the interface of the next time step (Ng et al., 2002). 

The Boyen-Koller inference algorithm is also an approximate inference algorithm.  

However, rather than utilizing a Monte Carlo approximation, this method approximates 

the joint distribution on the interface nodes by a tractable distribution.  The interface 

nodes at a given time step are grouped into clusters that are independent or interact 

weakly in the approximate distribution.  Clusters are chosen heuristically in an attempt to 

capture important dependencies while keeping the two-stage network tractable.  As a 

general guideline, large clusters tend to slow inference speed but increase accuracy while 

small clusters increase speed at the cost of accuracy.  To compute the probability 
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distribution for the next time step, a two-stage network is used in which the distribution at 

the current time step is approximated by a product of factors defined on the clusters and 

the original Bayesian network distributions used for the transition between time steps.  

The belief tables for the clusters of the next time step are then derived through 

marginalization (Boyen et al., 1998).  With this simplified dynamic Bayesian network, 

inference over the two-step network can be done using an exact inference algorithm such 

as the symbolic probabilistic inference algorithm or the junction tree inference algorithm. 

The Boyen-Koller inference algorithm has a running time of  NNQO  per time step 

where N is the number of nodes in the Bayesian network and Q is the number of states in 

each node of the network (Murphy et al., 2001).  This study done by Murphy and Weiss 

assumes all nodes have the same number of states, while the PDBNs used in this research 

study will generally have nodes with different numbers of states.  Nonetheless, this 

expression of computational complexity is still useful in predicting the computation time 

for the Boyen-Koller algorithm. 

The particle filter inference algorithm has a running time of  MO  per time step 

where M is the number of particles used by the particle filter (Carpenter et al., 1999).  

This is not to say that the computation time of the particle filter is not a function of the 

size of the network.  The running time of this inference algorithm would likely be 

 MNO  if one were to include the Number of Nodes factor (here the variable N).  

However, the number of nodes is generally insignificant in number relative to the number 

of particles.  Thus, the number of particles is considered the more significant factor of the 

two in the complexity of the particle filter algorithm. 
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The speed at which the particle filter inference algorithm can run appears to be less 

sensitive to the size and complexity of the network than the Boyen-Koller inference 

algorithm. The time to perform inference using the Boyen-Koller inference algorithm is a 

function of the number of states per node in the PDBN and is especially sensitive to the 

number of nodes in the PDBN.  Both of these factors are different metrics with which to 

measure the size and complexity of a Bayesian network.  Conversely, the time to perform 

inference using the particle filter inference algorithm is a function of a factor that is not 

an attribute of the Bayesian network. 

However, the number of particles used to perform inference on any PDBN, even a 

relatively simple network, is generally in the thousands to tens of thousands.  It is 

necessary that this many particles be used to ensure that these particles portray an 

accurate representative sample of the state of the PDBN.  For PDBNs with few nodes and 

few states per node, the Boyen-Koller inference algorithm is generally the faster 

algorithm because the particle filter inference algorithm requires a certain amount of 

overhead to be as accurate an approximate inference algorithm as the Boyen-Koller 

inference algorithm over the same network. 

Thus, the Boyen-Koller inference algorithm will generally be the faster algorithm up 

to a certain limit of size and complexity of PDBNs.  Once that limit is surpassed, the 

Boyen-Koller inference algorithm will fall behind the particle filter inference algorithm 

in speed.  As the size and complexity of the PDBNs grows linearly, the time to perform 

inference with the Boyen-Koller inference algorithm will grow exponentially.  However, 



 

 
 
 

21 

the time to perform inference with the particle filter inference algorithm will only grow 

linearly as the number of particles necessary to perform inference accurately grows. 

 

1.3 Research Objectives and Scope 

Exact inference algorithms are feasible for simple and small partially dynamic 

Bayesian networks.  However, exact inference is NP-hard (computationally expensive to 

perform) and as the PDBN grows in size and complexity the time to perform exact 

inference grows exponentially (Cooper 1990).  The computational cost of approximate 

inference algorithms also grows with problem size, at different rates for different 

algorithms.  The structure and conditional probability distributions of a Bayesian network 

are important to algorithm effectiveness.  However, the performance of an algorithm for a 

given Bayesian network is usually not easy to determine a priori.  Therefore, the 

objective of this research study is to understand the relationship between the structure and 

conditional probability tables of PDBNs (what shall be referred to henceforth as the 

architecture) and the effectiveness of various inference algorithms.  An effectively 

performing algorithm is one that is fast enough to run in real time and accurate enough to 

provide dependable results and do this within a reasonable resource load (IET, 2002). 

This study will be limited to partially dynamic Bayesian networks.  Also, the 

variables of all PDBNs will be restricted to a discretization of a particular functional form 

I have called the sine normal linear.  A sine normal linear variable is one where the 

variable in question is the sine of a weighted sum of variables.  In this particular 

implementation, every variable in the Bayesian network will be the sine of the weighted 
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sum of the variables influencing the variable in question.  Variables that are root nodes 

will be the sin of a normal distribution.  Every variable being represented in the partially 

dynamic Bayesian networks being studied will be sine normal linear variables.  This 

particular functional form has been chosen because of its simple implementation and use 

in experimentation.  This function form could be varied in future research, however, and 

the software tools being used in this research study support such a change. 
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2. Methodology 

 
 

2.1 Research Factors 

There are many factors of the architecture of PDBNs that may potentially influence 

the effectiveness of one of the inference algorithms studied.  The purpose of this 

experiment is to identify characteristics that are strongly related to an algorithm’s 

effectiveness and to evaluate the nature of these relationships for the strongly related 

factors.  Several different categories of factors can ultimately affect an inference 

algorithm’s performance.  The categories of factors varied in this experiment are:  factors 

describing the PDBN’s architecture, the inference algorithms used and metaparameters 

for those algorithms, the number of time steps the inference algorithm is allowed to run, 

and the power of the computer running the inference algorithm.  One must vary each of 

these in a controlled manner to be able to analyze with any great clarity what sorts of 

Bayesian networks work best with what inference algorithms.  Of all these factors, only 

the factors describing the PDBN’s architecture are within the scope of this study, and 

thus, the only category of factors analyzed in detail and compared to the resulting 

algorithm’s effectiveness. 

To achieve the objectives of this research study, it was necessary to apply the 

algorithms being tested to a collection of PDBNs that varied with respect to the attributes 

hypothesized to affect algorithm effectiveness; the factors that describe the PDBN’s 
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architecture.  To achieve this end, I described each PDBN using a set of categorization 

parameters.  Each categorization parameter depicts an attribute of a partially dynamic 

Bayesian network that I hypothesized as having a high likelihood of affecting the 

performance or accuracy of one or more of the inference algorithms tested.  These 

categorization parameters were the factors that I tested in this research study. 

Table 1 lists a number of factors that can potentially affect the performance or 

accuracy of the Bayesian network inference algorithms.  I drew these factors from the 

Information Extraction & Transport, Inc.’s Test Plan for Evaluating Approximate 

Inference Algorithms (IET, 2002) and the expert judgment of Dr. Kathryn Laskey, 

advisor to this study.  The first column in this table numbers the factor labeled in the 

second column.  The third column describes the factor.   

 
Table 1:  Factors to be Examined in this Research Study 
 Design Factors Description 
1 Number of static nodes The number of static nodes in the Bayesian 

network. 
2 Number of dynamic 

transitional nodes 
The number of transitional dynamic nodes in the 
Bayesian network. 

3 Number of dynamic non-
transitional nodes 

The number of non-transitional dynamic nodes in 
the Bayesian network. 

4 Arc saturation for static to 
static arcs 

The percentage of the possible set of arcs between 
static nodes in the PDBN.  0% represents the 
minimum number of arcs and 100% represents the 
maximum number of arcs possible. 

5 Average number of static 
parents for static nodes 

The mean number of static parents for the set of 
static nodes in the PDBN. 

6 Arc saturation for static to 
dynamic arcs 

The percentage of the possible set of arcs between 
static nodes and dynamic nodes in the PDBN.  0% 
represents the minimum number of arcs and 100% 
represents the maximum number of arcs possible. 

7 Average number of static 
parents for dynamic nodes 

The mean number of static parents for the set of 
dynamic nodes in the PDBN. 
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8 Arc saturation for transitional 
nodes between time steps 

The percentage of the possible set of arcs between 
transitional nodes between time steps in the PDBN.  
0% represents the minimum number of arcs and 
100% represents the maximum number of arcs 
possible. 

9 Average number of previous 
time step transitional parents 
for dynamic nodes 

The mean number of transitional parents in the 
previous time step for the set of dynamic nodes in 
this time step. 

10 Arc saturation for dynamic to 
dynamic arcs 

The percentage of the possible set of arcs between 
dynamic nodes in the PDBN.  0% represents the 
minimum number of arcs and 100% represents the 
maximum number of arcs possible. 

11 Average number of same time 
step dynamic parents for 
dynamic nodes 

The mean number of dynamic parents in the same 
time step for the set of dynamic nodes in this time 
step. 

12 Proportion of dynamic 
transitional nodes that have a 
transitional link to itself 

The number of dynamic transitional nodes that link 
to itself in the next time step divided by the total 
number of transitional dynamic nodes. 

13 Average strength of 
dependency 

Approximate average correlation of nodes 
connected by an arc. 

14 Average node variance Approximate average variance of every node in the 
Bayesian network. 

15 Average number of states per 
node 

The mean number of states per node. 

16 Number of nodes within the 
interface between time steps 

The number of nodes in the interface. 

17 Ratio of arcs to nodes The number of arcs divided by the number of 
nodes. 

18 Maximum number of parents 
of the nodes 

The number of parents of the node with the most 
parents in the PDBN. 

19 Average number of parents of 
the nodes 

The mean number of parents of the nodes in the 
PDBN. 

20 Average size of the CPTs The mean number of elements of a node’s 
conditional probability table in the PDBN. 

21 Total number of possible 
instances of the PDBN 

The total number of possible combinations of states 
that all the nodes in the PDBN can take on. 

 

An experimenter generating a PDBN can control or influence each of these factors.  

However, one cannot control all combinations of these factors simultaneously.  For 

example, although it is easy to control the number of nodes, the ratio of arcs to nodes, and 
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the average number of parents per node in a PDBN, controlling all three of these factors 

simultaneously is a more complicated task since each of these factors depends on the 

other two. 

Table 2 lists a set of experimental factors I manipulated in this study. The first 

column in this table numbers the factor labeled in the second column and the third 

column describes the factor.  Table 3 lists these same experimental factors along with 

various statistics and graphs showing the distributions of each of these factors.  The first 

two columns are identical to those in Table 2.  The third column defines the probability 

density function used for the particular factor when generating PDBNs.  The purpose of 

Table 3 is to display the distribution of these experimental factors in the PDBN data set 

used in this research study.  The random PDBN generator randomly chose a value using 

these distributions to select the experimental factor values for each PDBN generated.  

The fourth column gives the full range of values found empirically in a preliminary test 

run of the random PDBN generator.  In this preliminary test run, the random PDBN 

generator used the distributions found in column three of this table and generated 

approximately 250 PDBNs for the purpose of collecting the statistics found in Table 3.  

The fourth column also gives the empirical mean, median, and mode (where applicable) 

of the resulting set of results in the preliminary test run.  The fifth and final column 

displays a small histogram of the resulting set of results for each factor. 
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Table 2:  Experimental Factors to be Used in this Research Study 
 Design Factors Description 
1 Number of static 

nodes 
The number of static nodes in the Bayesian network. 

2 Number of dynamic 
transitional nodes 

The number of transitional dynamic nodes in the Bayesian 
network. 

3 Number of dynamic 
non-transitional nodes 

The number of non-transitional dynamic nodes in the 
Bayesian network. 

4 Arc saturation for 
static to static arcs 

The percentage of the possible set of arcs between static 
nodes in the PDBN.  0% represents the minimum number 
of arcs and 100% represents the maximum number of arcs 
possible. 

5 Arc saturation for 
static to dynamic arcs 

The percentage of the possible set of arcs between static 
nodes and dynamic nodes in the PDBN.  0% represents 
the minimum number of arcs and 100% represents the 
maximum number of arcs possible. 

6 Arc saturation for 
transitional nodes 
between time steps 

The percentage of the possible set of arcs between 
transitional nodes between time steps in the PDBN.  0% 
represents the minimum number of arcs and 100% 
represents the maximum number of arcs possible. 

7 Arc saturation for 
dynamic to dynamic 
arcs 

The percentage of the possible set of arcs between 
dynamic nodes in the PDBN.  0% represents the minimum 
number of arcs and 100% represents the maximum 
number of arcs possible. 

8 Average strength of 
dependency 

Average correlation of all nodes connected by an arc in 
the PDBN at the initial time step. 

9 Average number of 
states per node 

The mean number of states per node. 
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Table 3:  Experimental Factor Distributions 
Empirical Range  Design Factors Factor Distribution 

Mean/Median/Mode 
Empirical 

Distribution 
2 – 4 1 Number of static 

nodes 
gamma(73.46938776, 

0.040833333) 3.072 / 3 / 3 
 

3 – 6 2 Number of 
dynamic 
transitional nodes 

gamma(56.25, 0.08) 

4.414 / 4 / 4  
3 – 6 3 Number of 

dynamic non-
transitional nodes 

gamma(56.25, 0.08) 

4.482 / 5 / 5  
0 – 0.333 4 Arc saturation for 

static to static arcs 
beta(40.25, 189.75) 

0.041 / 0 / 0 
 

0 – 0.043 5 Arc saturation for 
static to dynamic 
arcs 

beta(35.26, 1727.74) 

0.022 / 0.031 / 0  
0 – 0.057 6 Arc saturation for 

transitional nodes 
between time 
steps 

beta(34.87063116, 
1010.725506) 

0.027 / 0.029 / 0.031 
 

0 – 0.036 7 Arc saturation for 
dynamic to 
dynamic arcs 

beta(35.26, 1727.74) 

0.0178 / 0.028 / 0  
-0.743 – 0.681 8 Average strength 

of dependency 
Unknown PDF 
|StrOfDep| > 0.1 0.092 / 0.252 / NA 

 
3.824 – 5.188 9 Average number 

of states per node 
beta(7.477777778, 

17.44814815) 
range:  (2, 12) 4.468 / 4.467 / 4.235  

 



 

 
 
 

29 

The Average Strength of Dependency experimental factor is unique among the 9 

experimental factors for several reasons.  This factor could not be controlled directly, and 

therefore, was controlled indirectly by measuring the average strength of dependency for 

the produced PDBN and regenerating it if the resulting measure was not greater than 0.1.   

It was necessary to enforce a lower bound to the Average Strength of Dependency 

experimental factor so that the arcs of the PDBNs would be meaningful.  The arcs of any 

Bayesian network represent a relationship between two nodes, and thus, it is taken for 

granted that two connected nodes will influence each other.  Therefore, if one applies 

evidence to one node one can expect all nodes connected to that node by an arc will be 

affected.  However, one could make a valid and internally consistent Bayesian network in 

which any or all pairs of interconnected nodes have little or no influence on each other.  

Such networks are of little practical use and are never purposely created by a knowledge 

engineer.  Thus, to prevent the possibility of the random PDBN generator introducing this 

sort of Bayesian networks into the sample set, a minimum average strength of 

dependency was enforced. 
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I choose the specific value of 0.1 through trial and error.  I choose a minimum 

allowed average strength of dependency value arbitrarily and then examined the sample 

set of PDBNs to determine whether they were suitable.  I tested a small random sample 

of PDBNs from the sample set to see whether evidence applied to some of the dynamic 

non-transitional nodes had an effect on the static nodes.  If there was an effect on the 

static nodes, the PDBN was suitable.  If all the selected PDBNs from the sample set were 

suitable, the sample set was suitable.  My objective was to find the lowest minimum 

average strength of dependency value that produced a suitable sample set of PDBNs. 

It is important to note that the average strength of dependency measure was 

approximated using a Monte Carlo simulation that produced results that differed due to 

random sampling error for each measurement made.  The results varied by about 0.01 

standard deviations for a single PDBN.  This is why some of the PDBNs in the sample set 

have a reported average strength of dependency as low as 0.083, which is below the 0.1 

minimum allowed value. 

It is likely that some of the PDBNs generated had an average strength of dependency 

near 0.1.  When the PDBN was tested for suitability, the measured average strength of 

dependency for the PDBN was above 0.1.  However, when that same PDBN was later 

examined for the purposes of taxonomy, a new average strength of dependency measure 

was taken.  Since the average strength of dependency measure for the PDBN was near 

0.1 and each measure has a random sampling error associated with it, this second 

measure could potentially end up below the 0.1 minimum allowed value. 
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It was necessary to measure the Average Strength of Dependency experimental factor 

using a random sampling method so that the measurements could be guaranteed to be 

computationally tractable.  Calculating the average correlation between all the connected 

nodes of a Bayesian network is an NP-hard problem.  The reason for this is that the 

problem of determining the correlation of two nodes is at its core an inference problem.  

To determine the correlation of two nodes, one is ultimately finding the expected values 

of each of the nodes being examined as well as the expected value of the joint of those 

two nodes.  Finding these expected values is an NP-hard problem (Cooper, 1990).  

Developing a means to calculate directly the average strength of dependency of a PDBN 

is also a difficult problem beyond the scope of this research project.  There is also no 

guarantee that any means of calculating the average strength of dependency would be 

computationally tractable for all the PDBNs in my sample set.  Using Monte Carlo 

methods, thus, allowed me to approximate the average strength of dependency of all the 

PDBNs in my sample set within a reasonable amount of time and with minimal 

developmental effort.  

