

Analysis of the Relationship between Partially Dynamic Bayesian Network Architecture
and Inference Algorithm Effectiveness

A thesis submitted in partial fulfillment of the requirement for the degree of Master of
Science at George Mason University

By

Stephen J. Cannon
Bachelor of Science

George Mason University, 2002

Director: Dr. Kathryn Blackmond Laskey, Professor
Department of Systems Engineering and Operations Research

 Fall Semester 2007
George Mason University

Fairfax, VA

ii

ACKNOWLEDGEMENTS

This research was supported in part by a grant to George Mason University by the
Massachusetts Institute of Technology, Lincoln Laboratory, under contract number PO
CX-25963.

iii

TABLE OF CONTENTS

 Page
List of Tables..iv
List of Figures ...v
Abstract ...x
1. Background ...1

Problem Statement...1
Literature Review ..2
Research Objectives and Scope..21

2. Methodology ...23
Research Factors..23
Experimental Methodology..42

3. Experimental Results ...47
General Analysis Methodology..47
Analysis and Results for the Particle Filter Speed of Inference.................................53
Analysis and Results for the Particle Filter Variance of Speed of Inference..............61
Analysis and Results for the Boyen-Koller Speed of Inference.................................70
Analysis and Results for the Boyen-Koller Variance of Speed of Inference..............79
Analysis and Results for the Particle Filter Inference Algorithm Accuracy of
Inference..93
Analysis and Results for the Boyen-Koller Inference Algorithm Accuracy of
Inference..100

4. Conclusions ...105
Discussion of the Time Models..105
Discussion of the Accuracy Models ...118
Future Work ..119

A: Regression Diagnostics for the Particle Filter Speed of Inference Models123
B: Regression Diagnostics for the Particle Filter Variance of Speed of Inference Models
..139
C: Regression Diagnostics for the Boyen-Koller Speed of Inference Models154
D: Regression Diagnostics for the Boyen-Koller Variance of Speed of Inference Models
..166
E: Regression Diagnostics for the Boyen-Koller Variance of Speed of Inference Models
..184
List of References..190
Curriculum Vitae ...192

iv

LIST OF TABLES

Table Page
1. Factors to be Examined in this Research Study ..24
2. Experimental Factors to be Used in this Research Study ..27
3. Experimental Factor Distributions..28
4. Speed Emphasis Levels for the Boyen-Koller Inference Algorithm..........................36
5. Speed Emphasis Levels for the Particle Filtering Inference Algorithm37
6. Speed and Power Statistics on Four Computers used in Study..................................41
7. Assessment Metrics ...47
8. Particle Filter Average Speed Exponential Regression Model Statistics106
9. Particle Filter Average Speed Linear Regression Model Regression Statistics........106
10. Particle Filter Average Speed Linear Regression Model Statistics..........................107
11. Particle Filter Average Speed Linear Regression Model Regression Statistics........107
12. Particle Filter Variance of the Average Speed Exponential Regression Model

Statistics ..109
13. Particle Filter Variance of the Average Speed Exponential Regression Model

Regression Statistics ..109
14. Boyen-Koller Average Speed Exponential Regression Model Statistics110
15. Particle Filter Average Speed Linear Regression Model Regression Statistics........110
16. Boyen-Koller Average Speed Linear Regression Model Statistics.........................111
17. Boyen-Koller Average Speed Linear Regression Model Regression Statistics........111
18. Boyen-Koller Variance of the Speed Exponential Regression Model Statistics.......113
19. Particle Filter Variance of Speed Linear Regression Model Regression Statistics...113
20. Boyen-Koller Variance of Speed Linear Regression Model Statistics....................114
21. Boyen-Koller Variance of Speed Linear Regression Model Regression Statistics...114
22. Boyen-Koller Variance of the Speed Exponential Regression Model Statistics.......115
23. Particle Filter Variance of Speed Linear Regression Model Regression Statistics...115
24. PDBN Design Parameters to the Random PDBN Generator...................................188

v

LIST OF FIGURES

Figures Page
1. Bayesian Network...4
2. Conditional Probability Table of Node ObservedSize..5
3. A Bayesian Network with Different Evidence Applied..6
4. Partially Dynamic Bayesian Network (6 Time Steps Shown)12
5. 2-PDBN (Present Time Step and Interface showing) ...15
6. Comparison of Results on Various Computers ..41
7. Formal Experimentation Flow Chart ...44
8. Relationship Between Average Time per Time Step and Variance of Time per Time

Step for the Particle Filter Inference Algorithm...63
9. Relationship Between Average Time per Time Step and Variance of Time per Time

Step for the Boyen-Koller Inference Algorithm...80
10. Relationship Between Average Time per Time Step and Variance of Time per Time

Step for the Boyen-Koller Inference Algorithm with User Defined Clusters..........81
11. Relationship Between Average Time per Time Step and Variance of Time per Time

Step for the Fully Factored Boyen-Koller Inference Algorithm and the SPI
Algorithm ...82

12. Particle Filter Average Speed Exponential Regression Model 1 Residuals versus
Number of Particles Graph..123

13. Particle Filter Average Speed Exponential Regression Model 2 Residuals versus
Number of Particles Graph..124

14. Particle Filter Average Speed Exponential Regression Model 2 Residuals versus
Number of Particles Graph Before Removal of Outliers124

15. Particle Filter Average Speed Exponential Regression Model 2 Residuals versus
Average CPT Size Graph ..125

16. Particle Filter Average Speed Exponential Regression Model 3 Residuals versus
Number of Particles Graph..125

17. Particle Filter Average Speed Exponential Regression Model 4 Residuals versus the
Average States per Node Graph ..126

18. Particle Filter Average Speed Exponential Regression Model 4 Residuals versus the
Natural Logarithm of the Average CPT Size Graph...126

19. Particle Filter Average Speed Exponential Regression Model 4 Residuals versus
Number of Nodes Graph ...127

20. Particle Filter Average Speed Exponential Regression Model 4 Residuals versus the
Natural Logarithm of the Number of Particles Graph ..127

vi

21. Particle Filter Average Speed Exponential Regression Model 4 Residuals versus the
Natural Logarithm of the Number of Particles Graph Before Removal of Outliers
...128

22. Particle Filter Average Speed Exponential Regression Model 4 Predicted versus
Actual Graph ..129

23. Particle Filter Average Speed Exponential Regression Model 4 Predicted versus
Actual Graph in Logarithm Space ...130

24. Particle Filter Average Speed Exponential Regression Model 4 Residuals Plot ...131
25. Particle Filter Average Speed Exponential Regression Model 4 Q-Q Plot132
26. Particle Filter Average Speed Linear Regression Model 1 Residuals versus Average

States per Node Graph ..133
27. Particle Filter Average Speed Linear Regression Model 1 Residuals versus Average

CPT Size Graph ..133
28. Particle Filter Average Speed Linear Regression Model 1 Residuals versus Number

of Dynamic Non-Transitional Nodes Graph ..134
29. Particle Filter Average Speed Linear Regression Model 1 Residuals versus Number

of Dynamic Transitional Nodes Graph ..134
30. Particle Filter Average Speed Linear Regression Model 1 Residuals versus Number

of Static Nodes Graph...135
31. Particle Filter Average Speed Linear Regression Model 1 Residuals versus Number

of Particles Graph ...135
32. Particle Filter Average Speed Linear Regression Model 1 Predicted versus Actual

Graph..136
33. Particle Filter Average Speed Linear Regression Model 1 Residuals Plot............137
34. Particle Filter Average Speed Linear Regression Model 1 Q-Q Plot138
35. Particle Filter Average Speed Linear Regression Model 2 Residuals versus Number

of Nodes Graph...138
36. Particle Filter Variance of Speed Exponential Regression Model 1 Residuals versus

Number of Particles Graph..139
37. Particle Filter Variance of Speed Exponential Regression Model 2 Residuals versus

Number of Particles Graph..139
38. Particle Filter Variance of Speed Exponential Regression Model 2 Residuals versus

Average CPT Size Graph ..140
39. Particle Filter Variance of Speed Exponential Regression Model 3 Residuals versus

Average States per Node Graph ..140
40. Particle Filter Variance of Speed Exponential Regression Model 3 Residuals versus

the Natural Logarithm of the Average CPT Size Graph.......................................141
41. Particle Filter Variance of Speed Exponential Regression Model 3 Residuals versus

Number of Nodes Graph ...141
42. Particle Filter Variance of Speed Exponential Regression Model 3 Residuals versus

the Natural Logarithm of the Number of Particles Graph.....................................142
43. Particle Filter Variance of Speed Exponential Regression Model 3 Predicted versus

Actual Graph ..143

vii

44. Particle Filter Variance of the Speed Exponential Regression Model 3 Predicted
versus Actual Graph in Logarithm Space ..144

45. Particle Filter Variance of Speed Exponential Regression Model 3 Residuals Plot
...145

46. Particle Filter Variance of Speed Exponential Regression Model 3 Q-Q Plot146
47. Particle Filter Variance of Speed Linear Regression Model 1 Residuals versus

Number of Particles Graph..146
48. Particle Filter Variance of Speed Linear Regression Model 2 Residuals versus

Number of Particles Graph..147
49. Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus

Average States per Node Graph ..147
50. Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus

Average CPT Size Graph ..148
51. Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus

Number of Dynamic Non-Transitional Nodes Graph...148
52. Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus

Number of Dynamic Transitional Nodes Graph...149
53. Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus

Number of Static Nodes Graph ...149
54. Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus

Number of Particles Squared Graph ..150
55. Particle Filter Variance of Speed Linear Regression Model 3 Predicted versus

Actual Graph ..151
56. Particle Filter Variance of Speed Linear Regression Model 3 Residuals Plot.......152
57. Particle Filter Variance of Speed Linear Regression Model 3 Q-Q Plot153
58. Boyen-Koller over SPI Average Speed Exponential Regression Model 1 Residuals

versus Average CPT Size Graph ...154
59. Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals

versus States per Node Graph..154
60. Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals

versus Natural Logarithm of the Average CPT Size Graph..................................155
61. Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals

versus Number of Nodes Graph ..155
62. Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals

versus Average Cluster Size Graph ...156
63. Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Predicted

versus Actual Graph..157
64. Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Predicted

versus Actual Graph in Logarithm Space ..158
65. Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals

Plot ...159
66. Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Q-Q Plot

...160

viii

67. Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals versus
Average CPT Size Graph ..160

68. Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals versus
Number of Dynamic Transitional Nodes Graph...161

69. Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals versus
Number of Static Nodes Graph ...161

70. Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals versus
Average Cluster Size Graph ..162

71. Boyen-Koller over SPI Average Speed Linear Regression Model 5 Predicted versus
Actual Graph ..163

72. Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals Plot
...164

73. Boyen-Koller over SPI Average Speed Linear Regression Model 5 Q-Q Plot......165
74. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 1A

Residuals versus Average CPT Size Graph ...166
75. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 1A

Residuals versus Average Cluster Size Graph ...166
76. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A

Residuals versus Average States per Node Graph..167
77. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A

Residuals versus the Natural Logarithm of the Average CPT Size Graph167
78. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A

Residuals versus Number of Nodes Graph ..168
79. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A

Residuals versus Average Cluster Size Graph ...168
80. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A

Predicted versus Actual Graph ..169
81. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A

Predicted versus Actual Graph in Logarithm Space...170
82. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A

Residuals Plot ...171
83. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Q-Q

Plot ...172
84. Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals

versus Average States per Node Graph..172
85. Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals

versus Number of Dynamic Non-Transitional Nodes Graph................................173
86. Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals

versus Number of Dynamic Transitional Nodes Graph..173
87. Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals

versus Number of Static Nodes Graph...174
88. Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Predicted

versus Actual Graph..175

ix

89. Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals
Plot ...176

90. Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Q-Q Plot
...177

91. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 1B
Residuals versus Average CPT Size Graph ...177

92. Boyen-Koller over SPI Variance of Speed Linear Regression Model 2B Residuals
versus Average States per Node Graph..178

93. Boyen-Koller over SPI Variance of Speed Linear Regression Model 2B Residuals
versus the Natural Logarithm of the Average CPT Size Graph178

94. Boyen-Koller over SPI Variance of Speed Linear Regression Model 2B Residuals
versus Number of Nodes Graph ..179

95. Boyen-Koller over SPI Variance of Speed Linear Regression Model 2B Residuals
versus Average Cluster Size Graph ...179

96. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2B
Predicted versus Actual Graph ..180

97. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2B
Predicted versus Actual Graph in Logarithm Space...181

98. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2B
Residuals Plot ...182

99. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2B Q-Q
Plot ...183

100. Boyen-Koller over SPI Variance of Speed Exponential Regression Model 1B
Residuals versus Average CPT Size Graph ...183

101. Use Case Diagram for the Random PDBN Generator..185
102. Data Flow Diagram for the Random PDBN Generator ..186

ABSTRACT

ANALYSIS OF THE RELATIONSHIP BETWEEN PARTIALLY DYNAMIC
BAYESIAN NETWORK ARCHITECTURE AND INFERENCE ALGORITHM
EFFECTIVENESS

Stephen J. Cannon, M.S.

George Mason University, 2007

Thesis Director: Dr. Kathryn Blackmond Laskey

This thesis examines the relationship between the architecture of partially dynamic

Bayesian networks and the effectiveness of various inference algorithms using these

Bayesian networks. The algorithms studied were the symbolic probabilistic inference

algorithm, the particle filter inference algorithm, and Boyen-Koller inference algorithm.

The purpose of this research is to provide empirical support for theoretical models of the

speed and accuracy of each of these inference algorithms as well as to develop statistical

models that utilize computationally and conceptually simple factors. The author shows

that the empirical results for the speed of inference of each inference algorithm generally

agrees with the theoretical complexity models of each algorithm. The author also

developed empirical models that predict the variance of speed of each of the inference

algorithms explored in this research.

1

1. Background

1.1 Problem Statement

One of the most challenging problems in artificial intelligence is the problem of

object classification. Object classification is the problem of inferring the class of an

object from information provided by sensor data or other sources. However, the data

used for classification may be unreliable and incomplete. The data may not be very

informative of the object’s class. This same data may be copious and delivered at very

high speed. Nonetheless, in real time discrimination, only a limited amount of time may

be available for processing the information and coming to a result.

Any combination of these problems makes object classification a very difficult

problem. Consider as an example the scenario of a volley of intercontinental ballistic

missiles (ICBM) coming towards an American city. An ICBM normally travels at

supersonic speeds, and hence, is an incredibly fast target relative to its size. Thus, an

ICBM is very difficult to neutralize as a threat; requiring an extremely rapid reaction time

to deal with this threat. Most modern ICBMs also have a variety of defense

countermeasures to stymie missile defenses further. Information collected by sensors

regarding this missile attack may be incomplete and inaccurate due to these

countermeasures, environmental conditions at the time of the attack, or simply random

2

errors. Finally, because not every airborne object is necessarily a threat, a determination

must be made as to what is a threat, what is expendable, and what must not be destroyed.

The decisions facing those defending against airborne threats are more complex than

whether or not to shoot. Multiple threats must be separated and classified, and then a

determination must be made as to how to respond to each threat. There is a variety of

possible responses that vary in effectiveness against missiles, and effectiveness against

different countermeasures and collateral damage. Also, decisions must be made as to

where limited resources should be concentrated and the relative importance of different

types of loss. All these decisions must be made in real-time with copious amounts of

data, some of which may be inaccurate or incomplete.

1.2 Literature Review

Bayesian networks can be applied to a wide range of problem domains where object

classification is a serious issue. Examples of such time-critical real-world applications

include FAA flight tracking and management in dense environments, object identification

of satellite imagery, and threat identification in missile defense. This research attempts to

provide results that can be generalized to any problem domain.

A Bayesian network is a knowledge-based modeling approach, and thus, has the

expressional power to model a wide range of problem domains. The knowledge-based

approach encompasses such modeling tools as the decision tree and the Bayesian

network. These models provide a means to describe the relationship between attributes

of the object. Furthermore, some kinds of knowledge-based models, including a class of

3

Bayesian networks called dynamic Bayesian networks, can describe the dynamics of a

temporally evolving system. This larger modeling vocabulary gives the modeler greater

power to describe the system and, in turn, has the potential for more accurate

classifications of objects because of this extra information in the model. The knowledge-

based approaches are also amenable to novel problems that have similarities with

existing, well understood problems.

However, setting up the knowledge base for the model is more difficult than simply

running a data set through a learning algorithm. Furthermore, this extra power in

articulating the system being modeled typically comes at the price of slower generation

of useful results in comparison to other modeling approaches (Dunn, Holt, Laskey,

Lyons, Takikawa, Tung, 2002). Thus, the knowledge-based approach is not a panacea.

Ultimately, the knowledge-based approach tends to be well suited to problems where

some speed reduction can be accepted for an improvement in accuracy and there is a

good understanding of the system being modeled. In this situation, one can take

advantage of the full power of the knowledge-based approach models. A knowledge-

based approach is generally not suitable for problems where there isn’t a great deal of

understanding of the system being modeled unless that knowledge can be acquired

through sophisticated learning methods.

At this time, however, the application of the knowledge-based approach is relatively

new to most problem domains. There is little published literature on performance

characteristics of the types of models being considered. Hence, there is a need for

systematic studies of performance parameters and the effectiveness of the various

4

knowledge-based methods. Consequently, this was the approached I used in this research

study. The knowledge-based modeling approach I have selected is the Bayesian network.

A Bayesian network is an acyclic directed graph in which each node represents the

value of an uncertain hypothesis and arcs between the nodes represent dependency

relationships. These dependencies can represent cause and effect relationships as well as

statistical associations or logical relationships. Figure 1 shows an example of a Bayesian

network representing the relationship between a class of object, features of the object,

and observations of the features.

Figure 1: Bayesian Network

In a Bayesian network the direction of the arc depicts the direction of the dependence

such that the node receiving the arc is dependent on the node the arc is coming from. For

example, the observed size of the object in Figure 1 depends probabilistically on its

actual size. This probabilistic relationship is described using a conditional probability

table (CPT) like the one shown in Figure 2 that displays the CPT for the node

5

ObservedSize. In this table, the first column represents the states of the parent node Size

and the first row represents the states of the node we are examining, ObservedSize. The

probabilities in the table represent the conditional probabilities of the node ObservedSize

given the state of the parent node Size. Thus, the probability we observe the size of the

object we are examining to be small given that the object is actually large is 30%, as seen

in the third row and second column of the table. Nodes that have no parent nodes (such

as the node Class in Figure 1) have only one row of probabilities.

Figure 2: Conditional Probability Table of Node ObservedSize

One can use the Bayesian network in Figure 1 to draw inferences from sensor reports

about which type of object is being observed. A conditional probability distribution like

the one in Figure 2 is associated with each node in a Bayesian network and defines the

probability of each state of the node as a function of the values of its parent nodes (Pearl,

1988; Jensen, 2001).

To infer useful information from any kind of Bayesian network, one must use an

inference algorithm. Inference is the process by which one incorporates evidence into a

model to produce revised conclusions. An inference algorithm is the algorithm that

produces these new conclusions using the model. An inference algorithm for a Bayesian

network takes evidence about the values of some nodes and draws new conclusions about

the values of other nodes. These new conclusions are in the form of updated distributions

for each variable each node represents.

6

Figure 3 provides an example of this. Here, network A is a Bayesian network where

no evidence is applied, network B is a Bayesian network where evidence is applied and a

new conclusion is inferred about the remaining nodes, and network C is an alternative set

of evidence and inferences. Nodes where evidence has been applied are colored grey

while those nodes that new conclusions must be inferred for are off-white. Each network

has different findings applied to it, and hence, have inferred different outcomes from that

evidence.

Figure 3: A Bayesian Network with Different Evidence Applied

To understand the resulting probabilities given the different sets of evidence

displayed in Figure 3, one must first understand what distinguishes each of the 5 classes

7

of objects we are trying to identify. Class A, C, and E objects tend to be small while

class B and D objects tend to be large. Also, class A objects tend to be very dull (low

brightness), class B objects are slightly brighter, class C objects are brighter still, and

class D objects are the brightest of all the classes. Class E objects, however, can be any

brightness level. Therefore, one cannot easily discriminate class E objects simply by

looking at the objects brightness.

Given this information, we can intuitively deduce that a small unidentified object

with medium brightness is likely to be a class C object. From the brightness we could

expect a class B or D object but they are both large objects. The results of Network B in

Figure 3 match our assessment. In this scenario, there is approximately a 62% chance the

object given is a class C object.

Simply knowing one piece of information about the object, that the object is large, is

not enough information to be certain of the object’s classification. However, this

observation does lend further credence to the possibility that the given object is either of

class B or of class D (both large objects). Comparing the node Class in Network A to

Network C in Figure 3, we can see that the probabilities of both class B and class D have

gone up. As we can see from these two examples, what our minds are able to do with

intuition regarding the classification of objects, Bayesian networks are able to do

quantitatively using conditional probability tables.

There are two classes of inference algorithms, exact and approximate. Exact

inference algorithms are guaranteed to provide the exact conditional distribution of any

node in the Bayesian network given current observations. Approximate inference

8

algorithms, on the other hand, only approximate the distribution for any node in the

Bayesian network. Common approximation methods include structure simplification

(i.e., ignoring some dependencies) or Monte Carlo simulation. The advantage of

approximate inference algorithms is that they are faster than exact inference algorithms

when performing inference over large and complex Bayesian networks.

The inference algorithms examined in this research study are Particle Filtering (Ng,

Peshkin, Pfeffer, 2002), the Boyen-Koller algorithm (Boyen, Koller, 1999), and the

dynamic symbolic probabilistic inference (SPI) algorithm (D’Ambrosio, Li, 1994,

Takikawa, D’Ambrosio, Wright, 2002). Both the Particle Filtering and Boyen-Koller

inference algorithms are approximate algorithms, and hence, were added to the study to

examine inference algorithms that satisfy the speed objective at the cost of accuracy. The

Particle Filtering algorithm uses Monte Carlo simulation while the Boyen-Koller

algorithm uses structure simplification. The SPI algorithm, however, is an exact

inference algorithms, and thus, examines the opposite side of the spectrum; inference

algorithms that satisfy the accuracy objective at the cost of speed.

The SPI method of inference increases the speed of the computation by reducing the

number of calculations required to do inference. The SPI method approaches the

problem of inference as the computation of sums of products. Examining the problem of

inference from this perspective, the algorithm is then able to use the distributive law to

organize these sums of products in a way that is computationally efficient when

performing inference.

