

Randomization Tests for Regression Models in Clinical Trials

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Parwen Parhat
Master of Arts

University of Houston, 2008
Bachelor of Science, Bachelor of Arts

Peking University, 2006

Director: Dr. William F. Rosenberger, Professor
Department of Statistics

Spring Semester 2013
George Mason University

Fairfax, VA

Copyright c© 2013 by Parwen Parhat
All Rights Reserved

ii

Dedication

To my parents, Parhat Osman and Gülnar Wulam.

iii

Acknowledgments

First and foremost, I would like to express my deep appreciation to my advisor Dr.
William F. Rosenberger, for his sage guidance throughout the completion of the thesis.
I am forever grateful for his patient support, encouragement and generous sharing of
his valuable time to help me make progress. I feel very fortunate to have had the
opportunity to work with him.

I am sincerely grateful to Dr. Jacqueline Hughes-Oliver for mentoring me in the
practical research of statistics. I thank her clearly guiding me while giving me space to
explore and learn in the past two years. I also thank her for serving as my committee
member, and for giving me comments and insights to the thesis. I give my gratitude
to committee member Dr. Guoqing Diao, for spending many hours to listen my
research and offering me resources and suggestions regarding data analysis, coding
and simulation. I thank committee members Drs. Larry Tang and Pearl Wang for
coordinating their time and giving me support.

I would like to thank Ms. Elizabeth Quigley for her kind and patient admin-
istrative assistance. I also thank my colleague Daniel Saxton for proofreading and
correcting inaccuracies in the text.

My gratitude goes to Drs. Bent Sorensen and Steven Craig in University of Hous-
ton for listening to me and encouraging me to pursue the academic degree where I
really have interest and believing in my potential to success.

Very special thanks to my husband Imam Xierali, for giving me constant support,
confidence and understanding during every step of the thesis. I also would like to
thank my daughters, Ayguzel and Ayperi, for always cheering me up and giving me
unlimited love and joy during the most difficult time of my life.

I owe many thanks to my beloved mother Gülnar Wulam, father Parhat Osman,
and brother Paruk Parhat. They made innumerable sacrifices to help me complete
the degree during the past several years. I appreciate everything they have done for
me.

iv

Table of Contents

Page

v

List of Tables

Table Page

vi

List of Figures

Figure Page

vii

Abstract

RANDOMIZATION TESTS FOR REGRESSION MODELS IN CLINICAL TRIALS

Parwen Parhat, PhD

George Mason University, 2013

Dissertation Director: Dr. William F. Rosenberger

In this dissertation, we apply randomization tests in the context of regression

models to detect treatment effects for clinical trial data. This application allows us

to compute randomization tests for a wide variety of outcomes, including covariate

adjusted treatment effects, general response functions, survival data, and longitudinal

data. We used score residuals as the outcome of the randomization test under the

generalized linear model. For the proportional hazards and accelerated linear model,

we used the martingales residuals as the outcome of the randomization test. For the

generalized linear mixed model, to detect whether there is a time-varying treatment

effect, we compute the predicted random slope from the regression as the outcome of

the randomization test.

We examine the utility of randomization tests and how they perform compared

to the traditional methods. Simulations are applied to compare the size and power

of randomization tests and population tests in different scenarios. Results show ran-

domization tests perform better than the traditional test in the following scenarios:

when there are necessary covariates omitted in the generalized linear model, when

there is misspecification for the distribution of survival time, when there is misspeci-

fication of the distribution of the response for longitudinal data, and when there are

outliers for the random effects in longitudinal data.

As an important contribution of the thesis, a series of SAS macros are developed to

provide easy computation of randomization tests. These macros calculate the p-value

of a randomization test directly from the data or under certain regression models

for various types of data, given specified randomization procedure and the type of

reference set. The macros provide computing convenience for statisticians and clinical

trialists in the pharmaceutical industries.

Chapter 1: Introduction

1.1 Background

The randomized clinical trial has become a gold standard as it is a reliable and efficient

method to test whether a new treatment is effective (Cook and DeMets, 2008). There

are two main reasons for applying randomization in clinical trials. First, it ensures

patients are allocated randomly to treatments, so the possibility of selection bias

is minimized when compared to other types of controlled trials (Friedman, 1975).

Second, it provides a way to test treatment effects based on randomization itself,

rather than random sampling which does not occur in clinical trials (Kempthorne,

1977).

Randomization provides the basis for the randomization test. A randomization

test is an approach that does not depend on distributional assumptions: it evaluates

whether there is a treatment effect by comparing the test value under the null hypoth-

esis to values computed from other possible randomizations. The main focus of this

thesis is the application of randomization tests in clinical trials, where the primary

outcome is based on a regression model.

To identify whether there is a treatment effect, the traditional inferential approach

in statistics is based on assuming a population model. Under the population model,

we assume there is a target patient population with a certain probability distribution

on the outcome. From that population, we randomly select a sample and assume it

is representative of the population (Chow and Liu, 2004). Then we make inferences

1

about the population by performing statistical tests on the sample.

However, clinical trials do not fit into the inferential scheme based on a popula-

tion model. First, the target population distribution is usually unknown, and second,

patients are not randomly selected for most experimental trials. Many studies set dif-

ferent criteria for selecting patients (Chow and Liu, 2004), and therefore it is difficult

to derive a valid statistical inference based on a population model.

Sometimes, a population model is invoked to allow standard statistical inference.

This assumes patients are first selected from a large unknown population with some

sampling strategy, and then are randomly assigned into treatment groups. But there

is one critical assumption that is difficult to be tested—the homogeneity of char-

acteristics of patients (Lachin, Matts and Wei, 1988). In fact, it is unnecessary to

employ the invoked population model if we use randomization as a basis for statistical

inference.

The randomization model is different from the population model in that it aims

at evaluating treatment effects without distributional assumptions. There are three

main properties of a randomization model in clinical trials:

1. Patients are not randomly selected as a sample and patient responses are con-

sidered as fixed under the null hypothesis of no treatment effect but not drawn

from a population.

2. The characteristics of patients do not have to be homogeneous.

3. Patients are assigned to treatment groups based on a certain randomization

procedure.

A randomization test can be performed in the context of the randomization model.

The key idea behind the randomization test is that the difference between treatment

2

groups depends only on the way patients are assigned to each treatment group. The

null hypothesis of a randomization test is that patient responses would have been the

same no matter which treatment had been assigned. In contrast to the population

model, whose reference distribution is from a theoretical probability distribution, the

reference distribution of a randomization model is a set that includes all possible

randomization sequences. One can obtain the p-value by summing probabilities that

the test statistic from the reference distribution is at least as extreme as the observed

value.

In this thesis we intend to use the linear rank statistic which is a broad family

of statistics for randomization tests (Lehmann, 2006). Define Yj to be the response

variable for the jth patient from a sample where j = 1,n, assume patients will be

assigned into two treatment groups A and B. Let ajn be a score function of Yj for the

jth patient, and Tj be a treatment indicator, whose value is 1 if patient is assigned

to treatment A, and 0 if patient is assigned to treatment B. Then the test statistic

is given by:

S =
n∑
j=1

(ajn − ā)Tj. (1.1)

Based on different types of data, one might choose different score functions. In the

case of binary data, Fisher’s exact test could be performed (Gibbons and Chakraborti,

2010); in the case of survival data, Savage scores can be used to calculate the log-rank

test statistic; Kalbfleisch and Prentice (2002) provided the exact form of ajn including

both uncensored and censored cases.

In this thesis, the following linear rank score functions will be used to calculate

test statistics in (1.1):

• Wilcoxon Scores: Let Rj be the rank of jth patient’s outcome. Then the score

3

function is

ajn = Rj. (1.2)

This score generates the rank sum statistic for the linear rank test, which is

analogous to the Mann-Whitney-Wilcoxon test, which is one of the most pow-

erful tests for detecting location shifts between two groups. This score can be

used for many types of data.

• Savage Scores: For survival data, there are two forms of the score function de-

pending on whether or not there is censoring (Rosenberger and Lachin, 2002):

If there is no censoring, survival times are ordered corresponding to the treat-

ment indicator. The score function is given by:

ajn = 1−
n∑

k=n+1−j

1

k
. (1.3)

If there is censoring, denote Rm to be the number of patients at risk prior to

event time m,

ajn =


1−

j∑
m=1

1

Rm

If not censored;

−
j∑

m=1

1

Rm

If censored.

(1.4)

The log-rank test based on Savage scores is robust when testing the scale dif-

ference between two groups for the exponential distribution (Rosenberger and

Lachin, 2002).

• van der Waerden Scores: these scores are mostly used for continuous data. It

4

transforms ranks into quantiles of a standard normal distribution. It is com-

puted by

ajn = Φ−1
(

Rj

n+ 1

)
. (1.5)

From (1.1), we can conclude that the randomization test statistic depends on the

randomization distribution of treatment assignment T , and this distribution is based

on the randomization procedure.

Following the previous notation, let pj be the probability of assigning jth patient

to treatment group A, given by

pj = P (Tj = 1|T1, ..., Tj−1). (1.6)

In the case of complete randomization, we have T1, T2, ..., Tn following a Bernoulli

distribution, so that

pj = P (Tj = 1|T1, ..., Tj−1) =
1

2
. (1.7)

In clinical trials, complete randomization is seldom employed, as it has a higher prob-

ability of treatment imbalance when the sample size is small or trials are performed

over a long period of time with continuous assignments (Chow and Liu, 2004). Re-

stricted randomization procedures are used in the interest of balance. In this project,

we review the permuted block design (PBD), biased coin design (BCD) and general-

ized biased coin design (GBCD), and intend to apply first two types of procedures to

regression models.

The PBD is an approach where the entire sample is divided into several blocks

and patients are assigned into each block. Usually for balancing purposes, the random

allocation rule (RAR) or truncated binomial design (TBD) is used within a block.