There exists some bias in the results reported in Table 3.  This is why some of the 

empirical distributions in column 5 of Table 3 do not match up with the theoretical 

distributions in column 3 of Table 3 as well as one would expect.  There are several 

reasons for the bias.  The first source of bias was due to the method of indirectly 

controlling the average strength of dependency of the PDBNs generated.  Since any 

PDBN generated with an average strength of dependency below 0.1 was not used in the 
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sample set, it stands to reason that experimental factors that are related to the Average 

Strength of Dependency factor would become biased. 

Another source of bias was from the fact that a handful of PDBNs generated were too 

complex to perform inference on them, and thus, results could not be generated for these 

PDBNs.  I carefully choose and modified the parameters of each probability distribution 

for each experimental factor to maximize the number of PDBNs that would be testable 

while still covering as wide a range of PDBN complexities as possible.  However, due to 

the large number of PDBNs generated and tested, there were still some PDBNs generated 

that were too complex for the software to handle.  Should a PDBN cause the inference 

algorithm software to exceed its allotted resources or if the test run is unable to be 

completed in under 10 hours, the test run is forcibly stopped by the experimental test 

software and all results for that PDBN would be lost.  For this reason, experimental 

factors that contribute to a PDBNs complexity, and ultimately, the difficulty in 

performing inference on the PDBN will become biased. 

It is important to note that these biases did not interfere with the results of this 

research.  The reason for this is because I was able to collect data for each experimental 

factor for each sample PDBN used in this study.  Thus, I was able to fully account for all 

the biases that existed in the experimental factors. 

I choose these ten factors because they are related to the factors listed in Table 1 and 

hypothesized to influence algorithm effectiveness; e.g., the number of nodes in the 

interface is related to the number of static nodes, the number of dynamic transitional 

nodes, and the average number of static parents for dynamic nodes.  Furthermore, one 
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can freely manipulate any combination of these factors when generating a Bayesian 

network. That is, no combination of factors directly constrains the value of another factor.  

Finally, it a reasonable hypothesis that factors dealing with the standard deviation of a 

PDBN property will have a major influence on the effectiveness of an inference 

algorithm only if the corresponding average factor has an effect (Laskey, personal 

communication).  For this reason, standard deviations were not included as experimental 

factors at this time. 

I choose the parameters of the probability distributions for each experimental factor 

primarily based on experience with the various inference algorithms used in this 

experiment.  I had some experience running the inference algorithms using a variety of 

different PDBNs, and thus, gained a good understanding of what situations would cause 

the inference algorithms to fail to produce inference results before running out of system 

resources on a standard personal computer.  I applied this knowledge when creating an 

initial set of parameters for the probability distributions of each experimental factor.  

When selecting the probability distribution parameters, I also kept in mind what kind of 

PDBNs would generally be usable in any problem domain.  I then proceeded to generate 

and test PDBNs in another initial and informal study to examine the proportion of 

PDBNs that would cause the inference algorithms to crash.  I then proceeded to modify 

my initial selection of parameters with the objective of generating a larger yield of usable 

PDBNs and repeated tests on the newly generated set of PDBNs.  I repeated this 

evolutionary process until I was satisfied with the yield of usable PDBNs in a sample set. 
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I ran the inference algorithms over a set number of time steps, each time step 

representing an increment in time.  The number of time steps I ran the inference 

algorithms over was an important factor because, if the number was too small, there may 

not be enough information to generate very accurate inference results.  Conversely, if the 

number of time steps each inference algorithm is run over was too large, the 

experimentation phase of this research would take too long.  I found that the ideal number 

of time steps to run each inference algorithm over was approximately 60 time steps. 

The inference algorithms I examined in this research study can be separated into two 

groups:  exact inference algorithms and approximate inference algorithms.  The exact 

inference algorithms serve to provide an understanding of the use of inference algorithms 

in problem domains where exact inference is feasible and accuracy is much more 

important than speed of inference.  The approximate inference algorithms serve to 

provide an understanding of the use of inference algorithms in problem domains where 

exact inference is infeasible or where both speed and accuracy are of great concern. 

The inference algorithms I used in this study were taken from the Quiddity 

commercial software package created by IET, Inc (IET, 2003).  The Quiddity software 

package provided the symbolic probabilistic inference algorithm and the Boyen-Koller 

inference algorithm utilizing the symbolic probabilistic inference algorithm.  This 

software package also provided a particle filter inference algorithm that I used in this 

study. 

Also, most of the inference algorithms tested in this research study have 

implementation variations that may affect their effectiveness.  The PDBN inference is 
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being performed on may not be independent of the performance of these variants.  The 

speed at which an inference algorithm runs and the accuracy of the results it produces can 

be controlled using attributes beyond those attributes defining the PDBN architecture.  

For this reason, different versions of each inference algorithm that have parameters 

beyond the PDBN to be used were tested at different levels of emphasis of speed at the 

expense of accuracy.  I controlled these parameters at a series of levels such that each 

level should cause the algorithms to perform faster than the last.  This increase in speed, 

however, was always at the expense of accuracy. 

The Boyen-Koller and particle filtering inference algorithms have adjustable 

parameters that can affect inference performance and accuracy beyond the architecture of 

the PDBN that inference is being performed on.  The Boyen-Koller inference algorithm 

requires one to define a set of clusters and, in effect, choose which arcs to remove when 

performing inference.  Although there are heuristics and methods to aid in the choice of 

clusters, there are few standardized algorithms that work well in most cases.  However, 

the choice of cluster placement and the size of the clusters are of tremendous importance 

in both the performance and accuracy of the inference algorithm.  The particle filtering 

inference algorithm requires one to define the number of particles to be used in the Monte 

Carlo estimation of the PDBN state.  The more particles used, the more accurate the 

inference algorithm is.  However, this is at the cost of the speed at which inference can be 

done.  Fewer particles increases speed at the expense of accuracy.   

It is not the primary purpose of the study to determine the exact nature of the 

relationship between these other inference algorithm parameters and inference algorithm 
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effectiveness.  However, these parameters may not be entirely independent of the factors 

that define a PDBN’s architecture, and hence, must be examined to some extent in this 

research study.  Therefore, I varied a set of levels varying these parameters in the 

experiment.  Both of these parameters allow the user of the inference algorithm to 

balance speed for accuracy.  These levels are different gradations of speed emphasis at 

the expense of accuracy and are referred to throughout the experiment as “speed 

emphasis levels.”   

Table 4 lists the 3 gradations of the speed emphasis levels categories for the Boyen-

Koller inference algorithm and Table 5 lists the 3 gradations of the speed emphasis levels 

categories for the particle filtering inference algorithm.  Each of the gradations listed in 

Table 5 is a range of values that would be selected at random when running the 

experiment.  I used each of these gradations in the experiment when using the Boyen-

Koller inference algorithm or the particle filtering inference algorithm respectively.  The 

were chosen based on my experience with using each of these algorithms along with the 

expert judgment of Dr. Kathryn Laskey, advisor to this study. 

 
Table 4:  Speed Emphasis Levels for the Boyen-Koller Inference Algorithm 

Average Cluster Size Description 
n / 5 The average cluster holds 20% of the nodes. 
n / 8 The average cluster holds 12.5% of the nodes. 

Fully Factored All clusters contain only one node. 
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Table 5:  Speed Emphasis Levels for the Particle Filtering Inference Algorithm 
Number of Particles 

5,000 – 10,000 
1,000 – 5,000 

0 – 1,000 
 

 
The number of particles used in the test runs of this experiment to perform inference 

is rather small compared to the number of particles customarily used.  A more reasonable 

number of particles to use with the particle filter inference algorithm would be at the 

order of magnitude of 10,000 or even 100,000. I used fewer particles than what is 

normally used in order to complete the experiments of this research study in a reasonable 

amount of time. 

The process by which clusters were chosen for use with the Boyen-Koller algorithm 

is straightforward for the speed emphasis level that generates fully factored clusters.  

When a cluster can contain multiple nodes, however, the choice of nodes falling in a 

particular cluster is less straightforward and may have a great deal of influence over the 

speed and accuracy of the Boyen-Koller inference algorithm.  In this research study, node 

selection per cluster was chosen using a trial and error algorithm.  For a given speed 

emphasis level, all clusters were of equal size where possible and varied by no more than 

one node at the most.  A set of cluster combinations were produced randomly where the 

number of cluster combinations was ten times the number of nodes in the interface.  The 

nodes in the interface chosen to be in a particular cluster were chosen at random without 

replacement.  The chance of any node being in any cluster is equal.  Choosing nodes for a 

cluster with replacement may lead to clusters overlapping.  This is a perfectly valid 
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option.  However, overlapping clusters risk violating the running intersection property.  

Because of time and resource constraints, I decided to not allow overlapping clusters and 

opted for a much simpler cluster selection algorithm.  Each cluster combination was then 

evaluated by examining the sum of the correlations between each node not in the same 

cluster.  The correlation between two nodes was calculated regardless of whether there 

exists an arc between those two nodes.  The cluster combination with the lowest sum of 

correlations was the chosen cluster combination. 

I choose this cluster combination because it is the one I believe to have the least 

difficulty of all the cluster sets of handling the independence assumption between nodes 

of different clusters that the Boyen-Koller algorithm makes.  When the Boyen-Koller 

inference algorithm performs inference, it performs inference calculations as if the arcs 

between nodes of different clusters do not exist.  In this way, the inference calculations 

are often simplified.  The choice of clusters, however, plays an important role in how 

well the Boyen-Koller algorithm is able to do this.  Ideally, the correlation between nodes 

in different clusters should be as low as possible and arcs between nodes of different 

clusters should represent as weak a relationship as possible.  The cluster set that has the 

least total correlation between nodes not in the same cluster is chosen because it should 

meet these criteria reasonably well. 

It is important to note that this method of cluster selection puts the Boyen-Koller 

inference algorithm at a disadvantage regarding its effectiveness.  This method does not 

allow a great deal of variety in cluster size or arrangement, and hence, does not represent 

all possible arrangements of cluster organization that a modeler may utilize.  
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Furthermore, a knowledge engineer developing a Bayesian network to simulate a real 

world system will use his or her understanding of the problem domain to choose a cluster 

set that best suits the problem he or she is modeling.  This method of random cluster 

creation does not reflect this fact and the cluster arrangement has a great deal of influence 

over the effectiveness of the Boyen-Koller algorithm.  There is a distinct possibility that 

this method will choose a cluster arrangement that will cause the inference algorithm to 

perform worse than a cluster arrangement that would be chosen by a domain expert or a 

knowledge engineer.  This particular method of cluster selection was chosen for speed of 

use and easy implementation.  A more complex implementation of cluster selection 

would be too difficult to develop and use given the resources available for this research 

project and is presently beyond the defined scope of this research.  In fact, cluster choice 

in the Boyen-Koller inference algorithm is itself a problem worthy of study.  I believe 

that this trial and error algorithm still mitigated this loss of speed and accuracy somewhat 

so that the bias against the Boyen-Koller algorithm was not significant. 

For the purposes of simplicity, I ran all the test runs of the experiment on the same 

computer.  However, for this research to be of any use, one must be able to generalize 

these results to any computer.  Any set of computers capable of performing inference on 

a PDBN can vary greatly in the resources they provide, and hence, can potentially 

provide different performance results (although accuracy results will naturally remain the 

same regardless of the computer used). 

Although I cannot show that the relationship between the performance results on any 

two computers is linear, I will show that the performance results on the different 
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computers I used are linearly related.  To verify this hypothesis, I executed an initial 

study consisting of a series of test runs on several different computers.  In this study, I 

generated a sample set of PDBNs to go through a test run on each computer.  I then 

compared the speed results derived from each PDBN on each computer to each other. 

The initial study I ran consisted of four computers of various speeds, power, and 

memory amounts.  Table 6 lists various speed and power statistics for each of the 

computers used in this study.  The computers are listed in order of descending power.  

The first column labels the computer.  The second column describes the speed and type 

of the CPU in the computer.  The last column gives the amount of RAM in the computer. 

Figure 6 gives the results of the study.  The graph in Figure 6 compares the speed at 

which the HP, Dell, and E-Tower computers performed in comparison to the Laptop 

computer.  I examined each PDBN individually and I compared the speed results for each 

PDBN on the HP, Dell, and E-Tower computers to the speed results from the Laptop 

computer.  The graph is a scatter plot where each point in the graph represents the 

comparison between the Laptop computer and one of the other three computers.  The x-

axis represents the average time per time step for the Laptop and the y-axis represents the 

average time per time step for each of the other 3 computers. 
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Table 6:  Speed and Power Statistics on Four Computers used in Study 
 CPU RAM 
Laptop 1.33 GHz 

AMD Athlon 
240 MB 

HP 1.2 GHz  
AMD Athlon 

256 MB 

Dell 798 MGz 
Intel Pentium III 

256 MB 

E-Tower 400 MHz 
Intel Celeron 

160 MB 

 

Comparison of Results on Various Computers
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The plots for each of the comparisons between the Laptop and the other three 

computers are all linear in the graph.  Each point for each computer compared to the 

Laptop computer lies close to the fitted line (produced by Excel).  Furthermore, the R2 

values (also produced by Excel) are all above 0.99.  It is, therefore, reasonable to assume 

that the performance results on the different computers I used are linearly related.  The 

performance of the Laptop in comparison to each of the three other computers is certainly 

linear and, if each computer is linearly related to the Laptop computer, it is reasonable to 

expect them to be linearly related to each other as well. 

 

2.2 Experimental Methodology 

The random set of generated PDBNs used in this research study is meant to provide 

breadth to the results of this research because this sample set contains a large number and 

highly varied sample PDBNs.  This methodology is in contrast to one where I would get 

a smaller sample set of representative PDBNs within a particular problem domain.  By 

randomly generating my sample set of PDBNs, I am more likely to cover the full 

spectrum of possible PDBNs and less likely to produce results that are biased by a 

problem domain I drew samples from. 

I drew the sample set of PDBNs from randomly generated networks from a random 

PDBN generator.  The set of randomly generated networks consisted of 250 PDBNs.  I 

developed the random PDBN generator before experimentation began and generated 

random PDBNs using the experimental factors listed in Table 2.  For each experimental 

factor in listed in Table 2, I used the distribution defined in Table 3 when using the 
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random PDBN generator.  This random PDBN generator allows the user to control the 

distributions of the experimental factors that define the attributes of each PDBN in the 

generated sample set.  The random PDBN generator I developed can also measure 

empirically the values of each experimental factor, as well as other factors, for each 

PDBN in the sample set. 

Once a sample PDBN was selected from the random PDBN generator, it was 

categorized based on the factors described in Tables 1 and 2.  This categorization was 

necessary for experimental purposes to determine what factors most influence a particular 

inference algorithm.  Once there was an adequately sized sample set of PDBNs and these 

Bayesian networks were categorized by the factors of the experiment defined in Table 2, 

the test runs of the experiment began. 

Once a PDBN was selected and properly categorized, the formal test run began.  Each 

test run began with the generation of a base truth set of cases.  This is essentially a set of 

values for each variable over each time step to represent the actual value of that variable 

at that time step.  This base truth set of cases varies for each PDBN but not over each 

inference algorithm that utilizes the same PDBN.  This was used later in data collection 

and analysis to help determine the accuracy of the inference algorithm for this Bayesian 

network.  Once the base truth set of cases was generated, the inference algorithms could 

be used to perform inference on the sample PDBN over 60 time steps.  Data examining 

the performance and accuracy of the inference algorithm were collected while the 

inference algorithm processes the PDBN.  The data collected is described in the next 

section and listed in Table 7. 
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Figure 7:  Formal Experimentation Flow Chart 
 

Within the base truth case set generation stage, a set of cases for all nodes in the 

PDBN being tested were generated for each time step through Monte Carlo simulation.  

These cases represent the actual value of each variable over each time step.  Then the 

inference algorithm was run on the PDBN.  For each time step, the set of cases in that 

time step were applied to the nodes of that time step that are chosen to have evidence.  

According to the constraints of this research study, only dynamic non-transitional nodes 

can have evidence.  The set of nodes to have evidence were randomly decided ahead of 

time and within each time step there was a 1% probability that a particular node will not 

get any evidence for that time step only.  Each node had an equal probability of being an 

evidence node.   The max a posteriori value was calculated for each node without 
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evidence using the evidence given at that time step.  The max a posteriori value was 

collected to represent the estimated value of that variable and the set of cases collected 

before the inference algorithm is applied was used to represent actual value of each 

variable in the Bayesian network. 

During the formal experiment, it was also necessary to designate a class variable (and 

hence, a class node) among the nodes in the partially dynamic Bayesian network.  A class 

variable is the single variable in a Bayesian network modeling a class discrimination 

problem that represents the class of the object being examined.  The class node is the 

node representing this variable.  This node is usually static and discrete.  Because the 

networks generated for this research study do not model a specific real world problem, 

there is no real class node in the PDBNs in the sample sets.  Therefore, a static root node 

was chosen to simulate the class variable for each PDBN in the sample set. 

I then used this class variable as the point of comparison for the accuracy metrics.  

With each of the approximate inference algorithms, I compared the distribution of the 

class variable given by the approximate inference algorithm to the exact distribution of 

this same variable.  The exact distribution of the class variable was derived using the SPI 

algorithm, which is an exact inference algorithm. 