9

To understand how the SPI algorithm might achieve this, one must understand that

the probability distribution of any variable or set of variables given some evidence is the

joint probability distribution of the target variables and the evidence variables divided by

the joint probability distribution of the evidence variables:

 m

mn
mn EEP

EETTPEETTP
,...,

,...,,,...,
,...,|,...,

1

11
11 Equation 1

The joint distribution over all the variables in the Bayesian network is simply the product

of all the conditional probabilities in the Bayesian network. This property of Bayesian

networks is known as the chain rule (Jensen, 2001). Using the chain rule, the two

massive probabilities shown on the right side of Equation 1 become a series of small

probabilities that must all be multiplied together.

One can then remove variables from the joint distribution, thus simplifying the

computation of inference, by marginalizing the joint probability distribution over the

variables one wishes to remove. Marginalizing is an operation by which one sums or

integrates over the variables to be removed from the joint probability. The advantage of

marginalizing variables is that one can remove variables from the inference equation that

do not influence the inference query. Marginalization also serves to organize the

inference equation into an equation structure that has more products of sums than sums of

products in the equation. This structure facilitates more efficient computation. The

following is a formula for marginalizing a joint distribution P(W, X, Y, Z) over the

variables Y and Z to obtain the marginal distribution P(W, X):

10

 XWPZYXWP
ZY

,,,,
,

 Equation 2

The joint probability over all the variables in the Bayesian network could in principle be

obtained by computing the numerator and the denominator of Equation 1, which

describes how to get the joint probability of a set of target nodes given the evidence.

However, this is tractable only for very small networks.

The calculations required to compute the probability of interest given evidence,

therefore, consist of a series of multiplication and addition operations. The complexity of

this computation depends on the order in which one performs these operations. Ideally, it

is better to calculate the product of sums rather than the sum of products whenever

possible. The approach of the symbolic probabilistic algorithm is to find a way of

arranging these factors to achieve this goal when calculating a conditional probability

(D’Ambrosio, Li, 1994).

The Bayesian network of Figure 1 represents a static snapshot of the object being

examined. Symbolic probabilistic inference algorithms are designed to handle this kind of

static Bayesian network that models static situations. However, many problem domains

have variables that are dynamic. These algorithms are not suitable to handle dynamic

system without modification. Furthermore, both the particle filtering and the Boyen-

Koller inference algorithms are exclusively for use with dynamic systems. For situations

where a changing system is observed repeatedly over time, a partially dynamic Bayesian

network (PDBN) is required to model the time evolution of the object’s features and

observations.

11

A partially dynamic Bayesian network is used to model problems in which the system

being modeled changes over time. Variables of the modeled system whose value remains

constant are called static variables, and are represented as ordinary Bayesian network

nodes. Variables that change with time are called dynamic variables. A PDBN contains

multiple copies, or instances, of each dynamic node; one for each time step. Each

instance of the dynamic node represents the value of the dynamic variable at that time

step. Figure 4 gives an example of a partially dynamic Bayesian network. This example

is a dynamic version of the Bayesian network in Figure 1.

12

Figure 4: Partially Dynamic Bayesian Network (6 Time Steps Shown)

Fi
gu

re
 4

:
Pa

rt
ia

lly
 D

yn
am

ic
 B

ay
es

ia
n

N
et

w
or

k
(6

 T
im

e
St

ep
s S

ho
w

n)

13

In Figure 4, brightness and observed size are two variables that are represented by

dynamic nodes. Dynamic nodes can be separated further into two groups. Transitional

nodes, such as those nodes representing the brightness of the object, are those nodes that

have arcs that are directed into the next time step. Other dynamic nodes, such as those

nodes in Figure 4 representing the observed size of the object, are referred to as non-

transitional dynamic nodes.

There are rules that dictate how one can connect nodes in a PDBN. Static nodes

cannot have dynamic parents. The reasoning behind this rule is that for one to consider a

variable static, that variable cannot be a function of a dynamic variable within the scope

of the system being modeled. If a variable were directly influenced by another variable

that changed over time, that variable would have to be dynamic. Dynamic nodes,

however, can have either static or dynamic parents.

Together, the static nodes that have dynamic children and the transitional nodes

constitute what is called the interface. It is these nodes that influence the next time step.

The Bayesian network in Figure 4 is an order one partially dynamic Bayesian network. It

is partially dynamic because there exists some static nodes in the network. It is referred

to as order one because the furthest extent into the future a node directly influences

another node is one time step. An order N PDBN is a PDBN where the furthest extent

into the future a node directly influences another node is N time steps. An order N

PDBN (N being a variable integer) is also an order N Markov chain with stationary

transition probabilities, where the state space of the Markov chain is the cross product of

14

the state spaces of the static nodes and the dynamic nodes at a given time step (Takikawa

et al., 2002).

Partially dynamic Bayesian networks are useful for problems in which observational

evidence is received over time about a moving object or set of objects. Static nodes

represent intrinsic unchanging properties of the object or objects (e.g., object type;

material composition; length). Time-varying properties of the object (e.g., velocity;

position; orientation with respect to the sensor) are represented by transitional or non-

transitional dynamic nodes. Sensor reports are also represented as dynamic nodes.

Dynamic Bayesian networks and partially dynamic Bayesian networks represent a

particularly difficult class of Bayesian networks. Recall that in a dynamic Bayesian

network (DBN) or a partially dynamic Bayesian network, there is a copy of each dynamic

node for each time step. If the system is followed for many time steps, this results in an

extremely large network.

The temporal rollup method was developed to make PDBN inference more efficient

by exploiting the Markov property of PDBNs in inference. The Temporal rollup method

takes advantage of the fact that dynamic nodes of the present time step are related to

nodes several time steps ago only through the interface nodes of the immediately

preceding time step (Takikawa et al., 2002). For example, the “ObservedSize” variable

in the fourth time step in Figure 4 is only related to the “Brightness” variable in the first

time step through the “Brightness” variable in the fourth time step. This property allows

the information from all previous time steps to be summarized or rolled up through the

interface nodes as shown in Figure 5. Figure 5 displays the 2-PDBN representation of the

15

partially dynamic Bayesian network in Figure 4. Here, the interface nodes that separate

the dynamic nodes in the present time step form all nodes in previous time steps are the

static node “Class” and the dynamic transitional node “Brightness_Prev”. The joint

distribution over the interface variables is collectively called the past expression. The

past expression contains all the information from the previous time steps relevant to

future predictions. The inference algorithm uses the past expression to infer the

probabilities for nodes in the current time step. Hence, instead of explicitly representing

each node in every previous time step, all the information represented in the past time

steps are rolled up into a joint probability distribution called the past expression.

Figure 5: 2-PDBN (Present Time Step and Interface showing)

Thus, if we are interested only in static nodes and the current values of dynamic

nodes, then only the current time steps and the interface nodes from the previous time

16

step need to be explicitly represented for a first order PDBN. N order PDBNs require the

explicit representation of the current time step and the past N time steps. The PDBN in

Figure 5 is a first order PDBN, and therefore, only requires explicit representation of the

current dynamic nodes, static nodes, and the dynamic transitional previous time step

nodes.

At each step of the temporal rollup procedure, the current nodes are rolled up with the

past interface nodes to form a new interface, and the network is then rolled forward so

that the next time step becomes the new current time step. Hence, given a network such

as the one in Figure 5, one applies evidence to nodes in the present time steps such as

“ObservedSize” and “Brightness”. This new evidence will change the probability

distributions of other nodes such as the nodes “Size” and “Class” in Figure 5. To infer

the new distribution of a node such as “Size” that is directly influenced by an interface

node, one uses the past expression for this time step. This is done by marginalizing this

joint probability distribution to determine the joint probability of all the variables that

directly influence the variable in question. In this case the past expression consists of

“Class” and “Brightness_Prev” with only the static node “Class” directly influencing the

node “Size”. In this situation one would marginalize the past expression to obtain only

the distribution of the variable “Class”. Once evidence has been applied and the new

distributions of the remaining nodes inferred, the rollup procedure can begin. The nodes

that will form the interface in the next time step, the static node ”Class” and the dynamic

transitional node “Brightness”, will be combined into a joint probability distribution.

This new past expression will contain all the information gathered in the past time steps

17

as well as the information collected in this time step. The network for the next time step

will then contain the dynamic transitional nodes of this time step and any static nodes and

any dynamic nodes in the next time step. In this way, the only nodes that need to be

explicitly represented each time step are the static nodes, the dynamic nodes in the

present time step, and the dynamic nodes from the previous time steps that directly

influence nodes in the present time step (Takikawa et al, 2002).

The temporal rollup procedure is the basis of all the inference algorithms considered

in this study. I used the temporal rollup procedure in conjunction with the symbolic

probabilistic inference algorithm by applying the algorithm to the rolled-up version of the

dynamic Bayesian network. Applying an efficient exact inference algorithm such as the

SPI algorithm allows the modeling of dynamic systems using Bayesian networks to be

tractable for PDBNs of a limited size and complexity. However, for real-time inference

in most problem domains, approximate inference algorithms must be used. This is

because the size of the past expression when using the temporal rollup procedure scales

as the product of the number of states of each node in the interface. Hence, the number

of elements in the past expression of the PDBN represented in Figure 5 will be the

product of five states from the “Class” node and three states from the “Brightness_Prev”

node or 15 elements. Networks with many more nodes in the interface or nodes with

many more states will result in a combinatorial explosion in the size of the past

expression, and hence, make inference intractable using exact inference methods on large

and complex networks.

18

One approximation to the temporal rollup procedure is particle filtering. Particle

filtering is an approximate inference algorithm that makes use of the Monte Carlo

method. Rather than use the full joint distribution on transition nodes from the previous

time step, a sample set of node-value pairs, or particles, is selected. Each particle

represents an instance of a set of values of all the nodes in the interface. Collectively, the

set of particles approximates the joint probability distribution over the nodes in the

interface at a given time step conditional on all evidence received to that point. As more

particles are used, accuracy improves, but at the cost of more computation. The sample

of particles is used in the rollup into the next time step rather than the full joint

distribution. The particles are then weighted based on the evidence at the next time step,

where weights are proportional to the likelihood of the evidence given the particles. The

set of nodes to be used as particles in the next time step is then resampled based on the

likelihood weights just collected. This is repeated every time step to speed up rollup of

the previous time step into the interface of the next time step (Ng et al., 2002).

The Boyen-Koller inference algorithm is also an approximate inference algorithm.

However, rather than utilizing a Monte Carlo approximation, this method approximates

the joint distribution on the interface nodes by a tractable distribution. The interface

nodes at a given time step are grouped into clusters that are independent or interact

weakly in the approximate distribution. Clusters are chosen heuristically in an attempt to

capture important dependencies while keeping the two-stage network tractable. As a

general guideline, large clusters tend to slow inference speed but increase accuracy while

small clusters increase speed at the cost of accuracy. To compute the probability

19

distribution for the next time step, a two-stage network is used in which the distribution at

the current time step is approximated by a product of factors defined on the clusters and

the original Bayesian network distributions used for the transition between time steps.

The belief tables for the clusters of the next time step are then derived through

marginalization (Boyen et al., 1998). With this simplified dynamic Bayesian network,

inference over the two-step network can be done using an exact inference algorithm such

as the symbolic probabilistic inference algorithm or the junction tree inference algorithm.

The Boyen-Koller inference algorithm has a running time of NNQO per time step

where N is the number of nodes in the Bayesian network and Q is the number of states in

each node of the network (Murphy et al., 2001). This study done by Murphy and Weiss

assumes all nodes have the same number of states, while the PDBNs used in this research

study will generally have nodes with different numbers of states. Nonetheless, this

expression of computational complexity is still useful in predicting the computation time

for the Boyen-Koller algorithm.

The particle filter inference algorithm has a running time of MO per time step

where M is the number of particles used by the particle filter (Carpenter et al., 1999).

This is not to say that the computation time of the particle filter is not a function of the

size of the network. The running time of this inference algorithm would likely be

 MNO if one were to include the Number of Nodes factor (here the variable N).

However, the number of nodes is generally insignificant in number relative to the number

of particles. Thus, the number of particles is considered the more significant factor of the

two in the complexity of the particle filter algorithm.

20

The speed at which the particle filter inference algorithm can run appears to be less

sensitive to the size and complexity of the network than the Boyen-Koller inference

algorithm. The time to perform inference using the Boyen-Koller inference algorithm is a

function of the number of states per node in the PDBN and is especially sensitive to the

number of nodes in the PDBN. Both of these factors are different metrics with which to

measure the size and complexity of a Bayesian network. Conversely, the time to perform

inference using the particle filter inference algorithm is a function of a factor that is not

an attribute of the Bayesian network.

However, the number of particles used to perform inference on any PDBN, even a

relatively simple network, is generally in the thousands to tens of thousands. It is

necessary that this many particles be used to ensure that these particles portray an

accurate representative sample of the state of the PDBN. For PDBNs with few nodes and

few states per node, the Boyen-Koller inference algorithm is generally the faster

algorithm because the particle filter inference algorithm requires a certain amount of

overhead to be as accurate an approximate inference algorithm as the Boyen-Koller

inference algorithm over the same network.

Thus, the Boyen-Koller inference algorithm will generally be the faster algorithm up

to a certain limit of size and complexity of PDBNs. Once that limit is surpassed, the

Boyen-Koller inference algorithm will fall behind the particle filter inference algorithm

in speed. As the size and complexity of the PDBNs grows linearly, the time to perform

inference with the Boyen-Koller inference algorithm will grow exponentially. However,

21

the time to perform inference with the particle filter inference algorithm will only grow

linearly as the number of particles necessary to perform inference accurately grows.

1.3 Research Objectives and Scope

Exact inference algorithms are feasible for simple and small partially dynamic

Bayesian networks. However, exact inference is NP-hard (computationally expensive to

perform) and as the PDBN grows in size and complexity the time to perform exact

inference grows exponentially (Cooper 1990). The computational cost of approximate

inference algorithms also grows with problem size, at different rates for different

algorithms. The structure and conditional probability distributions of a Bayesian network

are important to algorithm effectiveness. However, the performance of an algorithm for a

given Bayesian network is usually not easy to determine a priori. Therefore, the

objective of this research study is to understand the relationship between the structure and

conditional probability tables of PDBNs (what shall be referred to henceforth as the

architecture) and the effectiveness of various inference algorithms. An effectively

performing algorithm is one that is fast enough to run in real time and accurate enough to

provide dependable results and do this within a reasonable resource load (IET, 2002).

This study will be limited to partially dynamic Bayesian networks. Also, the

variables of all PDBNs will be restricted to a discretization of a particular functional form

I have called the sine normal linear. A sine normal linear variable is one where the

variable in question is the sine of a weighted sum of variables. In this particular

implementation, every variable in the Bayesian network will be the sine of the weighted

22

sum of the variables influencing the variable in question. Variables that are root nodes

will be the sin of a normal distribution. Every variable being represented in the partially

dynamic Bayesian networks being studied will be sine normal linear variables. This

particular functional form has been chosen because of its simple implementation and use

in experimentation. This function form could be varied in future research, however, and

the software tools being used in this research study support such a change.

23

2. Methodology

2.1 Research Factors

There are many factors of the architecture of PDBNs that may potentially influence

the effectiveness of one of the inference algorithms studied. The purpose of this

experiment is to identify characteristics that are strongly related to an algorithm’s

effectiveness and to evaluate the nature of these relationships for the strongly related

factors. Several different categories of factors can ultimately affect an inference

algorithm’s performance. The categories of factors varied in this experiment are: factors

describing the PDBN’s architecture, the inference algorithms used and metaparameters

for those algorithms, the number of time steps the inference algorithm is allowed to run,

and the power of the computer running the inference algorithm. One must vary each of

these in a controlled manner to be able to analyze with any great clarity what sorts of

Bayesian networks work best with what inference algorithms. Of all these factors, only

the factors describing the PDBN’s architecture are within the scope of this study, and

thus, the only category of factors analyzed in detail and compared to the resulting

algorithm’s effectiveness.

To achieve the objectives of this research study, it was necessary to apply the

algorithms being tested to a collection of PDBNs that varied with respect to the attributes

hypothesized to affect algorithm effectiveness; the factors that describe the PDBN’s

24

architecture. To achieve this end, I described each PDBN using a set of categorization

parameters. Each categorization parameter depicts an attribute of a partially dynamic

Bayesian network that I hypothesized as having a high likelihood of affecting the

performance or accuracy of one or more of the inference algorithms tested. These

categorization parameters were the factors that I tested in this research study.

Table 1 lists a number of factors that can potentially affect the performance or

accuracy of the Bayesian network inference algorithms. I drew these factors from the

Information Extraction & Transport, Inc.’s Test Plan for Evaluating Approximate

Inference Algorithms (IET, 2002) and the expert judgment of Dr. Kathryn Laskey,

advisor to this study. The first column in this table numbers the factor labeled in the

second column. The third column describes the factor.

Table 1: Factors to be Examined in this Research Study
 Design Factors Description
1 Number of static nodes The number of static nodes in the Bayesian

network.
2 Number of dynamic

transitional nodes
The number of transitional dynamic nodes in the
Bayesian network.

3 Number of dynamic non-
transitional nodes

The number of non-transitional dynamic nodes in
the Bayesian network.

4 Arc saturation for static to
static arcs

The percentage of the possible set of arcs between
static nodes in the PDBN. 0% represents the
minimum number of arcs and 100% represents the
maximum number of arcs possible.

5 Average number of static
parents for static nodes

The mean number of static parents for the set of
static nodes in the PDBN.

6 Arc saturation for static to
dynamic arcs

The percentage of the possible set of arcs between
static nodes and dynamic nodes in the PDBN. 0%
represents the minimum number of arcs and 100%
represents the maximum number of arcs possible.

7 Average number of static
parents for dynamic nodes

The mean number of static parents for the set of
dynamic nodes in the PDBN.

25

8 Arc saturation for transitional
nodes between time steps

The percentage of the possible set of arcs between
transitional nodes between time steps in the PDBN.
0% represents the minimum number of arcs and
100% represents the maximum number of arcs
possible.

9 Average number of previous
time step transitional parents
for dynamic nodes

The mean number of transitional parents in the
previous time step for the set of dynamic nodes in
this time step.

10 Arc saturation for dynamic to
dynamic arcs

The percentage of the possible set of arcs between
dynamic nodes in the PDBN. 0% represents the
minimum number of arcs and 100% represents the
maximum number of arcs possible.

11 Average number of same time
step dynamic parents for
dynamic nodes

The mean number of dynamic parents in the same
time step for the set of dynamic nodes in this time
step.

12 Proportion of dynamic
transitional nodes that have a
transitional link to itself

The number of dynamic transitional nodes that link
to itself in the next time step divided by the total
number of transitional dynamic nodes.

13 Average strength of
dependency

Approximate average correlation of nodes
connected by an arc.

14 Average node variance Approximate average variance of every node in the
Bayesian network.

15 Average number of states per
node

The mean number of states per node.

16 Number of nodes within the
interface between time steps

The number of nodes in the interface.

17 Ratio of arcs to nodes The number of arcs divided by the number of
nodes.

18 Maximum number of parents
of the nodes

The number of parents of the node with the most
parents in the PDBN.

19 Average number of parents of
the nodes

The mean number of parents of the nodes in the
PDBN.

20 Average size of the CPTs The mean number of elements of a node’s
conditional probability table in the PDBN.

21 Total number of possible
instances of the PDBN

The total number of possible combinations of states
that all the nodes in the PDBN can take on.

An experimenter generating a PDBN can control or influence each of these factors.

However, one cannot control all combinations of these factors simultaneously. For

example, although it is easy to control the number of nodes, the ratio of arcs to nodes, and

26

the average number of parents per node in a PDBN, controlling all three of these factors

simultaneously is a more complicated task since each of these factors depends on the

other two.

Table 2 lists a set of experimental factors I manipulated in this study. The first

column in this table numbers the factor labeled in the second column and the third

column describes the factor. Table 3 lists these same experimental factors along with

various statistics and graphs showing the distributions of each of these factors. The first

two columns are identical to those in Table 2. The third column defines the probability

density function used for the particular factor when generating PDBNs. The purpose of

Table 3 is to display the distribution of these experimental factors in the PDBN data set

used in this research study. The random PDBN generator randomly chose a value using

these distributions to select the experimental factor values for each PDBN generated.

The fourth column gives the full range of values found empirically in a preliminary test

run of the random PDBN generator. In this preliminary test run, the random PDBN

generator used the distributions found in column three of this table and generated

approximately 250 PDBNs for the purpose of collecting the statistics found in Table 3.

The fourth column also gives the empirical mean, median, and mode (where applicable)

of the resulting set of results in the preliminary test run. The fifth and final column

displays a small histogram of the resulting set of results for each factor.

27

Table 2: Experimental Factors to be Used in this Research Study
 Design Factors Description
1 Number of static

nodes
The number of static nodes in the Bayesian network.

2 Number of dynamic
transitional nodes

The number of transitional dynamic nodes in the Bayesian
network.

3 Number of dynamic
non-transitional nodes

The number of non-transitional dynamic nodes in the
Bayesian network.

4 Arc saturation for
static to static arcs

The percentage of the possible set of arcs between static
nodes in the PDBN. 0% represents the minimum number
of arcs and 100% represents the maximum number of arcs
possible.

5 Arc saturation for
static to dynamic arcs

The percentage of the possible set of arcs between static
nodes and dynamic nodes in the PDBN. 0% represents
the minimum number of arcs and 100% represents the
maximum number of arcs possible.

6 Arc saturation for
transitional nodes
between time steps

The percentage of the possible set of arcs between
transitional nodes between time steps in the PDBN. 0%
represents the minimum number of arcs and 100%
represents the maximum number of arcs possible.

7 Arc saturation for
dynamic to dynamic
arcs

The percentage of the possible set of arcs between
dynamic nodes in the PDBN. 0% represents the minimum
number of arcs and 100% represents the maximum
number of arcs possible.

8 Average strength of
dependency

Average correlation of all nodes connected by an arc in
the PDBN at the initial time step.

9 Average number of
states per node

The mean number of states per node.

28

Table 3: Experimental Factor Distributions
Empirical Range Design Factors Factor Distribution

Mean/Median/Mode
Empirical

Distribution
2 – 4 1 Number of static

nodes
gamma(73.46938776,

0.040833333) 3.072 / 3 / 3

3 – 6 2 Number of
dynamic
transitional nodes

gamma(56.25, 0.08)

4.414 / 4 / 4
3 – 6 3 Number of

dynamic non-
transitional nodes

gamma(56.25, 0.08)

4.482 / 5 / 5
0 – 0.333 4 Arc saturation for

static to static arcs
beta(40.25, 189.75)

0.041 / 0 / 0

0 – 0.043 5 Arc saturation for
static to dynamic
arcs

beta(35.26, 1727.74)

0.022 / 0.031 / 0
0 – 0.057 6 Arc saturation for

transitional nodes
between time
steps

beta(34.87063116,
1010.725506)

0.027 / 0.029 / 0.031

0 – 0.036 7 Arc saturation for
dynamic to
dynamic arcs

beta(35.26, 1727.74)

0.0178 / 0.028 / 0
-0.743 – 0.681 8 Average strength

of dependency
Unknown PDF
|StrOfDep| > 0.1 0.092 / 0.252 / NA

3.824 – 5.188 9 Average number

of states per node
beta(7.477777778,

17.44814815)
range: (2, 12) 4.468 / 4.467 / 4.235

29

The Average Strength of Dependency experimental factor is unique among the 9

experimental factors for several reasons. This factor could not be controlled directly, and

therefore, was controlled indirectly by measuring the average strength of dependency for

the produced PDBN and regenerating it if the resulting measure was not greater than 0.1.