5

Under the random allocation rule, patients are randomly selected as a subset whose

size is equal to the block size from a total known sample size. Half the subset is

randomly assigned to treatment group A, and the remainder to group B, and balance

is achieved at the end of assignment to the block. Define S to be the number of

blocks, and s = n/S to be the number of patients in ith block (i = 1, ...S); let NA(j)

be the number of patients assigned to group A after jth assignment, and pij be the

probability of assigning the jth patient at the ith block to treatment A. If we apply

the RAR within each block, the probability distribution of T within each block is

given as (Rosenberger and Lachin, 2002):

pij =


1
2

j = 1;

s
2
−(NA(j−1)−(i−1) s

2
)

s−(j−(i−1)s) 1 < j ≤ n, 1 ≤ i ≤ S.

(1.8)

Under the TBD, within each block, patients are randomly selected with probability

1/2 until one of the group sizes equals half the block size. The probability distribution

of T within each block is given by (Rosenberger and Lachin, 2002):

pij =


0 NA(j − 1)− (i− 1) s

2
= s

2
;

1
2

max{(NA(j)− (i− 1) s
2
), (NB(j)− (i− 1) s

2
)} < s

2
;

1 (NB(j − 1)− (i− 1) s
2
) = s

2
.

(1.9)

The BCD was proposed by Efron (Efron, 1971). Let Dj be the difference between

the number of patients of treatment A and B after j patients are allocated, Dj =

NA(j) − NB(j). Let p be the constant and predetermined probability of balance,

6

usually greater than 1/2. Then we have

pj =


1− p Dj−1 > 0;

1
2

Dj−1 = 0;

p Dj−1 < 0.

(1.10)

Smith (1984) introduced a form of the BCD from a mathematical perspective,

which can be viewed as a class of generalized biased coin designs (GBCD). Let ρ be a

positive parameter which controls the sensitivity of pj to allocation imbalances. Then

pj is considered as a function of NA(j − 1), NB(j − 1) and ρ :

pj =
NB(j − 1)ρ

NA(j − 1)ρ +NB(j − 1)ρ
. (1.11)

If ρ is 0, the procedure reduces to complete randomization. As ρ increases, the prob-

ability of achieving balance increases and the variability of the procedure decreases.

1.2 Randomization Tests

Application of randomization tests for the PBD is straightforward (Rosenberger and

Lachin, 2002); however, statistical inference based on the BCD has not been developed

until recently because the exact randomization distribution of the BCD was difficult

to obtain. Efron (1971) derived the asymptotic distribution for the BCD; Mark-

yaran and Rosenberger (2010) derived the exact distribution of BCD; Plamadeala

and Rosenbeger (2012) provided techniques to compute conditional randomization

tests under the BCD by using conditional probability theory.

7

Here we detail two types of tests: based on the difference of reference sets, there

are unconditional and conditional randomization tests. First, assume there are n

patients to be assigned into two treatment groups A and B, where nA is the number

of patients receiving treatment A. Then the unconditional reference set given by Ωun

contains all possible 2n randomization sequences. Let S be a well defined statistic and

L be the defined randomized sequence. Let Sobs be the observed statistic and Sl be

the statistic for the lth randomized sequence from the reference set where l = 1, ...2n.

Then the p-value (Rosenberger and Lachin, 2002) for the unconditional randomization

test is

pun =
2n∑
l=1

P (|Sl| > |Sobs|) =
2n∑
l=1

I(|Sl| > |Sobs|)P (L = l). (1.12)

Similarly, define Ωcon to be a conditional reference set given NA(n) = nA, then

the p-value for the conditional randomization test is

pcon =

(n
nA

)∑
l=1

P (|Sl| > |Sobs||NA(n) = nA) =

(n
nA

)∑
l=1

I(|Sl| > |Sobs|)P (L = l|NA(n) = nA).

(1.13)

To compute the unconditional and conditional randomization tests, we need to know

the probabilities of assigning patients for certain designs given conditional or uncon-

ditional reference sets. Both of them depend on the distribution of NA(n).

For the biased coin design, Markaryan and Rosenberger (2010) developed the

distribution of NA(n) to compute the unconditional test, and Plamadeala and Rosen-

berger (2012) provided the algorithm for calculating probabilities of assigning patients

for the conditional test based on the conditional distribution of NA(n) given previous

allocations and nA.

8

For the unconditional case, for BCD(p), q = 1− p, we have

P (NA(n) = nA) =



0.5pnA

nA∑
l=0

n− nA − l
n− nA + l

(
n− nA + l

l

)
qn−2nA+l−1 0 ≤ nA <

n
2
;

pnA

nA−1∑
l=0

n− 2l

n+ 2l

(
nA + l

l

)
ql nA = n

2
;

0.5pn−nA

n−nA∑
l=0

nA − l
nA + l

(
nA + l

l

)
q2nA−n+l−1 n

2
< nA ≤ n.

(1.14)

Under the conditional case (Plamadeala and Rosenberger, 2012), let φj be the

conditional probability of assigning the j + 1th patient to treatment group A given

NA(n) = nA. Here pj(mj−1) is the probability from (1.10) for the jth patient when the

number of patients assigned to treatment group A is mj−1. The allocation probability

of the jth patient will be

φj =


pj(mj−1)

P (NA(n)=nA|NA(j)=mj−1+1)

P (NA(n)=nA|NA(j)=mj−1)
1 < j ≤ n;

pj
P (NA(n)=nA|Tj=1)

P (NA(n)=nA)
j = 1.

(1.15)

The exact form of P (NA(n) = nA|NA(j) = mj) for the BCD is provided by Pla-

madeala and Rosenberger (2012):

9

1. If 1 ≤ j < n and 0 ≤ mj < j/2, P (NA(n) = nA|NA(j) = mj) is given by



(
n−j

nA−mj

)
pnA−mjqn−j−nA+mj , mj ≤ nA < j −mj;

0.5pnA−mj

nA+mj−j∑
l=0

n− nA −mj − l
n− nA −mj + l

(
n− nA −mj + l

l

)
qn−2nA−1+l

+pnA−mjqn−j−nA+mj(
(

n−j
nA−mj

)
−
(

n−j
nA−j+mj

)
), j −mj ≤ nA < n/2;

pnA−mj

n−j−nA+mj∑
l=0

nA −mj − l
nA −mj + l

(
nA −mj + l

l

)
ql, nA = n/2;

0.5pn−nA−mj

n−j−nA+mj∑
l=0

nA −mj − l
nA −mj + l

(
nA −mj + l

l

)
q2nA−n−1+l,

n/2 < nA ≤ n− j +mj.

2. When 0 ≤ j < n and mj = j/2,

P (NA(n) = nA|NA(j) = mj) = P (NA(n−j) = nA−mj), mj ≤ nA ≤ n−j+mj.

10

3. When 1 ≤ j < n and j/2 < mj ≤ j, P (NA(n) = nA|NA(j) = mj) is



0.5pnA+mj−j
nA−mj∑
l=0

n− j − nA +mj − l
n− j − nA +mj + l

(
n− j − nA +mj + l

l

)
qn−2nA−1+l,

mj ≤ nA < n/2;

pn−j−nA+mj

nA−mj∑
l=0

n− j − nA +mj − l
n− j − nA +mj + l

(
n− j − nA +mj + l

l

)
ql, nA = n/2;

0.5pn−j−nA+mj

n−nA−mj∑
l=0

nA +mj − j − l
nA +mj − j + l

(
nA +mj − j + l

l

)
q2nA−n−1+l

+pn−j−nA+mjqnA−mj(
(

n−j
nA−mj

)
−
(

n−j
nA−j+mj

)
), n/2 < nA ≤ n−mj;(

n−j
nA−mj

)
pn−j−nA+mjqnA−mj , n−mj < nA ≤ n− j +mj.

1.3 Randomization Tests Under Regression Mod-

els

In many cases, there are also other factors affecting the treatment outcome of clinical

trials such as age and gender of patients. One way to analyze treatment effects

given those factors is to apply generalized linear regression (McCullagh and Nelder,

1989) while controlling those factors as covariates. Under the population model, the

traditional regression will be applied to estimate the effect of those prognostic factors

as well as the treatment effect simultaneously.

Let Y be the outcome variable, X the covariate, and T the treatment indicator

which is independent of X; and let h(·) be a known function, and η be the parameter

representing the linear relationship. The Generalized Linear Model (GLM) is built

as follows:

η = µ+ Tα +Xβ; (1.16)

11

E(Y |X,T) = h(η).

Under the population model, the null hypothesis of no treatment effect is α = 0.

In the case of linear regression, where h(η) = η, the estimate of α will be unbiased

whether X is included or not. But for certain non-linear regressions (e.g., Poisson

regression with count data), the estimator of α based on the traditional population

model may lead to supranominal test size when X is omitted because the estimat-

ed variance of the score function for α is biased. Gail, Tan and Piantadosi (1988)

proposed to use the randomization distribution of score residuals to estimate the vari-

ance; they employed three ways to examine the effect of model misspecification to the

population test and the proposed test: the size of the population tests under the false

population model, variance estimate ratios between the true variance and the false

variance, and the relative efficiency between the proposed test under the false model

and the test under the true model. The proposed test is considered to be efficient

most of the time.

In this thesis we extend Gail Tan and Piantadosi’s strategy (1988) of using ran-

domization distributions of score residuals. Instead of computing the scores under a

population model, we apply the randomization test regarding score residuals as fixed

outcomes.

The GLM is mainly used for analyzing data with independent observations for

fixed effects, and it is not suitable for correlated data. In clinical trials often there

are repeated measures for patients based on different times. Random effects could

be added to the GLM to account for the correlation; this type of model is called

the generalized linear mixed model (GLMM) which includes both fixed effects and

random effects .

Consider time as a variable in clinical trials data, then the GLMM is extended

12

from (1.16). Let τ be a time effect factor which is independent of X and T , and let b0

and b1 be the random intercept and random slope respectively. The linear predictor

under the GLMM has the following form

η = µ+ Tα +Xβ1 + τβ2 + Tτβ3 + b0 + τb1. (1.17)

Here β3 is the time-varying treatment effect indicating whether the treatment

effect changes over time for each patient. Under the traditional model, the null

hypothesis is β3 = 0 and one can estimate β3 by maximizing the marginal likelihood

function. However, from Gail, Tan and Piantadosi’s (1988) conclusion, the result of

population tests may not be reliable if the model is misspecified as the estimate of

the variance of β3 may not be valid. Our strategy is to apply a randomization test to

the estimated random slope b̂1 from (1.17).