The designation of a class variable was useful for the purpose of determining the 

number of time steps necessary to perform an accurate object classification and for 

measuring accuracy metrics dealing specifically with the class variable.  The former 

objective was necessary in determining the number of time steps a test run should occur.  

In any object classification problem, the class variable will start off with several likely 
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candidates, each with a different probability.  After several time steps where evidence is 

applied and more is understood about the object being identified, certain possible 

classifications of the object become more likely than the others.  However, it may not be 

possible even after many time steps to determine the correct classification with certainty.  

There may be a period of transient behavior of the class node, in which several 

classifications may vie for the position of the most likely classification for the object 

being examined.  For some situations, the class node may eventually reach a point of 

near-certainty for a given class.  In other situations the class node may reach a limiting 

probability between zero and one, oscillate among possible classifications, or enter some 

other pattern that will continue indefinitely. 

The number of time steps to conduct inference over a test run should ideally allow 

just enough time for the class variable to reach a stable and unchanging pattern in its state 

transition for all test runs in the experiment.  If the class variable is not given enough time 

to reach a state of equilibrium, the accuracy metric reported for that test run will be 

adversely affected.  Through informal tests, I was able to determine that 60 time steps 

provided ample time for any test run of a PDBN within the scope of this research study 

under any of the inference algorithms used in this research study to have the class 

variable of the PDBN to reach a state of equilibrium. 
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3. Experimental Results 

 
 

3.1 General Analysis Methodology 

A suitable inference algorithm is one that is fast enough to run in real time and 

accurate enough to provide meaningful and trustworthy results given a reasonable 

resource allocation.  Therefore, the metric categories by which each inference algorithm 

was judged were speed and accuracy.  Table 7 lists all the assessment metrics for each of 

these value objectives as well as a brief description of each.  Most of the assessment 

metrics come from Section 4 of the “Test Plan for Evaluating Approximate Inference 

Algorithms” (IET, 2002). 

 
Table 7:  Assessment Metrics (IET, 2002) 

 Name Description 
Speed Metrics  
 Average time per time step How much time on average was required to perform 

inference over each time step. 
 Variance in time per time 

step 
Variance in time to perform inference over each time 
step. 

Accuracy Metrics  
 Root mean squared error The square root of the sum of the squares of the per-

value differences between the exact and approximate 

distribution values 
2
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I examined the speed of the inference algorithm per time step per test run.  For each 

time step, I measured the amount of time to complete the time step for each inference 

algorithm. 

I also examined the accuracy of the inference algorithm per time step and per test run.  

I computed accuracy values for all nodes not designated to be evidence nodes.  For 

evidence nodes that did not collect evidence for a time step, however, I did not examine 

these nodes for accuracy.  For each test run, I used the average root mean squared error 

over each time step for each inference algorithm to determine how much the approximate 

distribution varies from the exact distribution.   

The data that I collected each test run to calculate what each of these assessment 

measures was: 

 The time required to perform the time step inference. 

 The posterior distribution on each node at each time step. 

 The distribution of each node after the final time step. 

 Base truth value of each node over each time step. 

I used the posterior distributions derived from the exact inference algorithms as the 

basis of comparison for the approximate inference algorithms to analyze the accuracy of 

these inference algorithms.  While even an exact inference algorithm can give false 

positives and false negatives the posterior probability distributions it provides will be 

accurate and a valid basis of comparison for approximate inference algorithms.  In the 

cases where the particular class of PDBN was intractable for the exact inference 

algorithms being used in this study but not the approximate inference algorithms, it was 
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impossible to calculate all the accuracy assessment metrics and was treated as missing 

data.  Thus, I only used PDBNs that were tractable for both the SPI and approximate 

inference algorithms when taking accuracy measures. 

I developed my models using linear regression.  I used the linear regression package 

that was available with Microsoft Excel as well as the statistical package R to conduct 

linear regression.  I used both Microsoft Excel and R to perform linear regression.  I also 

used R to build correlation matrices, calculate variation inflation factors, and calculate 

Cook’s distance statistics to better understand and support my statistical models. 

I used linear regression to develop the statistical models dealing with the accuracy of 

inference, the average speed of inference per time step, and the average variance of the 

average speed of inference per time step.  The regression equation I used is shown in 

Equation 3. 

  
i

ii xY  Equation 3 

Here Y is the dependent variable, xi is the ith independent variable, i is the coefficient of 

the ith independent variable,  is the y intercept, and  is the random error term.   

However, there is reason to expect that the relationship between the dependent 

variable and the average speed of inference per time step may be nonlinear.  Because 

inference on Bayesian networks is an NP-Hard problem (Cooper 1990), it would stand to 

reason that a linear increase in complexity would result in an exponential increase in time 

of inference. Therefore, I also considered an exponential regression model.  To develop 

an exponential regression model, I performed linear regression using the alternate 

regression equation shown in Equation 4. 
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i

ii xYln  Equation 4 

Thus, I performed linear regression using the natural logarithm of the dependent variable.  

The case when the dependent variable isn’t transformed for this regression equation is 

shown in Equation 5. 

   eeeY
i

X ii  Equation 5 

The situation where an exponential regression model would likely be the better model 

would be in the case of the Boyen-Koller inference algorithm when one uses it in 

conjunction with the SPI exact inference algorithm.  One possible factor that one could 

use to measure the complexity of a Bayesian network is the number of nodes in that 

network.  Adding a single node to the Bayesian network will have a multiplicative effect 

on the size of the CPTs of every node that is a child of the node that was added.  The 

speed at which the SPI inference algorithm is able to do inference is likely linked to the 

size of the CPT tables of the nodes in the Bayesian network.  Therefore, it stands to 

reason that adding a node to a Bayesian network will result in an exponential increase in 

the time of inference for that Bayesian network when using the SPI algorithm. 

It is unclear whether an exponential model would be appropriate for modeling the 

speed of inference of a particle filter inference algorithm.  Unlike most inference 

algorithms, the particle filter inference algorithm may not grow exponentially in time to 

perform inference as the complexity of the PDBN grows linearly (Kuo 2005).  However, 

I believe it is still worthwhile to investigate the possibility that the speed of inference for 

the particle filter inference algorithm could be modeled with an exponential model. 
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For this reason, I also developed exponential statistical models dealing with the 

average speed of inference per time step.  I did this by first linearizing the exponential 

statistical model by using the natural logarithm of my dependent variable.  Then I 

performed a linear regression in which the dependent variable was the natural logarithm 

of the average speed of inference per time step. 

My initial attempts at regression analysis for each performance and accuracy metric 

for each inference algorithm utilized all the independent variables in Table 1 regardless 

of their theoretical relevance to the model I was developing.   I removed factors as 

independent variables if they correlated beyond a threshold of 0.15 to other independent 

variables that fit better in the model.  Even after this step to reduce collinearity among the 

independent variables, I was left with a relatively large number of independent variables 

with which to perform regression over.  In all situations, the resulting models were poor.  

In many scenarios, there were significant factors in the model with negative coefficients 

where one would expect a positive coefficient.  In addition, minor changes to the 

independent variables used often lead to dramatic changes in which factors were 

significant.  Furthermore, I consistently had one or more independent variables with 

variance inflation factors above 10 in each of the models (Kleinbaum, 1988). 

My conclusion was that there is multicollinearity between some of my independent 

variables and that the method by which I selected the independent variables to use in a 

regression analysis was flawed.  To reduce the multicollinearity between my independent 

variables, I used only a subset of the factors in Table 1, selecting only those factors that I 

could justify as having any likelihood of affecting the dependent variable I was 
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examining.  Along with this approach, I also examined the correlation matrix of every 

factor I used in the regression analysis as well as each factor’s variance inflation factor.  

In this way, I could minimize the multicollinearity between my independent variables. 

I validated my models over a sample set of 250 PDBNs.  This amounted to a 

maximum of 1500 data points when examining the performance of each of the particle 

filter inference algorithms and 2000 data points when examining the performance of the 

Boyen-Koller inference algorithms.  In practice, however, I used fewer than the 

maximum potential number of data points for evaluating an individual inference 

algorithm.  Fewer than the maximum number of data points were available for evaluating 

each inference algorithm because inference over some of the sample PDBNs was not 

tractable or timely for some of the scenarios the PDBNs were tested under. 

When performing linear regression to determine the factors to use in my models, I 

used a reduced training set of half the available data points.  I further reduced my dataset 

by removing repeat observations1, or pairs of observations where each of the independent 

variables and the dependent variable were identical.  However, this reduction was always 

small.  I then tested the models over the entire available dataset.  By performing 

regression analysis over half of the data points, I believe I had enough data during the 

regression step to prevent over fitting.  At the same time, I believe I had enough data left 

over to test the model produced by the regression test accurately. 

 

                                                
1 Here a repeat observation is an observation that is likely to be generated under the same scenario and 

PDBN as another observation.  I determined if an observation was likely to be a repeat observation if that 
observation shared the same values of its dependent variables and independent variable as another factor. 
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3.2 Analysis and Results for the Particle Filter Inference Algorithm Speed of Inference 

For the speed of inference models and the variance of speed of inference models for 

the particle filter inference algorithm I used the factors: 

 Average States per Node 

 Average CPT Size 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

 Number of Particles 

The number of particles used by the particle filter is an obvious choice as a factor that 

influences the speed of inference of this inference algorithm.  The particle filter inference 

algorithm is a Monte Carlo method, and thus, the algorithm must spend time creating or 

adding to each particle every time step. 

How long the algorithm takes to create or add to a particle depends on the number of 

nodes in the Bayesian network because each node must randomly selected its value for 

each particle.  Therefore, it also made sense to include the number of each class of nodes 

in the PDBN as an independent variable used in the regression analysis.  The factors for 

each of the three classes of nodes are:  the Number of Dynamic Transitional Nodes 

factor, the Number of Dynamic Non-Transitional Nodes factor, and the Number of Static 

Nodes factor. 

When randomly selecting the value of a node, the particle filter inference algorithm 

must choose a value among all the possible states of that node using the conditional 
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probability distribution of that node.  Although the time to randomly select the value of a 

node is not necessarily related to the number of states in that node or the size of that 

node’s CPT table, these factors were included incase there still did exist a significant 

relationship. 

Furthermore, the CPT tables of all the nodes contribute the greatest to the amount of 

memory a PDBN takes up.  The more memory resources a PDBN takes up, the fewer 

resources are available for the inference algorithm.  This could conceivably have a 

negative effect on inference algorithm performance. 

When performing regression with the exponential model, I combined the three factors 

dealing with the number of each class of nodes in a PDBN.  Had I kept these factors 

separate when performing regression with the exponential model, these factors would 

have been multiplied together rather than summed.  However, it is likely that the sum of 

these factors, and not the product of these factors that affect the speed of inference for the 

particle filter inference algorithm.  The particle filter inference algorithm randomly 

selects a value for each node for each particle and only once for each node for each 

particle.  Thus, it makes more sense to combine these thee factors into the Number of 

Nodes factor and have that factor multiplied with the Number of Particles factor when 

developing the exponential model. 

The first inference algorithm I examined was an exponential model of the speed of 

inference for the particle filter inference algorithm.  The first set of factors I performed 

regression with was: 

 Average States per Node 



 

 
 
 

55 

 Average CPT Size 

 Number of Nodes 

 Number of Particles 

This model had a clear pattern in the residuals graph for the Number of Particles factor.  

This graph can be seen in Figure 12 in Appendix A.  The pattern appears to suggest a 

logarithmic relationship between the number of particles used by the inference algorithm 

and the natural logarithm of the speed of inference for the particle filter inference 

algorithm. 

The Average States per Node factor was also not significant in this model.  I 

performed regression again over the same set of factors excluding the Average States per 

Node factor.  Despite this change, there was still a clear pattern in the residuals graph for 

the Number of Particles factor.  The graph was nearly identical to the one seen in Figure 

12. 

Based on the graph in Figure 12, I adjusted the previous model by using the natural 

logarithm of the Number of Particles factor as an independent variable.  Thus, the set of 

factors I performed regression over became: 

 Average States per Node 

 Average CPT Size 

 Number of Nodes 

 Natural Logarithm of the Number of Particles 

In this model, all factors including the Average States per Node factor were significant.  

The graph of the residuals versus the natural logarithm of the Number of Particles factor 
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in this model does not appear to show a pattern as the Number of Particles factor did in 

the previous model.  This graph is shown in Figure 13 in Appendix A.  However, there 

appeared to be a pattern now in the residuals graph for the Average CPT Size as seen in 

Figure 15 in Appendix A.  As before, the pattern appeared to be logarithmic in nature. 

In this model, several outliers had to be removed because they were beyond the 

threshold of 0.5 for Cook’s distance statistic (Lorenz, 1987).  Thus, these data points 

disproportionately influenced the regression and needed to be removed so the regression 

could be more accurate.  One can see these outliers best in Figure 14, which is the graph 

of the residuals versus the natural logarithm of the Number of Particles factor before 

these outliers were removed.  The outlying date points in are circled.  From this figure, 

one can see that these outliers lie outside the general trend of the plot.  Only six data 

points were removed and after these data points were removed, no further outliers were 

shown as being overly influential according to Cook’s distance statistic. 

In the next model, I used the factors: 

 Average States per Node 

 Natural Logarithm of the Average CPT Size 

 Number of Nodes 

 Number of Particles 

I used the natural logarithm of the Average CPT Size factor in response to the pattern that 

appears in Figure 15.  As in the first exponential model I developed to predict the speed 

of inference for the particle filter inference algorithm, there was an apparent pattern in the 

residuals graph for the Number of Particles factor.  This graph is seen in Figure 16 in 
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Appendix A.  As before, the pattern suggested a logarithmic relationship between the 

number of particles used by the inference algorithm and the natural logarithm of the 

speed of inference for the particle filter inference algorithm 

Also similar to the first exponential model I developed, the Average States per Node 

factor was also not significant in this model.  I performed regression again over the same 

set of factors excluding the Average States per Node factor.  As before, there was still a 

clear pattern in the residuals graph for the Number of Particles factor.  The graph was 

nearly identical to the one seen in Figure 16. 

The next model I developed for predicting the speed of inference for the particle filter 

inference algorithm used the factors: 

 Average States per Node 

 Natural Logarithm of the Average CPT Size 

 Number of Nodes 

 Natural Logarithm of the Number of Particles 

None of the residual graphs for any of the factors listed above displayed any apparent 

patterns as seen in Figure 17, Figure 18, Figure 19, and Figure 20 in Appendix A. 

In this model, several outliers had to be removed because they were beyond the 

threshold of 0.5 for Cook’s distance statistic.  Thus, these data points disproportionately 

influenced the regression and needed to be removed so the regression could be more 

accurate.  One can see these outliers in Figure 21, which is the graph of the residuals 

versus the natural logarithm of the Number of Particles factor before these outliers were 

removed.  The outlying date points in are circled.  From this figure, one can see that these 
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outliers lie outside the general trend of the plot.  Only six data points were removed and 

after these data points were removed, no further outliers were shown as being overly 

influential according to Cook’s distance statistic. 

Figure 22 in Appendix A shows the model’s fit to the actual time results while Figure 

23 in Appendix A shows this same graph in logarithmic scale.  Figure 24 in Appendix A 

shows the residual plot for this exponential model.  From the graphs in Figure 22 through 

Figure 24, this exponential model appears to be a good predictor of the actual speed of 

inference for the particle filter inference algorithm.  Although there is a handful of 

outliers in the graph, the results of Cook’s distance statistic suggests that none of these 

outliers were overly influential on the results of the regression analysis.  Also, it appears 

that as the average time to perform inference grows linearly, the error of this model 

grows slightly.  This can be seen from Figure 22.  However, this linear growth in error is 

only slight. 

A Normal Q-Q plot of the residuals, as seen in Figure 25 in Appendix A, supports the 

assumption that this model’s error is normal.  There are outliers at the right tail of the 

normal distribution but, for the main body of the data, the model’s error appears to match 

the normal distribution closely.  The Q-Q plot along with the residual and model fit 

graphs above in Figure 17 through Figure 25 all support the Gauss-Markov assumptions.  

The model’s error is likely to be normal with a mean near zero as seen from the Q-Q plot.  

Furthermore, the random errors of the model are all likely to be uncorrelated as no factor 

has a variance inflation factor above 2.  Finally, the lack of any noticeable patterns in any 
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of the residual graphs for each of the independent variables and the dependent variable 

suggests that random errors of the model are homoscedastic. 

For the linear model of speed of inference for the particle filter inference algorithm, 

the factors I used were: 

 Average States Per Node 

 Average CPT Size 

 Number of Static Nodes 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Particles 

This model proved to be a very good model as none of the residual graphs for any of the 

factors listed above displayed any apparent patterns as seen in Figure 26 through Figure 

31 in Appendix A. 

A pattern was found for the dependent variable.  Figure 32 in Appendix A shows the 

model’s fit to the actual time results.  Figure 33 in Appendix A shows the residual plot 

for this exponential model.  Although the model’s fit to the actual time results appears to 

be an ideal fit, the residual plot in Figure 33 appears to suggest a logarithmic or quadratic 

relationship.   

Nonetheless, the graph in Figure 32 supports the belief that this linear model is a 

better predictor of the actual speed of inference for the particle filter inference algorithm 

than the other models explored in this research study for this dependent variable.  Figure 

33 suggests that some heteroscedasticity may exist but it still may not be substantial 



 

 
 
 

60 

enough to disrupt the regression analysis used to generate this model.  Although there are 

a handful of outliers in the graph, the results of Cook’s distance statistic suggests that 

none of these outliers was overly influential on the results of the regression analysis. 