It was necessary to enforce a lower bound to the Average Strength of Dependency

experimental factor so that the arcs of the PDBNs would be meaningful. The arcs of any

Bayesian network represent a relationship between two nodes, and thus, it is taken for

granted that two connected nodes will influence each other. Therefore, if one applies

evidence to one node one can expect all nodes connected to that node by an arc will be

affected. However, one could make a valid and internally consistent Bayesian network in

which any or all pairs of interconnected nodes have little or no influence on each other.

Such networks are of little practical use and are never purposely created by a knowledge

engineer. Thus, to prevent the possibility of the random PDBN generator introducing this

sort of Bayesian networks into the sample set, a minimum average strength of

dependency was enforced.

30

I choose the specific value of 0.1 through trial and error. I choose a minimum

allowed average strength of dependency value arbitrarily and then examined the sample

set of PDBNs to determine whether they were suitable. I tested a small random sample

of PDBNs from the sample set to see whether evidence applied to some of the dynamic

non-transitional nodes had an effect on the static nodes. If there was an effect on the

static nodes, the PDBN was suitable. If all the selected PDBNs from the sample set were

suitable, the sample set was suitable. My objective was to find the lowest minimum

average strength of dependency value that produced a suitable sample set of PDBNs.

It is important to note that the average strength of dependency measure was

approximated using a Monte Carlo simulation that produced results that differed due to

random sampling error for each measurement made. The results varied by about 0.01

standard deviations for a single PDBN. This is why some of the PDBNs in the sample set

have a reported average strength of dependency as low as 0.083, which is below the 0.1

minimum allowed value.

It is likely that some of the PDBNs generated had an average strength of dependency

near 0.1. When the PDBN was tested for suitability, the measured average strength of

dependency for the PDBN was above 0.1. However, when that same PDBN was later

examined for the purposes of taxonomy, a new average strength of dependency measure

was taken. Since the average strength of dependency measure for the PDBN was near

0.1 and each measure has a random sampling error associated with it, this second

measure could potentially end up below the 0.1 minimum allowed value.

31

It was necessary to measure the Average Strength of Dependency experimental factor

using a random sampling method so that the measurements could be guaranteed to be

computationally tractable. Calculating the average correlation between all the connected

nodes of a Bayesian network is an NP-hard problem. The reason for this is that the

problem of determining the correlation of two nodes is at its core an inference problem.

To determine the correlation of two nodes, one is ultimately finding the expected values

of each of the nodes being examined as well as the expected value of the joint of those

two nodes. Finding these expected values is an NP-hard problem (Cooper, 1990).

Developing a means to calculate directly the average strength of dependency of a PDBN

is also a difficult problem beyond the scope of this research project. There is also no

guarantee that any means of calculating the average strength of dependency would be

computationally tractable for all the PDBNs in my sample set. Using Monte Carlo

methods, thus, allowed me to approximate the average strength of dependency of all the

PDBNs in my sample set within a reasonable amount of time and with minimal

developmental effort.

There exists some bias in the results reported in Table 3. This is why some of the

empirical distributions in column 5 of Table 3 do not match up with the theoretical

distributions in column 3 of Table 3 as well as one would expect. There are several

reasons for the bias. The first source of bias was due to the method of indirectly

controlling the average strength of dependency of the PDBNs generated. Since any

PDBN generated with an average strength of dependency below 0.1 was not used in the

32

sample set, it stands to reason that experimental factors that are related to the Average

Strength of Dependency factor would become biased.

Another source of bias was from the fact that a handful of PDBNs generated were too

complex to perform inference on them, and thus, results could not be generated for these

PDBNs. I carefully choose and modified the parameters of each probability distribution

for each experimental factor to maximize the number of PDBNs that would be testable

while still covering as wide a range of PDBN complexities as possible. However, due to

the large number of PDBNs generated and tested, there were still some PDBNs generated

that were too complex for the software to handle. Should a PDBN cause the inference

algorithm software to exceed its allotted resources or if the test run is unable to be

completed in under 10 hours, the test run is forcibly stopped by the experimental test

software and all results for that PDBN would be lost. For this reason, experimental

factors that contribute to a PDBNs complexity, and ultimately, the difficulty in

performing inference on the PDBN will become biased.

It is important to note that these biases did not interfere with the results of this

research. The reason for this is because I was able to collect data for each experimental

factor for each sample PDBN used in this study. Thus, I was able to fully account for all

the biases that existed in the experimental factors.

I choose these ten factors because they are related to the factors listed in Table 1 and

hypothesized to influence algorithm effectiveness; e.g., the number of nodes in the

interface is related to the number of static nodes, the number of dynamic transitional

nodes, and the average number of static parents for dynamic nodes. Furthermore, one

33

can freely manipulate any combination of these factors when generating a Bayesian

network. That is, no combination of factors directly constrains the value of another factor.

Finally, it a reasonable hypothesis that factors dealing with the standard deviation of a

PDBN property will have a major influence on the effectiveness of an inference

algorithm only if the corresponding average factor has an effect (Laskey, personal

communication). For this reason, standard deviations were not included as experimental

factors at this time.

I choose the parameters of the probability distributions for each experimental factor

primarily based on experience with the various inference algorithms used in this

experiment. I had some experience running the inference algorithms using a variety of

different PDBNs, and thus, gained a good understanding of what situations would cause

the inference algorithms to fail to produce inference results before running out of system

resources on a standard personal computer. I applied this knowledge when creating an

initial set of parameters for the probability distributions of each experimental factor.

When selecting the probability distribution parameters, I also kept in mind what kind of

PDBNs would generally be usable in any problem domain. I then proceeded to generate

and test PDBNs in another initial and informal study to examine the proportion of

PDBNs that would cause the inference algorithms to crash. I then proceeded to modify

my initial selection of parameters with the objective of generating a larger yield of usable

PDBNs and repeated tests on the newly generated set of PDBNs. I repeated this

evolutionary process until I was satisfied with the yield of usable PDBNs in a sample set.

34

I ran the inference algorithms over a set number of time steps, each time step

representing an increment in time. The number of time steps I ran the inference

algorithms over was an important factor because, if the number was too small, there may

not be enough information to generate very accurate inference results. Conversely, if the

number of time steps each inference algorithm is run over was too large, the

experimentation phase of this research would take too long. I found that the ideal number

of time steps to run each inference algorithm over was approximately 60 time steps.

The inference algorithms I examined in this research study can be separated into two

groups: exact inference algorithms and approximate inference algorithms. The exact

inference algorithms serve to provide an understanding of the use of inference algorithms

in problem domains where exact inference is feasible and accuracy is much more

important than speed of inference. The approximate inference algorithms serve to

provide an understanding of the use of inference algorithms in problem domains where

exact inference is infeasible or where both speed and accuracy are of great concern.

The inference algorithms I used in this study were taken from the Quiddity

commercial software package created by IET, Inc (IET, 2003). The Quiddity software

package provided the symbolic probabilistic inference algorithm and the Boyen-Koller

inference algorithm utilizing the symbolic probabilistic inference algorithm. This

software package also provided a particle filter inference algorithm that I used in this

study.

Also, most of the inference algorithms tested in this research study have

implementation variations that may affect their effectiveness. The PDBN inference is

35

being performed on may not be independent of the performance of these variants. The

speed at which an inference algorithm runs and the accuracy of the results it produces can

be controlled using attributes beyond those attributes defining the PDBN architecture.

For this reason, different versions of each inference algorithm that have parameters

beyond the PDBN to be used were tested at different levels of emphasis of speed at the

expense of accuracy. I controlled these parameters at a series of levels such that each

level should cause the algorithms to perform faster than the last. This increase in speed,

however, was always at the expense of accuracy.

The Boyen-Koller and particle filtering inference algorithms have adjustable

parameters that can affect inference performance and accuracy beyond the architecture of

the PDBN that inference is being performed on. The Boyen-Koller inference algorithm

requires one to define a set of clusters and, in effect, choose which arcs to remove when

performing inference. Although there are heuristics and methods to aid in the choice of

clusters, there are few standardized algorithms that work well in most cases. However,

the choice of cluster placement and the size of the clusters are of tremendous importance

in both the performance and accuracy of the inference algorithm. The particle filtering

inference algorithm requires one to define the number of particles to be used in the Monte

Carlo estimation of the PDBN state. The more particles used, the more accurate the

inference algorithm is. However, this is at the cost of the speed at which inference can be

done. Fewer particles increases speed at the expense of accuracy.

It is not the primary purpose of the study to determine the exact nature of the

relationship between these other inference algorithm parameters and inference algorithm

36

effectiveness. However, these parameters may not be entirely independent of the factors

that define a PDBN’s architecture, and hence, must be examined to some extent in this

research study. Therefore, I varied a set of levels varying these parameters in the

experiment. Both of these parameters allow the user of the inference algorithm to

balance speed for accuracy. These levels are different gradations of speed emphasis at

the expense of accuracy and are referred to throughout the experiment as “speed

emphasis levels.”

Table 4 lists the 3 gradations of the speed emphasis levels categories for the Boyen-

Koller inference algorithm and Table 5 lists the 3 gradations of the speed emphasis levels

categories for the particle filtering inference algorithm. Each of the gradations listed in

Table 5 is a range of values that would be selected at random when running the

experiment. I used each of these gradations in the experiment when using the Boyen-

Koller inference algorithm or the particle filtering inference algorithm respectively. The

were chosen based on my experience with using each of these algorithms along with the

expert judgment of Dr. Kathryn Laskey, advisor to this study.

Table 4: Speed Emphasis Levels for the Boyen-Koller Inference Algorithm

Average Cluster Size Description
n / 5 The average cluster holds 20% of the nodes.
n / 8 The average cluster holds 12.5% of the nodes.

Fully Factored All clusters contain only one node.

37

Table 5: Speed Emphasis Levels for the Particle Filtering Inference Algorithm
Number of Particles

5,000 – 10,000
1,000 – 5,000

0 – 1,000

The number of particles used in the test runs of this experiment to perform inference

is rather small compared to the number of particles customarily used. A more reasonable

number of particles to use with the particle filter inference algorithm would be at the

order of magnitude of 10,000 or even 100,000. I used fewer particles than what is

normally used in order to complete the experiments of this research study in a reasonable

amount of time.

The process by which clusters were chosen for use with the Boyen-Koller algorithm

is straightforward for the speed emphasis level that generates fully factored clusters.

When a cluster can contain multiple nodes, however, the choice of nodes falling in a

particular cluster is less straightforward and may have a great deal of influence over the

speed and accuracy of the Boyen-Koller inference algorithm. In this research study, node

selection per cluster was chosen using a trial and error algorithm. For a given speed

emphasis level, all clusters were of equal size where possible and varied by no more than

one node at the most. A set of cluster combinations were produced randomly where the

number of cluster combinations was ten times the number of nodes in the interface. The

nodes in the interface chosen to be in a particular cluster were chosen at random without

replacement. The chance of any node being in any cluster is equal. Choosing nodes for a

cluster with replacement may lead to clusters overlapping. This is a perfectly valid

38

option. However, overlapping clusters risk violating the running intersection property.

Because of time and resource constraints, I decided to not allow overlapping clusters and

opted for a much simpler cluster selection algorithm. Each cluster combination was then

evaluated by examining the sum of the correlations between each node not in the same

cluster. The correlation between two nodes was calculated regardless of whether there

exists an arc between those two nodes. The cluster combination with the lowest sum of

correlations was the chosen cluster combination.

I choose this cluster combination because it is the one I believe to have the least

difficulty of all the cluster sets of handling the independence assumption between nodes

of different clusters that the Boyen-Koller algorithm makes. When the Boyen-Koller

inference algorithm performs inference, it performs inference calculations as if the arcs

between nodes of different clusters do not exist. In this way, the inference calculations

are often simplified. The choice of clusters, however, plays an important role in how

well the Boyen-Koller algorithm is able to do this. Ideally, the correlation between nodes

in different clusters should be as low as possible and arcs between nodes of different

clusters should represent as weak a relationship as possible. The cluster set that has the

least total correlation between nodes not in the same cluster is chosen because it should

meet these criteria reasonably well.

It is important to note that this method of cluster selection puts the Boyen-Koller

inference algorithm at a disadvantage regarding its effectiveness. This method does not

allow a great deal of variety in cluster size or arrangement, and hence, does not represent

all possible arrangements of cluster organization that a modeler may utilize.

39

Furthermore, a knowledge engineer developing a Bayesian network to simulate a real

world system will use his or her understanding of the problem domain to choose a cluster

set that best suits the problem he or she is modeling. This method of random cluster

creation does not reflect this fact and the cluster arrangement has a great deal of influence

over the effectiveness of the Boyen-Koller algorithm. There is a distinct possibility that

this method will choose a cluster arrangement that will cause the inference algorithm to

perform worse than a cluster arrangement that would be chosen by a domain expert or a

knowledge engineer. This particular method of cluster selection was chosen for speed of

use and easy implementation. A more complex implementation of cluster selection

would be too difficult to develop and use given the resources available for this research

project and is presently beyond the defined scope of this research. In fact, cluster choice

in the Boyen-Koller inference algorithm is itself a problem worthy of study. I believe

that this trial and error algorithm still mitigated this loss of speed and accuracy somewhat

so that the bias against the Boyen-Koller algorithm was not significant.

For the purposes of simplicity, I ran all the test runs of the experiment on the same

computer. However, for this research to be of any use, one must be able to generalize

these results to any computer. Any set of computers capable of performing inference on

a PDBN can vary greatly in the resources they provide, and hence, can potentially

provide different performance results (although accuracy results will naturally remain the

same regardless of the computer used).

Although I cannot show that the relationship between the performance results on any

two computers is linear, I will show that the performance results on the different

40

computers I used are linearly related. To verify this hypothesis, I executed an initial

study consisting of a series of test runs on several different computers. In this study, I

generated a sample set of PDBNs to go through a test run on each computer. I then

compared the speed results derived from each PDBN on each computer to each other.

The initial study I ran consisted of four computers of various speeds, power, and

memory amounts. Table 6 lists various speed and power statistics for each of the

computers used in this study. The computers are listed in order of descending power.

The first column labels the computer. The second column describes the speed and type

of the CPU in the computer. The last column gives the amount of RAM in the computer.

Figure 6 gives the results of the study. The graph in Figure 6 compares the speed at

which the HP, Dell, and E-Tower computers performed in comparison to the Laptop

computer. I examined each PDBN individually and I compared the speed results for each

PDBN on the HP, Dell, and E-Tower computers to the speed results from the Laptop

computer. The graph is a scatter plot where each point in the graph represents the

comparison between the Laptop computer and one of the other three computers. The x-

axis represents the average time per time step for the Laptop and the y-axis represents the

average time per time step for each of the other 3 computers.

41

Table 6: Speed and Power Statistics on Four Computers used in Study
 CPU RAM
Laptop 1.33 GHz

AMD Athlon
240 MB

HP 1.2 GHz
AMD Athlon

256 MB

Dell 798 MGz
Intel Pentium III

256 MB

E-Tower 400 MHz
Intel Celeron

160 MB

Comparison of Results on Various Computers

y = 3.5318x + 4.3585
R2 = 0.9957

y = 1.8216x + 15.112
R2 = 0.9967

y = 1.5182x - 33.21
R2 = 0.9909

0

10000

20000

30000

40000

50000

60000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Average Time per Time Step on Laptop

A
ve

ra
ge

 T
im

e
pe

r T
im

e
St

ep

HP Average Dell Average E-Tower Average

Figure 6: Comparison of Results on Various Computers

42

The plots for each of the comparisons between the Laptop and the other three

computers are all linear in the graph. Each point for each computer compared to the

Laptop computer lies close to the fitted line (produced by Excel). Furthermore, the R2

values (also produced by Excel) are all above 0.99. It is, therefore, reasonable to assume

that the performance results on the different computers I used are linearly related. The

performance of the Laptop in comparison to each of the three other computers is certainly

linear and, if each computer is linearly related to the Laptop computer, it is reasonable to

expect them to be linearly related to each other as well.

2.2 Experimental Methodology

The random set of generated PDBNs used in this research study is meant to provide

breadth to the results of this research because this sample set contains a large number and

highly varied sample PDBNs. This methodology is in contrast to one where I would get

a smaller sample set of representative PDBNs within a particular problem domain. By

randomly generating my sample set of PDBNs, I am more likely to cover the full

spectrum of possible PDBNs and less likely to produce results that are biased by a

problem domain I drew samples from.

I drew the sample set of PDBNs from randomly generated networks from a random

PDBN generator. The set of randomly generated networks consisted of 250 PDBNs. I

developed the random PDBN generator before experimentation began and generated

random PDBNs using the experimental factors listed in Table 2. For each experimental

factor in listed in Table 2, I used the distribution defined in Table 3 when using the

43

random PDBN generator. This random PDBN generator allows the user to control the

distributions of the experimental factors that define the attributes of each PDBN in the

generated sample set. The random PDBN generator I developed can also measure

empirically the values of each experimental factor, as well as other factors, for each

PDBN in the sample set.

Once a sample PDBN was selected from the random PDBN generator, it was

categorized based on the factors described in Tables 1 and 2. This categorization was

necessary for experimental purposes to determine what factors most influence a particular

inference algorithm. Once there was an adequately sized sample set of PDBNs and these

Bayesian networks were categorized by the factors of the experiment defined in Table 2,

the test runs of the experiment began.

Once a PDBN was selected and properly categorized, the formal test run began. Each

test run began with the generation of a base truth set of cases. This is essentially a set of

values for each variable over each time step to represent the actual value of that variable

at that time step. This base truth set of cases varies for each PDBN but not over each

inference algorithm that utilizes the same PDBN. This was used later in data collection

and analysis to help determine the accuracy of the inference algorithm for this Bayesian

network. Once the base truth set of cases was generated, the inference algorithms could

be used to perform inference on the sample PDBN over 60 time steps. Data examining

the performance and accuracy of the inference algorithm were collected while the

inference algorithm processes the PDBN. The data collected is described in the next

section and listed in Table 7.

44

Figure 7: Formal Experimentation Flow Chart

Within the base truth case set generation stage, a set of cases for all nodes in the

PDBN being tested were generated for each time step through Monte Carlo simulation.

These cases represent the actual value of each variable over each time step. Then the

inference algorithm was run on the PDBN. For each time step, the set of cases in that

time step were applied to the nodes of that time step that are chosen to have evidence.

According to the constraints of this research study, only dynamic non-transitional nodes

can have evidence. The set of nodes to have evidence were randomly decided ahead of

time and within each time step there was a 1% probability that a particular node will not

get any evidence for that time step only. Each node had an equal probability of being an

evidence node. The max a posteriori value was calculated for each node without

45

evidence using the evidence given at that time step. The max a posteriori value was

collected to represent the estimated value of that variable and the set of cases collected

before the inference algorithm is applied was used to represent actual value of each

variable in the Bayesian network.

During the formal experiment, it was also necessary to designate a class variable (and

hence, a class node) among the nodes in the partially dynamic Bayesian network. A class

variable is the single variable in a Bayesian network modeling a class discrimination

problem that represents the class of the object being examined. The class node is the

node representing this variable. This node is usually static and discrete. Because the

networks generated for this research study do not model a specific real world problem,

there is no real class node in the PDBNs in the sample sets. Therefore, a static root node

was chosen to simulate the class variable for each PDBN in the sample set.

I then used this class variable as the point of comparison for the accuracy metrics.

With each of the approximate inference algorithms, I compared the distribution of the

class variable given by the approximate inference algorithm to the exact distribution of

this same variable. The exact distribution of the class variable was derived using the SPI

algorithm, which is an exact inference algorithm.

The designation of a class variable was useful for the purpose of determining the

number of time steps necessary to perform an accurate object classification and for

measuring accuracy metrics dealing specifically with the class variable. The former

objective was necessary in determining the number of time steps a test run should occur.

In any object classification problem, the class variable will start off with several likely

46

candidates, each with a different probability. After several time steps where evidence is

applied and more is understood about the object being identified, certain possible

classifications of the object become more likely than the others. However, it may not be

possible even after many time steps to determine the correct classification with certainty.

There may be a period of transient behavior of the class node, in which several

classifications may vie for the position of the most likely classification for the object

being examined. For some situations, the class node may eventually reach a point of

near-certainty for a given class. In other situations the class node may reach a limiting

probability between zero and one, oscillate among possible classifications, or enter some

other pattern that will continue indefinitely.

The number of time steps to conduct inference over a test run should ideally allow

just enough time for the class variable to reach a stable and unchanging pattern in its state

transition for all test runs in the experiment. If the class variable is not given enough time

to reach a state of equilibrium, the accuracy metric reported for that test run will be

adversely affected. Through informal tests, I was able to determine that 60 time steps

provided ample time for any test run of a PDBN within the scope of this research study

under any of the inference algorithms used in this research study to have the class

variable of the PDBN to reach a state of equilibrium.

47

3. Experimental Results

3.1 General Analysis Methodology

A suitable inference algorithm is one that is fast enough to run in real time and

accurate enough to provide meaningful and trustworthy results given a reasonable

resource allocation. Therefore, the metric categories by which each inference algorithm

was judged were speed and accuracy. Table 7 lists all the assessment metrics for each of

these value objectives as well as a brief description of each. Most of the assessment

metrics come from Section 4 of the “Test Plan for Evaluating Approximate Inference

Algorithms” (IET, 2002).

Table 7: Assessment Metrics (IET, 2002)

 Name Description
Speed Metrics
 Average time per time step How much time on average was required to perform

inference over each time step.
 Variance in time per time

step
Variance in time to perform inference over each time
step.

Accuracy Metrics
 Root mean squared error The square root of the sum of the squares of the per-

value differences between the exact and approximate

distribution values
2

i
ii pq

48

I examined the speed of the inference algorithm per time step per test run. For each

time step, I measured the amount of time to complete the time step for each inference

algorithm.

I also examined the accuracy of the inference algorithm per time step and per test run.