Due to computational difficulties, the randomization test technique has not been

widely used and it was not systematically developed compared to traditional methods

(Ludbrook and Dudley, 1998). We seek to provide a user-friendly SAS macro package

to provide computing convenience for statisticians in pharmaceutical industries and

government agencies.

1.4 Structure of the Thesis

We apply randomization tests in the context of the generalized linear mixed model

to estimate time-varying treatment effect. The novel methodology develops a test

based on the random effect predictors from the regression model. We also seek to

develop SAS macro series to incorporate randomization tests, both unconditional and

conditional, and incorporate the randomization test via generalized linear models and

13

mixed models as well.

This thesis is organized as follows. In Chapter 2, we detail the algorithm of ran-

domization test under GLM using Monte Carlo simulation and compare the size of

randomization tests and population tests under different types of data when the orig-

inal regression model is misidentified. In Chapter 3, we describe a new method which

estimates time-varying treatment effects using a randomization test under the GLM-

M. In Chapter 4, we examine the operating characteristics of the randomization test

for longitudinal data by comparing the size and power to that of the population test.

Chapter 5 presents a series of SAS macros which which provides easy computation of

randomization tests. We draw conclusions in Chapter 6.

14

Chapter 2: Randomization Tests Under the

Generalized Linear Model

This chapter describes randomization tests in the context of the generalized linear

model (GLM). The first two sections provide details for computing p-values of the test

by random sampling from the unconditional and conditional reference sets. In the

third section we compare the size of the randomization test and population test when

a necessary covariate is omitted in the regression model. We provide an application of

randomization tests to survival data in the fourth section, where we also investigate

the power and type I error rate when the regression model has omitted covariate, the

survival time has outliers and the assumption of proportional hazard violated.

2.1 Unconditional Tests Under the Generalized Lin-

ear Model

Following the notation from Chapter 1 for the GLM, let X be a covariate for which

E(X) = 0, an let T = 1 if the patient is assigned to treatment group A, -1 if the

patient is assigned to treatment group B. Define θ(·) to be the canonical parameter

of an exponential family with first derivative θ′(·), φ as a scale parameter, d(·) and

b(·) as functions identifying the distribution of Y , and R(·) is a function that does

not contain any unknown parameters. The log likelihood of Y conditional on X and

15

T is as follows:

` = (d(φ))−1[Y θ(η)− b(θ(η)) +R(Y)] + c(Y, φ). (2.1)

The regression model is thus E(Y |X,T) = h(η) = h(µ + Tα + Xβ), where

h(η) = b′(θ(η)), where b′(·) is the first derivative. Under the null hypothesis H0

of the randomization test, there is no difference between treatment groups A and B.

Gail, Tan and Piantadosi (1988) proposed to construct randomization tests based on

the randomization distribution of the residuals r from the fitted model obtained from

maximum likelihood estimation.

Unlike the regular residuals of simple linear model, where r = y− ŷ, the residuals

under the GLM have different forms such as response residuals, Pearson residuals and

deviance residuals (McCullagh and Nelder, 1989, pp. (37-42)). The residual we use

here is the score residual (Gail, Tan and Piantadosi, 1988). Suppose φ is known, let

η̂0 = µ̂0 +Xβ̂0, where µ̂0 and β̂0 represent maximum likelihood estimator of µ and β

under the null hypothesis H0 : α = 0. The score function then is

U =
∂`

∂α

= (d(φ))−1
∑(

Y
∂θ

∂η

∂η

∂α
− ∂b

∂θ

∂θ

∂η

∂η

∂α

∣∣∣∣ η = η̂0

)

= (d(φ))−1
∑

Tθ′(η̂0)(Y − h(η̂0)).

Under the canonical link, θ′(η) = 1.

The residuals r have the following form:

r = (d(φ))−1θ′(η̂0)(Y − b′(θ(η̂0))) = (d(φ))−1θ′(η̂0)(Y − h(η̂0)).

16

As T and X are independent, under complete randomization, E(T) = 0 and

var(T) = 1. Given the condition thatE(∂`2/∂α∂µ) = E(∂`2/∂α∂β) = E(∂`2/∂µ∂β) =

0 for each element of β, the variance of the score function can be computed under the

randomization of r and has the form var(n−1/2U) = n−1
∑
r2. The test based on this

variance is efficient even when the covariates are omitted (Gail, Tan and Piantadosi,

1988). However, the variance is difficult to compute under the restricted randomiza-

tion procedures which are often applied in clinical trials; instead, we directly perform

the randomization test on the residuals. In this case, the treatment effect will be

assessed strictly according to the randomization procedure.

For the unconditional test, the p-value is computed by comparing test statistics

using all possible randomization assignments from the unconditional reference set

to the observed test statistic. A Monte Carlo approach can be employed to obtain

an unbiased estimator of the p-value (Zhang and Rosenberger, 2008). Let L be

the number of randomization sequences generated using Monte Carlo simulation,

where ajn(r) is a rank score based on residuals and observed treatment assignments,

Sobs =
∑n

j=1(ajn(r) − ā(r))Tj, j = 1, ...n; let Sl be the test statistic of the residuals

given the lth randomization sequence, l = 1, ...L. Then given residuals from the

GLM, the p-value of the unconditional randomization test is

p̂un ≈

L∑
l=1

I(|Sl| > |Sobs|)

L
(2.2)

As the indicator function I(|Sl| > |Sobs|) has a Bernoulli distribution with mean pun,

p̂un is unbiased with mean squared error (MSE) p̂un(1− p̂un)/L. The required number

of randomization sequences L is at least 2500 to ensure that the MSE less than 0.0001

17

(Zhang and Rosenberger, 2008).

2.2 Conditional Tests Under the Generalized Lin-

ear Model

Plamadeala and Rosenberger (2012) describe a method for computation of conditional

randomization tests that reduces the computational complexity of the problem by

generating Monte Carlo sequences directly from the conditional reference set. For the

conditional test, nA is observed from the data and NA(k) is the number of patients

assigned to treatment A at the kth randomized sequence, k = 1, ...K. Here K has

to be large enough so that we can choose all possible sequences given NA(k) = nA.

Then the conditional p-value (Zhang and Rosenberger, 2008) is estimated as

p̂con ≈

K∑
k=1

I(|Sk| > |Sobs|, NA(k) = nA)

K∑
k=1

I(NA(k) = nA)

.

The required number of sequences K depends on the randomization procedure and

sample size; using Monte Carlo sampling from the unconditional reference set would

be computationally infeasible if the sample size is large and the treatment assignments

are highly imbalanced (Plamadeala and Rosenberger, 2012).

If we generate sequences directly from the conditional reference set, let Lcon be

the number of randomization sequences required, the p-value of the conditional test

18

can be estimated as

p̂con ≈

Lcon∑
l=1

I(|Sl| > |Sobs|)

Lcon
. (2.3)

The p-value estimator is unbiased with MSE = p̂con(1−p̂con)/Lcon. Under a constraint

on the size of the MSE or on the precision of the p-value estimator, Plamadeala and

Rosenberger (2012) determine that Lcon should be in the range of 2, 500 to less than

20, 000, which is computationally feasible in SAS or R software.

Now let pj(mj) = P (Tj = 1|NA(j − 1) = mj−1). Then the rule

φj =



pj(mj−1)
P (NA(n) = nA|NA(j) = mj)

P (NA(n) = nA|NA(j − 1) = mj−1)
, 1 < j ≤ n,

pj
P (NA(n) = nA|Tj = 1)

P (NA(n) = nA)
, j = 1,

is used to sample directly from the conditional reference set.

To compute both p-values of conditional and unconditional tests, it is important

to clarify the algorithm for generating randomization sequences. For the uncondition-

al test, randomization tests for complete randomization, PBD, BCD were reviewed

in Chapter 1, along with the method of generating randomization sequences for con-

ditional tests under the BCD.

The procedure φj for the conditional test under complete randomization is the

same as the random allocation rule (Rosenberger and Lachin, 2002), where nA is the

predetermined number of patients assigned to group A.

19

Here we detail the randomization method for conditional tests under the PBD.

The balance of patients in the two groups depends on the relationship between block

size and total patients. If the number of patients can be evenly divided by block size

given that both are even numbers, then perfect balance will be achieved. In this case

the conditional test will be equivalent to the unconditional test, as NA is initially

fixed to be nA. On the other hand, if the last block is not fully filled, the conditional

test will be different from the unconditional test.

• Let pij be the probability of assigning jth patient to treatment group A at ith

block, NA(j) be the number of patients assigned to treatment group A at jth

assignment, and s be the block size, i = 1, ...S and j = 1, ...n. If we use RAR

in each block, for the conditional test we have:

If i < S,

pi,j =


1
2

j = 1;

s
2
−(NA(j−1)−(i−1) s

2
)

s−(j−(i−1)∗s) 1 < j < n, 1 ≤ i ≤ S − 1.

(2.4)

If i = S,

pi,j =


0 NA(j − 1) = nA;

s
2
−(NA(j−1)−(i−1) s

2
)

s−(j−(i−1)∗s) 0 < nA −NA(j − 1) < n− j + 1;

1 nA −NA(j − 1) = n− j + 1.

(2.5)

20

• Under the TBD, the probability of assigning patients to group A is given by:

If i < S,

pij =


0 NA(j − 1) = s

2
;

1
2

max{(NA(j − 1)− (i) s
2
), (NB(j − 1)− (i− 1) s

2
)} < s

2
;

1 NB(j − 1) = s
2
.

(2.6)

If i = S,

pij =


0 NA(j − 1) = nA;

1
2

0 < nA −NA(j) < n− j + 1;

1 nA −NA(j − 1) = n− j + 1.