A Normal Q-Q plot of the residuals, as seen in Figure 34 in Appendix A, supports the 

assumption that this model’s error is normal.  Furthermore, this Q-Q plot matches the 

normal distribution better than the Q-Q plot in Figure 25 for the exponential model 

above.  As in the exponential model, the Q-Q plot along with the residual and model fit 

graphs above in Figure 26 through Figure 34 all support the Gauss-Markov assumptions.  

The model’s error is likely to be normal with a mean near zero as seen from the Q-Q plot.  

Furthermore, the random errors of the model are all likely to be uncorrelated as no factor 

has a variance inflation factor above 2.  Finally, the lack of any noticeable patterns in any 

of the residual graphs for each of the independent variables and the dependent variable 

suggests that random errors of the model are homoscedastic. 

Another concern with regard to this linear model is that there was a relatively high 

correlation between the Number of Dynamic Transitional Nodes and Average CPT Size 

factors.  These two factors had a correlation of 0.33 where my correlation threshold is 

0.3.  I endeavored to avoid any pair of factors being correlated beyond a certain threshold 

because a pair of factors that are too highly correlated may result in multicollinearity 

problems in the regression results.  A correlation threshold of 0.3 should prevent any two 

factors from being collinear.  Nonetheless, the value of 0.3 was chosen arbitrarily so a 

correlation of 0.33 may still not be large enough to disrupt the regression analysis for this 
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model.  This is supported by the fact that variance inflation for all the factors of this 

model were well below 2. 

To address the above concern, I generated a linear model that used the total number 

of nodes as a factor instead of the number of each class of nodes.  Thus, the factors I used 

in this model were: 

 Average States Per Node 

 Average CPT Size 

 Number of Nodes 

 Number of Particles 

The residual graphs, model fit plots, and Q-Q plot for this model were nearly identical to 

that of the first linear model.  The residual graph for the Number of Nodes factor also had 

no apparent structure as seen in Figure 35 in Appendix A.  The R square statistic for the 

test set was lower than the previous linear model, however, at 0.974613..  Thus, it is 

probably better to keep the three factors dealing with node type separate for the linear 

model of the speed of inference of the particle filter inference algorithm. 

 

3.3 Analysis and Results for the Particle Filter Inference Algorithm Variance of Speed of 

Inference 

I used the same set of factors when developing both the speed of inference and 

variance of the speed of inference for the particle filter inference algorithm.  These 

factors were: 

 Average States per Node 
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 Average CPT Size 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

 Number of Particles 

I decided to use the same set of factors because of the strong relationship between the 

speed of inference and the variance of the speed of inference.  The relationship between 

these two factors becomes apparent in the graph in Figure 8.  Thus, as the time to perform 

inference with the particle filter inference algorithm increases, so does the variance of the 

time to perform inference.  I believe that this relationship entails that the physics behind 

the speed of inference and the variance of the speed of inference for the particle filter 

algorithm are similar.  Thus, I believe the models that predict these two metrics would 

likely be equally similar as well as the factors involved. 
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Figure 8:  Relationship Between Average Time per Time Step and Variance of Time per Time Step 
for the Particle Filter Inference Algorithm 
 
 
 

The first inference algorithm I examined was an exponential model of the variance of 

the speed of inference for the particle filter inference algorithm.  The first set of factors I 

performed regression with was: 

 Average States per Node 

 Average CPT Size 

 Number of Nodes 

 Number of Particles 

This model had a clear pattern in the residuals graph for the Number of Particles factor.  

This graph can be seen in Figure 36 in Appendix B.  The pattern appears to suggest a 

logarithmic relationship between the number of particles used by the inference algorithm 
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and the natural logarithm of the variance of the speed of inference for the particle filter 

inference algorithm. 

The Average States per Node factor was also not significant in this model.  I 

performed regression again over the same set of factors excluding the Average States per 

Node factor.  Despite this change, there was still a clear pattern in the residuals graph for 

the Number of Particles factor.  The graph was nearly identical to the one seen in Figure 

36. 

Based on the graph in Figure 12, I adjusted the previous model by using the natural 

logarithm of the Number of Particles factor as an independent variable.  Thus, the set of 

factors I performed regression over became: 

 Average States per Node 

 Average CPT Size 

 Number of Nodes 

 Natural Logarithm of the Number of Particles 

In this model, all factors including the Average States per Node factor were significant.  

The graph of the residuals versus the natural logarithm of the Number of Particles factor 

in this model does not appear to show a pattern as the Number of Particles factor did in 

the previous model.  This graph is shown in Figure 37 in Appendix B.  However, there 

appeared to be a pattern now in the residuals graph for the Average CPT Size as seen in 

Figure 38 in Appendix B.  As before, the pattern appeared to be logarithmic in nature. 

In this model, several outliers had to be removed because they were beyond the 

threshold of 0.5 for Cook’s distance statistic.  Thus, these data points disproportionately 
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influenced the regression and needed to be removed so the regression could be more 

accurate.  After these data points were removed, no further outliers were shown as being 

overly influential according to Cook’s distance statistic. 

The next model I developed for predicting the variance of the speed of inference for 

the particle filter inference algorithm used the factors: 

 Average States per Node 

 Natural Logarithm of the Average CPT Size 

 Number of Nodes 

 Natural Logarithm of the Number of Particles 

None of the residual graphs for any of the factors listed above displayed any apparent 

patterns as seen in Figure 39, Figure 40, Figure 41, and Figure 42 in Appendix B. 

In this model, several outliers had to be removed because they were beyond the 

threshold of 0.5 for Cook’s distance statistic.  Thus, these data points disproportionately 

influenced the regression and needed to be removed so the regression could be more 

accurate.  After these data points were removed, no further outliers were shown as being 

overly influential according to Cook’s distance statistic. 

Figure 43 in Appendix B shows the model’s fit to the actual variance of time results 

while Figure 44 in Appendix B shows this same graph in logarithmic scale.  Figure 45 in 

Appendix B shows the residual plot for this exponential model.  From the graphs in 

Figure 43 through Figure 45, this exponential model appears to be a decent predictor of 

the actual variance of the speed of inference for the particle filter inference algorithm.  

Although there is a number of outliers in the graph of which several are quite distant, the 
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results of Cook’s distance statistic suggests that none of these outliers were overly 

influential on the results of the regression analysis.  Also, it appears that as the variance 

of the average time to perform inference grows linearly, the error of this model grows as 

well.  This can be seen best in Figure 43. 

The Normal Q-Q plot of the residuals, as seen in Figure 46 in Appendix B, does not 

support the assumption that this model’s error is normal.  The distribution is very heavy 

on the right tail.  The distribution is also heavy on the left tail, although to a lesser degree.  

The Q-Q plot along with the residual and model fit graphs above in Figure 43 through 

Figure 45 do not support all the Gauss-Markov assumptions.  Although the model is 

likely to have a mean error near zero, the model’s error distribution is not likely to be 

normal.  However, the random errors of the model are all likely to be uncorrelated as no 

factor has a variance inflation factor above 2.  Also, the lack of any noticeable patterns in 

any of the residual graphs for each of the independent variables suggests that random 

errors of the independent variables are homoscedastic.  The residuals graph for the 

dependent variable appears to have a pattern in it such that the model appears to 

underestimate the dependent variable for higher values of the model. 

There also appears to be a separate cluster of data points among the residual graph 

shown in Figure 45 and the model’s fit to the actual time results when plotted in 

logarithmic scale shown in Figure 44.  This suggests that two distinct and separate 

phenomena may be represented in the dataset and that two separate statistical models are 

necessary to model these two phenomenon.  However, due to time constraints, I was 

unable to explore this possibility further. 
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For the linear model of the variance of the speed of inference for the particle filter 

inference algorithm, the factors I used were: 

 Average States Per Node 

 Average CPT Size 

 Number of Static Nodes 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Particles 

This model had a pattern in the residuals graph for the Number of Particles factor.  This 

graph can be seen in Figure 47 in Appendix B.  The pattern appears to suggest either a 

logarithmic or a quadratic relationship between the number of particles used by the 

inference algorithm and the natural logarithm of the variance of the speed of inference for 

the particle filter inference algorithm. 

The Average CPT Size factor was also not significant in this model.  I performed 

regression again over the same set of factors excluding the Average States per Node 

factor.  Despite this change, there was still a clear pattern in the residuals graph for the 

Number of Particles factor.  The graph was nearly identical to the one seen in Figure 47. 

Based on the graph in Figure 12, I adjusted the previous model by using the natural 

logarithm of the Number of Particles factor as an independent variable.  Thus, the set of 

factors I performed regression over became: 

 Average States Per Node 

 Average CPT Size 
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 Number of Static Nodes 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Natural Logarithm of the Number of Particles 

This model was far worse than the last one, however, with a decrease in the mode’s R 

Square value instead of an increase.  More importantly, the pattern seen in the residuals 

graph for the Number of Particles factor in the last model become more drastic in this 

model.  This graph can be seen in Figure 48 in Appendix B. 

Based on the results seen in Figure 48, it appears the pattern seen in the residuals 

graph for the Number of Particles factor of the last model is more likely to be quadratic in 

nature.  Thus, the set of factors used in my next model were: 

 Average States Per Node 

 Average CPT Size 

 Number of Static Nodes 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Particles Squared 

This model had no apparent pattern in any of the residual graphs for the independent 

variables as seen in Figure 49 through Figure 54 in Appendix B.  However, the Average 

CPT Size factor was found to not be significant.  Thus, a final linear model was 

developed using on these factors: 

 Average States Per Node 
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 Number of Static Nodes 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Particles Squared 

Figure 55 in Appendix B shows the model’s fit to the actual variance of time.  Figure 

56 in Appendix B shows the residual plot for this exponential model.  From the graphs in 

Figure 55 and Figure 56, this exponential model appears to be a poor predictor of the 

actual variance of the speed of inference for the particle filter inference algorithm.  An 

obvious pattern can be seen from these two graphs is likely to be exponential.  No such 

pattern exists among the residual graphs of the independent variables in Figure 49 

through Figure 54, however, suggesting that the heteroscadeasticity lies in the dependent 

variable itself. 

The Normal Q-Q plot of the residuals, as seen in Figure 57 in Appendix B, does not 

support the assumption that this model’s error is normal.  The distribution is heavy on the 

both tails of the distribution.  The Q-Q plot along with the residual and model fit graphs 

above in Figure 55 and Figure 56 do not support all the Gauss-Markov assumptions.  The 

model does not have a mean error near zero and the model’s error distribution is not 

likely to be normal.  Nonetheless, the random errors of the model are all likely to be 

uncorrelated as no factor has a variance inflation factor above 2.  Also, the lack of any 

noticeable patterns in any of the residual graphs for each of the independent variables 

suggests that random errors of the independent variables are homoscedastic.  The 

residuals graph for the dependent variable, however, appears to have a pattern in it such 



 

 
 
 

70 

that the model appears to underestimate the dependent variable for higher values of the 

model and the error grows exponentially as the model values grow linearly. 

 

3.4 Analysis and Results for the Boyen-Koller Inference Algorithm Speed of Inference 

For the speed of inference models and the variance of speed of inference models for 

the Boyen-Koller inference algorithm over SPI 2I used the factors: 

 Average States per Node 

 Average CPT Size 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

 Average Cluster Size 

Just as the number of particles is a necessary parameter for the particle filter inference 

algorithm, the designation of nodes in each cluster is a necessary parameter for the 

Boyen-Koller inference algorithm.  In these models, the Average Cluster Size factor is 

the metric I used to measure the effect these clusters have on the speed of inference on 

the Boyen-Koller inference algorithm over SPI.  This metric is a proxy measure as the 

true indicator of the effect the clusters in the Boyen-Koller inference algorithm have on 

speed of inference is the change in the CPT sizes due to the removal of intercluster arcs.  

However, this metric is far more difficult to calculate and impossible to calculate in an 

                                                
2 Boyen-Koller inference algorithm when one uses it in conjunction with the SPI exact inference 

algorithm 
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immature Bayesian network when many variables in the model and their 

interrelationships have yet to be defined. 

Because I am using the Boyen-Koller inference algorithm in conjunction with the SPI 

algorithm, the Average CPT Size factor is also a key factor in predicting the speed of 

inference of this algorithm.  This factor is highly correlated to the average time to 

perform inference using the Boyen-Koller inference algorithm with a correlation 

coefficient over 0.9.  This is to be expected as the speed of inference for the SPI 

algorithm should be strongly related to the average CPT size of the Bayesian network this 

inference algorithm is being used on.  The reason for this is that the best the SPI 

algorithm can possibly do in terms of speed of inference is directly proportional to the 

total CPT size of the Bayesian network, or the product of the average CPT size and the 

number of nodes.  If the SPI algorithm is able to marginalize out each node immediately 

after coming to that node in the factor tree, the variable that node represents would only 

have to be used in the equation once.  Thus, the only variables required during each 

multiplication step would be the variables incorporated in the CPT table of the node 

being visited at that step.  This lower limit in speed of inference is only possible on the 

most sparse of PDBNs and only if the optimal factor tree is found for the PDBN.  

However, the high correlation between the total CPT size of a PDBN and the speed of 

inference when using the Boyen-Koller inference algorithm over SPI seems to suggest 

that this lower limit in speed is often near the actual speed of inference for most PDBNs 

used in this study. 
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I also included the Number of Nodes factor when performing regression because the 

total CPT size of a Bayesian network is also highly correlated to how quickly the Boyen-

Koller inferenace algorithm can perform inference on that network.  Since the total CPT 

size of a Bayesian network is the product of that network’s average CPT size and the 

number of nodes in that network, the Number of Nodes factor may also be a significant 

predictor of speed of inference for the Boyen-Koller inference algorithm over SPI. 

It is important to note that the following models developed to predict the speed and 

accuracy of the Boyen-Koller inference algorithm over SPI also serve to model the speed 

and accuracy of the SPI exact inference algorithm.  The Boyen-Koller inference 

algorithm over SPI is essentially the SPI algorithm when a single large cluster is used.  

Thus, one could consider the SPI algorithm the same algorithm as the Boyen-Koller 

inference algorithm when there is a single cluster containing all the nodes in the past 

expression.  I took advantage of this fact when modeling for the Boyen-Koller inference 

algorithm by assuming the SPI algorithm was simply the Boyen-Koller inference 

algorithm at a fourth, slower speed emphasis level. 

The first inference algorithm I examined was an exponential model of the speed of 

inference for the Boyen-Koller inference algorithm.  The first set of factors I performed 

regression with was: 

 Average States per Node 

 Average CPT Size 

 Number of Nodes 

 Average Cluster Size 
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This model had a clear pattern in the residuals graph for the Average CPT Size factor.  

This graph can be seen in Figure 58 in Appendix C.  The pattern appears to suggest a 

logarithmic relationship between the average CPT size of the PDBN and the natural 

logarithm of the speed of inference for the particle filter inference algorithm. 

The Average States per Node factor was also not significant in this model.  However, 

this may be due to potential logarithmic relationship between the Average CPT Size 

factor and the dependent variable.  Thus, the set of factors I performed regression over in 

the next model were: 

 Average States per Node 

 Natural Logarithm of the Average CPT Size 

 Number of Nodes 

 Average Cluster Size 

In this model, all factors including the Average States per Node factor were significant.  

None of the residual graphs for any of the factors listed above displayed any apparent 

patterns as seen in Figure 59, Figure 60, Figure 61, and Figure 62 in Appendix C. 

Also, the graph of the residuals versus the natural logarithm of the Average CPT Size 

factor in this model does not appear to show a pattern as the Average CPT Size factor did 

in the previous model.   

Figure 63 in Appendix C shows the model’s fit to the actual time results while Figure 

64 in Appendix C shows this same graph in logarithmic scale.  Figure 65 in Appendix C 

shows the residual plot for this exponential model.  From the graphs in Figure 63 through 

Figure 65, this exponential model appears to be a decent predictor of the actual speed of 
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inference for the particle filter inference algorithm.  However, the residual plot shown in 

Figure 65 bring to question whether this model support the Gauss-Markov assumption 

that the error of the model is normal.  It is hard to discern any particular pattern from any 

of these graphs.  Nonetheless, this model may still be a decent predictor of the speed of 

inference for the Boyen-Koller algorithm based on these models. 

A Normal Q-Q plot of the residuals, as seen in Figure 66 in Appendix C, shows that 

there are outliers at the left tail and right tails of the distribution.  The right tail of the 

distribution appears to much heavier than the left tail of the distribution.  The Q-Q plot 

along with the residual and model fit graphs above in Figure 59 through Figure 66 do not 

support the Gauss-Markov assumptions as clearly as in the best linear model above 

predicting the speed of inference of the particle filter inference algorithm.  The model’s 

error is not likely to be normal as seen from the Q-Q plot, although, the mean of the error 

appears to be near zero.  However, the random errors of the model are all likely to be 

uncorrelated as no factor has a variance inflation factor above 1.3.  Also, the lack of any 

noticeable patterns in any of the residual graphs for each of the independent variables 

suggests that random errors of the independent variables of the model are homoscedastic.  

However, this cannot be said of the dependent variable as seen in the residual graph for 

the dependent variable shown in Figure 65. 