I computed accuracy values for all nodes not designated to be evidence nodes. For

evidence nodes that did not collect evidence for a time step, however, I did not examine

these nodes for accuracy. For each test run, I used the average root mean squared error

over each time step for each inference algorithm to determine how much the approximate

distribution varies from the exact distribution.

The data that I collected each test run to calculate what each of these assessment

measures was:

 The time required to perform the time step inference.

 The posterior distribution on each node at each time step.

 The distribution of each node after the final time step.

 Base truth value of each node over each time step.

I used the posterior distributions derived from the exact inference algorithms as the

basis of comparison for the approximate inference algorithms to analyze the accuracy of

these inference algorithms. While even an exact inference algorithm can give false

positives and false negatives the posterior probability distributions it provides will be

accurate and a valid basis of comparison for approximate inference algorithms. In the

cases where the particular class of PDBN was intractable for the exact inference

algorithms being used in this study but not the approximate inference algorithms, it was

49

impossible to calculate all the accuracy assessment metrics and was treated as missing

data. Thus, I only used PDBNs that were tractable for both the SPI and approximate

inference algorithms when taking accuracy measures.

I developed my models using linear regression. I used the linear regression package

that was available with Microsoft Excel as well as the statistical package R to conduct

linear regression. I used both Microsoft Excel and R to perform linear regression. I also

used R to build correlation matrices, calculate variation inflation factors, and calculate

Cook’s distance statistics to better understand and support my statistical models.

I used linear regression to develop the statistical models dealing with the accuracy of

inference, the average speed of inference per time step, and the average variance of the

average speed of inference per time step. The regression equation I used is shown in

Equation 3.

i

ii xY Equation 3

Here Y is the dependent variable, xi is the ith independent variable, i is the coefficient of

the ith independent variable, is the y intercept, and is the random error term.

However, there is reason to expect that the relationship between the dependent

variable and the average speed of inference per time step may be nonlinear. Because

inference on Bayesian networks is an NP-Hard problem (Cooper 1990), it would stand to

reason that a linear increase in complexity would result in an exponential increase in time

of inference. Therefore, I also considered an exponential regression model. To develop

an exponential regression model, I performed linear regression using the alternate

regression equation shown in Equation 4.

50

i

ii xYln Equation 4

Thus, I performed linear regression using the natural logarithm of the dependent variable.

The case when the dependent variable isn’t transformed for this regression equation is

shown in Equation 5.

 eeeY
i

X ii Equation 5

The situation where an exponential regression model would likely be the better model

would be in the case of the Boyen-Koller inference algorithm when one uses it in

conjunction with the SPI exact inference algorithm. One possible factor that one could

use to measure the complexity of a Bayesian network is the number of nodes in that

network. Adding a single node to the Bayesian network will have a multiplicative effect

on the size of the CPTs of every node that is a child of the node that was added. The

speed at which the SPI inference algorithm is able to do inference is likely linked to the

size of the CPT tables of the nodes in the Bayesian network. Therefore, it stands to

reason that adding a node to a Bayesian network will result in an exponential increase in

the time of inference for that Bayesian network when using the SPI algorithm.

It is unclear whether an exponential model would be appropriate for modeling the

speed of inference of a particle filter inference algorithm. Unlike most inference

algorithms, the particle filter inference algorithm may not grow exponentially in time to

perform inference as the complexity of the PDBN grows linearly (Kuo 2005). However,

I believe it is still worthwhile to investigate the possibility that the speed of inference for

the particle filter inference algorithm could be modeled with an exponential model.

51

For this reason, I also developed exponential statistical models dealing with the

average speed of inference per time step. I did this by first linearizing the exponential

statistical model by using the natural logarithm of my dependent variable. Then I

performed a linear regression in which the dependent variable was the natural logarithm

of the average speed of inference per time step.

My initial attempts at regression analysis for each performance and accuracy metric

for each inference algorithm utilized all the independent variables in Table 1 regardless

of their theoretical relevance to the model I was developing. I removed factors as

independent variables if they correlated beyond a threshold of 0.15 to other independent

variables that fit better in the model. Even after this step to reduce collinearity among the

independent variables, I was left with a relatively large number of independent variables

with which to perform regression over. In all situations, the resulting models were poor.

In many scenarios, there were significant factors in the model with negative coefficients

where one would expect a positive coefficient. In addition, minor changes to the

independent variables used often lead to dramatic changes in which factors were

significant. Furthermore, I consistently had one or more independent variables with

variance inflation factors above 10 in each of the models (Kleinbaum, 1988).

My conclusion was that there is multicollinearity between some of my independent

variables and that the method by which I selected the independent variables to use in a

regression analysis was flawed. To reduce the multicollinearity between my independent

variables, I used only a subset of the factors in Table 1, selecting only those factors that I

could justify as having any likelihood of affecting the dependent variable I was

52

examining. Along with this approach, I also examined the correlation matrix of every

factor I used in the regression analysis as well as each factor’s variance inflation factor.

In this way, I could minimize the multicollinearity between my independent variables.

I validated my models over a sample set of 250 PDBNs. This amounted to a

maximum of 1500 data points when examining the performance of each of the particle

filter inference algorithms and 2000 data points when examining the performance of the

Boyen-Koller inference algorithms. In practice, however, I used fewer than the

maximum potential number of data points for evaluating an individual inference

algorithm. Fewer than the maximum number of data points were available for evaluating

each inference algorithm because inference over some of the sample PDBNs was not

tractable or timely for some of the scenarios the PDBNs were tested under.

When performing linear regression to determine the factors to use in my models, I

used a reduced training set of half the available data points. I further reduced my dataset

by removing repeat observations1, or pairs of observations where each of the independent

variables and the dependent variable were identical. However, this reduction was always

small. I then tested the models over the entire available dataset. By performing

regression analysis over half of the data points, I believe I had enough data during the

regression step to prevent over fitting. At the same time, I believe I had enough data left

over to test the model produced by the regression test accurately.

1 Here a repeat observation is an observation that is likely to be generated under the same scenario and

PDBN as another observation. I determined if an observation was likely to be a repeat observation if that
observation shared the same values of its dependent variables and independent variable as another factor.

53

3.2 Analysis and Results for the Particle Filter Inference Algorithm Speed of Inference

For the speed of inference models and the variance of speed of inference models for

the particle filter inference algorithm I used the factors:

 Average States per Node

 Average CPT Size

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

 Number of Particles

The number of particles used by the particle filter is an obvious choice as a factor that

influences the speed of inference of this inference algorithm. The particle filter inference

algorithm is a Monte Carlo method, and thus, the algorithm must spend time creating or

adding to each particle every time step.

How long the algorithm takes to create or add to a particle depends on the number of

nodes in the Bayesian network because each node must randomly selected its value for

each particle. Therefore, it also made sense to include the number of each class of nodes

in the PDBN as an independent variable used in the regression analysis. The factors for

each of the three classes of nodes are: the Number of Dynamic Transitional Nodes

factor, the Number of Dynamic Non-Transitional Nodes factor, and the Number of Static

Nodes factor.

When randomly selecting the value of a node, the particle filter inference algorithm

must choose a value among all the possible states of that node using the conditional

54

probability distribution of that node. Although the time to randomly select the value of a

node is not necessarily related to the number of states in that node or the size of that

node’s CPT table, these factors were included incase there still did exist a significant

relationship.

Furthermore, the CPT tables of all the nodes contribute the greatest to the amount of

memory a PDBN takes up. The more memory resources a PDBN takes up, the fewer

resources are available for the inference algorithm. This could conceivably have a

negative effect on inference algorithm performance.

When performing regression with the exponential model, I combined the three factors

dealing with the number of each class of nodes in a PDBN. Had I kept these factors

separate when performing regression with the exponential model, these factors would

have been multiplied together rather than summed. However, it is likely that the sum of

these factors, and not the product of these factors that affect the speed of inference for the

particle filter inference algorithm. The particle filter inference algorithm randomly

selects a value for each node for each particle and only once for each node for each

particle. Thus, it makes more sense to combine these thee factors into the Number of

Nodes factor and have that factor multiplied with the Number of Particles factor when

developing the exponential model.

The first inference algorithm I examined was an exponential model of the speed of

inference for the particle filter inference algorithm. The first set of factors I performed

regression with was:

 Average States per Node

55

 Average CPT Size

 Number of Nodes

 Number of Particles

This model had a clear pattern in the residuals graph for the Number of Particles factor.

This graph can be seen in Figure 12 in Appendix A. The pattern appears to suggest a

logarithmic relationship between the number of particles used by the inference algorithm

and the natural logarithm of the speed of inference for the particle filter inference

algorithm.

The Average States per Node factor was also not significant in this model. I

performed regression again over the same set of factors excluding the Average States per

Node factor. Despite this change, there was still a clear pattern in the residuals graph for

the Number of Particles factor. The graph was nearly identical to the one seen in Figure

12.

Based on the graph in Figure 12, I adjusted the previous model by using the natural

logarithm of the Number of Particles factor as an independent variable. Thus, the set of

factors I performed regression over became:

 Average States per Node

 Average CPT Size

 Number of Nodes

 Natural Logarithm of the Number of Particles

In this model, all factors including the Average States per Node factor were significant.

The graph of the residuals versus the natural logarithm of the Number of Particles factor

56

in this model does not appear to show a pattern as the Number of Particles factor did in

the previous model. This graph is shown in Figure 13 in Appendix A. However, there

appeared to be a pattern now in the residuals graph for the Average CPT Size as seen in

Figure 15 in Appendix A. As before, the pattern appeared to be logarithmic in nature.

In this model, several outliers had to be removed because they were beyond the

threshold of 0.5 for Cook’s distance statistic (Lorenz, 1987). Thus, these data points

disproportionately influenced the regression and needed to be removed so the regression

could be more accurate. One can see these outliers best in Figure 14, which is the graph

of the residuals versus the natural logarithm of the Number of Particles factor before

these outliers were removed. The outlying date points in are circled. From this figure,

one can see that these outliers lie outside the general trend of the plot. Only six data

points were removed and after these data points were removed, no further outliers were

shown as being overly influential according to Cook’s distance statistic.

In the next model, I used the factors:

 Average States per Node

 Natural Logarithm of the Average CPT Size

 Number of Nodes

 Number of Particles

I used the natural logarithm of the Average CPT Size factor in response to the pattern that

appears in Figure 15. As in the first exponential model I developed to predict the speed

of inference for the particle filter inference algorithm, there was an apparent pattern in the

residuals graph for the Number of Particles factor. This graph is seen in Figure 16 in

57

Appendix A. As before, the pattern suggested a logarithmic relationship between the

number of particles used by the inference algorithm and the natural logarithm of the

speed of inference for the particle filter inference algorithm

Also similar to the first exponential model I developed, the Average States per Node

factor was also not significant in this model. I performed regression again over the same

set of factors excluding the Average States per Node factor. As before, there was still a

clear pattern in the residuals graph for the Number of Particles factor. The graph was

nearly identical to the one seen in Figure 16.

The next model I developed for predicting the speed of inference for the particle filter

inference algorithm used the factors:

 Average States per Node

 Natural Logarithm of the Average CPT Size

 Number of Nodes

 Natural Logarithm of the Number of Particles

None of the residual graphs for any of the factors listed above displayed any apparent

patterns as seen in Figure 17, Figure 18, Figure 19, and Figure 20 in Appendix A.

In this model, several outliers had to be removed because they were beyond the

threshold of 0.5 for Cook’s distance statistic. Thus, these data points disproportionately

influenced the regression and needed to be removed so the regression could be more

accurate. One can see these outliers in Figure 21, which is the graph of the residuals

versus the natural logarithm of the Number of Particles factor before these outliers were

removed. The outlying date points in are circled. From this figure, one can see that these

58

outliers lie outside the general trend of the plot. Only six data points were removed and

after these data points were removed, no further outliers were shown as being overly

influential according to Cook’s distance statistic.

Figure 22 in Appendix A shows the model’s fit to the actual time results while Figure

23 in Appendix A shows this same graph in logarithmic scale. Figure 24 in Appendix A

shows the residual plot for this exponential model. From the graphs in Figure 22 through

Figure 24, this exponential model appears to be a good predictor of the actual speed of

inference for the particle filter inference algorithm. Although there is a handful of

outliers in the graph, the results of Cook’s distance statistic suggests that none of these

outliers were overly influential on the results of the regression analysis. Also, it appears

that as the average time to perform inference grows linearly, the error of this model

grows slightly. This can be seen from Figure 22. However, this linear growth in error is

only slight.

A Normal Q-Q plot of the residuals, as seen in Figure 25 in Appendix A, supports the

assumption that this model’s error is normal. There are outliers at the right tail of the

normal distribution but, for the main body of the data, the model’s error appears to match

the normal distribution closely. The Q-Q plot along with the residual and model fit

graphs above in Figure 17 through Figure 25 all support the Gauss-Markov assumptions.

The model’s error is likely to be normal with a mean near zero as seen from the Q-Q plot.

Furthermore, the random errors of the model are all likely to be uncorrelated as no factor

has a variance inflation factor above 2. Finally, the lack of any noticeable patterns in any

59

of the residual graphs for each of the independent variables and the dependent variable

suggests that random errors of the model are homoscedastic.

For the linear model of speed of inference for the particle filter inference algorithm,

the factors I used were:

 Average States Per Node

 Average CPT Size

 Number of Static Nodes

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Particles

This model proved to be a very good model as none of the residual graphs for any of the

factors listed above displayed any apparent patterns as seen in Figure 26 through Figure

31 in Appendix A.

A pattern was found for the dependent variable. Figure 32 in Appendix A shows the

model’s fit to the actual time results. Figure 33 in Appendix A shows the residual plot

for this exponential model. Although the model’s fit to the actual time results appears to

be an ideal fit, the residual plot in Figure 33 appears to suggest a logarithmic or quadratic

relationship.

Nonetheless, the graph in Figure 32 supports the belief that this linear model is a

better predictor of the actual speed of inference for the particle filter inference algorithm

than the other models explored in this research study for this dependent variable. Figure

33 suggests that some heteroscedasticity may exist but it still may not be substantial

60

enough to disrupt the regression analysis used to generate this model. Although there are

a handful of outliers in the graph, the results of Cook’s distance statistic suggests that

none of these outliers was overly influential on the results of the regression analysis.

A Normal Q-Q plot of the residuals, as seen in Figure 34 in Appendix A, supports the

assumption that this model’s error is normal. Furthermore, this Q-Q plot matches the

normal distribution better than the Q-Q plot in Figure 25 for the exponential model

above. As in the exponential model, the Q-Q plot along with the residual and model fit

graphs above in Figure 26 through Figure 34 all support the Gauss-Markov assumptions.

The model’s error is likely to be normal with a mean near zero as seen from the Q-Q plot.

Furthermore, the random errors of the model are all likely to be uncorrelated as no factor

has a variance inflation factor above 2. Finally, the lack of any noticeable patterns in any

of the residual graphs for each of the independent variables and the dependent variable

suggests that random errors of the model are homoscedastic.

Another concern with regard to this linear model is that there was a relatively high

correlation between the Number of Dynamic Transitional Nodes and Average CPT Size

factors. These two factors had a correlation of 0.33 where my correlation threshold is

0.3. I endeavored to avoid any pair of factors being correlated beyond a certain threshold

because a pair of factors that are too highly correlated may result in multicollinearity

problems in the regression results. A correlation threshold of 0.3 should prevent any two

factors from being collinear. Nonetheless, the value of 0.3 was chosen arbitrarily so a

correlation of 0.33 may still not be large enough to disrupt the regression analysis for this

61

model. This is supported by the fact that variance inflation for all the factors of this

model were well below 2.

To address the above concern, I generated a linear model that used the total number

of nodes as a factor instead of the number of each class of nodes. Thus, the factors I used

in this model were:

 Average States Per Node

 Average CPT Size

 Number of Nodes

 Number of Particles

The residual graphs, model fit plots, and Q-Q plot for this model were nearly identical to

that of the first linear model. The residual graph for the Number of Nodes factor also had

no apparent structure as seen in Figure 35 in Appendix A. The R square statistic for the

test set was lower than the previous linear model, however, at 0.974613.. Thus, it is

probably better to keep the three factors dealing with node type separate for the linear

model of the speed of inference of the particle filter inference algorithm.

3.3 Analysis and Results for the Particle Filter Inference Algorithm Variance of Speed of

Inference

I used the same set of factors when developing both the speed of inference and

variance of the speed of inference for the particle filter inference algorithm. These

factors were:

 Average States per Node

62

 Average CPT Size

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

 Number of Particles

I decided to use the same set of factors because of the strong relationship between the

speed of inference and the variance of the speed of inference. The relationship between

these two factors becomes apparent in the graph in Figure 8. Thus, as the time to perform

inference with the particle filter inference algorithm increases, so does the variance of the

time to perform inference. I believe that this relationship entails that the physics behind

the speed of inference and the variance of the speed of inference for the particle filter

algorithm are similar. Thus, I believe the models that predict these two metrics would

likely be equally similar as well as the factors involved.

63

Relationship Between Average Time and Variance of Time

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000
2000000

0 500 1000 1500 2000

Average Time per Time Step

Va
ria

nc
e

of
 T

im
e

pe
r T

im
e

St
ep

Figure 8: Relationship Between Average Time per Time Step and Variance of Time per Time Step
for the Particle Filter Inference Algorithm

The first inference algorithm I examined was an exponential model of the variance of

the speed of inference for the particle filter inference algorithm. The first set of factors I

performed regression with was:

 Average States per Node

 Average CPT Size

 Number of Nodes

 Number of Particles

This model had a clear pattern in the residuals graph for the Number of Particles factor.

This graph can be seen in Figure 36 in Appendix B. The pattern appears to suggest a

logarithmic relationship between the number of particles used by the inference algorithm

64

and the natural logarithm of the variance of the speed of inference for the particle filter

inference algorithm.

The Average States per Node factor was also not significant in this model. I

performed regression again over the same set of factors excluding the Average States per

Node factor. Despite this change, there was still a clear pattern in the residuals graph for

the Number of Particles factor. The graph was nearly identical to the one seen in Figure

36.

Based on the graph in Figure 12, I adjusted the previous model by using the natural

logarithm of the Number of Particles factor as an independent variable. Thus, the set of

factors I performed regression over became:

 Average States per Node

 Average CPT Size

 Number of Nodes

 Natural Logarithm of the Number of Particles

In this model, all factors including the Average States per Node factor were significant.

The graph of the residuals versus the natural logarithm of the Number of Particles factor

in this model does not appear to show a pattern as the Number of Particles factor did in

the previous model. This graph is shown in Figure 37 in Appendix B. However, there

appeared to be a pattern now in the residuals graph for the Average CPT Size as seen in

Figure 38 in Appendix B. As before, the pattern appeared to be logarithmic in nature.

In this model, several outliers had to be removed because they were beyond the

threshold of 0.5 for Cook’s distance statistic. Thus, these data points disproportionately

65

influenced the regression and needed to be removed so the regression could be more

accurate. After these data points were removed, no further outliers were shown as being

overly influential according to Cook’s distance statistic.

The next model I developed for predicting the variance of the speed of inference for

the particle filter inference algorithm used the factors:

 Average States per Node

 Natural Logarithm of the Average CPT Size

 Number of Nodes

 Natural Logarithm of the Number of Particles

None of the residual graphs for any of the factors listed above displayed any apparent

patterns as seen in Figure 39, Figure 40, Figure 41, and Figure 42 in Appendix B.

In this model, several outliers had to be removed because they were beyond the

threshold of 0.5 for Cook’s distance statistic. Thus, these data points disproportionately

influenced the regression and needed to be removed so the regression could be more

accurate. After these data points were removed, no further outliers were shown as being

overly influential according to Cook’s distance statistic.

Figure 43 in Appendix B shows the model’s fit to the actual variance of time results

while Figure 44 in Appendix B shows this same graph in logarithmic scale. Figure 45 in

Appendix B shows the residual plot for this exponential model. From the graphs in

Figure 43 through Figure 45, this exponential model appears to be a decent predictor of

the actual variance of the speed of inference for the particle filter inference algorithm.

Although there is a number of outliers in the graph of which several are quite distant, the

66

results of Cook’s distance statistic suggests that none of these outliers were overly

influential on the results of the regression analysis. Also, it appears that as the variance

of the average time to perform inference grows linearly, the error of this model grows as

well. This can be seen best in Figure 43.

The Normal Q-Q plot of the residuals, as seen in Figure 46 in Appendix B, does not

support the assumption that this model’s error is normal. The distribution is very heavy

on the right tail. The distribution is also heavy on the left tail, although to a lesser degree.

The Q-Q plot along with the residual and model fit graphs above in Figure 43 through

Figure 45 do not support all the Gauss-Markov assumptions. Although the model is

likely to have a mean error near zero, the model’s error distribution is not likely to be

normal. However, the random errors of the model are all likely to be uncorrelated as no

factor has a variance inflation factor above 2. Also, the lack of any noticeable patterns in

any of the residual graphs for each of the independent variables suggests that random

errors of the independent variables are homoscedastic. The residuals graph for the

dependent variable appears to have a pattern in it such that the model appears to

underestimate the dependent variable for higher values of the model.

There also appears to be a separate cluster of data points among the residual graph

shown in Figure 45 and the model’s fit to the actual time results when plotted in

logarithmic scale shown in Figure 44. This suggests that two distinct and separate

phenomena may be represented in the dataset and that two separate statistical models are

necessary to model these two phenomenon. However, due to time constraints, I was

unable to explore this possibility further.

67

For the linear model of the variance of the speed of inference for the particle filter

inference algorithm, the factors I used were:

 Average States Per Node

 Average CPT Size

 Number of Static Nodes

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Particles

This model had a pattern in the residuals graph for the Number of Particles factor. This

graph can be seen in Figure 47 in Appendix B. The pattern appears to suggest either a

logarithmic or a quadratic relationship between the number of particles used by the

inference algorithm and the natural logarithm of the variance of the speed of inference for

the particle filter inference algorithm.

The Average CPT Size factor was also not significant in this model. I performed

regression again over the same set of factors excluding the Average States per Node

factor. Despite this change, there was still a clear pattern in the residuals graph for the

Number of Particles factor. The graph was nearly identical to the one seen in Figure 47.

Based on the graph in Figure 12, I adjusted the previous model by using the natural

logarithm of the Number of Particles factor as an independent variable. Thus, the set of

factors I performed regression over became:

 Average States Per Node

 Average CPT Size

68

 Number of Static Nodes

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Natural Logarithm of the Number of Particles

This model was far worse than the last one, however, with a decrease in the mode’s R

Square value instead of an increase. More importantly, the pattern seen in the residuals

graph for the Number of Particles factor in the last model become more drastic in this

model. This graph can be seen in Figure 48 in Appendix B.