(2.7)

2.3 Monte Carlo Simulation for the Randomiza-

tion Test Under the Generalized Linear Model

In this section, we compare the sizes of both the population test and randomization

test when a necessary covariate is omitted under the GLM. Assume the true model

is η = µ+ Tα+Xβ, where P (X = 1) = P (X = −1) = 0.5, α = 0, and sample size n

is 100. We consider the following distributions: normal, Poisson multiplicative, Pois-

son additive, exponential multiplicative, exponential reciprocal, exponential additive,

21

Bernoulli logistic and Bernoulli additive. For the Bernoulli additive distribution, we

have µ = 0.5, β = 0.25, and for other additive distributions, we have µ = 1, β = 0.5.

The rest of the distributions have µ = 0 and β = 0.5. We consider the misspecified

model is η∗ = µ∗ where X is omitted. All tests are two-sided with significance level

0.05. For all conditional randomization tests, we have nA = 46.

The following steps are used for computing the population test:

1. Generate data under the true model where η = µ+Xβ with sample size n and

obtain the MLE µ̂∗ and η̂∗ using the misspecified model η∗ = µ∗.

2. Compute the score test statistic Z∗ = U(V̂ n)−
1
2 given η̂∗, where the score

function is computed by U = ∂`/∂α, and the estimation of the variance is

computed by V̂ = −n−1
∑

(∂2`/∂α2) given the condition that E(∂`2/∂α∂µ) =

E(∂`2/∂α∂β) = 0.

3. Replicate 1-2 m times, and compute the proportion of times |Z∗| ≥ 1.96, this

is the size of the population test.

For the randomization test, we use the following algorithm:

• Compute the critical value Scr.

1. Generate one pass data with initial parameter settings under the true mod-

el, and obtain η̂ under the misspecified model, compute the score residuals

based on (2.3).

2. Generate L sequences of treatment designs from the unconditional refer-

ence set, and merge each sequence to the residuals obtained from 1.

3. Compute the linear rank statistic for each sequence (for normally distribut-

ed data we use van der Waerden scores and for other types of data we use

Wilcoxon scores).

22

4. Order the L test statistics and find the critical value under the significance

level, we consider this statistic as Scr.

• Compute the size of the test.

1. Similar to finding the Scr, generate L randomization sequences, and merge

each sequence to the residuals obtained from regression of the one pass

data.

2. Compute the linear rank statistic S for each sequence.

3. Replicate 1-2 m times and find the proportion of times |S| ≥ |Scr|.

The following simulation results are obtained using SAS/STAT software with ver-

sion 9.3. Table 2.1 shows simulations for the population tests at the significance

level of 0.05. Except for the Bernoulli additive distribution and the Bernoulli logistic

distribution, the size of the test under all other types of distribution exceeds 0.05,

especially for exponential distribution families where the size is close to 0.1. This

indicates that if there is misidentification of covariates, the assessment of treatment

effect will be affected if we use the population method.

Tables 2.2-2.8 show the unconditional and conditional randomization tests under

various randomization procedures. Figure 2.1 shows the comparison between the tra-

ditional test and randomization tests under the misspecified model. As the treatment

effect is evaluated based on randomization only, the size of the randomization test

remains around 0.05 for all types of distributions. This indicates that the random-

ization test is efficient in assessing the treatment effect even when the covariate of

the regression is omitted because the test is not dependent on other covariates but

depends on the randomization procedure and design only.

23

Figure 2.1: Size of the population test and randomization tests under GLM when
needed covariate is omitted.

24

Table 2.1: Size of the population test when the needed covariate is omitted (m = 5000).

Distribution θ(η) h(η) Size (95% CI)
Normal η η 0.081

(0.073, 0.089)
Poisson Multiplicative η eη 0.079

(0.071, 0.086)
Poisson Additive log(η) η 0.079

(0.071, 0.086)
Exponential Multiplicative −eη e−η 0.135

(0.126, 0.144)
Exponential Reciprocal −η η−1 0.093

(0.085, 0.101)
Exponential Additive −η−1 η 0.103

(0.095, 0.101)
Bernoulli Logistic η eη(1 + eη)−1 0.054

(0.048, 0.060)
Bernoulli Additive log (η/(1− η)) η 0.050

(0.044, 0.056)

2.4 Randomization Tests for Survival Data Under

the Regression Model

In this section, we first introduce approaches for survival analysis, then we give algo-

rithms for computing randomization tests under two commonly used survival models.

We give two examples by computing p-values using traditional tests and randomiza-

tion tests. Finally we simulate survival data and compare the size and power between

these two tests under three scenarios: first when the necessary covariate is omitted,

second is when there are outliers for the survival time, and third is when the regression

model is misspecified.

25

Table 2.2: Size of the unconditional randomization test for complete randomization,
L = 2500, m = 5000.

Distribution θ(η) h(η) Size (95% CI)
Normal η η 0.048

(0.042, 0.054)
Poisson Multiplicative η eη 0.055

(0.049, 0.061)
Poisson Additive log(η) η 0.049

(0.043, 0.055)
Exponential Multiplicative −eη e−η 0.049

(0.043, 0.055)
Exponential Reciprocal −η η−1 0.047

(0.041, 0.053)
Exponential Additive −η−1 η 0.053

(0.047, 0.059)
Bernoulli Logistic η eη(1 + eη)−1 0.046

(0.040, 0.052)
Bernoulli Additive log (η/(1− η)) η 0.048

(0.042, 0.054)

26

Table 2.3: Size of the unconditional randomization test for BCD(2/3), L = 2500,
m = 5000.

Distribution θ(η) h(η) Size (95% CI)
Normal η η 0.051

(0.045, 0.057)
Poisson Multiplicative η eη 0.056

(0.050, 0.062)
Poisson Additive log(η) η 0.048

(0.042, 0.054)
Exponential Multiplicative −eη e−η 0.055

(0.049, 0.061)
Exponential Reciprocal −η η−1 0.055

(0.049, 0.061)
Exponential Additive −η−1 η 0.052

(0.046, 0.058)
Bernoulli Logistic η eη(1 + eη)−1 0.051

(0.045, 0.057)
Bernoulli Additive log (η/(1− η)) η 0.050

(0.044, 0.056)

27

Table 2.4: Size of the unconditional randomization test for PBD under RAR, L =
2500, m = 5000.

Distribution θ(η) h(η) Size(95% CI)
Normal η η 0.043

(0.037, 0.049)
Poisson Multiplicative η eη 0.049

(0.043, 0.055)
Poisson Additive log(η) η 0.051

(0.045, 0.057)
Exponential Multiplicative −eη e−η 0.053

(0.047, 0.059)
Exponential Reciprocal −η η−1 0.052

(0.046, 0.058)
Exponential Additive −η−1 η 0.045

(0.039, 0.050)
Bernoulli Logistic η eη(1 + eη)−1 0.055

(0.049, 0.061)
Bernoulli Additive log (η/(1− η)) η 0.047

(0.041, 0.053)

28

Table 2.5: Size of the unconditional randomization test for PBD under TBD, L =
2500, m = 5000.

Distribution θ(η) h(η) Size(95% CI)
Normal η η 0.048

(0.042, 0.054)
Poisson Multiplicative η eη 0.051

(0.045, 0.057)
Poisson Additive log(η) η 0.048

(0.042, 0.054)
Exponential Multiplicative −eη e−η 0.059

(0.052, 0.066)
Exponential Reciprocal −η η−1 0.049

(0.043, 0.055)
Exponential Additive −η−1 η 0.044

(0.038, 0.050)
Bernoulli Logistic η eη(1 + eη)−1 0.056

(0.050, 0.062)
Bernoulli Additive log (η/(1− η)) η 0.041

(0.036, 0.046)

29

Table 2.6: Size of the conditional randomization test for complete randomization,
Lcon = 2500, m = 5000, nA = 46.

Distribution θ(η) h(η) Size (95% CI)
Normal η η 0.048

(0.042, 0.054)
Poisson Multiplicative η eη 0.050

(0.044, 0.056)
Poisson Additive log(η) η 0.054

(0.048, 0.060)
Exponential Multiplicative −eη e−η 0.047

(0.041, 0.053)
Exponential Reciprocal −η η−1 0.048

(0.042, 0.054)
Exponential Additive −η−1 η 0.051

(0.045, 0.057)
Bernoulli Logistic η eη(1 + eη)−1 0.050

(0.044, 0.056)
Bernoulli Additive log (η/(1− η)) η 0.046

(0.040, 0.052)

30

Table 2.7: Size of the conditional randomization test for BCD (2/3), Lcon = 2500,
m = 5000, nA = 46.

Distribution θ(η) h(η) Size (95% CI)
Normal η η 0.052

(0.046, 0.058)
Poisson Multiplicative η eη 0.046

(0.040, 0.052)
Poisson Additive log(η) η 0.044

(0.038, 0.050)
Exponential Multiplicative −eη e−η 0.049

(0.043, 0.055)
Exponential Reciprocal −η η−1 0.050

(0.044, 0.056)
Exponential Additive −η−1 η 0.056

(0.050, 0.062)
Bernoulli Logistic η eη(1 + eη)−1 0.049

(0.043, 0.055)
Bernoulli Additive log (η/(1− η)) η 0.047

(0.041, 0.053)

31

Table 2.8: Size of the conditional randomization test for PBD under RAR, Lcon =
2500, m = 5000, nA = 46.

Distribution θ(η) h(η) Size (95% CI)
Normal η η 0.046

(0.040, 0.052)
Poisson Multiplicative η eη 0.054

(0.048, 0.060)
Poisson Additive log(η) η 0.052

(0.046, 0.058)
Exponential Multiplicative −eη e−η 0.050

(0.044, 0.056)
Exponential Reciprocal −η η−1 0.053

(0.047, 0.059)
Exponential Additive −η−1 η 0.047

(0.041, 0.053)
Bernoulli Logistic η eη(1 + eη)−1 0.045

(0.039, 0.051)
Bernoulli Additive log (η/(1− η)) η 0.046

(0.040, 0.052)

32

Table 2.9: Size of the conditional randomization tests for PBD under TBD, Lcon =
2500, m = 5000, nA = 46.