For the linear model of speed of inference for the Boyen-Koller inference algorithm 

over SPI, the factors I used were: 

 Average States Per Node 

 Average CPT Size 



 

 
 
 

75 

 Number of Static Nodes 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Average Cluster Size 

As usual, the Number of Dynamic Transitional Nodes and Average CPT Size factors 

were slightly correlated with a correlation of 0.321.  Of greater concern was the fact that 

the Average States per Node factor had a negative coefficient when one would expect a 

positive coefficient.  This model suggests that if the average states per node in a PDBN 

was large enough in value relative to the other factors used in this model listed above, 

that the time to perform inference with the Boyen-Koller inference algorithm could be 

negative. 

The fact that there exist negative coefficients when one would expect a positive 

coefficient suggests that two or more factors or combinations of factors may be collinear.  

However, the largest variance inflation factor among the independent variables used in 

this model was 1.22, which is well below the threshold of 10. 

In one attempt to generate a linear model without any negative coefficients, I 

combined each of the node class factors into the Number of Nodes factor.  Thus, the 

factors I used in my second linear model were: 

 Average States Per Node 

 Average CPT Size 

 Number of Nodes 

 Average Cluster Size 
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Combining each of the node class factors into the Number of Nodes factor did not help, 

however.  The Average States per Node factor still had a negative coefficient.  

Furthermore, the Number of Nodes factor was insignificant in this model. 

In my third linear model predicting the speed of inference of the Boyen-Koller 

inference algorithm and my second attempt to produce a linear model without any 

negative coefficients, I used the factors: 

 Average States Per Node 

 Average CPT Size 

 Average Cluster Size 

This model also had a negative coefficient for the Average States per Node factor, and 

thus, was not an adequate predictor of the dependent variable.  The problem with a 

negative coefficient for the Average States per Node factor is that the model could 

potentially predict a negative speed of inference for some possible PDBNs and inference 

scenarios.  Such a PDBN would likely be a sparse network such that the average states 

per node of that PDBN was much larger than the average CPT size of that same PDBN.  

Also, the fully factored Boyen-Koller inference algorithm would likely be used in this 

case. 

In a final attempt to generate a linear model without a negative coefficient, I removed 

the Average States per Node factor that consistently came up with a negative coefficient.  

This model is a modification of the original linear model where I used the factors: 

 Average CPT Size 

 Number of Static Nodes 
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 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Average Cluster Size 

This model had no negative coefficients for any of the factors listed above.  Furthermore, 

there were no apparent patterns in any of the residual plots of any of the independent 

variables. 

However, the Number of Dynamic Non-Transitional Nodes factor was found to not 

be significant.  Thus, a final linear model was generated where this factor was removed, 

making the list of factors in this model: 

 Average CPT Size 

 Number of Static Nodes 

 Number of Dynamic Transitional Nodes 

 Average Cluster Size 

In this model, all factors were significant.  None of the residual graphs for any of the 

factors listed above displayed any apparent patterns as seen in Figure 67, Figure 68, 

Figure 69, and Figure 70 in Appendix C.  Each of these residual graphs show a few 

outliers.  However, the largest Cook’s distance value was 0.131, and thus, these outliers 

were likely not overly influential on the results of the regression. 

Figure 71 in Appendix C shows the model’s fit to the actual time results while Figure 

72 in Appendix C shows the residual plot for this linear model.  From the graphs in 

Figure 71 and Figure 72, this model appears to be a decent predictor of the actual speed 

of inference for the particle filter inference algorithm.  However, like the exponential 
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model earlier, the residual plot shown in Figure 72 bring to question whether this model 

support the Gauss-Markov assumption that the error of the model is normal.  As before, it 

is hard to discern any particular pattern from any of these graphs.  Nonetheless, this 

model may also be a decent predictor of the speed of inference for the Boyen-Koller 

algorithm based on these models. 

A Normal Q-Q plot of the residuals, as seen in Figure 73 in Appendix C, shows that 

there are outliers at the left and right tails of the distribution.  The right tail of the 

distribution appears to be much heavier than the left tail of the distribution.  The Q-Q plot 

along with the residual and model fit graphs above in Figure 67 through Figure 73 do not 

support the Gauss-Markov assumptions as clearly as in the best linear model above 

predicting the speed of inference of the particle filter inference algorithm.  The model’s 

error is not likely to be normal as seen from the Q-Q plot, although, the mean of the error 

is near zero.  However, the random errors of the model are all likely to be uncorrelated as 

no factor has a variance inflation factor above 1.2.  Also, the lack of any noticeable 

patterns in any of the residual graphs for each of the independent variables suggests that 

random errors of the independent variables model are homoscedastic.  However, this 

cannot be said of the dependent variable as seen in the residual graph for the dependent 

variable shown in Figure 72. 
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3.5 Analysis and Results for the Boyen-Koller Inference Algorithm Variance of Speed of 

Inference 

I used the same set of factors when developing both the speed of inference and 

variance of the speed of inference for the Boyen-Koller inference algorithm over SPI.  

These factors were: 

 Average States per Node 

 Average CPT Size 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

 Number of Particles 

Unlike the relationship between the speed of inference and the variance of the speed of 

inference for the particle filter algorithm, the relationship between these two metrics was 

much more complex for the Boyen-Koller inference algorithm.  I graph the relationship 

between these two factors in Figure 9.  From this graph, there appears to be an evident 

separation of values such that the dataset is likely to be covering two separate 

phenomenon. 
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Figure 9:  Relationship Between Average Time per Time Step and Variance of Time per Time Step 
for the Boyen-Koller Inference Algorithm 

 

Upon further examination, I found the separation to be between the case where user 

defined clusters are used with the Boyen-Koller algorithm and the case where either the 

SPI algorithm is used alone or the Boyen-Koller algorithm uses fully factored clustering.  

Figure 10 shows the relationship between the average speed of inference and the variance 

of the speed of inference for the case when the user defines the clusters used by the 

Boyen-Koller inference algorithm.  Figure 11 shows the relationship between the average 

speed of inference and the variance of the speed of inference for the SPI algorithm along 

with the Boyen-Koller algorithm when fully factored clustering is used.  In both cases 

there appears to be a relationship between the speed of inference and the variance of the 

speed of inference in the given scenario. 
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Figure 10:  Relationship Between Average Time per Time Step and Variance of Time per Time Step 
for the Boyen-Koller Inference Algorithm with User Defined Clusters 
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Figure 11:  Relationship Between Average Time per Time Step and Variance of Time per Time Step 
for the Fully Factored Boyen-Koller Inference Algorithm and the SPI Algorithm 

 

I believe that these relationships entail that the systems behind the speed of inference 

and the variance of the speed of inference for both these scenarios are similar.  Thus, I 

believe the models that predict these two metrics in these two scenarios would likely be 

equally similar as well as the factors involved. 

The first case analyzed was where the user selects the clusters to be used by the 

Boyen-Koller inference algorithm.  The first inference algorithm I examined within this 

case was an exponential model of the variance of the speed of inference for the Boyen-

Koller inference algorithm.  The first set of factors I performed regression with was: 

 Average States per Node 

 Average CPT Size 
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 Number of Nodes 

 Average Cluster Size 

This model appears to have a pattern in the residuals graph for the Average CPT Size 

factor.  This graph can be seen in Figure 74 in Appendix D.  The pattern appears to 

suggest a logarithmic relationship between the average CPT size of a PDBN and the 

natural logarithm of the variance of the speed of inference for the Boyen-Koller inference 

algorithm. 

There also is an apparent pattern in the residuals graph for the Average Cluster Size 

factor, although the nature of the pattern is less obvious.  This graph can be seen in 

Figure 75 in Appendix D.  The data points appear to be in two groupings in Figure 75 

where the two grouping appear to have a near parallel slope to each other.  Upon further 

examination, I found that the two groupings are partitioned by the two speed emphasis 

levels contained in this dataset.  This dataset covers two of the four speed emphasis levels 

used for the Boyen-Koller inference algorithm:  the slow speed emphasis level where 5 

clusters are used and the medium speed emphasis level where 8 clusters are used. 

The Number of Nodes factor was also not significant in this model.  I performed 

regression again over the same set of factors excluding the Number of Nodes factor.  

Despite this change, there was still a clear pattern in the residuals graph for the Average 

CPT Size factor.  The graph was nearly identical to the one seen in Figure 74.  The same 

was true for the residuals graph for the Average Cluster Size factor shown in Figure 75. 
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The next exponential model I examined within this case used the natural logarithm of 

the average CPT size as a factor in response to the pattern seen in Figure 74 in the 

previous model.  Thus, the set of factors I used with this model were: 

 Average States per Node 

 Natural Logarithm of the Average CPT Size 

 Number of Nodes 

 Average Cluster Size 

The residuals graphs for each of these independent variables showed no apparent patters 

with the exception of the Average Cluster Size factor.  As in the previous model, the 

residuals graph for the Average Cluster Size factor appeared to have grouping of data 

points where each grouping had what appeared to be parallel positive slopes.  The 

residual graphs for each of the independent variables can be seen in Figure 76 through 

Figure 79 in Appendix D. 

As in the previous model, The Number of Nodes factor was not significant.  I 

performed regression again over the same set of factors excluding the Number of Nodes 

factor.  Despite this change, there was still a clear pattern in the residuals graph for the 

Average Cluster Size factor.  The graph was nearly identical to the one seen in Figure 79. 

Figure 80 in Appendix D shows the model’s fit to the variance of the time results 

while Figure 81 in Appendix D shows this same graph in logarithmic scale.  Figure 82 in 

Appendix D shows the residual plot for this exponential model.  From the graphs in 

Figure 80 through Figure 82, this exponential model appears to be a poor predictor of the 

variance of the speed of inference for the Boyen-Koller inference algorithm over SPI.  
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The residual plot shown in Figure 82 has a clear pattern where the model error grows for 

larger values of variance. 

A Normal Q-Q plot of the residuals, as seen in Figure 83 in Appendix D, shows that 

there are outliers at both tails of the distribution.  The Q-Q plot along with the residual 

and model fit graphs above in Figure 76 through Figure 83 do not support several of the 

Gauss-Markov assumptions.  The model’s error is somewhat normal as seen from the Q-

Q plot and appears to have a mean near zero.  The random errors of the model are all 

likely to be uncorrelated as no factor has a variance inflation factor above 1.1.  Also, the 

lack of any noticeable patterns in any of the residual graphs for each of the independent 

variables, with the exception of the Average Cluster Size factor, suggests that random 

errors of these independent variables of the model are homoscedastic.  However, this 

cannot be said of the dependent variables as seen in the residuals graph for the dependent 

variable shown in Figure 82.  Furthermore, the residuals graph for the Average Cluster 

Size factor shown in Figure 79 clearly does not have normal error. 

Next, I examined various linear models of the variance of the speed of inference for 

the Boyen-Koller inference algorithm.  The first set of factors I performed regression 

with was: 

 Average States per Node 

 Average CPT Size 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 
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 Average Cluster Size 

Although this model had no apparent pattern in the residuals graphs for all the above 

independent variables, I did find that the Average CPT Size factor not to be significant. 

Thus, in the next linear model I removed the Average CPT Size factor as an 

independent variable.  The factors I performed regression over were then: 

 Average States per Node 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

 Average Cluster Size 

This model again had no apparent patter in the residual graphs for the independent 

variables used.  However, I found that two new factors were not significant:  the Number 

of Non-Transitional Nodes factor and the Average Cluster Size factor.  Furthermore, the 

coefficients of many of the factors had changed significantly. 

These results are indicative of multicollinearity existing in the model between two or 

more independent variables.  Although in the last model the highest variance inflation 

factor for any of the independent variables was no higher than 1.4, there did exist a 

correlation between the Average Cluster Size factor and the Number of Dynamic 

Transitional Nodes factor with a correlation coefficient between the factors of 

approximately 0.35.  Furthermore, there was a correlation between the Average CPT Size 

factor and the Number of Dynamic Transitional Nodes factor with a correlation 

coefficient between the factors of approximately 0.34.  Despite the low values for the 
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variance inflation factors, I believe the present model had two or more factors that were 

collinear, and thus, disrupting the results of my regression analysis. 

I decided to handle this multicollinearity by removing the Number of Dynamic 

Transitional Nodes factor that was correlated to two other independent variables in the 

first linear model.  Thus, the factors used in this model were: 

 Average States per Node 

 Average CPT Size 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

 Average Cluster Size 

Although removing this factor appeared to have removed the symptoms of 

multicollinearity I had seen in the previous model, the model that resulted was not a good 

predictor of the dependent variable. 

Therefore, in the next linear model I instead removed the Average Cluster Size factor.  

The independent variables of this model were then: 

 Average States per Node 

 Average CPT Size 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

This model appears to have no pattern in the residuals graphs for each of the independent 

variables used.  However, I found that the Average CPT Size factor was not significant.  
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Furthermore, this factor still was correlated to the Number of Dynamic Transitional 

Nodes factor. 

Thus, in my final linear model for this particular case I removed the Average CPT 

Size factor leaving me with the following factors: 

 Average States per Node 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

None of the residuals graphs for any of the independent variables had any apparent 

patterns as seen in Figure 84 through Figure 87 in Appendix D.  I should also note that 

the coefficients of each factor in this model changed only slightly from their values in the 

subsequent model.  Thus, this gives credence to the possibility that the correlation 

between the Average Cluster Size factor and the Number of Dynamic Transitional Nodes 

factor was what caused the change in coefficient values between models in the initial 

linear models I generated. 

Figure 88 in Appendix D shows the model’s fit to the variance of the time results 

while Figure 89 in Appendix D shows the residual plot for this linear model.  From the 

graphs in Figure 88 and Figure 89, this linear model appears to be a decent predictor of 

the variance of the speed of inference for the Boyen-Koller inference algorithm over SPI.  

There appear to be a few outliers in the graphs shown in Figure 88 and Figure 89.  

However, the results of Cook’s distance statistic suggest that none of these outliers were 
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overly influential on the results of the regression analysis.  Also, it is hard to discern any 

particular pattern from either of these graphs. 

A Normal Q-Q plot of the residuals, as seen in Figure 90 in Appendix D, shows that 

there are outliers at both tails of the distribution with the right tail of the distribution 

having the most dramatic outliers.  The Q-Q plot along with the residual and model fit 

graphs above in Figure 84 through Figure 90 do not support several of the Gauss-Markov 

assumptions.  The model’s error is not normal as seen from the Q-Q plot although it 

appears to have a mean near zero.  The random errors of the model are all likely to be 

uncorrelated as no factor has a variance inflation factor above 1.1.  Also, the lack of any 

noticeable patterns in any of the residual graphs for each of the independent variables 

suggests that random errors of these independent variables of the model are 

homoscedastic.  The dependent variable shown in Figure 82 also appears to be without 

any significant pattern, although, the error of the dependent variable appears to have a 

lower likelihood of being normal compared to the error for each of the independent 

variables. 

The second case analyzed was where the exact inference SPI algorithm was used or 

the Boyen-Koller inference algorithm over SPI was used with fully factored clustering.  

The first inference algorithm I examined within this case was an exponential model of the 

variance of the speed of inference for the Boyen-Koller inference algorithm.  The first set 

of factors I performed regression with was: 

 Average States per Node 

 Average CPT Size 
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 Number of Nodes 

 Average Cluster Size 

This model appears to have a pattern in the residuals graph for the Average CPT Size 

factor.  This graph can be seen in Figure 91 in Appendix D.  The pattern appears to 

suggest a logarithmic relationship between the average CPT size of a PDBN and the 

natural logarithm of the variance of the speed of inference for the Boyen-Koller inference 

algorithm. 

The Average States per Node factor was also not significant in this model.  I 

performed regression again over the same set of factors excluding the Average States per 

Node factor.  Despite this change, there was still a clear pattern in the residuals graph for 

the Average CPT Size factor.  The graph was nearly identical to the one seen in Figure 

91. 

For the next exponential I developed, I used the natural logarithm of the average CPT 

size in place of the Average CPT Size factor.  Thus, the independent variables used in 

this model were: 

 Average States per Node 

 Natural Logarithm of the Average CPT Size 

 Number of Nodes 

 Average Cluster Size 

None of the residuals graphs for any of the independent variables had any apparent 

patterns as seen in Figure 93 through Figure 95 in Appendix D.  However, two of the 

factors, the Average States per Node factor and the Number of Nodes factor, were not 
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significant.  I performed regression again over the same set of factors excluding the 

Average States per Node factor and the Number of Nodes factor. 

Figure 96 in Appendix D shows the model’s fit to the variance of the time results 

while Figure 97 in Appendix D shows this same graph in logarithmic scale.  Figure 98 in 

Appendix D shows the residual plot for this exponential model.  From the graphs in 

Figure 96 through Figure 98, this exponential model appears to be a poor predictor of the 

variance of the speed of inference for the Boyen-Koller inference algorithm over SPI.  

There are a number of outliers that are apparent in Figure 96, Figure 97, and Figure 98.  

Nonetheless, the results of Cook’s distance statistic suggests that none of these outliers 

were overly influential on the results of the regression analysis.  The residual plot shown 

in Figure 98 has a clear pattern where the model error grows for larger values of variance.  

This pattern appears logarithmic in nature. 

A Normal Q-Q plot of the residuals, as seen in Figure 99 in Appendix D, shows that 

there are outliers at the right tails of the distribution.  The Q-Q plot along with the 

residual and model fit graphs above in Figure 93 through Figure 99 do not support 

several of the Gauss-Markov assumptions.  The model’s error is not normal as seen from 

the Q-Q plot although it does appear to have a mean near zero.  The random errors of the 

model are all likely to be uncorrelated as no factor has a variance inflation factor above 

1.1.  Also, the lack of any noticeable patterns in any of the residual graphs for each of the 

independent variables, with the exception of the Average Cluster Size factor, suggests 

that random errors of these independent variables of the model are homoscedastic.  