Based on the results seen in Figure 48, it appears the pattern seen in the residuals

graph for the Number of Particles factor of the last model is more likely to be quadratic in

nature. Thus, the set of factors used in my next model were:

 Average States Per Node

 Average CPT Size

 Number of Static Nodes

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Particles Squared

This model had no apparent pattern in any of the residual graphs for the independent

variables as seen in Figure 49 through Figure 54 in Appendix B. However, the Average

CPT Size factor was found to not be significant. Thus, a final linear model was

developed using on these factors:

 Average States Per Node

69

 Number of Static Nodes

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Particles Squared

Figure 55 in Appendix B shows the model’s fit to the actual variance of time. Figure

56 in Appendix B shows the residual plot for this exponential model. From the graphs in

Figure 55 and Figure 56, this exponential model appears to be a poor predictor of the

actual variance of the speed of inference for the particle filter inference algorithm. An

obvious pattern can be seen from these two graphs is likely to be exponential. No such

pattern exists among the residual graphs of the independent variables in Figure 49

through Figure 54, however, suggesting that the heteroscadeasticity lies in the dependent

variable itself.

The Normal Q-Q plot of the residuals, as seen in Figure 57 in Appendix B, does not

support the assumption that this model’s error is normal. The distribution is heavy on the

both tails of the distribution. The Q-Q plot along with the residual and model fit graphs

above in Figure 55 and Figure 56 do not support all the Gauss-Markov assumptions. The

model does not have a mean error near zero and the model’s error distribution is not

likely to be normal. Nonetheless, the random errors of the model are all likely to be

uncorrelated as no factor has a variance inflation factor above 2. Also, the lack of any

noticeable patterns in any of the residual graphs for each of the independent variables

suggests that random errors of the independent variables are homoscedastic. The

residuals graph for the dependent variable, however, appears to have a pattern in it such

70

that the model appears to underestimate the dependent variable for higher values of the

model and the error grows exponentially as the model values grow linearly.

3.4 Analysis and Results for the Boyen-Koller Inference Algorithm Speed of Inference

For the speed of inference models and the variance of speed of inference models for

the Boyen-Koller inference algorithm over SPI 2I used the factors:

 Average States per Node

 Average CPT Size

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

 Average Cluster Size

Just as the number of particles is a necessary parameter for the particle filter inference

algorithm, the designation of nodes in each cluster is a necessary parameter for the

Boyen-Koller inference algorithm. In these models, the Average Cluster Size factor is

the metric I used to measure the effect these clusters have on the speed of inference on

the Boyen-Koller inference algorithm over SPI. This metric is a proxy measure as the

true indicator of the effect the clusters in the Boyen-Koller inference algorithm have on

speed of inference is the change in the CPT sizes due to the removal of intercluster arcs.

However, this metric is far more difficult to calculate and impossible to calculate in an

2 Boyen-Koller inference algorithm when one uses it in conjunction with the SPI exact inference

algorithm

71

immature Bayesian network when many variables in the model and their

interrelationships have yet to be defined.

Because I am using the Boyen-Koller inference algorithm in conjunction with the SPI

algorithm, the Average CPT Size factor is also a key factor in predicting the speed of

inference of this algorithm. This factor is highly correlated to the average time to

perform inference using the Boyen-Koller inference algorithm with a correlation

coefficient over 0.9. This is to be expected as the speed of inference for the SPI

algorithm should be strongly related to the average CPT size of the Bayesian network this

inference algorithm is being used on. The reason for this is that the best the SPI

algorithm can possibly do in terms of speed of inference is directly proportional to the

total CPT size of the Bayesian network, or the product of the average CPT size and the

number of nodes. If the SPI algorithm is able to marginalize out each node immediately

after coming to that node in the factor tree, the variable that node represents would only

have to be used in the equation once. Thus, the only variables required during each

multiplication step would be the variables incorporated in the CPT table of the node

being visited at that step. This lower limit in speed of inference is only possible on the

most sparse of PDBNs and only if the optimal factor tree is found for the PDBN.

However, the high correlation between the total CPT size of a PDBN and the speed of

inference when using the Boyen-Koller inference algorithm over SPI seems to suggest

that this lower limit in speed is often near the actual speed of inference for most PDBNs

used in this study.

72

I also included the Number of Nodes factor when performing regression because the

total CPT size of a Bayesian network is also highly correlated to how quickly the Boyen-

Koller inferenace algorithm can perform inference on that network. Since the total CPT

size of a Bayesian network is the product of that network’s average CPT size and the

number of nodes in that network, the Number of Nodes factor may also be a significant

predictor of speed of inference for the Boyen-Koller inference algorithm over SPI.

It is important to note that the following models developed to predict the speed and

accuracy of the Boyen-Koller inference algorithm over SPI also serve to model the speed

and accuracy of the SPI exact inference algorithm. The Boyen-Koller inference

algorithm over SPI is essentially the SPI algorithm when a single large cluster is used.

Thus, one could consider the SPI algorithm the same algorithm as the Boyen-Koller

inference algorithm when there is a single cluster containing all the nodes in the past

expression. I took advantage of this fact when modeling for the Boyen-Koller inference

algorithm by assuming the SPI algorithm was simply the Boyen-Koller inference

algorithm at a fourth, slower speed emphasis level.

The first inference algorithm I examined was an exponential model of the speed of

inference for the Boyen-Koller inference algorithm. The first set of factors I performed

regression with was:

 Average States per Node

 Average CPT Size

 Number of Nodes

 Average Cluster Size

73

This model had a clear pattern in the residuals graph for the Average CPT Size factor.

This graph can be seen in Figure 58 in Appendix C. The pattern appears to suggest a

logarithmic relationship between the average CPT size of the PDBN and the natural

logarithm of the speed of inference for the particle filter inference algorithm.

The Average States per Node factor was also not significant in this model. However,

this may be due to potential logarithmic relationship between the Average CPT Size

factor and the dependent variable. Thus, the set of factors I performed regression over in

the next model were:

 Average States per Node

 Natural Logarithm of the Average CPT Size

 Number of Nodes

 Average Cluster Size

In this model, all factors including the Average States per Node factor were significant.

None of the residual graphs for any of the factors listed above displayed any apparent

patterns as seen in Figure 59, Figure 60, Figure 61, and Figure 62 in Appendix C.

Also, the graph of the residuals versus the natural logarithm of the Average CPT Size

factor in this model does not appear to show a pattern as the Average CPT Size factor did

in the previous model.

Figure 63 in Appendix C shows the model’s fit to the actual time results while Figure

64 in Appendix C shows this same graph in logarithmic scale. Figure 65 in Appendix C

shows the residual plot for this exponential model. From the graphs in Figure 63 through

Figure 65, this exponential model appears to be a decent predictor of the actual speed of

74

inference for the particle filter inference algorithm. However, the residual plot shown in

Figure 65 bring to question whether this model support the Gauss-Markov assumption

that the error of the model is normal. It is hard to discern any particular pattern from any

of these graphs. Nonetheless, this model may still be a decent predictor of the speed of

inference for the Boyen-Koller algorithm based on these models.

A Normal Q-Q plot of the residuals, as seen in Figure 66 in Appendix C, shows that

there are outliers at the left tail and right tails of the distribution. The right tail of the

distribution appears to much heavier than the left tail of the distribution. The Q-Q plot

along with the residual and model fit graphs above in Figure 59 through Figure 66 do not

support the Gauss-Markov assumptions as clearly as in the best linear model above

predicting the speed of inference of the particle filter inference algorithm. The model’s

error is not likely to be normal as seen from the Q-Q plot, although, the mean of the error

appears to be near zero. However, the random errors of the model are all likely to be

uncorrelated as no factor has a variance inflation factor above 1.3. Also, the lack of any

noticeable patterns in any of the residual graphs for each of the independent variables

suggests that random errors of the independent variables of the model are homoscedastic.

However, this cannot be said of the dependent variable as seen in the residual graph for

the dependent variable shown in Figure 65.

For the linear model of speed of inference for the Boyen-Koller inference algorithm

over SPI, the factors I used were:

 Average States Per Node

 Average CPT Size

75

 Number of Static Nodes

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Average Cluster Size

As usual, the Number of Dynamic Transitional Nodes and Average CPT Size factors

were slightly correlated with a correlation of 0.321. Of greater concern was the fact that

the Average States per Node factor had a negative coefficient when one would expect a

positive coefficient. This model suggests that if the average states per node in a PDBN

was large enough in value relative to the other factors used in this model listed above,

that the time to perform inference with the Boyen-Koller inference algorithm could be

negative.

The fact that there exist negative coefficients when one would expect a positive

coefficient suggests that two or more factors or combinations of factors may be collinear.

However, the largest variance inflation factor among the independent variables used in

this model was 1.22, which is well below the threshold of 10.

In one attempt to generate a linear model without any negative coefficients, I

combined each of the node class factors into the Number of Nodes factor. Thus, the

factors I used in my second linear model were:

 Average States Per Node

 Average CPT Size

 Number of Nodes

 Average Cluster Size

76

Combining each of the node class factors into the Number of Nodes factor did not help,

however. The Average States per Node factor still had a negative coefficient.

Furthermore, the Number of Nodes factor was insignificant in this model.

In my third linear model predicting the speed of inference of the Boyen-Koller

inference algorithm and my second attempt to produce a linear model without any

negative coefficients, I used the factors:

 Average States Per Node

 Average CPT Size

 Average Cluster Size

This model also had a negative coefficient for the Average States per Node factor, and

thus, was not an adequate predictor of the dependent variable. The problem with a

negative coefficient for the Average States per Node factor is that the model could

potentially predict a negative speed of inference for some possible PDBNs and inference

scenarios. Such a PDBN would likely be a sparse network such that the average states

per node of that PDBN was much larger than the average CPT size of that same PDBN.

Also, the fully factored Boyen-Koller inference algorithm would likely be used in this

case.

In a final attempt to generate a linear model without a negative coefficient, I removed

the Average States per Node factor that consistently came up with a negative coefficient.

This model is a modification of the original linear model where I used the factors:

 Average CPT Size

 Number of Static Nodes

77

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Average Cluster Size

This model had no negative coefficients for any of the factors listed above. Furthermore,

there were no apparent patterns in any of the residual plots of any of the independent

variables.

However, the Number of Dynamic Non-Transitional Nodes factor was found to not

be significant. Thus, a final linear model was generated where this factor was removed,

making the list of factors in this model:

 Average CPT Size

 Number of Static Nodes

 Number of Dynamic Transitional Nodes

 Average Cluster Size

In this model, all factors were significant. None of the residual graphs for any of the

factors listed above displayed any apparent patterns as seen in Figure 67, Figure 68,

Figure 69, and Figure 70 in Appendix C. Each of these residual graphs show a few

outliers. However, the largest Cook’s distance value was 0.131, and thus, these outliers

were likely not overly influential on the results of the regression.

Figure 71 in Appendix C shows the model’s fit to the actual time results while Figure

72 in Appendix C shows the residual plot for this linear model. From the graphs in

Figure 71 and Figure 72, this model appears to be a decent predictor of the actual speed

of inference for the particle filter inference algorithm. However, like the exponential

78

model earlier, the residual plot shown in Figure 72 bring to question whether this model

support the Gauss-Markov assumption that the error of the model is normal. As before, it

is hard to discern any particular pattern from any of these graphs. Nonetheless, this

model may also be a decent predictor of the speed of inference for the Boyen-Koller

algorithm based on these models.

A Normal Q-Q plot of the residuals, as seen in Figure 73 in Appendix C, shows that

there are outliers at the left and right tails of the distribution. The right tail of the

distribution appears to be much heavier than the left tail of the distribution. The Q-Q plot

along with the residual and model fit graphs above in Figure 67 through Figure 73 do not

support the Gauss-Markov assumptions as clearly as in the best linear model above

predicting the speed of inference of the particle filter inference algorithm. The model’s

error is not likely to be normal as seen from the Q-Q plot, although, the mean of the error

is near zero. However, the random errors of the model are all likely to be uncorrelated as

no factor has a variance inflation factor above 1.2. Also, the lack of any noticeable

patterns in any of the residual graphs for each of the independent variables suggests that

random errors of the independent variables model are homoscedastic. However, this

cannot be said of the dependent variable as seen in the residual graph for the dependent

variable shown in Figure 72.

79

3.5 Analysis and Results for the Boyen-Koller Inference Algorithm Variance of Speed of

Inference

I used the same set of factors when developing both the speed of inference and

variance of the speed of inference for the Boyen-Koller inference algorithm over SPI.

These factors were:

 Average States per Node

 Average CPT Size

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

 Number of Particles

Unlike the relationship between the speed of inference and the variance of the speed of

inference for the particle filter algorithm, the relationship between these two metrics was

much more complex for the Boyen-Koller inference algorithm. I graph the relationship

between these two factors in Figure 9. From this graph, there appears to be an evident

separation of values such that the dataset is likely to be covering two separate

phenomenon.

80

Relationship Between Average Time and Variance of Time

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 100 200 300 400 500

Average Time per Time Step

Va
ria

nc
e

of
 T

im
e

pe
r T

im
e

St
ep

Figure 9: Relationship Between Average Time per Time Step and Variance of Time per Time Step
for the Boyen-Koller Inference Algorithm

Upon further examination, I found the separation to be between the case where user

defined clusters are used with the Boyen-Koller algorithm and the case where either the

SPI algorithm is used alone or the Boyen-Koller algorithm uses fully factored clustering.

Figure 10 shows the relationship between the average speed of inference and the variance

of the speed of inference for the case when the user defines the clusters used by the

Boyen-Koller inference algorithm. Figure 11 shows the relationship between the average

speed of inference and the variance of the speed of inference for the SPI algorithm along

with the Boyen-Koller algorithm when fully factored clustering is used. In both cases

there appears to be a relationship between the speed of inference and the variance of the

speed of inference in the given scenario.

81

Relationship Between Average Time and Variance of Time

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 100 200 300 400 500

Average Time per Time Step

Va
ria

nc
e

of
 T

im
e

pe
r T

im
e

St
ep

Figure 10: Relationship Between Average Time per Time Step and Variance of Time per Time Step
for the Boyen-Koller Inference Algorithm with User Defined Clusters

82

Relationship Between Average Time and Variance of Time

1

10

100

1000

10000

100000

1 10 100 1000

Average Time per Time Step

Va
ria

nc
e

of
 T

im
e

pe
r T

im
e

St
ep

Figure 11: Relationship Between Average Time per Time Step and Variance of Time per Time Step
for the Fully Factored Boyen-Koller Inference Algorithm and the SPI Algorithm

I believe that these relationships entail that the systems behind the speed of inference

and the variance of the speed of inference for both these scenarios are similar. Thus, I

believe the models that predict these two metrics in these two scenarios would likely be

equally similar as well as the factors involved.

The first case analyzed was where the user selects the clusters to be used by the

Boyen-Koller inference algorithm. The first inference algorithm I examined within this

case was an exponential model of the variance of the speed of inference for the Boyen-

Koller inference algorithm. The first set of factors I performed regression with was:

 Average States per Node

 Average CPT Size

83

 Number of Nodes

 Average Cluster Size

This model appears to have a pattern in the residuals graph for the Average CPT Size

factor. This graph can be seen in Figure 74 in Appendix D. The pattern appears to

suggest a logarithmic relationship between the average CPT size of a PDBN and the

natural logarithm of the variance of the speed of inference for the Boyen-Koller inference

algorithm.

There also is an apparent pattern in the residuals graph for the Average Cluster Size

factor, although the nature of the pattern is less obvious. This graph can be seen in

Figure 75 in Appendix D. The data points appear to be in two groupings in Figure 75

where the two grouping appear to have a near parallel slope to each other. Upon further

examination, I found that the two groupings are partitioned by the two speed emphasis

levels contained in this dataset. This dataset covers two of the four speed emphasis levels

used for the Boyen-Koller inference algorithm: the slow speed emphasis level where 5

clusters are used and the medium speed emphasis level where 8 clusters are used.

The Number of Nodes factor was also not significant in this model. I performed

regression again over the same set of factors excluding the Number of Nodes factor.

Despite this change, there was still a clear pattern in the residuals graph for the Average

CPT Size factor. The graph was nearly identical to the one seen in Figure 74. The same

was true for the residuals graph for the Average Cluster Size factor shown in Figure 75.

84

The next exponential model I examined within this case used the natural logarithm of

the average CPT size as a factor in response to the pattern seen in Figure 74 in the

previous model. Thus, the set of factors I used with this model were:

 Average States per Node

 Natural Logarithm of the Average CPT Size

 Number of Nodes

 Average Cluster Size

The residuals graphs for each of these independent variables showed no apparent patters

with the exception of the Average Cluster Size factor. As in the previous model, the

residuals graph for the Average Cluster Size factor appeared to have grouping of data

points where each grouping had what appeared to be parallel positive slopes. The

residual graphs for each of the independent variables can be seen in Figure 76 through

Figure 79 in Appendix D.

As in the previous model, The Number of Nodes factor was not significant. I

performed regression again over the same set of factors excluding the Number of Nodes

factor. Despite this change, there was still a clear pattern in the residuals graph for the

Average Cluster Size factor. The graph was nearly identical to the one seen in Figure 79.

Figure 80 in Appendix D shows the model’s fit to the variance of the time results

while Figure 81 in Appendix D shows this same graph in logarithmic scale. Figure 82 in

Appendix D shows the residual plot for this exponential model. From the graphs in

Figure 80 through Figure 82, this exponential model appears to be a poor predictor of the

variance of the speed of inference for the Boyen-Koller inference algorithm over SPI.

85

The residual plot shown in Figure 82 has a clear pattern where the model error grows for

larger values of variance.

A Normal Q-Q plot of the residuals, as seen in Figure 83 in Appendix D, shows that

there are outliers at both tails of the distribution. The Q-Q plot along with the residual

and model fit graphs above in Figure 76 through Figure 83 do not support several of the

Gauss-Markov assumptions. The model’s error is somewhat normal as seen from the Q-

Q plot and appears to have a mean near zero. The random errors of the model are all

likely to be uncorrelated as no factor has a variance inflation factor above 1.1. Also, the

lack of any noticeable patterns in any of the residual graphs for each of the independent

variables, with the exception of the Average Cluster Size factor, suggests that random

errors of these independent variables of the model are homoscedastic. However, this

cannot be said of the dependent variables as seen in the residuals graph for the dependent

variable shown in Figure 82. Furthermore, the residuals graph for the Average Cluster

Size factor shown in Figure 79 clearly does not have normal error.

Next, I examined various linear models of the variance of the speed of inference for

the Boyen-Koller inference algorithm. The first set of factors I performed regression

with was:

 Average States per Node

 Average CPT Size

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

86

 Average Cluster Size

Although this model had no apparent pattern in the residuals graphs for all the above

independent variables, I did find that the Average CPT Size factor not to be significant.

Thus, in the next linear model I removed the Average CPT Size factor as an

independent variable. The factors I performed regression over were then:

 Average States per Node

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

 Average Cluster Size

This model again had no apparent patter in the residual graphs for the independent

variables used. However, I found that two new factors were not significant: the Number

of Non-Transitional Nodes factor and the Average Cluster Size factor. Furthermore, the

coefficients of many of the factors had changed significantly.

These results are indicative of multicollinearity existing in the model between two or

more independent variables. Although in the last model the highest variance inflation

factor for any of the independent variables was no higher than 1.4, there did exist a

correlation between the Average Cluster Size factor and the Number of Dynamic

Transitional Nodes factor with a correlation coefficient between the factors of

approximately 0.35. Furthermore, there was a correlation between the Average CPT Size

factor and the Number of Dynamic Transitional Nodes factor with a correlation

coefficient between the factors of approximately 0.34. Despite the low values for the

87

variance inflation factors, I believe the present model had two or more factors that were

collinear, and thus, disrupting the results of my regression analysis.

I decided to handle this multicollinearity by removing the Number of Dynamic

Transitional Nodes factor that was correlated to two other independent variables in the

first linear model. Thus, the factors used in this model were:

 Average States per Node

 Average CPT Size

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

 Average Cluster Size

Although removing this factor appeared to have removed the symptoms of

multicollinearity I had seen in the previous model, the model that resulted was not a good

predictor of the dependent variable.

Therefore, in the next linear model I instead removed the Average Cluster Size factor.

The independent variables of this model were then:

 Average States per Node

 Average CPT Size

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

This model appears to have no pattern in the residuals graphs for each of the independent

variables used. However, I found that the Average CPT Size factor was not significant.

88

Furthermore, this factor still was correlated to the Number of Dynamic Transitional

Nodes factor.

Thus, in my final linear model for this particular case I removed the Average CPT

Size factor leaving me with the following factors:

 Average States per Node

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

None of the residuals graphs for any of the independent variables had any apparent

patterns as seen in Figure 84 through Figure 87 in Appendix D. I should also note that

the coefficients of each factor in this model changed only slightly from their values in the

subsequent model. Thus, this gives credence to the possibility that the correlation

between the Average Cluster Size factor and the Number of Dynamic Transitional Nodes

factor was what caused the change in coefficient values between models in the initial

linear models I generated.

Figure 88 in Appendix D shows the model’s fit to the variance of the time results

while Figure 89 in Appendix D shows the residual plot for this linear model. From the

graphs in Figure 88 and Figure 89, this linear model appears to be a decent predictor of

the variance of the speed of inference for the Boyen-Koller inference algorithm over SPI.

There appear to be a few outliers in the graphs shown in Figure 88 and Figure 89.

However, the results of Cook’s distance statistic suggest that none of these outliers were

89

overly influential on the results of the regression analysis. Also, it is hard to discern any

particular pattern from either of these graphs.

A Normal Q-Q plot of the residuals, as seen in Figure 90 in Appendix D, shows that

there are outliers at both tails of the distribution with the right tail of the distribution

having the most dramatic outliers. The Q-Q plot along with the residual and model fit

graphs above in Figure 84 through Figure 90 do not support several of the Gauss-Markov

assumptions. The model’s error is not normal as seen from the Q-Q plot although it

appears to have a mean near zero. The random errors of the model are all likely to be

uncorrelated as no factor has a variance inflation factor above 1.1. Also, the lack of any

noticeable patterns in any of the residual graphs for each of the independent variables

suggests that random errors of these independent variables of the model are

homoscedastic. The dependent variable shown in Figure 82 also appears to be without

any significant pattern, although, the error of the dependent variable appears to have a

lower likelihood of being normal compared to the error for each of the independent

variables.

The second case analyzed was where the exact inference SPI algorithm was used or

the Boyen-Koller inference algorithm over SPI was used with fully factored clustering.