Distribution θ(η) h(η) Size (95% CI)
Normal η η 0.048

(0.042, 0.054)
Poisson Multiplicative η eη 0.047

(0.041, 0.053)
Poisson Additive log(η) η 0.051

(0.045, 0.057)
Exponential Multiplicative −eη e−η 0.053

(0.047, 0.059)
Exponential Reciprocal −η η−1 0.047

(0.041, 0.053)
Exponential Additive −η−1 η 0.043

(0.037, 0.049)
Bernoulli Logistic η eη(1 + eη)−1 0.053

(0.047, 0.059)
Bernoulli Additive log (η/(1− η)) η 0.050

(0.044, 0.056)

33

2.4.1 Approaches to Survival Analysis

Survival analysis is a class of statistical procedures that is applied to the data where

the outcome variable is the time to the occurrence of events. Assume in a clinical

study a patient with treatment T and covariate X has failure time W . Because of

potential right censoring, we observe Y = min(W,C) and ∆ = I(W ≤ C), where C is

the censoring time. The censoring indicator ∆ takes value 1 if we observe the failure

time and takes value 0 otherwise.

We define two functions as follows: let t be a specified time, then the survival

function is the probability that W is longer than t:

S(t) = P (W > t).

The hazard function is given by

λ(t) = lim
δ→0

P (t ≤ W < t+ δ|W ≥ t)

δ
.

Regression models are often used if there are several covariates to be examined

and the data fit certain assumptions. We consider two survival models in this thesis,

namely, the Cox proportional hazards (PH) model and the accelerated failure time

(AFT) model. The PH model gives the expression of the hazard function as a product

of two components: a baseline hazard function which contains information of observed

time only, and a component which contains information on covariates only. Let λ0(·)

be an unspecified baseline hazard, and Λ0(·) be the corresponding baseline cumulative

hazard function. Given the linear predictor η = Tα + Xβ, the hazard function and

34

survival function at time t for the PH model are :

λ(t|T,X) = λ0(t) exp(η), (2.8)

and

S(t|T,X) = exp(−Λ0(t) exp(η)). (2.9)

We maximize the partial likelihood function based on n independently and iden-

tically distributed observations {(Yi,∆i, Ti, Xi), i = 1, ...n} to obtain the maximum

likelihood estimators of (α, β), denoted by (α̂, β̂). Note that the partial likelihood

function is the profile likelihood function of (α, β), in which the unspecified baseline

hazard is profiled out. Inference can be carried out by applying the Wald, score or

likelihood ratio tests.

The key assumption of the PH model is that the hazard ratio, the hazard function

of one patient divided by the hazard of another patient is constant over time. One

can use log(− log) of the empirically estimated survival curves (e.g. Kaplan-Meier

estimator) to test the proportional hazard assumption; if these curves are parallel

over the time, then the PH model is appropriate.

The AFT model is used when the failure time W is assumed to have a certain

distribution, and the impact of the covariates are proportional with respect to the

time t. Common distributions under the AFT model include exponential, Weibull,

lognormal and log-logistic. Let S0(t) be the baseline survival, i = 1, ...n. The common

distributions under the AFT model include exponential, Weibull, lognormal and log-

logistic. The log form of the distribution parameter is usually represented by the

regression parameters and covariates. Therefore, the AFT model specifies that the

35

conditional survival function of W given T and X takes the form

S(t|T,X) = S0(t/ exp(η)), (2.10)

where η is the linear predictor defined above.

For a given distribution, if the hazard function satisfies both assumptions of the PH

model and the AFT model, such as the Weibull distribution, then these two models

are equivalent; the difference is only the way we parameterize the regression and

distribution parameters. However, for some distributions like the log-logistic, only the

AFT model can be accommodated. The AFT model for the log-logistic distribution

is also called the proportional odds model, as its odds ratio is constant over time

but not hazard ratio. Under the proportional odds model, the log of the variable W

follows a logistic distribution. Let ρ be a scale parameter and η = µ+Tα+Xβ; then

the survival function and hazard function are given by

S(t|T,X) =
1

1 + exp(η)tρ
(2.11)

and

λ(t|T,X) =
exp(η)ρtρ−1

1 + exp(η)tρ
. (2.12)

The assumption of the proportional odds model can be examined by plotting

log((1− S(t))/S(t)) versus log(t) using Kaplan-Meier estimators.

Now we detail the algorithm for randomization tests under the PH model and AFT

models. Following the strategy for performing randomization tests under the GLM,

here we propose to use residuals from those regressions as the outcome variable. It can

be shown E(∆|T,X) = Λ(Y |T,X) (Breslow, 1978), where Λ(t|T,X) is the conditional

36

hazard function of W given T and X. The martingale residuals under the PH model

and the AFT model are given by ∆ − Λ̂0(Y) exp(η̂) and ∆ − (− log S̃0(Y/ exp(η̃)),

where (Λ̂0, η̂) and (S̃0, η̃) are the maximum likelihood estimators of (Λ0, η) and (S0, η),

respectively.

To compute the p-value under a specified procedure, we use following steps:

1. Perform the regression (either PH or AFT model) by assuming α = 0, obtain

the residuals from the regression.

2. Compute the linear rank test statistic with corresponding treatment assign-

ments; this is the observed test statistic.

3. Generate L randomization sequences, merge each one to the residuals from step

1, compute the linear rank test statistic for each sequence. The proportion

of times that the test statistics greater than the observed statistic will be the

estimated p-value.

2.4.2 Examples of Applying Randomization Test Under the

Proportional Hazards Model

In this section, we provide two examples of comparing results for randomization

tests under the PH model and the traditional model-based approach ignoring the

randomization procedure.

37

Example 1. The Remission Data

The data for the first example is the remission data (Freireich et al., 1963), which is

from a study that assessed the impact of a maintenance therapy 6-Mercaptopurine

for prolonging the duration of steroid-induced remission to patients under the age

of 20 with acute leukemia. Patients in remission are assigned into either treatment

group with 6-Mercaptopurine therapy or placebo group. There were 92 patients who

entered the study, and the study was stopped after analysis of first 42 patients (21

pairs). The outcome variable of this data is the remission survival time of patients,

the independent covariates include the log form of white blood count (WBC), which

has been shown that the initial count of blood cells is negatively related to the survival

of leukemia patients, the censoring indicator (1 indicates censoring and 0 indicates

failure), and the treatment indicator (1 indicates the patient is in the treatment group

and 0 is in the placebo group) (Kleinbaum and Klein, 2005).

For the traditional population-based test, we assume patients are randomly as-

signed to the treatment group and placebo group. We fit the PH model based on

(2.8) and (2.9). Under the null hypothesis, α = 0. where X is the log of WBC, T is

the treatment indicator. Using the PHREG procedure in SAS, we obtain the MLE

α̂, the p-value for the test is computed based on comparing a Wald test statistic to

critical values from chi squared distribution.

For the randomization test, we apply the algorithm detailed in Section 2.4.1. We

assume the PBD with block size 2 is used as the randomization procedure, and RAR

is applied within each block.

Example 2. The Ovarian Cancer Data

The second example is from a clinical trial of a single chemotherapy vs. combined

chemotherapy for patients with ovarian cancer (Edmonson et al., 1979). This trial

38

Table 2.10: Comparison of p-values between two tests.

Data Traditional Test Randomization Test
Remission 0.0020 0.0010
Ovarian Cancer 0.0632 0.2202

consisted of 26 female patients with minimal residual disease and who experienced

surgery of removing tumors greater than 2 cm in diameters. Patients were randomized

into treatment groups after the surgery. The outcome variable is the survival time in

days following the treatment assignment; other variables in the data include age of

patients, the censoring indicator, treatment indicator (1 is the combined therapy, and

0 is single therapy), the extent of the residual disease (1 is incomplete, 2 is complete),

and the performance (1 is good and 2 is poor).

For the traditional test, we fit the AFT model based on (2.11) and (2.12) under

the Weibull distribution (Collett, 2003). Here, we only include age in X as other

covariances do not have significant impact on the survival time, T is the treatment

indicator. We obtain the p-value using the LIFEREG procedure in SAS.

For the randomization test, we also apply the algorithm detailed in Section 2.4.1.

We assume conditional complete randomization is applied for the treatment assign-

ment.

Results

Table 2.10 shows the results from two tests. For the remission data, both the tradi-

tional test and the randomization test indicate there is a significant treatment effect,

while for the ovarian cancer data, both tests indicate there is no significant different

between the two treatment groups.

39

2.4.3 Simulation of the Randomization Tests Under Misspec-

ified Survival Models

To compare the efficiency of the randomization and parametric test, we consider three

different cases of simulated survival data.

In the first set of simulation, we generate the failure time from

λ(t|T,X) = exp(Tα +Xβ),

where T = 1 for the treatment group and T = 0 for the control group, and X is

a Bernoulli random variable with success probability 1/2. we compare the size and

power of parametric and randomization tests when X is omitted under the PH model.

In the second simulation, we replace 10 percent of the survival times generated

from the above model by standard lognormal outliers and analyze data under the PH

model.

Int the third simulation, we generate failure time data from the proportional odds

model

S(t|T,X) =
1

1 + exp(3 + Tα +Xβ)t
, (2.13)

and analyze data under the PH model.

In all simulations, we set β = 2 and the treatment effect α is set to be 0 under the

null hypothesis and varies from 1 to 3 under the alternative. The censoring time is

from an exponential distribution with mean 1 and varies from 5 percent to 20 percent

under all scenarios. For each simulation setting, we generate 5000 replications each

with 60 subjects. The hypothesis testing results are based on two-sided significance

level of 0.05. For all conditional randomization tests, we use nA = 30.

40

We apply the following steps to compute the size and power of the traditional

tests for three scenarios:

• Compute the size and power of the traditional test.

1. Generate data set under a specific hypothetical value of α, for the third

scenario, we generate data based on proportional odds model.

2. Obtain p-values for α̂ when we use the misspecified models. For the first

scenario, we perform the regression without β, for the second and third

scenario, we perform the regression using the PH model.

3. Replicating step 1-2 m times, the proportion of times that the p-value is

less than 0.05 is the estimated size or power of the test.

• Compute the size and power of the randomization test:

1. We follow Section 2.3 to compute the size of the test, but use the martingale

residuals obtained from the regression model.

2. We using following steps to compute the power of the test:

(a) For all scenarios, generate data under the alternative hypothesis, ob-

tain the martingale residuals under α = 0 and misspecified models.