However, this cannot be said of the dependent variables as seen in the residuals graph for 
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the dependent variable shown in Figure 98.  The dependent variable is clearly 

heteroscedastic where the relationship between the model’s error and the dependent 

variable appears to be logarithmic. 

Next, I examined various linear models of the variance of the speed of inference for 

the Boyen-Koller inference algorithm.  The first set of factors I performed regression 

with was: 

 Average States per Node 

 Average CPT Size 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

 Average Cluster Size 

There were several factors that I found not to be significant.  These factors were the 

Average States per Node factor, the Number of Dynamic Transitional Nodes factor, and 

the Number of Static Nodes factor.  I removed these factors and generated a new linear 

model using the factors: 

 Average CPT Size 

 Number of Dynamic Non-Transitional Nodes 

 Average Cluster Size 

This model appears to have a pattern in the residuals graph for the Average CPT Size 

factor where the nature of the pattern was either logarithmic or quadratic.  The residuals 

graph for the Average CPT Size factor can be seen in Figure 100 in Appendix D.  Thus, I 
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attempted new versions of the above model, replacing the Average CPT Size factor with 

the Natural Logarithm of the Average CPT Size factor and the Average CPT Size Square 

factor.  Neither this model or the two alternative proved to be adequate models over the 

training dataset.  In all cases, the R Square of the model was well below 0.3. 

 

3.6 Analysis and Results for the Particle Filter Inference Algorithm Accuracy of 

Inference 

For the accuracy of inference models for the particle filter inference algorithm, I used 

the factors: 

 Average Node Variance 

 Average States per Node 

 Average CPT Size 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

 Number of Particles 

The particle filter inference algorithm is a Monte Carlo method.  One estimate of the 

error of the Monte Carlo method is: 

 
N
f  Equation 6 

Where  f  is the standard deviation of the function being sampled and N is the number 

of samples (Kuo 2005).  Thus, it is likely that both the variance of the distribution of the 
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nodes being queried given evidence and the number of particles used when sampling are 

both important factors for the accuracy of the particle filter inference algorithm. 

This error estimate may not be the only influencing component of the accuracy of the 

particle filter inference algorithm.  Problems such as particle impoverishment may 

introduce other forms of error that may also affect the accuracy of this inference 

algorithm.  Nonetheless, this error estimate is likely to be important in predicting the 

accuracy of the particle filter inference algorithm. 

In the experiments I conducted, the node being queried was the static classifier node.  

I used the Average Node Variance factor as an approximation of the variance of the 

distribution of the classifier node given evidence.  Since the average node variance is an 

average over each of the nodes in the Bayesian network, the number of each type of node 

was also included as a factor when developing this model.  As with the previous models, 

I combined the three factors dealing with the number of each class of nodes in a PDBN 

when performing regression with the exponential model. 

The Number of Static nodes alone is an important factor that may be significant in 

determining the accuracy of the particle filter inference algorithm.  Static nodes or 

dynamic nodes that do not vary much from time step to time step can potentially cause 

the particle filter inference algorithm to prematurely converge to a particular set of node 

states.  Here, premature means that the inference algorithm has become certain of the 

state of the system the PDBN is modeling yet this state could potentially be incorrect 

(Arulampalam 2002).  Thus, static nodes within a PDBN can cause great difficulty for the 

particle filter inference algorithm to generate an accurate query result. 
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The remaining factors, the Average States per Node factor and the Average CPT Size 

factor, have no apparent significant relationship to the accuracy of the particle filter 

inference algorithm.  I added these factors in later models when the factors described 

above proved inadequate in predicting the accuracy of the particle filter inference 

algorithm. 

As before, I developed both linear and exponential models that predict the accuracy 

of the particle filter inference algorithm.  In each model I developed, the R Square for the 

training set never exceeded 0.1 regardless of whether the model was linear or 

exponential. 

The first model I examined was an exponential model of the accuracy of the particle 

filter inference algorithm.  The set of factors used in this model was: 

 Average Node Variance 

 Number of Nodes 

 Number of Particles 

Here, the R Square for the training set used was 0.04.  The only significant factors were 

the Average Node Variance factor and the Number of Particles factor. 

One possible explanation for this low R Square value is due to certain significant 

factors not being included in the regression analysis to develop this model.  Therefore, in 

the next exponential model I examined I included the  Average States per Node and the 

Average CPT Size factors.  Thus, the set of factors used in this model were: 

 Average Node Variance 

 Average States per Node 
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 Average CPT Size 

 Number of Nodes 

 Number of Particles 

I know of no theoretical relationship between the Average States per Node and Average 

CPT size factors and the accuracy of the particle filter inference algorithm.  However, 

these two factors represent two attributes of a PDBN that were not appreciably covered 

by the set of factors used in the previous model and that are not correlated with each 

other or any of the other factors. 

As a final attempt, I added the Average Strength of Dependency factor to the model.  

Again, I know of no theoretical relationship between this factor and the accuracy of the 

particle filter inference algorithm.  However, this factor is not correlated with any of the 

other factors used in the model and represents one more attribute of a PDBN that is not 

yet covered. 

The factors I used in this exponential model were: 

 Average Strength of Dependency 

 Average Node Variance 

 Average States per Node 

 Average CPT Size 

 Number of Nodes 

 Number of Particles 
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This model was similar to the previous model both in the R Square value and the 

coefficients of each factor.  The Average Strength of Dependency factor was not 

significant, although it was close to being significant. 

Despite the addition of these three factors, the R Square for the training set used was 

still very low at 0.04.  Again, the only significant factors were the Average Node 

Variance factor and the Number of Particles factor. 

Although neither of these models were very accurate at predicting the accuracy of the 

particle filter inference algorithm, each model was statistically significant with an F 

statistic below 0.05.  Furthermore, the same two factors were significant factors in each 

model: 

 Average Node Variance 

 Number of Particles 

Also, these two factors had roughly the same coefficient values in each model.  The 

coefficient for the Average Node Variance factor was approximately 3 and the coefficient 

for the Number of Particles factor was approximately -4x10-5. Finally, the signs for the 

coefficients of these two factors matched what would be expected from Equation 6.  The 

sign of the Average Node Variance factor was positive.  The sign of the Number of 

Particles factor was negative signifying an inverse relationship between the number of 

particles used to sample the PDBN and the error in the inference results. 

For the first linear model to predict the accuracy of the particle filter inference 

algorithm I used the factors: 

 Average Node Variance 
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 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

 Number of Particles 

The R Square of this model for the training set used was 0.05.  The only significant factor 

was the Number of Particles factor, although, the Average Node Variance factor had a P-

value that nearly put it beyond the 0.05 threshold of significance. 

As with the exponential models, I added the Average States per Node and Average 

CPT Size factors in the next model I developed in the unlikely circumstance these factors 

were significant and would make the model more accurate than the previous linear 

model.  Thus, the factors I used in the next linear model were: 

 Average Node Variance 

 Average States per Node 

 Average CPT Size 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

 Number of Particles 

It is important to note that the Number of Dynamic Transitional Nodes and Average CPT 

Size factors were correlated to each other with a correlation coefficient of 0.32.  This 

correlation is not very high and only just beyond my threshold for a correlation between 
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two factors.  Nonetheless, the relationship between these two factors may have caused 

problems for the regression analysis. 

The R-Square value for this model was only 0.06.  The only significant factors were 

the Average States per Node and Number of Particles factors.  Unlike the previous four 

models above, the Average Node Variance factor was not significant for this model. 

For the last linear model, I tried adding the Strength of Dependency factor again.  

Thus, the factors used in this model were: 

 Average Strength of Dependency 

 Average Node Variance 

 Average States per Node 

 Average CPT Size 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

 Number of Particles 

This model was nearly identical to the previous model both in the R Square value and the 

coefficients of each of the factors.  Also, the Average Strength of Dependency factor was 

not significant. 
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3.7 Analysis and Results for the Boyen-Koller Inference Algorithm Accuracy of 

Inference 

For the accuracy of inference models for the Boyen-Koller inference algorithm over 

SPI, I used the factors: 

 Average Strength of Dependency 

 Average States per Node 

 Average CPT Size 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

 Average Cluster Size 

The Boyen-Koller inference algorithm is essentially removing arcs from the Bayesian 

network to simplify the complexity of inference.  The effective removal of these arcs in 

the past expression increases the speed of inference but also reduce the accuracy of the 

inference.  The amount of error in the results is related to the number of arcs removed and 

the strength of the relationship between the nodes those arcs connected.  I used the 

Average Strength of Dependency factor as a proxy measure of the arcs removed by the 

Boyen-Koller inference algorithm. 

The average cluster size used when performing inference with the Boyen-Koller 

inference algorithm over SPI is also a factor that is likely to affect the accuracy of 

inference of this algorithm.  The smaller and more numerous the clusters used by the 
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Boyen-Koller inference algorithm, the more arcs are removed and the less accurate the 

inference algorithm. 

Finally, the number of static nodes is likely to be another important factor in 

predicting the accuracy of the Boyen-Koller inference algorithm.  As in the particle filter 

inference algorithm, the existence of static nodes or dynamic nodes that do not vary much 

from time step to time step can reduce the accuracy of inference for the inference 

algorithm.  In this case, the bound on the error when using the Boyen-Koller inference 

algorithm can no longer be guaranteed when the dynamic Bayesian network contains 

static nodes. 

The remaining factors have no apparent significant relationship to the accuracy of the 

particle filter inference algorithm.  I added these factors in later models when the factors 

described above proved inadequate in predicting the accuracy of the particle filter 

inference algorithm.  These factors are the Average States per Node, the Average CPT 

Size, the Number of Dynamic Transitional Nodes, and the Number of Dynamic Non-

Transitional Nodes. 

As before, I developed both linear and exponential models that predict the accuracy 

of Boyen-Koller inference algorithm.  In each model I developed, the R Square for the 

training set never exceeded 0.1 regardless of whether the model was linear or 

exponential. 

The first model I examined was an exponential model of the accuracy of the Boyen-

Koller inference algorithm over SPI.  The set of factors used in this model was: 

 Average Strength of Dependency 
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 Number of Static Nodes 

 Average Cluster Size 

Here, the R Square for the training set used was 0.008.  There were no significant factors 

and the model was not significant. 

In the next model I included the Average States per Node and Average CPT Size 

factors as well as replace the Number of Static Nodes factor with the Number of Nodes 

factor.  As with the particle filter accuracy models, I added the Average States per Node 

and Average CPT Size factors with the hope that these factors may be significant.  I 

replaced the Number of Static Nodes factor with the Number of Nodes factor so the other 

types of nodes in a PDBN would be represented along with the number of static nodes in 

a PDBN.  Again, this was to see if these extra factors which are components of the 

Number of Nodes factor may be significant.  The set of factors in this next exponential 

model was then: 

 Average Strength of Dependency 

 Average States per Node 

 Average CPT Size 

 Number of Nodes 

 Average Cluster Size 

Despite the addition of these factors, the R Square for the training set used was still 

very low at 0.02.  The only significant factor here was the Average Cluster Size factor, 

although, the Number of Nodes factor was near the threshold of significance with a P-
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value of 0.51.  The Average Cluster Size factor was positive while the Number of Nodes 

factor was negative.  The model was significant this time. 

For the first linear model to predict the accuracy of the Boyen-Koller inference 

algorithm I used the factors: 

 Average Strength of Dependency 

 Number of Static Nodes 

 Average Cluster Size 

The R Square for this model was 0.02 and the model was significant.  Both the Number 

of Static Nodes and the Average Cluster Size factors were significant. 

I then added the Average States per Node, the Average CPT Size, the Number of 

Dynamic Transitional, and the Number of Dynamic Non-Transitional Nodes factors in 

the unlikely circumstance these factors were significant.  Thus, the factors I used in the 

next linear model were: 

 Average Strength of Dependency 

 Average States per Node 

 Average CPT Size 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Static Nodes 

 Average Cluster Size 

It is important to note that the Number of Dynamic Transitional Nodes and Average CPT 

Size factors were correlated to each other with a correlation coefficient of 0.32.  This 
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correlation is not very high and only just beyond my threshold of 0.3 for a correlation 

between two factors.  Nonetheless, the relationship between these two factors may have 

caused problems for the regression analysis. 

The R Square for this model was 0.03 and the model was significant.  The only 

significant factors were the Number of Static Nodes and the Average Cluster Size factors. 
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4. Conclusions 

 
 

4.1 Discussion of the Time Models 

From my research I was able to determine what factors in Table 1 have a statistically 

significant effect on each of the inference algorithms examined in this study.  I was also 

able to develop statistical models, which show the relationship between these factors and 

the inference algorithms I examined. 

Of all the models I developed predicting the speed of inference for the particle filter 

inference algorithm, the two best are the fourth exponential model using the factors: 

 Natural Logarithm of the Average CPT Size 

 Number of Nodes 

 Natural Logarithm of the Number of Particles 

And the first linear model using the factors: 

 Average States Per Node 

 Average CPT Size 

 Number of Static Nodes 

 Number of Dynamic Transitional Nodes 

 Number of Dynamic Non-Transitional Nodes 

 Number of Particles 
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Table 8 lists the coefficients for each of the factors used in the exponential model as well 

as statistics on the significance of each of those factors.  Table 9 lists the regression 

statistics associated with the linear regression model for the natural logarithm of the 

average time per time step for the particle filter inference algorithm.  The final statistic in 

Table 9, the “R square for the test set” statistic, is the R square statistic when comparing 

the model’s predicted value against the actual speed of inference values over the entire 

test set.  The previous 3 statistics listed in Table 9 are the statistics collected when using 

the training set.  The training set is the data set used in the regression while the test set is 

the entire data set containing the training set as well as the holdout set. 

 
Table 8:  Particle Filter Average Speed Exponential Regression Model Statistics 

  Coefficients 
Standard 

Error t Stat P-value 
Intercept -3.239 0.114 -28.519 < 0.001 

Average States Per Node 0.052 0.017 3.097 0.002 
Natural Logarithm of the 

Average CPT Size 0.166 0.006 26.227 < 0.001 
Number of Nodes 0.095 0.006 17.116 < 0.001 

Natural Logarithm of the 
Number of Particles 0.857 0.006 143.309 < 0.001 

 
 
Table 9:  Particle Filter Average Speed Exponential Regression Model Regression Statistics 

R Square 0.968555121 
Adjusted R Square 0.96837994 

Observations 723 
R Square for Test Set 0.962345 

 

Table 10 lists the coefficients for each of the factors used in the linear model as well 

as statistics on the significance of each of those factors.  Table 11 lists the regression 

statistics associated with the linear regression model for the average time per time step 
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for the particle filter inference algorithm.  As before, the final statistic in Table 11, the “R 

square for the test set” statistic, is the R square statistic when comparing the model’s 

predicted value against the actual speed of inference values over the entire test set.  Also, 

the first three statistics in Table 11 are derived using the training set only while the final 

statistic in Table 11 is derived using the full test set. 

 
Table 10:  Particle Filter Average Speed Linear Regression Model Statistics 

  Coefficients 
Standard 

Error t Stat P-value 
Intercept -1112.288 43.096 -25.809 < 0.001 

Average States Per Node 50.281 6.749 7.450 < 0.001 
Average CPT Size 0.339 0.011 31.054 < 0.001 

Number of Dynamic NonTransitional 
Nodes 78.492 2.900 27.063 < 0.001 

Number of Dynamic Transitional 
Nodes 108.925 3.133 34.766 < 0.001 

Number of Static Nodes 15.496 4.622 3.352 < 0.001 
Number of Particles 0.087 0.000 184.952 < 0.001 

 

 
Table 11:  Particle Filter Average Speed Linear Regression Model Regression Statistics 

R Square 0.981590458 
Adjusted R Square 0.981437471 

Observations 729 
R Square for Test Set 0.980544 

 

Although the linear model had two marginally correlated factors and the residuals 

plot for the dependent variable showed a logarithmic or quadratic pattern in it, this model 

still had a very good fit to the actual test data set as seen in Figure 32.  The linear model 

also had a higher R square value for the test data set than the exponential model had.  

Furthermore, the exponential model appeared to have error that would grow linearly as 

the dependent variable grew linearly as shown in Figure 22.  Thus, I believe the first 
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linear model above is the best predictor of average speed of inference per time step for 

the particle filter inference algorithm.  It is important to note that this conclusion does not 

agree with the theoretical computational complexity of the particle filter inference 

algorithm.  One would expect that the speed of inference for the particle filter inference 

algorithm would be the product of the number of nodes in the PDBN and the number of 

particles used in inference rather than the sum of the two. 