The first inference algorithm I examined within this case was an exponential model of the

variance of the speed of inference for the Boyen-Koller inference algorithm. The first set

of factors I performed regression with was:

 Average States per Node

 Average CPT Size

90

 Number of Nodes

 Average Cluster Size

This model appears to have a pattern in the residuals graph for the Average CPT Size

factor. This graph can be seen in Figure 91 in Appendix D. The pattern appears to

suggest a logarithmic relationship between the average CPT size of a PDBN and the

natural logarithm of the variance of the speed of inference for the Boyen-Koller inference

algorithm.

The Average States per Node factor was also not significant in this model. I

performed regression again over the same set of factors excluding the Average States per

Node factor. Despite this change, there was still a clear pattern in the residuals graph for

the Average CPT Size factor. The graph was nearly identical to the one seen in Figure

91.

For the next exponential I developed, I used the natural logarithm of the average CPT

size in place of the Average CPT Size factor. Thus, the independent variables used in

this model were:

 Average States per Node

 Natural Logarithm of the Average CPT Size

 Number of Nodes

 Average Cluster Size

None of the residuals graphs for any of the independent variables had any apparent

patterns as seen in Figure 93 through Figure 95 in Appendix D. However, two of the

factors, the Average States per Node factor and the Number of Nodes factor, were not

91

significant. I performed regression again over the same set of factors excluding the

Average States per Node factor and the Number of Nodes factor.

Figure 96 in Appendix D shows the model’s fit to the variance of the time results

while Figure 97 in Appendix D shows this same graph in logarithmic scale. Figure 98 in

Appendix D shows the residual plot for this exponential model. From the graphs in

Figure 96 through Figure 98, this exponential model appears to be a poor predictor of the

variance of the speed of inference for the Boyen-Koller inference algorithm over SPI.

There are a number of outliers that are apparent in Figure 96, Figure 97, and Figure 98.

Nonetheless, the results of Cook’s distance statistic suggests that none of these outliers

were overly influential on the results of the regression analysis. The residual plot shown

in Figure 98 has a clear pattern where the model error grows for larger values of variance.

This pattern appears logarithmic in nature.

A Normal Q-Q plot of the residuals, as seen in Figure 99 in Appendix D, shows that

there are outliers at the right tails of the distribution. The Q-Q plot along with the

residual and model fit graphs above in Figure 93 through Figure 99 do not support

several of the Gauss-Markov assumptions. The model’s error is not normal as seen from

the Q-Q plot although it does appear to have a mean near zero. The random errors of the

model are all likely to be uncorrelated as no factor has a variance inflation factor above

1.1. Also, the lack of any noticeable patterns in any of the residual graphs for each of the

independent variables, with the exception of the Average Cluster Size factor, suggests

that random errors of these independent variables of the model are homoscedastic.

However, this cannot be said of the dependent variables as seen in the residuals graph for

92

the dependent variable shown in Figure 98. The dependent variable is clearly

heteroscedastic where the relationship between the model’s error and the dependent

variable appears to be logarithmic.

Next, I examined various linear models of the variance of the speed of inference for

the Boyen-Koller inference algorithm. The first set of factors I performed regression

with was:

 Average States per Node

 Average CPT Size

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

 Average Cluster Size

There were several factors that I found not to be significant. These factors were the

Average States per Node factor, the Number of Dynamic Transitional Nodes factor, and

the Number of Static Nodes factor. I removed these factors and generated a new linear

model using the factors:

 Average CPT Size

 Number of Dynamic Non-Transitional Nodes

 Average Cluster Size

This model appears to have a pattern in the residuals graph for the Average CPT Size

factor where the nature of the pattern was either logarithmic or quadratic. The residuals

graph for the Average CPT Size factor can be seen in Figure 100 in Appendix D. Thus, I

93

attempted new versions of the above model, replacing the Average CPT Size factor with

the Natural Logarithm of the Average CPT Size factor and the Average CPT Size Square

factor. Neither this model or the two alternative proved to be adequate models over the

training dataset. In all cases, the R Square of the model was well below 0.3.

3.6 Analysis and Results for the Particle Filter Inference Algorithm Accuracy of

Inference

For the accuracy of inference models for the particle filter inference algorithm, I used

the factors:

 Average Node Variance

 Average States per Node

 Average CPT Size

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

 Number of Particles

The particle filter inference algorithm is a Monte Carlo method. One estimate of the

error of the Monte Carlo method is:

N
f Equation 6

Where f is the standard deviation of the function being sampled and N is the number

of samples (Kuo 2005). Thus, it is likely that both the variance of the distribution of the

94

nodes being queried given evidence and the number of particles used when sampling are

both important factors for the accuracy of the particle filter inference algorithm.

This error estimate may not be the only influencing component of the accuracy of the

particle filter inference algorithm. Problems such as particle impoverishment may

introduce other forms of error that may also affect the accuracy of this inference

algorithm. Nonetheless, this error estimate is likely to be important in predicting the

accuracy of the particle filter inference algorithm.

In the experiments I conducted, the node being queried was the static classifier node.

I used the Average Node Variance factor as an approximation of the variance of the

distribution of the classifier node given evidence. Since the average node variance is an

average over each of the nodes in the Bayesian network, the number of each type of node

was also included as a factor when developing this model. As with the previous models,

I combined the three factors dealing with the number of each class of nodes in a PDBN

when performing regression with the exponential model.

The Number of Static nodes alone is an important factor that may be significant in

determining the accuracy of the particle filter inference algorithm. Static nodes or

dynamic nodes that do not vary much from time step to time step can potentially cause

the particle filter inference algorithm to prematurely converge to a particular set of node

states. Here, premature means that the inference algorithm has become certain of the

state of the system the PDBN is modeling yet this state could potentially be incorrect

(Arulampalam 2002). Thus, static nodes within a PDBN can cause great difficulty for the

particle filter inference algorithm to generate an accurate query result.

95

The remaining factors, the Average States per Node factor and the Average CPT Size

factor, have no apparent significant relationship to the accuracy of the particle filter

inference algorithm. I added these factors in later models when the factors described

above proved inadequate in predicting the accuracy of the particle filter inference

algorithm.

As before, I developed both linear and exponential models that predict the accuracy

of the particle filter inference algorithm. In each model I developed, the R Square for the

training set never exceeded 0.1 regardless of whether the model was linear or

exponential.

The first model I examined was an exponential model of the accuracy of the particle

filter inference algorithm. The set of factors used in this model was:

 Average Node Variance

 Number of Nodes

 Number of Particles

Here, the R Square for the training set used was 0.04. The only significant factors were

the Average Node Variance factor and the Number of Particles factor.

One possible explanation for this low R Square value is due to certain significant

factors not being included in the regression analysis to develop this model. Therefore, in

the next exponential model I examined I included the Average States per Node and the

Average CPT Size factors. Thus, the set of factors used in this model were:

 Average Node Variance

 Average States per Node

96

 Average CPT Size

 Number of Nodes

 Number of Particles

I know of no theoretical relationship between the Average States per Node and Average

CPT size factors and the accuracy of the particle filter inference algorithm. However,

these two factors represent two attributes of a PDBN that were not appreciably covered

by the set of factors used in the previous model and that are not correlated with each

other or any of the other factors.

As a final attempt, I added the Average Strength of Dependency factor to the model.

Again, I know of no theoretical relationship between this factor and the accuracy of the

particle filter inference algorithm. However, this factor is not correlated with any of the

other factors used in the model and represents one more attribute of a PDBN that is not

yet covered.

The factors I used in this exponential model were:

 Average Strength of Dependency

 Average Node Variance

 Average States per Node

 Average CPT Size

 Number of Nodes

 Number of Particles

97

This model was similar to the previous model both in the R Square value and the

coefficients of each factor. The Average Strength of Dependency factor was not

significant, although it was close to being significant.

Despite the addition of these three factors, the R Square for the training set used was

still very low at 0.04. Again, the only significant factors were the Average Node

Variance factor and the Number of Particles factor.

Although neither of these models were very accurate at predicting the accuracy of the

particle filter inference algorithm, each model was statistically significant with an F

statistic below 0.05. Furthermore, the same two factors were significant factors in each

model:

 Average Node Variance

 Number of Particles

Also, these two factors had roughly the same coefficient values in each model. The

coefficient for the Average Node Variance factor was approximately 3 and the coefficient

for the Number of Particles factor was approximately -4x10-5. Finally, the signs for the

coefficients of these two factors matched what would be expected from Equation 6. The

sign of the Average Node Variance factor was positive. The sign of the Number of

Particles factor was negative signifying an inverse relationship between the number of

particles used to sample the PDBN and the error in the inference results.

For the first linear model to predict the accuracy of the particle filter inference

algorithm I used the factors:

 Average Node Variance

98

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

 Number of Particles

The R Square of this model for the training set used was 0.05. The only significant factor

was the Number of Particles factor, although, the Average Node Variance factor had a P-

value that nearly put it beyond the 0.05 threshold of significance.

As with the exponential models, I added the Average States per Node and Average

CPT Size factors in the next model I developed in the unlikely circumstance these factors

were significant and would make the model more accurate than the previous linear

model. Thus, the factors I used in the next linear model were:

 Average Node Variance

 Average States per Node

 Average CPT Size

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

 Number of Particles

It is important to note that the Number of Dynamic Transitional Nodes and Average CPT

Size factors were correlated to each other with a correlation coefficient of 0.32. This

correlation is not very high and only just beyond my threshold for a correlation between

99

two factors. Nonetheless, the relationship between these two factors may have caused

problems for the regression analysis.

The R-Square value for this model was only 0.06. The only significant factors were

the Average States per Node and Number of Particles factors. Unlike the previous four

models above, the Average Node Variance factor was not significant for this model.

For the last linear model, I tried adding the Strength of Dependency factor again.

Thus, the factors used in this model were:

 Average Strength of Dependency

 Average Node Variance

 Average States per Node

 Average CPT Size

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

 Number of Particles

This model was nearly identical to the previous model both in the R Square value and the

coefficients of each of the factors. Also, the Average Strength of Dependency factor was

not significant.

100

3.7 Analysis and Results for the Boyen-Koller Inference Algorithm Accuracy of

Inference

For the accuracy of inference models for the Boyen-Koller inference algorithm over

SPI, I used the factors:

 Average Strength of Dependency

 Average States per Node

 Average CPT Size

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

 Average Cluster Size

The Boyen-Koller inference algorithm is essentially removing arcs from the Bayesian

network to simplify the complexity of inference. The effective removal of these arcs in

the past expression increases the speed of inference but also reduce the accuracy of the

inference. The amount of error in the results is related to the number of arcs removed and

the strength of the relationship between the nodes those arcs connected. I used the

Average Strength of Dependency factor as a proxy measure of the arcs removed by the

Boyen-Koller inference algorithm.

The average cluster size used when performing inference with the Boyen-Koller

inference algorithm over SPI is also a factor that is likely to affect the accuracy of

inference of this algorithm. The smaller and more numerous the clusters used by the

101

Boyen-Koller inference algorithm, the more arcs are removed and the less accurate the

inference algorithm.

Finally, the number of static nodes is likely to be another important factor in

predicting the accuracy of the Boyen-Koller inference algorithm. As in the particle filter

inference algorithm, the existence of static nodes or dynamic nodes that do not vary much

from time step to time step can reduce the accuracy of inference for the inference

algorithm. In this case, the bound on the error when using the Boyen-Koller inference

algorithm can no longer be guaranteed when the dynamic Bayesian network contains

static nodes.

The remaining factors have no apparent significant relationship to the accuracy of the

particle filter inference algorithm. I added these factors in later models when the factors

described above proved inadequate in predicting the accuracy of the particle filter

inference algorithm. These factors are the Average States per Node, the Average CPT

Size, the Number of Dynamic Transitional Nodes, and the Number of Dynamic Non-

Transitional Nodes.

As before, I developed both linear and exponential models that predict the accuracy

of Boyen-Koller inference algorithm. In each model I developed, the R Square for the

training set never exceeded 0.1 regardless of whether the model was linear or

exponential.

The first model I examined was an exponential model of the accuracy of the Boyen-

Koller inference algorithm over SPI. The set of factors used in this model was:

 Average Strength of Dependency

102

 Number of Static Nodes

 Average Cluster Size

Here, the R Square for the training set used was 0.008. There were no significant factors

and the model was not significant.

In the next model I included the Average States per Node and Average CPT Size

factors as well as replace the Number of Static Nodes factor with the Number of Nodes

factor. As with the particle filter accuracy models, I added the Average States per Node

and Average CPT Size factors with the hope that these factors may be significant. I

replaced the Number of Static Nodes factor with the Number of Nodes factor so the other

types of nodes in a PDBN would be represented along with the number of static nodes in

a PDBN. Again, this was to see if these extra factors which are components of the

Number of Nodes factor may be significant. The set of factors in this next exponential

model was then:

 Average Strength of Dependency

 Average States per Node

 Average CPT Size

 Number of Nodes

 Average Cluster Size

Despite the addition of these factors, the R Square for the training set used was still

very low at 0.02. The only significant factor here was the Average Cluster Size factor,

although, the Number of Nodes factor was near the threshold of significance with a P-

103

value of 0.51. The Average Cluster Size factor was positive while the Number of Nodes

factor was negative. The model was significant this time.

For the first linear model to predict the accuracy of the Boyen-Koller inference

algorithm I used the factors:

 Average Strength of Dependency

 Number of Static Nodes

 Average Cluster Size

The R Square for this model was 0.02 and the model was significant. Both the Number

of Static Nodes and the Average Cluster Size factors were significant.

I then added the Average States per Node, the Average CPT Size, the Number of

Dynamic Transitional, and the Number of Dynamic Non-Transitional Nodes factors in

the unlikely circumstance these factors were significant. Thus, the factors I used in the

next linear model were:

 Average Strength of Dependency

 Average States per Node

 Average CPT Size

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Static Nodes

 Average Cluster Size

It is important to note that the Number of Dynamic Transitional Nodes and Average CPT

Size factors were correlated to each other with a correlation coefficient of 0.32. This

104

correlation is not very high and only just beyond my threshold of 0.3 for a correlation

between two factors. Nonetheless, the relationship between these two factors may have

caused problems for the regression analysis.

The R Square for this model was 0.03 and the model was significant. The only

significant factors were the Number of Static Nodes and the Average Cluster Size factors.

105

4. Conclusions

4.1 Discussion of the Time Models

From my research I was able to determine what factors in Table 1 have a statistically

significant effect on each of the inference algorithms examined in this study. I was also

able to develop statistical models, which show the relationship between these factors and

the inference algorithms I examined.

Of all the models I developed predicting the speed of inference for the particle filter

inference algorithm, the two best are the fourth exponential model using the factors:

 Natural Logarithm of the Average CPT Size

 Number of Nodes

 Natural Logarithm of the Number of Particles

And the first linear model using the factors:

 Average States Per Node

 Average CPT Size

 Number of Static Nodes

 Number of Dynamic Transitional Nodes

 Number of Dynamic Non-Transitional Nodes

 Number of Particles

106

Table 8 lists the coefficients for each of the factors used in the exponential model as well

as statistics on the significance of each of those factors. Table 9 lists the regression

statistics associated with the linear regression model for the natural logarithm of the

average time per time step for the particle filter inference algorithm. The final statistic in

Table 9, the “R square for the test set” statistic, is the R square statistic when comparing

the model’s predicted value against the actual speed of inference values over the entire

test set. The previous 3 statistics listed in Table 9 are the statistics collected when using

the training set. The training set is the data set used in the regression while the test set is

the entire data set containing the training set as well as the holdout set.

Table 8: Particle Filter Average Speed Exponential Regression Model Statistics

 Coefficients
Standard

Error t Stat P-value
Intercept -3.239 0.114 -28.519 < 0.001

Average States Per Node 0.052 0.017 3.097 0.002
Natural Logarithm of the

Average CPT Size 0.166 0.006 26.227 < 0.001
Number of Nodes 0.095 0.006 17.116 < 0.001

Natural Logarithm of the
Number of Particles 0.857 0.006 143.309 < 0.001

Table 9: Particle Filter Average Speed Exponential Regression Model Regression Statistics

R Square 0.968555121
Adjusted R Square 0.96837994

Observations 723
R Square for Test Set 0.962345

Table 10 lists the coefficients for each of the factors used in the linear model as well

as statistics on the significance of each of those factors. Table 11 lists the regression

statistics associated with the linear regression model for the average time per time step

107

for the particle filter inference algorithm. As before, the final statistic in Table 11, the “R

square for the test set” statistic, is the R square statistic when comparing the model’s

predicted value against the actual speed of inference values over the entire test set. Also,

the first three statistics in Table 11 are derived using the training set only while the final

statistic in Table 11 is derived using the full test set.

Table 10: Particle Filter Average Speed Linear Regression Model Statistics

 Coefficients
Standard

Error t Stat P-value
Intercept -1112.288 43.096 -25.809 < 0.001

Average States Per Node 50.281 6.749 7.450 < 0.001
Average CPT Size 0.339 0.011 31.054 < 0.001

Number of Dynamic NonTransitional
Nodes 78.492 2.900 27.063 < 0.001

Number of Dynamic Transitional
Nodes 108.925 3.133 34.766 < 0.001

Number of Static Nodes 15.496 4.622 3.352 < 0.001
Number of Particles 0.087 0.000 184.952 < 0.001

Table 11: Particle Filter Average Speed Linear Regression Model Regression Statistics

R Square 0.981590458
Adjusted R Square 0.981437471

Observations 729
R Square for Test Set 0.980544

Although the linear model had two marginally correlated factors and the residuals

plot for the dependent variable showed a logarithmic or quadratic pattern in it, this model

still had a very good fit to the actual test data set as seen in Figure 32. The linear model

also had a higher R square value for the test data set than the exponential model had.

Furthermore, the exponential model appeared to have error that would grow linearly as

the dependent variable grew linearly as shown in Figure 22. Thus, I believe the first

108

linear model above is the best predictor of average speed of inference per time step for

the particle filter inference algorithm. It is important to note that this conclusion does not

agree with the theoretical computational complexity of the particle filter inference

algorithm. One would expect that the speed of inference for the particle filter inference

algorithm would be the product of the number of nodes in the PDBN and the number of

particles used in inference rather than the sum of the two.

Of all the models I developed predicting the variance of the speed of inference for the

particle filter inference algorithm, the best was the third exponential model using the

factors:

 Average States per Node

 Natural Logarithm of the Average CPT Size

 Number of Nodes

 Natural Logarithm of the Number of Particles

Table 12 lists the coefficients for each of the factors used in the exponential model as

well as statistics on the significance of each of those factors. Table 13 lists the regression

statistics associated with the linear regression model for the natural logarithm of the

variance of the average time per time step for the particle filter inference algorithm. As

before, the first three statistics in Table 13 are derived using the training set only while

the final statistic in Table 13 is derived using the full test set.

109

Table 12: Particle Filter Variance of the Speed Exponential Regression Model Statistics

 Coefficients
Standard

Error t Stat P-value
Intercept -11.479 0.428 -26.809 < 0.001

Average States Per Node 0.272 0.062 4.389 < 0.001
Natural Logarithm of the

Average CPT Size 0.139 0.024 5.780 < 0.001
Number of Nodes 0.332 0.021 15.930 < 0.001

Natural Logarithm of the
Number of Particles 1.990 0.022 90.057 < 0.001

Table 13: Particle Filter Variance of the Speed Exponential Regression Model Regression Statistics

R Square 0.922037593
Adjusted R Square 0.921604469

Observations 725
R Square for Test Set 0.771123

Of all the models I developed predicting the speed of inference for the Boyen-Koller

inference algorithm over SPI, the two best are the second exponential model using the

factors:

 Average States per Node

 Natural Logarithm of the Average CPT Size

 Number of Nodes

 Average Cluster Size

And the fifth linear model using the factors:

 Average CPT Size

 Number of Static Nodes

 Number of Dynamic Transitional Nodes

 Average Cluster Size

110

Table 14 lists the coefficients for each of the factors used in the exponential model as

well as statistics on the significance of each of those factors. Table 15 lists the regression

statistics associated with the linear regression model for the natural logarithm of the

average time per time step for the Boyen-Koller inference algorithm over SPI. As before,

the first three statistics in Table 15 are derived using the training set only while the final

statistic in Table 15 is derived using the full test set.

Table 14: Boyen-Koller Average Speed Exponential Regression Model Statistics

 Coefficients
Standard

Error t Stat P-value
Intercept -0.046 0.165 -0.278 0.781

Average States Per Node -0.276 0.028 -9.860 < 0.001
Natural Logarithm of the

Average CPT Size 1.003 0.011 93.542 < 0.001
Number of Nodes 0.095 0.009 10.507 < 0.001

Average Cluster Size 0.031 0.002 17.823 < 0.001

Table 15: Boyen-Koller Average Speed Exponential Regression Model Regression Statistics

R Square 0.923351836
Adjusted R Square 0.9230274

Observations 950
R Square for Test Set 0.881465

Table 16 lists the coefficients for each of the factors used in the linear model as well

as statistics on the significance of each of those factors. Table 17 lists the regression

statistics associated with the linear regression model for the average time per time step

for the Boyen-Koller inference algorithm.

111

Table 16: Boyen-Koller Average Speed Linear Regression Model Statistics

 Coefficients
Standard

Error t Stat P-value
Intercept -205.392 21.331 -9.629 < 0.001

Average CPT Size 0.944 0.012 75.927 < 0.001
Number of Dynamic Transitional

Nodes 25.002 3.351 7.460 < 0.001
Number of Static Nodes 27.949 4.986 5.605 < 0.001

Average Cluster Size 6.254 0.474 13.192 < 0.001

Table 17: Boyen-Koller Average Speed Linear Regression Model Regression Statistics

R Square 0.883295129
Adjusted R Square 0.88280114

Observations 950
R Square for Test Set 0.876233

Both these linear and the exponential models for the Boyen-Koller inference

algorithm over SPI have problems with heteroscedastic. These two models also do not

appear to have normal error. However, both these models still are able to predict the time

to perform inference accurately over the test set with R Squares above 0.85 in both cases.

I believe the exponential model is a better predictor of the speed of inference for the

Boyen-Koller inference algorithm because it has the higher R Square for the test set. One

would also expect an exponential model to predict the speed of inference of the Boyen-

Koller inference algorithm as the theoretical computational complexity of this inference

algorithm is also exponential. In fact, both the computational complexity model and the

statistical model I developed have the Number of Nodes and the Average States per Node

factor as significant factors.

However, it is important to note that the exponential model for the Boyen-Koller

inference algorithm that I developed has a negative coefficient for the Average States per

112

Node factor. The negative coefficient implies an inverse relationship between the

average states per node in a PDBN and the speed of inference on that PDBN when using

the Boyen-Koller inference algorithm over SPI and when all other factors are taken into

account. In contrast, the theoretical computational complexity of the Boyen-Koller

inference algorithm shows a direct relationship between the speed of inference and the

Average States per Node factor.