(b) Compute the linear rank test statistic using Wilcoxon scores based

on residuals and the corresponding treatment assignment, this is the

observed test statistic Sobs.

(c) Generate L randomization sequences, merge residuals with each se-

quence. We obtain L rank test statistic S, the proportion of times S

greater than the observed one will be the estimated p-value.

(d) Replicate 1-3 for m times, compute the proportion of times p ≤ 0.05;

this is the estimated power of the test.

41

Table 2.11: Size and power of the traditional and randomization tests under the true
PH model (L = 2500, m = 5000).

Test Size (95% CI) Power (α = 1) (95% CI) Power (α = 1.5) (95% CI)
Traditional 0.0496 0.8208 0.9952

(0.0436,0.0556) (0.8101, 0.8314) (0.9933, 0.9971)
Randomization (Complete unconditional) 0.0373 0.5158 0.8796

(0.0320,0.0426) (0.5019,0.5297) (0.8706, 0.8886)
Randomization (Complete conditional) 0.0520 0.6074 0.9350

(0.0458,0.0581) (0.5939, 0.6209) (0.9282, 0.9418)
Randomization (BCD(2/3) unconditional) 0.0443 0.6032 0.9304

(0.0386,0.0500) (0.5896, 0.6168) (0.9233, 0.9374)
Randomization (BCD(2/3) conditional) 0.0420 0.5828 0.9184

(0.0364,0.0476) (0.5691, 0.5964) (0.9108, 0.9260)

Tables 2.11-2.15, Figure 2.2-2.4 give the simulation results for the size and power

under different situations. The size of all the tests is close to the nominal significance

level, except when there are lognormal outliers, in which case the size of the test is

significantly inflated. The power of the traditional test is superior under the true

models for all cases, and it dropped significantly when the covariate is omitted under

the proportional hazards model with α = 1 and when there are contaminants for

the survival time under the PH model with α = 2 and α = 3. These finding are

consistent with those reported in Lakagos and Schoenfeld (1984) and Morgan, Lakagos

and Schoenfeld (1986). When the true model is the proportional odds model and

examined as the PH model, the power of the traditional test is only slightly affected,

the possible reason is that sometimes the odds ratio is similar to the hazard ratio.

For the randomization test, the size of the test is below the nominal level for all

cases. The power of the tests is not significantly affected when there are omitted

covariates. All the test outperform the traditional test when there are lognormal

contaminants(Table 2.13). This confirms that on some occasions the randomization

test might be a good alternative to the traditional test if there is misidentification for

the modeling in survival analysis.

42

Table 2.12: Size and power of the traditional and randomization tests with omitted
covariates under the PH model (L = 2500, m = 5000).

Test Size (95% CI) Power (α = 1) (95% CI) Power (α = 1.5) (95% CI)
Traditional 0.0504 0.5788 0.9174

(0.0443,0.0564) (0.5651, 0.5925) (0.9098, 0.9250)
Randomization (Complete unconditional) 0.0418 0.4200 0.7812

(0.0363,0.0474) (0.4063, 0.4337) (0.7697, 0.7927)
Randomization (Complete conditional) 0.0446 0.5708 0.8596

(0.0389,0.0503) (0.5571, 0.5841) (0.8490, 0.8692)
Randomization (BCD(2/3) unconditional) 0.0380 0.4904 0.8522

(0.0327,0.0432) (0.4765, 0.5043) (0.8424, 0.8620)
Randomization (BCD(2/3) conditional) 0.0394 0.4558 0.8200

(0.0340,0.0448) (0.4420, 0.4696) (0.8094, 0.8306)

Figure 2.2: Size and Power of the traditional and randomization tests under the PH
model with missing covariate.

43

Table 2.13: Size and power of the traditional and randomization tests with lognormal
contaminants under the PH model (L = 2500, m = 5000).

Test Size (95% CI) Power (α = 2) (95% CI) Power (α = 3) (95% CI)
Traditional 0.1608 0.3018 0.5358

(0.1506,0.1710) (0.2891, 0.3145) (0.5220, 0.5496)
Randomization (Complete unconditional) 0.0403 0.5002 0.7948

(0.0348,0.0458) (0.4863, 0.5141) (0.7836, 0.8060)
Randomization (Complete conditional) 0.0396 0.5774 0.8418

(0.0342,0.0450) (0.5577, 0.5851) (0.8317, 0.8519)
Randomization (BCD(2/3) unconditional) 0.0388 0.5184 0.8012

(0.0334,0.0451) (0.5046, 0.5322) (0.7901, 0.8122)
Randomization (BCD(2/3) conditional) 0.0386 0.4542 0.7526

(0.0332,0.0439) (0.4404, 0.4640) (0.7406, 0.7645)

Figure 2.3: Size and Power of the traditional and randomization tests under the PH
model with 10 % lognormal outliers for the response.

44

Table 2.14: Size and power of the traditional and randomization tests under the true
proportional odds model (L = 2500, m = 5000).

Test Size (95% CI) Power (α = 1.5) (95% CI) Power (α = 2) (95% CI)
Traditional 0.0582 0.8426 0.9730

(0.0571,0.0647) (0.8325, 0.8527) (0.9685, 0.9775)
Randomization (Complete unconditional) 0.0410 0.7592 0.9352

(0.0355,0.0465) (0.7473, 0.7711) (0.9284, 0.9420)
Randomization (Complete conditional) 0.0449 0.7702 0.9430

(0.0392,0.0506) (0.7585, 0.7819) (0.9366, 0.9494)
Randomization (BCD(2/3) unconditional) 0.0469 0.7698 0.9446

(0.0410,0.0528) (0.7581, 0.7815) (0.9383, 0.9509)
Randomization (BCD(2/3) conditional) 0.0414 0.7696 0.9374

(0.0359,0.0469) (0.7579, 0.7813) (0.9307, 0.9441)

Table 2.15: Size and power of the traditional and randomization tests under the mis-
specified modeling assumption (L = 2500, m = 5000).

Test Size (95% CI) Power (α = 1.5) (95% CI) Power (α = 2) (95% CI)
Traditional 0.0610 0.7352 0.9196

(0.0544,0.0676) (0.7230, 0.7474) (0.9121, 0.9271)
Randomization (Complete unconditional) 0.0438 0.7472 0.9306

(0.0381,0.0495) (0.7352, 0.7592) (0.9236, 0.9376)
Randomization (Complete conditional) 0.0455 0.7482 0.9330

(0.0397,0.0513) (0.7362, 0.7602) (0.9261, 0.9399)
Randomization (BCD(2/3) unconditional) 0.0413 0.7516 0.9366

(0.0358,0.0469) (0.7396, 0.7696) (0.9298, 0.9433)
Randomization (BCD(2/3) conditional) 0.0406 0.7480 0.9212

(0.0351,0.0460) (0.7360, 0.7600) (0.9137, 0.9287)

45

Figure 2.4: Size and Power of the traditional and randomization tests with misspeci-
fied modeling assumption.

46

Chapter 3: Randomization Tests Under the

Generalized Linear Mixed Model

In this chapter we provide the algorithm for computing randomization tests for the

generalized linear mixed model (GLMM). In particular, we investigate the treatment

effect variation over the repeated measures, such as whether a treatment has time

varying effect for a patient. In the first section we review inference based on tradi-

tional maximum likelihood estimation. In the second section, we use the predicted

random slope from the GLMM and perform randomization tests. We provide details

of estimating p-values for both unconditional and conditional randomization tests.

3.1 Traditional Inference Under the Generalized

Linear Mixed Model

The GLMM is an extension of the GLM for longitudinal data or clustered data which

incorporates random effects. The random effects allow for correlation between the

repeated observations within each subject and variation between subjects. The fol-

lowings are characteristics of the GLMM:

1. Let Yij be the response variable for jth measurement occasion of ith subject,

where i = 1, ...n, j = 1, ...ni. Conditional on a q×1 vector of random effects bi,

Yi = (Yi,1, ...Yi,ni
) are independent and each belongs to the exponential family.

47

2. Let Xi be a ni×p matrix, Zi be a ni×q design matrix, µ be a constant intercept,

Ti = 1 if patient i is assigned to group A, 0 if patient i is assigned to group

B. Let h(·) be a known function, v(·) be a variance function and φ be a scale

parameter. Then we have

ηi = µ+ Tiα + Xiβ + Zibi, (3.1)

where

E(Yij|Xij, Ti,bi) = h(ηij) (3.2)

and

var(Yij|Xij, Ti,bi) = v(h(ηij))φ. (3.3)

In the above equations, µ, α, β are considered as fixed-effects parameters, Xij

and ηij denote the covatiates and linear predictor of the jth occasion for the ith

subject.

3. The random effects are usually assumed to be multivariate normal with mean

zero and a q × q variance-covariance matrix G.

As it is of interest to relate the treatment effect to the repeated measures, let

Xi = (X1i, τij, τij × Ti), Zi = (1, τ), bi = (b0i, b1i)
′, where X1i is some covariate, τij is

the jth time point for the ith patient, and b0i and b1i are the random intercept and

the random slope for the ith patient, respectively. Then the linear predictor can be

written as

ηij = µ+ Tiα +X1iβ1 + τijβ2 + τijTiβ3 + b0i + τijb1i. (3.4)

Under the null hypothesis of the population test, there is no varying treatment

via repeated measures, and we have β3 = 0. As the random effects are not observed,

48

we can estimate (β,G) based on the likelihood function, given by

L(β, φ,G) =
n∏
i=1

∫
fY (Yi|bi)fb(bi)dbi (3.5)

where fY is the conditional density function for the response variables and fb is

the density function of the random effects. This likelihood function is obtained by

integrating out bi; it depends on the variance-covariance of bi but not the unobserved

bi (Fitzmaurice, Laird and Ware 2004). Numerical integration techniques have to be

used to obtain the solution of the likelihood function. There is also no simple solution

for the variance of β̂ which strongly depends on the variance-covariance of the random

effects. For the population tests, the test statistic Q = β̂3/ŜE(β̂3) approximately

follows a t-distribution given estimated G and φ. The robustness of the test for β3

then depends on the accuracy of the specified variance-covariance structure of the

random effects, the distribution of the response, and whether all other assumptions

are valid.