Of all the models I developed predicting the variance of the speed of inference for the 

particle filter inference algorithm, the best was the third exponential model using the 

factors: 

 Average States per Node 

 Natural Logarithm of the Average CPT Size 

 Number of Nodes 

 Natural Logarithm of the Number of Particles 

Table 12 lists the coefficients for each of the factors used in the exponential model as 

well as statistics on the significance of each of those factors.  Table 13 lists the regression 

statistics associated with the linear regression model for the natural logarithm of the 

variance of the average time per time step for the particle filter inference algorithm.  As 

before, the first three statistics in Table 13 are derived using the training set only while 

the final statistic in Table 13 is derived using the full test set. 
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Table 12:  Particle Filter Variance of the Speed Exponential Regression Model Statistics 

  Coefficients 
Standard 

Error t Stat P-value 
Intercept -11.479 0.428 -26.809 < 0.001 

Average States Per Node 0.272 0.062 4.389 < 0.001 
Natural Logarithm of the 

Average CPT Size 0.139 0.024 5.780 < 0.001 
Number of Nodes 0.332 0.021 15.930 < 0.001 

Natural Logarithm of the 
Number of Particles 1.990 0.022 90.057 < 0.001 

 
 
Table 13:  Particle Filter Variance of the Speed Exponential Regression Model Regression Statistics 

R Square 0.922037593 
Adjusted R Square 0.921604469 

Observations 725 
R Square for Test Set 0.771123 

 

Of all the models I developed predicting the speed of inference for the Boyen-Koller 

inference algorithm over SPI, the two best are the second exponential model using the 

factors: 

 Average States per Node 

 Natural Logarithm of the Average CPT Size 

 Number of Nodes 

 Average Cluster Size 

And the fifth linear model using the factors: 

 Average CPT Size 

 Number of Static Nodes 

 Number of Dynamic Transitional Nodes 

 Average Cluster Size 
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Table 14 lists the coefficients for each of the factors used in the exponential model as 

well as statistics on the significance of each of those factors.  Table 15 lists the regression 

statistics associated with the linear regression model for the natural logarithm of the 

average time per time step for the Boyen-Koller inference algorithm over SPI.  As before, 

the first three statistics in Table 15 are derived using the training set only while the final 

statistic in Table 15 is derived using the full test set. 

 
Table 14:  Boyen-Koller Average Speed Exponential Regression Model Statistics 

  Coefficients 
Standard 

Error t Stat P-value 
Intercept -0.046 0.165 -0.278 0.781 

Average States Per Node -0.276 0.028 -9.860 < 0.001 
Natural Logarithm of the 

Average CPT Size 1.003 0.011 93.542 < 0.001 
Number of Nodes 0.095 0.009 10.507 < 0.001 

Average Cluster Size 0.031 0.002 17.823 < 0.001 
 
 
Table 15:  Boyen-Koller Average Speed Exponential Regression Model Regression Statistics 

R Square 0.923351836 
Adjusted R Square 0.9230274 

Observations 950 
R Square for Test Set 0.881465 

 

Table 16 lists the coefficients for each of the factors used in the linear model as well 

as statistics on the significance of each of those factors.  Table 17 lists the regression 

statistics associated with the linear regression model for the average time per time step 

for the Boyen-Koller inference algorithm. 
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Table 16:  Boyen-Koller Average Speed Linear Regression Model Statistics 

  Coefficients 
Standard 

Error t Stat P-value 
Intercept -205.392 21.331 -9.629 < 0.001 

Average CPT Size 0.944 0.012 75.927 < 0.001 
Number of Dynamic Transitional 

Nodes 25.002 3.351 7.460 < 0.001 
Number of Static Nodes 27.949 4.986 5.605 < 0.001 

Average Cluster Size 6.254 0.474 13.192 < 0.001 

 

 
Table 17:  Boyen-Koller Average Speed Linear Regression Model Regression Statistics 

R Square 0.883295129 
Adjusted R Square 0.88280114 

Observations 950 
R Square for Test Set 0.876233 

 

Both these linear and the exponential models for the Boyen-Koller inference 

algorithm over SPI have problems with heteroscedastic.  These two models also do not 

appear to have normal error.  However, both these models still are able to predict the time 

to perform inference accurately over the test set with R Squares above 0.85 in both cases.  

I believe the exponential model is a better predictor of the speed of inference for the 

Boyen-Koller inference algorithm because it has the higher R Square for the test set.  One 

would also expect an exponential model to predict the speed of inference of the Boyen-

Koller inference algorithm as the theoretical computational complexity of this inference 

algorithm is also exponential.  In fact, both the computational complexity model and the 

statistical model I developed have the Number of Nodes and the Average States per Node 

factor as significant factors. 

However, it is important to note that the exponential model for the Boyen-Koller 

inference algorithm that I developed has a negative coefficient for the Average States per 
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Node factor.  The negative coefficient implies an inverse relationship between the 

average states per node in a PDBN and the speed of inference on that PDBN when using 

the Boyen-Koller inference algorithm over SPI and when all other factors are taken into 

account.  In contrast, the theoretical computational complexity of the Boyen-Koller 

inference algorithm shows a direct relationship between the speed of inference and the 

Average States per Node factor. 

For the variance of speed of inference for the Boyen-Koller inference algorithm over 

SPI, I made two separate sets of models.  The first set of models covered the case where 

the user specifies the clusters the algorithm would use.  The second set of models covered 

the case where either the SPI algorithm alone was used or the Boyen-Koller inference 

algorithm was used with fully factored clustering. 

Of all the models I developed predicting the variance of the speed of inference for the 

Boyen-Koller inference algorithm over SPI, the two best for the first case are the second 

exponential model using the factors: 

 Average States per Node 

 Natural Logarithm of the Average CPT Size 

 Average Cluster Size 

And the fourth linear model using the factors: 

 Average States per Node 

 Number of Dynamic Non-Transitional Nodes 

 Number of Dynamic Transitional Nodes 

 Number of Static Nodes 
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Table 18 lists the coefficients for each of the factors used in the exponential model as 

well as statistics on the significance of each of those factors.  Table 19 lists the regression 

statistics associated with the linear regression model for the natural logarithm of the 

average time per time step for the Boyen-Koller inference algorithm over SPI.  As before, 

the first three statistics in Table 19 are derived using the training set only while the final 

statistic in Table 19 is derived using the full test set. 

 
Table 18:  Boyen-Koller Variance of the Speed Exponential Regression Model Statistics 

  Coefficients 
Standard 

Error t Stat P-value 
Intercept -98717.241 1152.350 -85.666 < 0.001 

Average States Per Node 9432.155 176.604 53.409 < 0.001 
Number of Dynamic 

NonTransitional Nodes 5225.256 77.067 67.801 < 0.001 
Number of Dynamic Transitional 

Nodes 9929.778 80.532 123.302 < 0.001 
Number of Static Nodes 5329.108 121.696 43.790 < 0.001 

 
 
Table 19:  Boyen-Koller Variance of Speed Exponential Regression Model Regression Statistics 

R Square 0.313231988 
Adjusted R Square 0.308829629 

Observations 472 
R Square for Test Set 0.300021 

 

Table 20 lists the coefficients for each of the factors used in the linear model as well 

as statistics on the significance of each of those factors.  Table 21 lists the regression 

statistics associated with the linear regression model for the average time per time step 

for the Boyen-Koller inference algorithm. 
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Table 20:  Boyen-Koller Variance of Speed Linear Regression Model Statistics 

  Coefficients 
Standard 

Error t Stat P-value 
Intercept -98717.241 1152.350 -85.666 < 0.001 

Average States Per Node 9432.155 176.604 53.409 < 0.001 
Number of Dynamic 

NonTransitional Nodes 5225.256 77.067 67.801 < 0.001 
Number of Dynamic Transitional 

Nodes 9929.778 80.532 123.302 < 0.001 
Number of Static Nodes 5329.108 121.696 43.790 < 0.001 

 
 
Table 21:  Boyen-Koller Variance of Speed Linear Regression Model Regression Statistics 

R Square 0.97615874 
Adjusted R Square 0.975950064 

Observations 462 
R Square for Test Set 0.970221 

 

The exponential model for the Boyen-Koller inference algorithm over SPI has 

problems with heteroscedasticity.  This model also does not appear to have normal error.  

Also, only the linear model is able to predict the variance of time to perform inference 

accurately over the test set with R Squares above 0.85.  Thus, I believe the linear model is 

the better predictor of the variance of the speed of inference for the Boyen-Koller 

inference algorithm in the case where the uses defines the clusters to be used with the 

Boyen-Koller algorithm. 

The best model for the case where either the Boyen-Koller inference algorithm is 

used with fully factored clustering or the SPI algorithm is used alone is the second 

exponential model using the factors: 

 Natural Logarithm of the Average CPT Size 

 Average Cluster Size 
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Table 22 lists the coefficients for each of the factors used in the model as well as statistics 

on the significance of each of those factors.  Table 23 lists the regression statistics 

associated with the linear regression model for the natural logarithm of the average time 

per time step for the Boyen-Koller inference algorithm over SPI.  As before, the first 

three statistics in Table 23 are derived using the training set only while the final statistic 

in Table 23 is derived using the full test set. 

 
Table 22:  Boyen-Koller Variance of the Speed Exponential Regression Model Statistics 

  Coefficients 
Standard 

Error t Stat P-value 
Intercept -0.481 0.190 -2.529 0.012 

Natural Logarithm of the 
Average CPT Size 0.997 0.040 25.182 < 0.001 

Average Cluster Size 0.101 0.010 10.378 < 0.001 
 
 
Table 23:  Boyen-Koller Variance of Speed Exponential Regression Model Regression Statistics 

R Square 0.632288812 
Adjusted R Square 0.630696989 

Observations 465 
R Square for Test Set 0.010807 

 

When comparing the speed of inference of the particle filter inference algorithm and 

the Boyen-Koller inference algorithm over SPI, one key point to note is the fact that the 

speed of inference model for the Boyen-Koller inference algorithm is an exponential 

while the model for the particle filter inference algorithm is linear.  From the empirical 

experiments, it was clear that the Boyen-Koller inference algorithm generally performed 

faster than the particle filter inference algorithm.  However, the speed of inference 

models for both of these algorithms suggests that the time to perform inference with the 
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Boyen-Koller inference algorithm will grow much faster than the particle filter inference 

algorithm with a linear growth in PDBN complexity.  Also, the particle filter inference 

algorithm is likely to be able to perform inference in a timely manner on PDBNs of a 

much higher complexity than the Boyen-Koller inference algorithm.  Thus, although the 

Boyen-Koller inference algorithm is generally faster for relatively simple PDBNs, the 

particle filter inference algorithm has a much larger PDBN complexity range of useful 

speed of inference. 

In the speed of inference models for each algorithm, the three significant factors 

shared by both models that appear to affect speed of inference are the Average States per 

Node factor, Average CPT Size factor, and the Number of Nodes factor.  When 

comparing the two statistical models, the speed in which the Boyen-Koller inference 

algorithm can perform inference appears to be far less sensitive to the average number of 

states per node in the PDBN than the particle filter inference algorithm.  In fact, the 

Boyen-Koller inference algorithm may actually run faster as the average number of states 

per node increases. 

Conversely, the Boyen-Koller inference algorithm appears to be much more sensitive 

to the Average CPT Size.  This is understandable as the particle filter inference algorithm 

is a Monte Carlo method, and thus, does not need to deal directly with the states of a node 

except to randomly select a hypothetical value for the node when generating particles.  

Nonetheless, the particle filter inference algorithm is still influence by the Average CPT 

Size of a PDBN since the number of particles used by the particle filter inference 
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algorithm must adequately cover the state space of the PDBN it is performing inference 

on if the algorithm is to produce accurate results. 

The variance of the speed of inference of the particle filter inference algorithm is high 

relative to the average speed of inference for the algorithm.  Among the test data set, the 

average variance of speed of inference was approximately 286,000 and the average 

percent variance of speed of inference 3was approximately 30,000%.  Furthermore, the 

statistical model for the variance of the speed of inference for the particle filter inference 

algorithm is exponential.  Therefore, as the complexity of the PDBN the inference is 

being performed on increases linearly, the variance in the time per time step for the 

particle filter inference algorithm to perform inference increases exponentially.  Thus, 

even though the particle filter inference algorithm can perform inference on very large 

and complex PDBNs relative to the Boyen-Koller inference algorithm, the time per time 

step in which this algorithm performs inference can vary dramatically for theselarger 

PDBNs. 

When one defines the clusters to use with the Boyen-Koller inference algorithm over 

SPI, the variance of the speed of inference is also high relative to the average speed of 

inference for the algorithm.  Among the test data set, the average variance of speed of 

inference was approximately 27,000 and the average percent variance of speed of 

inference was approximately 51,000%.  However, unlike the particle filter inference 

algorithm, the statistical model for the variance of speed of inference for this inference 

algorithm is linear.  Thus, the variance in the time to perform inference per time step for 

                                                
3 The percent variance of speed of inference for a single test run of an inference algorithm was the 

percentage of the variance of the speed of inference relative to the speed of inference. 
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this algorithm will increase much less dramatically for large and complex PDBNs than 

the particle filter inference algorithm.  However, the Boyen-Koller inference algorithm 

may still be unable to perform inference on these larger PDBNs in a timely manner. 

Less can be said about the Boyen-Koller inference algorithm when it is fully factored 

or the Symbolic Probabilistic Inference algorithm.  This is because the statistical model 

for the variance of the speed of inference for these inference algorithms in these 

situations was very inaccurate.  From the empirical results, however, it appears that the 

variance of the speed of inference is low relative to the average speed of inference.  

Among the test data set, the average variance of speed of inference was approximately 

393 and the average percent variance of speed of inference was approximately 390%.  

Thus, it appears that the SPI algorithm and the Boyen-Koller inference algorithm with 

fully factored particles have the least variability in the time to perform inference each 

time step. 

 

4.2 Discussion of the Accuracy Models 

I was unable to develop an accurate statistical model to predict the accuracy for any 

of the inference algorithms research in this study.  I believe there are two likely reasons 

for this.  Neither reason is mutually exclusive of the other.  One possibility is that I did 

not use an adequate set of factors when developing the regression models to describe the 

accuracy of any of the inference algorithms.  I had a great deal of difficulty finding any 

number of significant factors.  This difficulty may be in part due to the fact that the scope 

of this research limited me to only use factors that could be easily collected by a 
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knowledge engineer and used before a Bayesian network has been fully defined.  It is 

very possible that the key factors in predicting the accuracy of the inference algorithms I 

examined in this research study are complex factors that are outside of the scope of this 

research study.  Another possibility is that the relationship between the factors I chose 

and the accuracy of each of the inference algorithms I examined is not linear or near 

linear.  If this were the case, then simple linear regression may not be adequate to develop 

a useful model. 

 

4.3 Future Work 

Probably the biggest step one could take to improve upon this research would be to 

use distributions with wider rangers for the control variable distributions used by the 

Random PDBN Generator.  The control variables used to randomly generate PDBNs 

used in this research study had significantly small variances as well as a very dramatic 

mode.  The most notable example would be the Number of Static Nodes control variable 

that had an effective range of 2 to 4 static nodes, of which the vast majority of the 

generated PDBNs had three nodes.  The effect of using these low variance distributions 

was that the sample set of PDBNs used in this research study were more homogeneous 

than they needed to be.  This, in effect, weakened my statistical analysis. 

Another weakness of this research was a lack of any good accuracy models for the 

inference algorithms studied.  In the future, it may be beneficial to expand the scope of 

this study to cover any potential factor related to the architecture of a PDBN or the 

inference algorithm itself.  In doing then, one could then develop factors that better 



 

 
 
 

120 

predict the accuracy of one or more inference algorithms.  Some good candidate factors 

to use in future work include: 

 Joint Network Variance – Rather than calculating the average variance of every 

node in the Bayesian network, a more informative factor might be to calculate the 

variance of the joint distribution of all the nodes in the PDBN.  This variance 

could easily be calculated through Monte Carlo sampling much like how the 

Average Node Variance factor was approximated. 

 Classifier Node Variance – It is the classifier node that we are querying at every 

time step as well as using to determine the accuracy of the approximate inference 

algorithms being studied.  Therefore, it makes sense to calculate the variance of 

this node specifically to use as a factor in predicting the accuracy of the 

approximate inference algorithms.  Again, this factor could easily be calculated 

through Monte Carlo sampling. 

 Average Strength of Dependency between Intercluster Arcs – Rather than 

calculate the correlation of every node pair in the PDBN connected by an arc, it 

may be more useful to select only those connected node pairs that are between 

clusters used in the Boyen-Koller inference algorithm.  The arcs that traverse 

between clusters are effectively removed by the Boyen-Koller inference 

algorithm.  Therefore, specifically measuring the strength of the relationship these 

arcs represent may be beneficial in predicting the accuracy of the Boyen-Koller 

inference algorithm. 
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 Correlation of Nodes to Themselves between Time Steps – Static nodes, or any 

node that has a near deterministic change of its probability distribution between 

time steps to be more accurate, have the potential to decrease the accuracy of 

approximate inference algorithm.  Therefore, calculating the degree to which 

nodes correlate with themselves on average between time steps may provide some 

insight into the accuracy of approximate inference algorithms. 

Finally, future research could address some of the drawbacks of the random PDBN 

generator.  The random PDBN generator was useful in creating a very large and varied 

sample set of PDBNs for use in this thesis research.  However, the unsophisticated 

methods that the random PDBN generator utilized also created some problems the quality 

of the sample set.  Because factors such as the number of arcs, the number of nodes, and 

the arrangement of arcs and nodes was chosen completely at random, a large number of 

large PDBNs generated by the random PDBN generator were too complex to be tractable 

with any of the inference algorithms used in this research.  This resulted in wasted 

resources as well as potentially biasing my results. 