For the variance of speed of inference for the Boyen-Koller inference algorithm over

SPI, I made two separate sets of models. The first set of models covered the case where

the user specifies the clusters the algorithm would use. The second set of models covered

the case where either the SPI algorithm alone was used or the Boyen-Koller inference

algorithm was used with fully factored clustering.

Of all the models I developed predicting the variance of the speed of inference for the

Boyen-Koller inference algorithm over SPI, the two best for the first case are the second

exponential model using the factors:

 Average States per Node

 Natural Logarithm of the Average CPT Size

 Average Cluster Size

And the fourth linear model using the factors:

 Average States per Node

 Number of Dynamic Non-Transitional Nodes

 Number of Dynamic Transitional Nodes

 Number of Static Nodes

113

Table 18 lists the coefficients for each of the factors used in the exponential model as

well as statistics on the significance of each of those factors. Table 19 lists the regression

statistics associated with the linear regression model for the natural logarithm of the

average time per time step for the Boyen-Koller inference algorithm over SPI. As before,

the first three statistics in Table 19 are derived using the training set only while the final

statistic in Table 19 is derived using the full test set.

Table 18: Boyen-Koller Variance of the Speed Exponential Regression Model Statistics

 Coefficients
Standard

Error t Stat P-value
Intercept -98717.241 1152.350 -85.666 < 0.001

Average States Per Node 9432.155 176.604 53.409 < 0.001
Number of Dynamic

NonTransitional Nodes 5225.256 77.067 67.801 < 0.001
Number of Dynamic Transitional

Nodes 9929.778 80.532 123.302 < 0.001
Number of Static Nodes 5329.108 121.696 43.790 < 0.001

Table 19: Boyen-Koller Variance of Speed Exponential Regression Model Regression Statistics

R Square 0.313231988
Adjusted R Square 0.308829629

Observations 472
R Square for Test Set 0.300021

Table 20 lists the coefficients for each of the factors used in the linear model as well

as statistics on the significance of each of those factors. Table 21 lists the regression

statistics associated with the linear regression model for the average time per time step

for the Boyen-Koller inference algorithm.

114

Table 20: Boyen-Koller Variance of Speed Linear Regression Model Statistics

 Coefficients
Standard

Error t Stat P-value
Intercept -98717.241 1152.350 -85.666 < 0.001

Average States Per Node 9432.155 176.604 53.409 < 0.001
Number of Dynamic

NonTransitional Nodes 5225.256 77.067 67.801 < 0.001
Number of Dynamic Transitional

Nodes 9929.778 80.532 123.302 < 0.001
Number of Static Nodes 5329.108 121.696 43.790 < 0.001

Table 21: Boyen-Koller Variance of Speed Linear Regression Model Regression Statistics

R Square 0.97615874
Adjusted R Square 0.975950064

Observations 462
R Square for Test Set 0.970221

The exponential model for the Boyen-Koller inference algorithm over SPI has

problems with heteroscedasticity. This model also does not appear to have normal error.

Also, only the linear model is able to predict the variance of time to perform inference

accurately over the test set with R Squares above 0.85. Thus, I believe the linear model is

the better predictor of the variance of the speed of inference for the Boyen-Koller

inference algorithm in the case where the uses defines the clusters to be used with the

Boyen-Koller algorithm.

The best model for the case where either the Boyen-Koller inference algorithm is

used with fully factored clustering or the SPI algorithm is used alone is the second

exponential model using the factors:

 Natural Logarithm of the Average CPT Size

 Average Cluster Size

115

Table 22 lists the coefficients for each of the factors used in the model as well as statistics

on the significance of each of those factors. Table 23 lists the regression statistics

associated with the linear regression model for the natural logarithm of the average time

per time step for the Boyen-Koller inference algorithm over SPI. As before, the first

three statistics in Table 23 are derived using the training set only while the final statistic

in Table 23 is derived using the full test set.

Table 22: Boyen-Koller Variance of the Speed Exponential Regression Model Statistics

 Coefficients
Standard

Error t Stat P-value
Intercept -0.481 0.190 -2.529 0.012

Natural Logarithm of the
Average CPT Size 0.997 0.040 25.182 < 0.001

Average Cluster Size 0.101 0.010 10.378 < 0.001

Table 23: Boyen-Koller Variance of Speed Exponential Regression Model Regression Statistics

R Square 0.632288812
Adjusted R Square 0.630696989

Observations 465
R Square for Test Set 0.010807

When comparing the speed of inference of the particle filter inference algorithm and

the Boyen-Koller inference algorithm over SPI, one key point to note is the fact that the

speed of inference model for the Boyen-Koller inference algorithm is an exponential

while the model for the particle filter inference algorithm is linear. From the empirical

experiments, it was clear that the Boyen-Koller inference algorithm generally performed

faster than the particle filter inference algorithm. However, the speed of inference

models for both of these algorithms suggests that the time to perform inference with the

116

Boyen-Koller inference algorithm will grow much faster than the particle filter inference

algorithm with a linear growth in PDBN complexity. Also, the particle filter inference

algorithm is likely to be able to perform inference in a timely manner on PDBNs of a

much higher complexity than the Boyen-Koller inference algorithm. Thus, although the

Boyen-Koller inference algorithm is generally faster for relatively simple PDBNs, the

particle filter inference algorithm has a much larger PDBN complexity range of useful

speed of inference.

In the speed of inference models for each algorithm, the three significant factors

shared by both models that appear to affect speed of inference are the Average States per

Node factor, Average CPT Size factor, and the Number of Nodes factor. When

comparing the two statistical models, the speed in which the Boyen-Koller inference

algorithm can perform inference appears to be far less sensitive to the average number of

states per node in the PDBN than the particle filter inference algorithm. In fact, the

Boyen-Koller inference algorithm may actually run faster as the average number of states

per node increases.

Conversely, the Boyen-Koller inference algorithm appears to be much more sensitive

to the Average CPT Size. This is understandable as the particle filter inference algorithm

is a Monte Carlo method, and thus, does not need to deal directly with the states of a node

except to randomly select a hypothetical value for the node when generating particles.

Nonetheless, the particle filter inference algorithm is still influence by the Average CPT

Size of a PDBN since the number of particles used by the particle filter inference

117

algorithm must adequately cover the state space of the PDBN it is performing inference

on if the algorithm is to produce accurate results.

The variance of the speed of inference of the particle filter inference algorithm is high

relative to the average speed of inference for the algorithm. Among the test data set, the

average variance of speed of inference was approximately 286,000 and the average

percent variance of speed of inference 3was approximately 30,000%. Furthermore, the

statistical model for the variance of the speed of inference for the particle filter inference

algorithm is exponential. Therefore, as the complexity of the PDBN the inference is

being performed on increases linearly, the variance in the time per time step for the

particle filter inference algorithm to perform inference increases exponentially. Thus,

even though the particle filter inference algorithm can perform inference on very large

and complex PDBNs relative to the Boyen-Koller inference algorithm, the time per time

step in which this algorithm performs inference can vary dramatically for theselarger

PDBNs.

When one defines the clusters to use with the Boyen-Koller inference algorithm over

SPI, the variance of the speed of inference is also high relative to the average speed of

inference for the algorithm. Among the test data set, the average variance of speed of

inference was approximately 27,000 and the average percent variance of speed of

inference was approximately 51,000%. However, unlike the particle filter inference

algorithm, the statistical model for the variance of speed of inference for this inference

algorithm is linear. Thus, the variance in the time to perform inference per time step for

3 The percent variance of speed of inference for a single test run of an inference algorithm was the

percentage of the variance of the speed of inference relative to the speed of inference.

118

this algorithm will increase much less dramatically for large and complex PDBNs than

the particle filter inference algorithm. However, the Boyen-Koller inference algorithm

may still be unable to perform inference on these larger PDBNs in a timely manner.

Less can be said about the Boyen-Koller inference algorithm when it is fully factored

or the Symbolic Probabilistic Inference algorithm. This is because the statistical model

for the variance of the speed of inference for these inference algorithms in these

situations was very inaccurate. From the empirical results, however, it appears that the

variance of the speed of inference is low relative to the average speed of inference.

Among the test data set, the average variance of speed of inference was approximately

393 and the average percent variance of speed of inference was approximately 390%.

Thus, it appears that the SPI algorithm and the Boyen-Koller inference algorithm with

fully factored particles have the least variability in the time to perform inference each

time step.

4.2 Discussion of the Accuracy Models

I was unable to develop an accurate statistical model to predict the accuracy for any

of the inference algorithms research in this study. I believe there are two likely reasons

for this. Neither reason is mutually exclusive of the other. One possibility is that I did

not use an adequate set of factors when developing the regression models to describe the

accuracy of any of the inference algorithms. I had a great deal of difficulty finding any

number of significant factors. This difficulty may be in part due to the fact that the scope

of this research limited me to only use factors that could be easily collected by a

119

knowledge engineer and used before a Bayesian network has been fully defined. It is

very possible that the key factors in predicting the accuracy of the inference algorithms I

examined in this research study are complex factors that are outside of the scope of this

research study. Another possibility is that the relationship between the factors I chose

and the accuracy of each of the inference algorithms I examined is not linear or near

linear. If this were the case, then simple linear regression may not be adequate to develop

a useful model.

4.3 Future Work

Probably the biggest step one could take to improve upon this research would be to

use distributions with wider rangers for the control variable distributions used by the

Random PDBN Generator. The control variables used to randomly generate PDBNs

used in this research study had significantly small variances as well as a very dramatic

mode. The most notable example would be the Number of Static Nodes control variable

that had an effective range of 2 to 4 static nodes, of which the vast majority of the

generated PDBNs had three nodes. The effect of using these low variance distributions

was that the sample set of PDBNs used in this research study were more homogeneous

than they needed to be. This, in effect, weakened my statistical analysis.

Another weakness of this research was a lack of any good accuracy models for the

inference algorithms studied. In the future, it may be beneficial to expand the scope of

this study to cover any potential factor related to the architecture of a PDBN or the

inference algorithm itself. In doing then, one could then develop factors that better

120

predict the accuracy of one or more inference algorithms. Some good candidate factors

to use in future work include:

 Joint Network Variance – Rather than calculating the average variance of every

node in the Bayesian network, a more informative factor might be to calculate the

variance of the joint distribution of all the nodes in the PDBN. This variance

could easily be calculated through Monte Carlo sampling much like how the

Average Node Variance factor was approximated.

 Classifier Node Variance – It is the classifier node that we are querying at every

time step as well as using to determine the accuracy of the approximate inference

algorithms being studied. Therefore, it makes sense to calculate the variance of

this node specifically to use as a factor in predicting the accuracy of the

approximate inference algorithms. Again, this factor could easily be calculated

through Monte Carlo sampling.

 Average Strength of Dependency between Intercluster Arcs – Rather than

calculate the correlation of every node pair in the PDBN connected by an arc, it

may be more useful to select only those connected node pairs that are between

clusters used in the Boyen-Koller inference algorithm. The arcs that traverse

between clusters are effectively removed by the Boyen-Koller inference

algorithm. Therefore, specifically measuring the strength of the relationship these

arcs represent may be beneficial in predicting the accuracy of the Boyen-Koller

inference algorithm.

121

 Correlation of Nodes to Themselves between Time Steps – Static nodes, or any

node that has a near deterministic change of its probability distribution between

time steps to be more accurate, have the potential to decrease the accuracy of

approximate inference algorithm. Therefore, calculating the degree to which

nodes correlate with themselves on average between time steps may provide some

insight into the accuracy of approximate inference algorithms.

Finally, future research could address some of the drawbacks of the random PDBN

generator. The random PDBN generator was useful in creating a very large and varied

sample set of PDBNs for use in this thesis research. However, the unsophisticated

methods that the random PDBN generator utilized also created some problems the quality

of the sample set. Because factors such as the number of arcs, the number of nodes, and

the arrangement of arcs and nodes was chosen completely at random, a large number of

large PDBNs generated by the random PDBN generator were too complex to be tractable

with any of the inference algorithms used in this research. This resulted in wasted

resources as well as potentially biasing my results.

Conversely, a knowledge engineer developing PDBNs of equivalent size and

complexity would have a greater degree of success in developing tractable PDBNs. This

is because a knowledge engineer is not blindly constructing the Bayesian network

architecture, but rather, using various heuristics as well as instinct to optimize the

efficiency in which a PDBN can run for a given PDBN complexity level. Thus, for a

given preset PDBN size and complexity, a knowledge engineer will be able develop

many more tractable PDBNs than a brute force random PDBN generator because the

122

knowledge engineer will be able to evaluate multiple alternatives towards the same end

and optimize a PDBN using heuristics.

Another failing of the random PDBN generator is that it is unable to incorporate a

great deal of domain specific attributes to the PDBNs it generates. A partially dynamic

Bayesian network is a representation of knowledge within a specific problem domain. It

is rarely developed without a specific problem in mind and the PDBN is always tailored

specifically to that problem. Because of this, the domain in which a PDBN is being

developed for is likely a significant factor in how what architecture that PDBN is likely

to have. For example, the PDBNs from one domain may have a tendency to be sparse

networks with many nodes while the PDBNs from another domain may generally be

dense networks with few nodes. The random PDBN generator is able to provide a

general picture of the full range of PDBNs possible. However, a knowledge engineer is

likely only interested in a small subset of those possible PDBNs that are pertinent to his

or her problem domain.

Thus, in future research it may make sense to use both randomly generated PDBNs as

well as domain specific PDBNs generated by actual knowledge engineers. The randomly

generated PDBNs would still provide breadth to the research allowing the researcher to

examine a wide variety of PDBN architectures. At the same time, those domain specific

PDBNs generated by knowledge engineers could provide depth to the research by

providing samples from a specific domain.

123

Appendix A: Regression Diagnostics for the Particle Filter Speed of Inference Models

Number of Particles Residual Plot

-4
-3
-2
-1
0
1

0 5000 10000 15000

Number of Particles

R
es

id
ua

ls

Figure 12: Particle Filter Average Speed Exponential Regression Model 1 Residuals versus Number
of Particles Graph

124

Ln Number of Particles Residual Plot

-0.5
0

0.5
1

1.5

0 2 4 6 8 10

Ln Number of Particles

R
es

id
ua

ls

Figure 13: Particle Filter Average Speed Exponential Regression Model 2 Residuals versus Number
of Particles Graph

Ln Number of Particles Residual Plot

-2

0

2

4

0 2 4 6 8 10 12

Ln Number of Particles

R
es

id
ua

ls

Figure 14: Particle Filter Average Speed Exponential Regression Model 2 Residuals versus Number
of Particles Graph Before Removal of Outliers

125

Average CPT Size Residual Plot

-0.5
0

0.5
1

1.5

0 200 400 600 800 1000

Average CPT Size

R
es

id
ua

ls

Figure 15: Particle Filter Average Speed Exponential Regression Model 2 Residuals versus Average
CPT Size Graph

Number of Particles Residual Plot

-4
-3
-2
-1
0
1

0 5000 10000 15000

Number of Particles

R
es

id
ua

ls

Figure 16: Particle Filter Average Speed Exponential Regression Model 3 Residuals versus Number
of Particles Graph

126

Average States Per Node Residual Plot

-0.5
0

0.5
1

1.5

3 3.5 4 4.5 5 5.5 6

Average States Per Node

R
es

id
ua

ls

Figure 17: Particle Filter Average Speed Exponential Regression Model 4 Residuals versus the
Average States per Node Graph

Ln Average CPT Size Residual Plot

-0.5
0

0.5
1

1.5

3 4 5 6 7

Ln Average CPT Size

R
es

id
ua

ls

Figure 18: Particle Filter Average Speed Exponential Regression Model 4 Residuals versus the
Natural Logarithm of the Average CPT Size Graph

127

Number of Nodes Residual Plot

-0.5
0

0.5
1

1.5

9 10 11 12 13 14 15

Number of Nodes

R
es

id
ua

ls

Figure 19: Particle Filter Average Speed Exponential Regression Model 4 Residuals versus Number
of Nodes Graph

Ln Number of Particles Residual Plot

-0.5
0

0.5
1

1.5

4 5 6 7 8 9 10

Ln Number of Particles

R
es

id
ua

ls

Figure 20: Particle Filter Average Speed Exponential Regression Model 4 Residuals versus the
Natural Logarithm of the Number of Particles Graph

128

Ln Number of Particles Residual Plot

-2

0

2

4

0 2 4 6 8 10 12

Ln Number of Particles

R
es

id
ua

ls

Figure 21: Particle Filter Average Speed Exponential Regression Model 4 Residuals versus the
Natural Logarithm of the Number of Particles Graph Before Removal of Outliers

129

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000

Model Prediction

A
ve

ra
ge

 T
im

e
pe

r T
im

e
St

ep

Figure 22: Particle Filter Average Speed Exponential Regression Model 4 Predicted versus Actual
Graph

130

1

10

100

1000

10000

1 10 100 1000 10000

Model Prediction

A
ve

ra
ge

 T
im

e
pe

r T
im

e
St

ep

Figure 23: Particle Filter Average Speed Exponential Regression Model 4 Predicted versus Actual
Graph in Logarithm Space

131

Average Time Residual Plot

-1

0

1

2

3

4

5

0 500 1000 1500 2000

Average Time

R
es

id
ua

ls

Figure 24: Particle Filter Average Speed Exponential Regression Model 4 Residuals Plot

132

Normal Q-Q Plot

y = 0.1441x + 0.0086
R2 = 0.4425

-1

0

1

2

3

4

5

-4 -3 -2 -1 0 1 2 3 4

Normal Quantiles

O
rd

er
ed

 M
od

el
 P

re
di

ct
io

n

Figure 25: Particle Filter Average Speed Exponential Regression Model 4 Q-Q Plot

133

Average States Per Node Residual Plot

-400
-200

0
200

400

3 3.5 4 4.5 5 5.5 6

Average States Per Node

R
es

id
ua

ls

Figure 26: Particle Filter Average Speed Linear Regression Model 1 Residuals versus Average
States per Node Graph

Average CPT Size Residual Plot

-400
-200

0
200
400

0 200 400 600 800 1000

Average CPT Size

R
es

id
ua

ls

Figure 27: Particle Filter Average Speed Linear Regression Model 1 Residuals versus Average CPT
Size Graph

134

Number of Dynamic NonTransitional Nodes Residual
Plot

-400
-200

0
200
400

2 3 4 5 6 7

Number of Dynamic NonTransitional Nodes

R
es

id
ua

ls

Figure 28: Particle Filter Average Speed Linear Regression Model 1 Residuals versus Number of
Dynamic Non-Transitional Nodes Graph

Number of Dynamic Transitional Nodes Residual Plot

-400
-200

0
200
400

2 3 4 5 6 7

Number of Dynamic Transitional Nodes

R
es

id
ua

ls

Figure 29: Particle Filter Average Speed Linear Regression Model 1 Residuals versus Number of
Dynamic Transitional Nodes Graph

135

Number of Static Nodes Residual Plot

-400
-200

0
200

400

1 2 3 4 5

Number of Static Nodes

R
es

id
ua

ls

Figure 30: Particle Filter Average Speed Linear Regression Model 1 Residuals versus Number of
Static Nodes Graph

Number of Particles Residual Plot

-400
-200

0
200
400

0 5000 10000 15000

Number of Particles

R
es

id
ua

ls

Figure 31: Particle Filter Average Speed Linear Regression Model 1 Residuals versus Number of
Particles Graph

136

0

200

400

600

800

1000

1200

1400

1600

1800

2000

-500 0 500 1000 1500 2000

Model Prediction

A
ve

ra
ge

 T
im

e
pe

r T
im

e
St

ep

Figure 32: Particle Filter Average Speed Linear Regression Model 1 Predicted versus Actual Graph

137

Average Time Residual Plot

-250

-200

-150

-100

-50

0

50

100

150

200

250

0 500 1000 1500 2000

Average Time

R
es

id
ua

ls

Figure 33: Particle Filter Average Speed Linear Regression Model 1 Residuals Plot

138

Normal Q-Q Plot

y = 53.988x - 1.3899
R2 = 0.9852

-250

-200

-150

-100

-50

0

50

100

150

200

250

-4 -3 -2 -1 0 1 2 3 4

Normal Quantiles

O
rd

er
ed

 M
od

el
 P

re
di

ct
io

n

Figure 34: Particle Filter Average Speed Linear Regression Model 1 Q-Q Plot

Number of Nodes Residual Plot

-400
-200

0
200

400

9 10 11 12 13 14 15

Number of Nodes

R
es

id
ua

ls

Figure 35: Particle Filter Average Speed Linear Regression Model 2 Residuals versus Number of
Nodes Graph

139

Appendix B: Regression Diagnostics for the Particle Filter Variance of Speed of

Inference Models

Number of Particles Residual Plot

-6
-4
-2
0
2
4

0 5000 10000 15000

Number of Particles

R
es

id
ua

ls

Figure 36: Particle Filter Variance of Speed Exponential Regression Model 1 Residuals versus
Number of Particles Graph

Ln Number of Particles Residual Plot

-2
-1
0
1
2

4 5 6 7 8 9 10

Ln Number of Particles

R
es

id
ua

ls

Figure 37: Particle Filter Variance of Speed Exponential Regression Model 2 Residuals versus
Number of Particles Graph

140

Average CPT Size Residual Plot

-2
-1
0
1
2

0 200 400 600 800 1000

Average CPT Size

R
es

id
ua

ls

Figure 38: Particle Filter Variance of Speed Exponential Regression Model 2 Residuals versus
Average CPT Size Graph

Average States Per Node Residual Plot

-2
-1
0
1

2

3 3.5 4 4.5 5 5.5 6

Average States Per Node

R
es

id
ua

ls

Figure 39: Particle Filter Variance of Speed Exponential Regression Model 3 Residuals versus
Average States per Node Graph

141

Ln Average CPT Size Residual Plot

-2
-1
0
1
2

3 4 5 6 7

Ln Average CPT Size

R
es

id
ua

ls

Figure 40: Particle Filter Variance of Speed Exponential Regression Model 3 Residuals versus the
Natural Logarithm of the Average CPT Size Graph

Number of Nodes Residual Plot

-2
-1
0
1

2

9 10 11 12 13 14 15

Number of Nodes

R
es

id
ua

ls

Figure 41: Particle Filter Variance of Speed Exponential Regression Model 3 Residuals versus
Number of Nodes Graph

142

Ln Number of Particles Residual Plot

-2
-1
0
1
2

4 5 6 7 8 9 10

Ln Number of Particles

R
es

id
ua

ls

Figure 42: Particle Filter Variance of Speed Exponential Regression Model 3 Residuals versus the
Natural Logarithm of the Number of Particles Graph

143

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 500000 1000000 1500000 2000000