Many studies have evaluated how inference for the fixed effects is affected if there

is misspecification for the GLMM. For balanced and complete data, in general the

estimation of β may have negligible bias if the distribution of the random effects is

misspecified (Fitzmaurice, Laird and Ware 2004, Chen, Zhang and Davidian 2002, A-

gresti, Caffo and Ohman-Strickland 2004). However, misidentification of the random

effects distribution can bias the estimators of the variance-covariance parameters.

Litière, Alonso and Molenberghs (2007) found that the type I error rate rarely ex-

ceeds the significance level under various misspecifications of the random effects, but

power could be seriously affected, depending on the shape and the variance of the

underlying random effects distribution. Jacqmin-Gadda et al. (2007) investigated

49

the consequences to the fixed effects when the error distribution is misspecified for

the special case of the GLMM where the response are normally distributed. They

concluded that the inference is robust when errors are non-normal or heteroscedastic,

except if there is correlation between the error variance and covariates in the model.

The estimators of the fixed effects are found to be slightly biased if the errors are

correlated.

3.2 Unconditional Tests and Conditional Tests Un-

der the Generalized Linear Mixed Model

To avoid the distributional and variance-covariance assumptions inherent in the tra-

ditional population-based inference procedures, we propose to use a randomization

test to detect the change of the treatment effects with repeated measures considering

the predicted random slope as the fixed outcome.

Given maximum likelihood estimators of β, φ and G, the random effects bi can

be predicted as follows:

b̂i = E(bi|Yi, β̂, φ̂, Ĝ). (3.6)

This is the conditional mean of bi from the ith subject, the estimated fixed effects

and variance parameters.

Under the null hypothesis of the randomization test, for each subject there is no

difference in the repeated measure changes regardless of which treatment is assigned.

The algorithm for estimating p-values for unconditional tests and conditional tests

under the GLMM is similar to the algorithm under the GLM:

1. Following (3.4), for a given data set, perform the regression analysis assuming

50

β3 = 0 and obtain the estimates of β, φ and G.

2. Predict the random slope b1i based on (3.6) given the response and β̂, φ̂, Ĝ for

each subject i.

3. Compute the rank test statistic given b̂1i and corresponding treatment assign-

ments; this is the observed test statistic Sobs.

4. Generate L randomization sequences. For unconditional tests, these sequences

are from unconditional reference set; for conditional tests, these sequences are

from conditional reference set. Compute the rank tests statistic S given b̂1i for

each sequence.

5. Given the reference set, the p-value is estimated by using (2.2) or (2.3).

51

Chapter 4: Application of Randomization Tests to

Longitudinal Data

We propose to apply both unconditional and conditional randomization tests to a

longitudinal study where data are collected repeatedly over time. This is the first time

to our knowledge that the randomization test has been applied to the longitudinal

data to test the time-varying treatment effect.

In the first section, we provide an example of applying the randomization test

to longitudinal clinical trial data. In the second section, we examine four different

scenarios for misspecification of the GLMM and provide simulation results for both

traditional population tests and randomization tests. For the randomization test,

randomization procedures include complete randomization and BCD for both uncon-

ditional and conditional tests.

4.1 An Example of Application of the Randomiza-

tion Test to Longitudinal Clinical Trial Data

In this section, we provide an example comparing the result from randomization tests

under the linear mixed model and the traditional test for detecting the time-varying

treatment effect.

The AIDS CD4 Counts Data

52

The data set is from a randomized, double-blind and controlled clinical trial of AIDS

patients (Henry et al. 1998). The purpose of this study is to compare the survival

benefits of using different HIV-1 inhibitors therapies. The benefit is measured by

CD4 counts, which is a type of white blood cell that fights infection. There were 1309

patients randomized into four groups with different reverse transcriptase inhibitors

therapies. Measurements of CD4 counts were recorded based on 8 weeks intervals.

The number of measurements ranges from 1 to 9. Since there are missing values due

to skipped visits and dropouts, we only consider the records of 729 patients with the

first four visits. We combine groups 2, 3 and 4 and set treatment value as 1, and

for group 1, treatment value is 0 (Fitzmaurice, Laird and Ware 2004). The response

variable is the log form of the CD4 counts log(CD4 + 1); covariates include age,

gender, treatment and visit.

For the traditional test, we assume patients are randomly assigned to the two

treatment groups. We fit the model from (4.1), assuming the conditional distribution

of the response is normal. Under the null hypothesis, β3 = 0. Using the GLIMMIX

procedure, we obtain β̂3 using restricted maximum likelihood, and compute the p-

value based on a t statistic.

For the randomization test, we apply the algorithm for p-values in GLMM provided

in Section 3.2. As only 197 out of 729 patients were in the treatment group with value

1, we apply the conditional test based on complete randomization and BCD(2/3).

Results

All tests demonstrate a significant time-varying treatment effect. Under the tradi-

tional model, the p-value for a t test of β̂3 is less than 0.0001; under the randomization

model, the p-value for the conditional complete randomization test is 0.0002 and less

than 0.0001 for the conditional BCD(2/3).

53

4.2 Simulation of the Randomization Tests for Lon-

gitudinal Data

4.2.1 Parameter Settings

The simulation is performed assuming an identity function h(·), which is the classic

linear mixed model, where Yi has a normal distribution conditional on the random

effects. We have Yi = ηi + ei, where the error term for the ith patient ei is assumed

to be normally distributed with mean zero and a ni×ni covariance matrix Ri. Then

var(Yi) = ZiGZi
′ + Ri, and var(Yi|bi) = Ri. We use sample size n = 100. For

each patient, the repeated time τ varies from 1 to 5; for other parameters we have

µ = −3, α = 2, β1 = 2, β2 = 1.5. The random effects have the multivariate normal

distribution with E(b0i) = E(b1i) = 0, var(b0i) = 4, var(b1i) = 4, and cov(b0i, b1i) = 0.

The error term has the standard normal distribution where E(ei) = 0 and Ri is an

identity matrix. Under the null hypothesis, there is no time-varing treatment effect,

i.e., β3 = 0. All tests are two-sided with significance level 0.05. For all conditional

randomization tests, we use nA = 46.

There are four scenarios considered as follows:

1. The conditional normal distribution of Yi is misspecified; by doing so, we replace

10 percent of the data with Y∗i = −ηi + ei and analyze data assuming the

response having a normal distribution.

2. The variance-covariance matrix of the error term is misspecified. Here, instead

of generating standard normal distributed errors, the variance-covariance matrix

R∗i has a first-order autoregressive structure, with ρ = 0.5. And we analyze data

assuming the error term has a standard normal distribution.

54

3. The distribution of bi is misspecified. We replace 20 percent of b1i’s with Cauchy

distributed random variables. We analyze the data assuming the bi’s are nor-

mally and independently distributed.

4. The variance-covariance matrix of the random effects is misspecified. Instead of

using the original variance-covariance structure, we use var(b∗0i) = 4, var(b∗1i) =

4, and the variance-covariance matrix G∗i has a first-order autoregressive struc-

ture with ρ = 0.8. We analyze the data assuming b0i and b1i are independent.

To compute the size of the population test, the following steps are used:

1. Generate one pass data under the null hypothesis which is β3 = 0, and obtain

the maximum likelihood estimate of β3.

2. Compute the t test statistic t = β̂3/ŜE(β̂3). Then the p-value is P (|t| ≥ tc)

where tc is the critical value of t distribution given the degree of freedom and

significance level, with 0.05 as the two-sided significance level.

3. Replicate 1-2 m times, and compute the proportion of times p ≤ 0.05. This is

the simulated size of the population test.

The procedure for computing the power of the population test is similar to com-

puting the type I error rate; the difference is that we first generate data under the

alternative hypothesis where β3 = 1 or β3 = 1.5. After that we obtain p-values for

the test statistic using same algorithm. After replicating these two steps for m times,

the proportion of times p ≤ 0.05 is the power of the test.

To estimate the size of the randomization test, we use the following algorithm:

• Compute the critical value Scr of the test:

55

1. Generate one pass data under the case that there is no time-varying treat-

ment effect (β3 = 0), and obtain the maximum likelihood estimates of µ,

β1, β2, φ and G; predict b̂1i based on (3.6).

2. Generate L randomization sequences, and merge each sequence with the

predicted b̂1i obtained from 1.

3. Compute the linear rank statistic for each sequence; here we use van der

Waerden scores for normally distributed data.

4. Order the L test statistics and find the critical value Scr under the specified

significance level.

• Find the size of the test:

1. Similar to finding the critical value, we need to generate L randomiza-

tion sequences, and merge each sequence to the residuals obtained from

regression of the one pass data;

2. Compute the linear rank statistic S for each sequence;

3. Replicate 1-2 m times and find the average proportion of times |S| ≥ |Scr|;

this is the estimated size of the test.

To compute the power of the test, we follow following steps:

1. Generate one pass data under the alternative hypothesis (β3 = 1 or β3 = 1.5),

and obtain maximum likelihood estimates of µ, β1, β2, φ and G assuming β3 = 0;

predict the random slope b̂1i’s based on (3.6).

2. Compute the linear rank test statistic using van der Waerden scores based on

predicted random slopes and the corresponding treatment assignment from the

data, this is the observed test statistic Sobs.

56

3. Generate L randomization sequences, merge b̂1i’s with each sequence, and obtain

L rank test statistics. The proportion of times that statistics greater than Sobs

will be the estimated p-value.

4. Replicate 1-3 for m times, compute the proportion of times p ≤ 0.05; this will

be the power of the test.

4.2.2 Simulation Results

Figure 4.1 represents the histogram of the responses under the correct model. In

Figure 4.2, the upper graph shows the distribution of the response of 90 percent data

under the true model, and the lower graph shows the distribution of the 10 percent

contamination. The lower graph Figure 4.3 shows the distribution of the 20% Cauchy

outliers of random effects.