Conversely, a knowledge engineer developing PDBNs of equivalent size and 

complexity would have a greater degree of success in developing tractable PDBNs.  This 

is because a knowledge engineer is not blindly constructing the Bayesian network 

architecture, but rather, using various heuristics as well as instinct to optimize the 

efficiency in which a PDBN can run for a given PDBN complexity level.  Thus, for a 

given preset PDBN size and complexity, a knowledge engineer will be able develop 

many more tractable PDBNs than a brute force random PDBN generator because the 
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knowledge engineer will be able to evaluate multiple alternatives towards the same end 

and optimize a PDBN using heuristics. 

Another failing of the random PDBN generator is that it is unable to incorporate a 

great deal of domain specific attributes to the PDBNs it generates.  A partially dynamic 

Bayesian network is a representation of knowledge within a specific problem domain.  It 

is rarely developed without a specific problem in mind and the PDBN is always tailored 

specifically to that problem.  Because of this, the domain in which a PDBN is being 

developed for is likely a significant factor in how what architecture that PDBN is likely 

to have.  For example, the PDBNs from one domain may have a tendency to be sparse 

networks with many nodes while the PDBNs from another domain may generally be 

dense networks with few nodes.  The random PDBN generator is able to provide a 

general picture of the full range of PDBNs possible.  However, a knowledge engineer is 

likely only interested in a small subset of those possible PDBNs that are pertinent to his 

or her problem domain. 

Thus, in future research it may make sense to use both randomly generated PDBNs as 

well as domain specific PDBNs generated by actual knowledge engineers.  The randomly 

generated PDBNs would still provide breadth to the research allowing the researcher to 

examine a wide variety of PDBN architectures.  At the same time, those domain specific 

PDBNs generated by knowledge engineers could provide depth to the research by 

providing samples from a specific domain. 
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Appendix A:  Regression Diagnostics for the Particle Filter Speed of Inference Models 
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Figure 12:  Particle Filter Average Speed Exponential Regression Model 1 Residuals versus Number 
of Particles Graph 
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Figure 13:  Particle Filter Average Speed Exponential Regression Model 2 Residuals versus Number 
of Particles Graph 
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Figure 14:  Particle Filter Average Speed Exponential Regression Model 2 Residuals versus Number 
of Particles Graph Before Removal of Outliers 
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Figure 15:  Particle Filter Average Speed Exponential Regression Model 2 Residuals versus Average 
CPT Size Graph 
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Figure 16:  Particle Filter Average Speed Exponential Regression Model 3 Residuals versus Number 
of Particles Graph 
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Figure 17:  Particle Filter Average Speed Exponential Regression Model 4 Residuals versus the 
Average States per Node Graph 
 
 
 

Ln Average CPT Size  Residual Plot

-0.5
0

0.5
1

1.5

3 4 5 6 7

Ln Average CPT Size

R
es

id
ua

ls

 
Figure 18:  Particle Filter Average Speed Exponential Regression Model 4 Residuals versus the 
Natural Logarithm of the Average CPT Size Graph 
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Figure 19:  Particle Filter Average Speed Exponential Regression Model 4 Residuals versus Number 
of Nodes Graph 
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Figure 20:  Particle Filter Average Speed Exponential Regression Model 4 Residuals versus the 
Natural Logarithm of the Number of Particles Graph 
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Figure 21:  Particle Filter Average Speed Exponential Regression Model 4 Residuals versus the 
Natural Logarithm of the Number of Particles Graph Before Removal of Outliers 
 



 

 
 
 

129 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000

Model Prediction

A
ve

ra
ge

 T
im

e 
pe

r T
im

e 
St

ep

 
Figure 22:  Particle Filter Average Speed Exponential Regression Model 4 Predicted versus Actual 
Graph  
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Figure 23:  Particle Filter Average Speed Exponential Regression Model 4 Predicted versus Actual 
Graph in Logarithm Space 
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Figure 24:  Particle Filter Average Speed Exponential Regression Model 4 Residuals Plot 
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Figure 25:  Particle Filter Average Speed Exponential Regression Model 4 Q-Q Plot 
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Figure 26:  Particle Filter Average Speed Linear Regression Model 1 Residuals versus Average 
States per Node Graph 
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Figure 27:  Particle Filter Average Speed Linear Regression Model 1 Residuals versus Average CPT 
Size Graph 
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Figure 28:  Particle Filter Average Speed Linear Regression Model 1 Residuals versus Number of 
Dynamic Non-Transitional Nodes Graph 
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Figure 29:  Particle Filter Average Speed Linear Regression Model 1 Residuals versus Number of 
Dynamic Transitional Nodes Graph 
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Figure 30:  Particle Filter Average Speed Linear Regression Model 1 Residuals versus Number of 
Static Nodes Graph 
 
 
 

Number of Particles  Residual Plot

-400
-200

0
200
400

0 5000 10000 15000

Number of Particles

R
es

id
ua

ls

 
Figure 31:  Particle Filter Average Speed Linear Regression Model 1 Residuals versus Number of 
Particles Graph 
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Figure 32:  Particle Filter Average Speed Linear Regression Model 1 Predicted versus Actual Graph  
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Figure 33:  Particle Filter Average Speed Linear Regression Model 1 Residuals Plot 
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Figure 34:  Particle Filter Average Speed Linear Regression Model 1 Q-Q Plot 
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Figure 35:  Particle Filter Average Speed Linear Regression Model 2 Residuals versus Number of 
Nodes Graph 
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Appendix B:  Regression Diagnostics for the Particle Filter Variance of Speed of 

Inference Models 
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Figure 36:  Particle Filter Variance of Speed Exponential Regression Model 1 Residuals versus 
Number of Particles Graph 
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Figure 37:  Particle Filter Variance of Speed Exponential Regression Model 2 Residuals versus 
Number of Particles Graph 
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Figure 38:  Particle Filter Variance of Speed Exponential Regression Model 2 Residuals versus 
Average CPT Size Graph 
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Figure 39:  Particle Filter Variance of Speed Exponential Regression Model 3 Residuals versus 
Average States per Node Graph 
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Figure 40:  Particle Filter Variance of Speed Exponential Regression Model 3 Residuals versus the 
Natural Logarithm of the Average CPT Size Graph 
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Figure 41:  Particle Filter Variance of Speed Exponential Regression Model 3 Residuals versus 
Number of Nodes Graph 
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Figure 42:  Particle Filter Variance of Speed Exponential Regression Model 3 Residuals versus the 
Natural Logarithm of the Number of Particles Graph 
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Figure 43:  Particle Filter Variance of Speed Exponential Regression Model 3 Predicted versus 
Actual Graph  
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Figure 44:  Particle Filter Variance of the Speed Exponential Regression Model 3 Predicted versus 
Actual Graph in Logarithm Space 
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Figure 45:  Particle Filter Variance of Speed Exponential Regression Model 3 Residuals Plot 
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Figure 46:  Particle Filter Variance of Speed Exponential Regression Model 3 Q-Q Plot 
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Figure 47:  Particle Filter Variance of Speed Linear Regression Model 1 Residuals versus Number of 
Particles Graph 
 



 

 
 
 

147 

 

Ln Number of Particles  Residual Plot

-500000
0

500000
1000000
1500000

0 2 4 6 8 10

Ln Number of Particles

R
es

id
ua

ls

 
Figure 48:  Particle Filter Variance of Speed Linear Regression Model 2 Residuals versus Number of 
Particles Graph 
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Figure 49:  Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus Average 
States per Node Graph 
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Figure 50:  Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus Average 
CPT Size Graph 
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Figure 51:  Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus Number of 
Dynamic Non-Transitional Nodes Graph 
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Figure 52:  Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus Number of 
Dynamic Transitional Nodes Graph 
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Figure 53:  Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus Number of 
Static Nodes Graph 
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Figure 54:  Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus Number of 
Particles Squared Graph 
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Figure 55:  Particle Filter Variance of Speed Linear Regression Model 3 Predicted versus Actual 
Graph  
 



 

 
 
 

152 

Average Time Residual Plot

-800000

-600000

-400000

-200000

0

200000

400000

600000

800000

1000000

0 500000 1000000 1500000 2000000

Variance of Time

R
es

id
ua

ls

 
Figure 56:  Particle Filter Variance of Speed Linear Regression Model 3 Residuals Plot 
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Figure 57:  Particle Filter Variance of Speed Linear Regression Model 3 Q-Q Plot 
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Appendix C:  Regression Diagnostics for the Boyen-Koller Speed of Inference Models 

 
 
 

Average CPT Size  Residual Plot

-2
-1
0

1
2

0 200 400 600 800 1000

Average CPT Size

R
es

id
ua

ls

 
Figure 58:  Boyen-Koller over SPI Average Speed Exponential Regression Model 1 Residuals versus 
Average CPT Size Graph 
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Figure 59:  Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals versus 
States per Node Graph 
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Figure 60:  Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals versus 
Natural Logarithm of the Average CPT Size Graph 
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Figure 61:  Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals versus 
Number of Nodes Graph 
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Figure 62:  Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals versus 
Average Cluster Size Graph 
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Figure 63:  Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Predicted versus 
Actual Graph  
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Figure 64:  Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Predicted versus 
Actual Graph in Logarithm Space  
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Figure 65:  Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals Plot 
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Figure 66:  Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Q-Q Plot 
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Figure 67:  Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals versus 
Average CPT Size Graph 
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Figure 68:  Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals versus 
Number of Dynamic Transitional Nodes Graph 
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Figure 69:  Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals versus 
Number of Static Nodes Graph 
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Figure 70:  Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals versus 
Average Cluster Size Graph 
 
 
 



 

 
 
 

163 

0

200

400

600

800

1000

1200

1400

-200 0 200 400 600 800 1000 1200 1400 1600

Model Prediction

A
ve

ra
ge

 T
im

e 
pe

r T
im

e 
St

ep

 
Figure 71:  Boyen-Koller over SPI Average Speed Linear Regression Model 5 Predicted versus 
Actual Graph  
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Figure 72:  Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals Plot 
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Figure 73:  Boyen-Koller over SPI Average Speed Linear Regression Model 5 Q-Q Plot 
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Appendix D:  Regression Diagnostics for the Boyen-Koller Variance of Speed of 

Inference Models
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Figure 74:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 1A Residuals 
versus Average CPT Size Graph 
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Figure 75:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 1A Residuals 
versus Average Cluster Size Graph 
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Figure 76:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Residuals 
versus Average States per Node Graph 
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Figure 77:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Residuals 
versus the Natural Logarithm of the Average CPT Size Graph 
 
 



 

 
 
 

168 

Number of Nodes  Residual Plot

-1
-0.5

0
0.5

1

9 10 11 12 13 14 15

Number of Nodes

R
es

id
ua

ls

 
Figure 78:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Residuals 
versus Number of Nodes Graph 
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Figure 79:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Residuals 
versus Average Cluster Size Graph 
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Figure 80:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Predicted 
versus Actual Graph  
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Figure 81:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Predicted 
versus Actual Graph in Logarithm Space  
 



 

 
 
 

171 

Average Time Residual Plot

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 10000 20000 30000 40000 50000

Variance of Time

R
es

id
ua

ls

 
Figure 82:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Residuals 
Plot 
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Figure 83:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Q-Q Plot 
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Figure 84:  Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals versus 
Average States per Node Graph 
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Figure 85:  Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals versus 
Number of Dynamic Non-Transitional Nodes Graph 
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Figure 86:  Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals versus 
Number of Dynamic Transitional Nodes Graph 
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Figure 87:  Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals versus 
Number of Static Nodes Graph 
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Figure 88:  Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Predicted versus 
Actual Graph  
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Figure 89:  Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals Plot 
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Figure 90:  Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Q-Q Plot 
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Figure 91:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 1B Residuals 
versus Average CPT Size Graph 
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Figure 92:  Boyen-Koller over SPI Variance of Speed Linear Regression Model 2B Residuals versus 
Average States per Node Graph 
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Figure 93:  Boyen-Koller over SPI Variance of Speed Linear Regression Model 2B Residuals versus 
the Natural Logarithm of the Average CPT Size Graph 
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Figure 94:  Boyen-Koller over SPI Variance of Speed Linear Regression Model 2B Residuals versus 
Number of Nodes Graph 
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Figure 95:  Boyen-Koller over SPI Variance of Speed Linear Regression Model 2B Residuals versus 
Average Cluster Size Graph 
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Figure 96:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2B Predicted 
versus Actual Graph  
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Figure 97:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2B Predicted 
versus Actual Graph in Logarithm Space  
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Figure 98:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2B Residuals 
Plot 
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Figure 99:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2B Q-Q Plot 
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Figure 100:  Boyen-Koller over SPI Variance of Speed Exponential Regression Model 1B Residuals 
versus Average CPT Size Graph 
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Appendix E:  Random Partially Dynamic Bayesian Network Generator

 
 

The primary function of the Random PDBN Generator is to generate random PDBNs 

for the purpose of studying various inference algorithms for dynamic Bayesian networks.  

The underlying impetus behind the Random PDBN Generator is to generate a large 

number of disparate dynamic Bayesian networks quickly in such a way that the 

distribution of the features of these Bayesian networks is predictable and controllable.  At 

the same time, this software is intended to be able to be used in a generalized set of 

situations other than the purposes of this research study. 

I have summarized the functionality the Random PDBN Generator provides in Figure 

101.  This figure is a use case diagram listing the functionality provided to the user of the 

random PDBN generator.  In this diagram, the stick figure represents the user and the 

ovals represent the functionality available to the user of the random PDBN generator. 
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Figure 101:  Use Case Diagram for the Random PDBN Generator 
 
 

Figure 102 is a data flow diagram and it describes how the Random PDBN Generator 

might utilize data from the user to produce PDBNs for the software program testing the 

PDBNs generated.  Here, the ovals represent processes performed by the software 

application, the rectangles represent actors, and the double-lined boxes represent data 

stores.  The arcs between two elements represent the transfer of data with the direction of 

the arc representing the direction of that data’s flow.  The labels on each arc describes the 

data that is being transferred. 
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Figure 102:  Data Flow Diagram for the Random PDBN Generator 
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When using the random PDBN generator, the user first defines the taxonomy and 

design specifications as well as other details such as the number of PDBNs the software 

will produced.  The Random PDBN Generator uses this information to generate a set of 

PDBNs and change the format of those PDBNs to a standard format that can be easily 

exported to other applications.  These PDBNs are then stored to memory or saved to disk 

where an automated testing application can access them. 

The Random PDBN Generator produces a series of randomly generated PDBNs 

satisfying a set of constraints as specified by the user. The first set of constraints, the 

PDBN design parameters, refers to how the PDBN is to be designed.  These parameters 

constrain how the PDBNs generated are to be structured, how each node in the PDBN is 

to behave, and how the variables represented by the Bayesian network are to represent 

their states.  Table 24 lists these parameters as well as gives a description of each.  The 

Random PDBN Generator takes as input a probability mass function over each of these 

PDBN design parameters.  The PDBN generator includes a data structure for representing 

these probability mass functions. 
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Table 24:  PDBN Design Parameters to the Random PDBN Generator 
 PDBN Design 

Parameters 
Description 

1 Number of static 
nodes 

The number of static nodes in the Bayesian network. 

2 Number of dynamic 
transitional nodes 

The number of transitional dynamic nodes in the Bayesian 
network. 

3 Number of dynamic 
non-transitional nodes 

The number of non-transitional dynamic nodes in the 
Bayesian network. 

4 Arc saturation for 
static to static arcs 

The percentage of the possible set of arcs between static 
nodes in the PDBN.  0% represents the minimum number 
of arcs and 100% represents the maximum number of arcs 
possible. 

5 Arc saturation for 
static to dynamic arcs 

The percentage of the possible set of arcs between static 
nodes and dynamic nodes in the PDBN.  0% represents 
the minimum number of arcs and 100% represents the 
maximum number of arcs possible. 

6 Arc saturation for 
dynamic to dynamic 
arcs 

The percentage of the possible set of arcs between 
dynamic nodes in the PDBN.  0% represents the minimum 
number of arcs and 100% represents the maximum 
number of arcs possible. 

7 Arc saturation for 
transitional nodes 
between time steps 

The percentage of the possible set of arcs between 
transitional nodes between time steps in the PDBN.  0% 
represents the minimum number of arcs and 100% 
represents the maximum number of arcs possible. 

8 Probability of dynamic 
transitional node 
connecting to self 

The probability that a dynamic transitional node connects 
to itself in the next time step. 

9 Average number of 
states per node 

The mean number of states per node. 

10 Alpha factor A node is related to its parents such that N = P +  
where N is the random variable of the node and P is the 
random variable of the parent node.  This parameter is the 
value of the . 

11 Root node mean The mean of each root node. 
12 Noise factor A node is a linear combination of its parents and a noise 

factor.  This noise factor is a Normal random variable 
with a mean of zero.  This parameter is the variance of 
that Normal random variable. 
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Along with the PDBN design parameters, the user has the ability to define various 

processing parameters that define periphery information necessary to generate the 

PDBNs.  The user also has the ability to define the number of PDBNs to be produced for 

a given PDBN design specification, the location where these PDBNs will be saved on 

disk, and the format for which these PDBNs are to be stored to disk.  For the purpose of 

speed and efficiency, the Random PDBN Generator will generate multiple PDBNs at a 

time using multiple threads.  The user has the ability to specify the number of concurrent 

threads to run at a time to best suit the system the Random PDBN Generator is running 

on. 

To interoperate with the Random PDBN Generator, the automation software of this 

research study takes the sample set of PDBNs by loading them from file.  The files are 

stored in a file format unique to the Random PDBN Generator.  Thus, the automation 

software of this research study interfaces with these PDBN files by way of a function call 

to the application program interface of the Random PDBN Generator. 
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