Model Prediction

Va
ria

nc
e

of
 T

im
e

pe
r T

im
e

St
ep

Figure 43: Particle Filter Variance of Speed Exponential Regression Model 3 Predicted versus
Actual Graph

144

1

10

100

1000

10000

100000

1000000

10000000

0.01 1 100 10000 1000000 100000000

Model Prediction

Va
ria

nc
e

of
 T

im
e

pe
r T

im
e

St
ep

Figure 44: Particle Filter Variance of the Speed Exponential Regression Model 3 Predicted versus
Actual Graph in Logarithm Space

145

Average Time Residual Plot

-2

-1

0

1

2

3

4

5

6

7

8

0 500000 1000000 1500000 2000000

Variance of Time

R
es

id
ua

ls

Figure 45: Particle Filter Variance of Speed Exponential Regression Model 3 Residuals Plot

146

Normal Q-Q Plot

y = 0.5249x + 0.0163
R2 = 0.7701

-3
-2

-1
0
1

2
3

4
5
6
7
8

-4 -3 -2 -1 0 1 2 3 4

Normal Quantiles

O
rd

er
ed

 M
od

el
 P

re
di

ct
io

n

Figure 46: Particle Filter Variance of Speed Exponential Regression Model 3 Q-Q Plot

Number of Particles Residual Plot

-1000000
-500000

0
500000

1000000

0 5000 10000 15000

Number of Particles

R
es

id
ua

ls

Figure 47: Particle Filter Variance of Speed Linear Regression Model 1 Residuals versus Number of
Particles Graph

147

Ln Number of Particles Residual Plot

-500000
0

500000
1000000
1500000

0 2 4 6 8 10

Ln Number of Particles

R
es

id
ua

ls

Figure 48: Particle Filter Variance of Speed Linear Regression Model 2 Residuals versus Number of
Particles Graph

Average States Per Node Residual Plot

-1000000
-500000

0
500000

1000000

3 3.5 4 4.5 5 5.5 6

Average States Per Node

R
es

id
ua

ls

Figure 49: Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus Average
States per Node Graph

148

Average CPT Size Residual Plot

-1000000
-500000

0
500000

1000000

0 200 400 600 800 1000

Average CPT Size

R
es

id
ua

ls

Figure 50: Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus Average
CPT Size Graph

Number of Dynamic NonTransitional Nodes Residual
Plot

-1000000
-500000

0
500000

1000000

2 3 4 5 6 7

Number of Dynamic NonTransitional Nodes

R
es

id
ua

ls

Figure 51: Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus Number of
Dynamic Non-Transitional Nodes Graph

149

Number of Dynamic Transitional Nodes Residual Plot

-1000000
-500000

0
500000

1000000

2 3 4 5 6 7

Number of Dynamic Transitional Nodes

R
es

id
ua

ls

Figure 52: Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus Number of
Dynamic Transitional Nodes Graph

Number of Static Nodes Residual Plot

-1000000
-500000

0
500000

1000000

1 2 3 4 5

Number of Static Nodes

R
es

id
ua

ls

Figure 53: Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus Number of
Static Nodes Graph

150

Number of Particles Squared Residual Plot

-1000000
-500000

0
500000

1000000

0 5000000
0

1E+08 1.5E+08 2E+08 2.5E+08

Number of Particles Squared

R
es

id
ua

ls

Figure 54: Particle Filter Variance of Speed Linear Regression Model 3 Residuals versus Number of
Particles Squared Graph

151

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

-500000 0 500000 1000000 1500000 2000000

Model Prediction

Va
ria

nc
e

of
 T

im
e

pe
r T

im
e

St
ep

Figure 55: Particle Filter Variance of Speed Linear Regression Model 3 Predicted versus Actual
Graph

152

Average Time Residual Plot

-800000

-600000

-400000

-200000

0

200000

400000

600000

800000

1000000

0 500000 1000000 1500000 2000000

Variance of Time

R
es

id
ua

ls

Figure 56: Particle Filter Variance of Speed Linear Regression Model 3 Residuals Plot

153

Normal Q-Q Plot

y = 158264x - 1565.2
R2 = 0.9412

-800000

-600000

-400000

-200000

0

200000

400000

600000

800000

1000000

-4 -3 -2 -1 0 1 2 3 4

Normal Quantiles

O
rd

er
ed

 M
od

el
 P

re
di

ct
io

n

Figure 57: Particle Filter Variance of Speed Linear Regression Model 3 Q-Q Plot

154

Appendix C: Regression Diagnostics for the Boyen-Koller Speed of Inference Models

Average CPT Size Residual Plot

-2
-1
0

1
2

0 200 400 600 800 1000

Average CPT Size

R
es

id
ua

ls

Figure 58: Boyen-Koller over SPI Average Speed Exponential Regression Model 1 Residuals versus
Average CPT Size Graph

Average States Per Node Residual Plot

-1
0

1
2
3

3 3.5 4 4.5 5 5.5 6

Average States Per Node

R
es

id
ua

ls

Figure 59: Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals versus
States per Node Graph

155

Ln Average CPT Size Residual Plot

-1
0
1
2
3

3 4 5 6 7

Ln Average CPT Size

R
es

id
ua

ls

Figure 60: Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals versus
Natural Logarithm of the Average CPT Size Graph

Number of Nodes Residual Plot

-1
0

1
2
3

9 10 11 12 13 14 15

Number of Nodes

R
es

id
ua

ls

Figure 61: Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals versus
Number of Nodes Graph

156

Average Cluster Size Residual Plot

-1

0
1
2

3

0 5 10 15

Average Cluster Size

R
es

id
ua

ls

Figure 62: Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals versus
Average Cluster Size Graph

157

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400 1600

Model Prediction

A
ve

ra
ge

 T
im

e
pe

r T
im

e
St

ep

Figure 63: Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Predicted versus
Actual Graph

158

1

10

100

1000

10000

1 10 100 1000 10000

Log Model Prediction

Lo
g

A
ve

ra
ge

 T
im

e
pe

r T
im

e
St

ep

Figure 64: Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Predicted versus
Actual Graph in Logarithm Space

159

Average Time Residual Plot

-1

-0.5

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400

Average Time

R
es

id
ua

ls

Figure 65: Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Residuals Plot

160

Normal Q-Q Plot

y = 0.2228x - 0.0508
R2 = 0.8922

-1

-0.5

0

0.5

1

1.5

2

-4 -3 -2 -1 0 1 2 3 4

Normal Quantiles

O
rd

er
ed

 M
od

el
 P

re
di

ct
io

n

Figure 66: Boyen-Koller over SPI Average Speed Exponential Regression Model 2 Q-Q Plot

Average CPT Size Residual Plot

-500

0

500

1000

0 200 400 600 800 1000

Average CPT Size

R
es

id
ua

ls

Figure 67: Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals versus
Average CPT Size Graph

161

Number of Dynamic Transitional Nodes Residual Plot

-500

0

500

1000

2 3 4 5 6 7

Number of Dynamic Transitional Nodes

R
es

id
ua

ls

Figure 68: Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals versus
Number of Dynamic Transitional Nodes Graph

Number of Static Nodes Residual Plot

-500

0

500

1000

1 2 3 4 5

Number of Static Nodes

R
es

id
ua

ls

Figure 69: Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals versus
Number of Static Nodes Graph

162

Average Cluster Size Residual Plot

-500

0

500

1000

0 5 10 15

Average Cluster Size

R
es

id
ua

ls

Figure 70: Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals versus
Average Cluster Size Graph

163

0

200

400

600

800

1000

1200

1400

-200 0 200 400 600 800 1000 1200 1400 1600

Model Prediction

A
ve

ra
ge

 T
im

e
pe

r T
im

e
St

ep

Figure 71: Boyen-Koller over SPI Average Speed Linear Regression Model 5 Predicted versus
Actual Graph

164

Average Time Residual Plot

-400

-200

0

200

400

600

800

0 200 400 600 800 1000 1200 1400

Average Time

R
es

id
ua

ls

Figure 72: Boyen-Koller over SPI Average Speed Linear Regression Model 5 Residuals Plot

165

Normal Q-Q Plot

y = 55.954x + 0.0262
R2 = 0.676

-300
-200

-100
0

100

200
300

400
500
600
700
800

-4 -3 -2 -1 0 1 2 3 4

Normal Quantiles

O
rd

er
ed

 M
od

el
 P

re
di

ct
io

n

Figure 73: Boyen-Koller over SPI Average Speed Linear Regression Model 5 Q-Q Plot

166

Appendix D: Regression Diagnostics for the Boyen-Koller Variance of Speed of

Inference Models

Average CPT Size Residual Plot

-1
-0.5

0
0.5

1

0 200 400 600 800 1000

Average CPT Size

R
es

id
ua

ls

Figure 74: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 1A Residuals
versus Average CPT Size Graph

Average Cluster Size Residual Plot

-1
-0.5

0
0.5

1

0 0.5 1 1.5 2

Average Cluster Size

R
es

id
ua

ls

Figure 75: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 1A Residuals
versus Average Cluster Size Graph

167

Average States Per Node Residual Plot

-1
-0.5

0
0.5

1

3 3.5 4 4.5 5 5.5 6

Average States Per Node

R
es

id
ua

ls

Figure 76: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Residuals
versus Average States per Node Graph

Ln Average CPT Size Residual Plot

-1
-0.5

0
0.5

1

2 3 4 5 6 7 8

Ln Average CPT Size

R
es

id
ua

ls

Figure 77: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Residuals
versus the Natural Logarithm of the Average CPT Size Graph

168

Number of Nodes Residual Plot

-1
-0.5

0
0.5

1

9 10 11 12 13 14 15

Number of Nodes

R
es

id
ua

ls

Figure 78: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Residuals
versus Number of Nodes Graph

Average Cluster Size Residual Plot

-1
-0.5

0
0.5

1

0 0.5 1 1.5 2

Average Cluster Size

R
es

id
ua

ls

Figure 79: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Residuals
versus Average Cluster Size Graph

169

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 10000 20000 30000 40000 50000

Model Prediction

Va
ria

nc
e

of
 T

im
e

pe
r T

im
e

St
ep

Figure 80: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Predicted
versus Actual Graph

170

10000

100000

10000 100000

Log Model Prediction

Lo
g

Va
ria

nc
e

of
 T

im
e

pe
r T

im
e

St
ep

Figure 81: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Predicted
versus Actual Graph in Logarithm Space

171

Average Time Residual Plot

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 10000 20000 30000 40000 50000

Variance of Time

R
es

id
ua

ls

Figure 82: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Residuals
Plot

172

Normal Q-Q Plot

y = 0.2302x - 0.004
R2 = 0.9943

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

Normal Quantiles

O
rd

er
ed

 M
od

el
 P

re
di

ct
io

n

Figure 83: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2A Q-Q Plot

Average States Per Node Residual Plot

-5000

0

5000

10000

3 3.5 4 4.5 5 5.5 6

Average States Per Node

R
es

id
ua

ls

Figure 84: Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals versus
Average States per Node Graph

173

Number of Dynamic NonTransitional Nodes Residual
Plot

-5000

0

5000
10000

2 3 4 5 6 7

Number of Dynamic NonTransitional Nodes

R
es

id
ua

ls

Figure 85: Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals versus
Number of Dynamic Non-Transitional Nodes Graph

Number of Dynamic Transitional Nodes Residual Plot

-5000

0

5000

10000

2 3 4 5 6 7

Number of Dynamic Transitional Nodes

R
es

id
ua

ls

Figure 86: Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals versus
Number of Dynamic Transitional Nodes Graph

174

Number of Static Nodes Residual Plot

-5000

0

5000

10000

1 2 3 4 5

Number of Static Nodes

R
es

id
ua

ls

Figure 87: Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals versus
Number of Static Nodes Graph

175

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 10000 20000 30000 40000 50000

Model Prediction

Va
ria

nc
e

of
 T

im
e

pe
r T

im
e

St
ep

Figure 88: Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Predicted versus
Actual Graph

176

Average Time Residual Plot

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10000 20000 30000 40000 50000

Variance of Time

R
es

id
ua

ls

Figure 89: Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Residuals Plot

177

Normal Q-Q Plot

y = 0.057x + 0.0096
R2 = 0.6747

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-4 -3 -2 -1 0 1 2 3 4

Normal Quantiles

O
rd

er
ed

 M
od

el
 P

re
di

ct
io

n

Figure 90: Boyen-Koller over SPI Variance of Speed Linear Regression Model 4A Q-Q Plot

Average CPT Size Residual Plot

-4
-2
0
2
4
6

0 200 400 600 800 1000

Average CPT Size

R
es

id
ua

ls

Figure 91: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 1B Residuals
versus Average CPT Size Graph

178

Average States Per Node Residual Plot

-4
-2
0
2
4
6

3 3.5 4 4.5 5 5.5 6

Average States Per Node

R
es

id
ua

ls

Figure 92: Boyen-Koller over SPI Variance of Speed Linear Regression Model 2B Residuals versus
Average States per Node Graph

Ln Average CPT Size Residual Plot

-4
-2
0
2
4
6

3 4 5 6 7

Ln Average CPT Size

R
es

id
ua

ls

Figure 93: Boyen-Koller over SPI Variance of Speed Linear Regression Model 2B Residuals versus
the Natural Logarithm of the Average CPT Size Graph

179

Number of Nodes Residual Plot

-4
-2
0
2
4
6

9 10 11 12 13 14 15

Number of Nodes

R
es

id
ua

ls

Figure 94: Boyen-Koller over SPI Variance of Speed Linear Regression Model 2B Residuals versus
Number of Nodes Graph

Average Cluster Size Residual Plot

-4
-2
0
2
4
6

0 2 4 6 8 10

Average Cluster Size

R
es

id
ua

ls

Figure 95: Boyen-Koller over SPI Variance of Speed Linear Regression Model 2B Residuals versus
Average Cluster Size Graph

180

0

20000

40000

60000

80000

100000

120000

0 500 1000 1500 2000

Model Prediction

Va
ria

nc
e

of
 T

im
e

pe
r T

im
e

St
ep

Figure 96: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2B Predicted
versus Actual Graph

181

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

Model Prediction

Va
ria

nc
e

of
 T

im
e

pe
r T

im
e

St
ep

Figure 97: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2B Predicted
versus Actual Graph in Logarithm Space

182

Average Time Residual Plot

-3

-2

-1

0

1

2

3

4

5

6

7

1 10 100 1000 10000 100000

Log Variance of Time

R
es

id
ua

ls

Figure 98: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2B Residuals
Plot

183

Normal Q-Q Plot

y = 0.6842x + 0.0318
R2 = 0.9029

-3

-2

-1

0

1

2

3

4

5

6

-4 -3 -2 -1 0 1 2 3 4

Normal Quantiles

O
rd

er
ed

 M
od

el
 P

re
di

ct
io

n

Figure 99: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 2B Q-Q Plot

Average CPT Size Residual Plot

-5000
0

5000
10000

15000

0 200 400 600 800 1000

Average CPT Size

R
es

id
ua

ls

Figure 100: Boyen-Koller over SPI Variance of Speed Exponential Regression Model 1B Residuals
versus Average CPT Size Graph

184

Appendix E: Random Partially Dynamic Bayesian Network Generator

The primary function of the Random PDBN Generator is to generate random PDBNs

for the purpose of studying various inference algorithms for dynamic Bayesian networks.

The underlying impetus behind the Random PDBN Generator is to generate a large

number of disparate dynamic Bayesian networks quickly in such a way that the

distribution of the features of these Bayesian networks is predictable and controllable. At

the same time, this software is intended to be able to be used in a generalized set of

situations other than the purposes of this research study.

I have summarized the functionality the Random PDBN Generator provides in Figure

101. This figure is a use case diagram listing the functionality provided to the user of the

random PDBN generator. In this diagram, the stick figure represents the user and the

ovals represent the functionality available to the user of the random PDBN generator.

185

Figure 101: Use Case Diagram for the Random PDBN Generator

Figure 102 is a data flow diagram and it describes how the Random PDBN Generator

might utilize data from the user to produce PDBNs for the software program testing the

PDBNs generated. Here, the ovals represent processes performed by the software

application, the rectangles represent actors, and the double-lined boxes represent data

stores. The arcs between two elements represent the transfer of data with the direction of

the arc representing the direction of that data’s flow. The labels on each arc describes the

data that is being transferred.

186

Figure 102: Data Flow Diagram for the Random PDBN Generator

187

When using the random PDBN generator, the user first defines the taxonomy and

design specifications as well as other details such as the number of PDBNs the software

will produced. The Random PDBN Generator uses this information to generate a set of

PDBNs and change the format of those PDBNs to a standard format that can be easily

exported to other applications. These PDBNs are then stored to memory or saved to disk

where an automated testing application can access them.

The Random PDBN Generator produces a series of randomly generated PDBNs

satisfying a set of constraints as specified by the user. The first set of constraints, the

PDBN design parameters, refers to how the PDBN is to be designed. These parameters

constrain how the PDBNs generated are to be structured, how each node in the PDBN is

to behave, and how the variables represented by the Bayesian network are to represent

their states. Table 24 lists these parameters as well as gives a description of each. The

Random PDBN Generator takes as input a probability mass function over each of these

PDBN design parameters. The PDBN generator includes a data structure for representing

these probability mass functions.

188

Table 24: PDBN Design Parameters to the Random PDBN Generator
 PDBN Design

Parameters
Description

1 Number of static
nodes

The number of static nodes in the Bayesian network.

2 Number of dynamic
transitional nodes

The number of transitional dynamic nodes in the Bayesian
network.

3 Number of dynamic
non-transitional nodes

The number of non-transitional dynamic nodes in the
Bayesian network.

4 Arc saturation for
static to static arcs

The percentage of the possible set of arcs between static
nodes in the PDBN. 0% represents the minimum number
of arcs and 100% represents the maximum number of arcs
possible.

5 Arc saturation for
static to dynamic arcs

The percentage of the possible set of arcs between static
nodes and dynamic nodes in the PDBN. 0% represents
the minimum number of arcs and 100% represents the
maximum number of arcs possible.

6 Arc saturation for
dynamic to dynamic
arcs

The percentage of the possible set of arcs between
dynamic nodes in the PDBN. 0% represents the minimum
number of arcs and 100% represents the maximum
number of arcs possible.

7 Arc saturation for
transitional nodes
between time steps

The percentage of the possible set of arcs between
transitional nodes between time steps in the PDBN. 0%
represents the minimum number of arcs and 100%
represents the maximum number of arcs possible.

8 Probability of dynamic
transitional node
connecting to self

The probability that a dynamic transitional node connects
to itself in the next time step.

9 Average number of
states per node

The mean number of states per node.

10 Alpha factor A node is related to its parents such that N = P +
where N is the random variable of the node and P is the
random variable of the parent node. This parameter is the
value of the .

11 Root node mean The mean of each root node.
12 Noise factor A node is a linear combination of its parents and a noise

factor. This noise factor is a Normal random variable
with a mean of zero. This parameter is the variance of
that Normal random variable.

189

Along with the PDBN design parameters, the user has the ability to define various

processing parameters that define periphery information necessary to generate the

PDBNs. The user also has the ability to define the number of PDBNs to be produced for

a given PDBN design specification, the location where these PDBNs will be saved on

disk, and the format for which these PDBNs are to be stored to disk. For the purpose of

speed and efficiency, the Random PDBN Generator will generate multiple PDBNs at a

time using multiple threads. The user has the ability to specify the number of concurrent

threads to run at a time to best suit the system the Random PDBN Generator is running

on.

To interoperate with the Random PDBN Generator, the automation software of this

research study takes the sample set of PDBNs by loading them from file. The files are

stored in a file format unique to the Random PDBN Generator. Thus, the automation

software of this research study interfaces with these PDBN files by way of a function call

to the application program interface of the Random PDBN Generator.

190

List of References

Arulampalam, S., Maskell, S., Gordon, N. J., and Clapp, T. (2002). “A Tutorial on

Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking,” IEEE
Transactions on Signal Processing, 50(2), pp. 174-188.

Boyen, X., Koller, D. (1998). “Exploiting the architecture of dynamic systems.”

Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, 33 –
42.

Carpenter, J., Clifford, P., Fearnhead, P. (1999). “An Improved Particle Filter for Non-

linear Problems.” IEE Proceedings - Radar, Sonar and Navigation, 2-7.

Cooper, G. F. (1990). “The computational complexity of probabilistic inference using

Bayesian belief networks.” Artificial Intelligence, 42, 393-405.

D’Ambrosio, B., Li,Z. (1994). “Efficient Inference in Bayes Networks As A

Combinatorial Optimization Problem.” International Journal of Approximate
Reasoning, 11, 1 – 158.

Dunn, K., Holt, J., Laskey, K. B., Lyons, B., Takikawa, M., Tung, E. (2002). Bayesian

Networks for Object Classification.

IET, Inc. (2002, July). Test Plan for Evaluating Approximate Inference Algorithms.

Information Extraction and Transport , Inc., Rosslyn, Virginia.

Jensen, F. (2001). Bayesian Networks and Decision Graphs. New York: Springer-

Verlag.

Kleinbaum, D., Kupper, L., Muller, K. (1988). Applied Regression Analysis and Other

Multivariate Methods. Boston, Mass: PWS-Kent.

Kuo, F., Sloan, I. (2005, December). “Lifting the Curse of Dimensionality.” Notices of

the American Mathematical Society, 52, 1320 – 1329.

Laskey, K. (2002, December). Personal Communication

191

Lorenz, F. (1987, April). “Teaching about Influence in Simple Regression.” Teaching
Sociology, 15, 173 – 177.

Muphy, K., Weiss., Y. (2001). “The Factored Frontier Algorithm for Approximate

Inference in DBNs.” Proceedings of the 17th Conference in Uncertainty in
Artificial Intelligence, 378 – 385.

Ng, B., Peshkin, L., Pfeffer, A. (2002). “Factored Particles for Scalable Monitoring.”

UAI 2002, 370 – 377.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. San Mateo: Morgan Kaufmann.

Quiddity. Vers. 5.0. Computer Software. IET, Inc, 2003. http://www.iet.com/.

Takikawa, M., D’Ambrosio, B., Wright, E. (2002). “Real-Time Inference with Large-

Scale Temporal Bayes Nets.” UAI 2002, 477 – 484.

192

Curriculum Vitae

Stephen J. Cannon was born on March 18, 1979, in Drexel Hill, Pennsylvania, and is an
American citizen. He received his Bachelor of Science in Systems Engineering from
George Mason University in 2002. He has 3 years of software engineering experience
dealing specifically with artificial intelligence. At MIT Lincoln Laboratory he worked as
a summer research student conducting research towards the refinement of object
classification algorithms for ballistic missile defense. At Information Extraction and
Transport, Inc., Stephen has assisted in the development of a knowledge elicitation
environment as well as helped develop and maintain a turn-key system that processes and
compiles synthetic test data.