Tables 4.1-4.5, Figure 4.4-4.7 give the simulation results for the size and power un-

der different situations. The results indicate that first, if the model is fitted correctly,

and both the population test and randomization tests give robust performance. If

the variance-covariance of error term is misspecified such as Scenario 2, neither of the

tests is strongly affected. If the variance-covariance of random effects is misspecified

such as Scenario 3, the size of both population and randomization tests remained at

the significance level, but there is substantial power loss for both tests. However, if

there are distributional assumptions misidentified such as Scenario 1 and 3, because

the randomization test does not rely on distribution of the data, it provides higher

power than the population tests.

57

Figure 4.1: The distribution of the response under the true model

Figure 4.2: Comparison between the distributions of response under the true model
and the response with 10% contamination

Table 4.1: Size and power of the population and randomization tests under the correct
GLMM (L = 2500,m = 5000).

Test Size (95% CI) Power (β3 = 1) (95% CI) Power (β3 = 1.5) (95% CI)
Population 0.0564 0.6968 0.9582

(0.0500,0.0628) (0.6841, 0.7095) (0.9527, 0.9637)
Randomization (complete) 0.0440 0.6878 0.9558

(0.0383,0.0497) (0.6750, 0.7006) (0.9501, 0.9615)
Randomization (conditional) 0.0426 0.6904 0.9546

(0.0370,0.0482) (0.6776, 0.7032) (0.9488, 0.9604)
Randomization (BCD(2/3) unconditional) 0.0445 0.6918 0.9572

(0.0387,0.0502) (0.6790, 0.7046) (0.9516, 0.9628)
Randomization (BCD(2/3) conditional) 0.0387 0.6824 0.9490

(0.0333,0.0440) (0.6695, 0.6953) (0.9429, 0.9551)

58

Figure 4.3: Comparison between the distributions of the random slope under the true
model and the random slope with 20% of outliers

Table 4.2: Size and power of the population and randomization tests under GLMM
with misspecified response distribution (L = 2500,m = 5000).

Test Size (95% CI) Power (β3 = 1) (95% CI) Power (β3 = 1.5) (95% CI)
Population 0.0596 0.3738 0.6220

(0.0530,0.0662) (0.3604, 0.3872) (0.6086, 0.6354)
Randomization (complete) 0.0550 0.4438 0.7470

(0.0487,0.0613) (0.4300, 0.4576) (0.7349, 0.7591)
Randomization (conditional) 0.0390 0.4472 0.7476

(0.0336,0.0443) (0.4334, 0.4610) (0.7356, 0.7596)
Randomization (BCD(2/3) unconditional) 0.0444 0.4346 0.7600

(0.0387,0.0501) (0.4209, 0.4483) (0.7482, 0.7718)
Randomization (BCD(2/3) conditional) 0.0459 0.4264 0.7434

(0.0401,0.0517) (0.4127, 0.4401) (0.7313, 0.7550)

59

Figure 4.4: Size and Power of the population and randomization tests under GLMM
with misspecified response distribution.

60

Table 4.3: Size and power of the population and randomization tests under GLMM
with misspecified variance-covariance structure for error term (L = 2500,m = 5000).

Test Size (95% CI) Power (β3 = 1) (95% CI) Power (β3 = 1.5) (95% CI)
Population 0.0558 0.6888 0.9552

(0.0494,0.0622) (0.6760, 0.7016) (0.9495, 0.9609)
Randomization (complete) 0.0423 0.6732 0.9488

(0.0367,0.0479) (0.6602, 0.6862) (0.9427, 0.9549)
Randomization (conditional) 0.0418 0.6802 0.9514

(0.0363,0.0473) (0.6673, 0.6931) (0.9454, 0.9574)
Randomization (BCD(2/3) unconditional) 0.0478 0.6762 0.9530

(0.0419,0.0537) (0.6632, 0.6891) (0.9471, 0.9589)
Randomization (BCD(2/3) conditional) 0.0337 0.6634 0.9438

(0.0287,0.0387) (0.6503, 0.6765) (0.9374, 0.9502)

Figure 4.5: Size and Power of the population and randomization tests under GLMM
with misspecified variance-covariance structure for error term.

61

Table 4.4: Size and power of the population and randomization tests under GLMM
with misspecified distribution for random effects (L = 2500,m = 5000).

Test Size (95% CI) Power (β3 = 1) (95% CI) Power (β3 = 1.5) (95% CI)
Population 0.0288 0.2190 0.3792

(0.0242,0.0334) (0.2075, 0.2305) (0.3658, 0.3926)
Randomization (complete) 0.0451 0.5232 0.8488

(0.0393,0.0509) (0.5094, 0.5370) (0.8389, 0.8587)
Randomization (conditional) 0.0440 0.5246 0.8598

(0.0383,0.0497) (0.5108, 0.5384) (0.8502, 0.8694)
Randomization (BCD(2/3) unconditional) 0.0387 0.5460 0.8686

(0.0334,0.0440) (0.5322, 0.5598) (0.8592, 0.8780)
Randomization (BCD(2/3) conditional) 0.0465 0.5224 0.8588

(0.0407,0.0523) (0.5086, 0.5362) (0.8491, 0.8685)

Figure 4.6: Size and Power of the population and randomization tests under GLMM
with misspecified distribution for random effects.

62

Table 4.5: Size and power of the population and randomization tests under GLMM
with misspecified variance-covariance structure for random effects (L = 2500,m =
5000).

Test Size (95% CI) Power (β3 = 1) (95% CI) Power (β3 = 1.5) (95% CI)
Population 0.0456 0.3884 0.7282

(0.0398,0.0514) (0.3749, 0.4019) (0.7159,0.7405)
Randomization (complete) 0.0395 0.3722 0.7134

(0.0341,0.0445) (0.3588, 0.3856) (0.7009, 0.7259)
Randomization (conditional) 0.0403 0.3824 0.7158

(0.0348,0.0458) (0.3689, 0.3856) (0.7033, 0.7283)
Randomization (BCD(2/3) unconditional) 0.0375 0.3696 0.7182

(0.0323,0.0428) (0.3562, 0.3830) (0.7057, 0.7307)
Randomization (BCD(2/3) conditional) 0.0445 0.3748 0.7206

(0.0388,0.0502) (0.3614, 0.3882) (0.7082, 0.7330)

Figure 4.7: Size and Power of the population and randomization tests under GLMM
with misspecified variance-covariance structure for random effects.

63

Chapter 5: Macro Series for Randomization Tests

In this chapter we describe details of a series of SAS macros which compute p-values

for conditional and unconditional randomization tests. These macros will provide

convenient use of randomization tests in a variety of clinical trial data. These macros

are given in Appendices A-D.

In the first section we provide an overview of the macros, in the second section we

introduce the algorithm and describe input for each macro. In the third section we

will give examples using each macro. We discuss computer resources and computing

time in the third section.

5.1 Overview of the Macros

We now describe a series of SAS macros for randomization-based inference: RANDI-

RECT, RANGLM, RANGLMM and RANSURVIVAL. The macro RANDIRECT,

found in Appendix A, is used when a simple randomization test is performed on bi-

nary or continuous outcome with no covariate information. The macro RANGLM,

found in Appendix B, is used when it is necessary to build a generalized linear model.

The macro RANGLMM, found in Appendix C, is used when the data are longitudi-

nal trial data and the aim is to detect a time-varying treatment effect if the repeated

measure is time. The macro RANSURVIVAL, found in Appendix D, is used when

the outcomes are time to event data or survival modeling is required.

Each macro consists two parts: the first part extracts information from the given

data set and gathers or generates the needed outcome for the randomization test; the

64

second part uses Monte Carlo methods generate randomization sequences under a

specified randomization procedure and test statistic, and obtains p-value of the test.

The output of each macro will contain information about the size of the data, the

randomization procedure, whether the test is one-sided or two-sided, and the p-value

of the test.

In the first part of RANGLM and RANGLMM, the GLIMMIX procedure is called

to perform the appropriate regression and obtain corresponding residuals or random

slope predictors, while in RANSURVIVAL, there are two types of regression model–

the proportional hazard (PH) model and the accelerated failure time (AFT) model.

The PHREG procedure is called for the PH model, and the LIFEREG procedure is

called for the AFT model. In the second part of all macros, where randomization

tests are applied, SAS Interactive Matrix Language (IML) is used, as the matrix

computation helps to reduce computing time.

There are a number of similar features for these four macros. First, all input

data have to be complete, as there is no consideration of missing values in the macro.

Second, all macros will compute both unconditional and conditional tests upon re-

quest. Third, all macros can be performed for randomization procedures for complete

randomization, Efron’s biased coin design (EBCD), and the permuted block design

(PBD) with truncated binomial design (TBD) or the PBD with random allocation

rule (RAR). Fourth, the number of randomization sequences can be set to a desired

number. Finally, the testing procedure can be replicated many times to simulate the

size or power of the test if desired.

There are also special features and requirements for the input parameters of these

macros. For the RANDIRECT macro, the input data is required to contain the treat-

ment indicator and outcome variable. For the RANGLM macro, besides outcome and

65

treatment variables, the input data is required to contain information for the general-

ized linear regression, such as prognostic factors if there are any, and there are options

for input parameters regarding regression, such as the distribution and link function.

For the RANGLMM macro, the input data has to contain repeated measures and

subject numbers, the input parameters are also required for the corresponding gen-

eralized linear mixed model, such as the type of covariance matrix associated for the

random effects. For the RANSURVIVAL macro, users have options to choose whether

to use a regression model (PH and AFT) or not, and the input data could either be a

simple data set containing treatment, censoring and failure time, or a data contain-

ing additional covariates. If the PH model or the AFT model is specified, there are

options for additional input parameters regarding the regression such as name of the

covariates, the distribution and link function.

5.2 Algorithms for the Macros

The following sections introduce details of each macro.

5.2.1 Macro RANDIRECT (Appendix A)

RANDIRECT is used to perform a simple randomization test given the treatment and

outcome of a clinic trial data. In this case, there is no need to apply any regression

to the data. The macro allows the users to compute the p-value of the test under

specified conditions. The following is a description of what RANDIRECT does:

1. PROC SQL is used to compute the size of the data and the number of subjects

assigned to the treatment 1 (for the conditional test) if necessary. A new data

set is generated with the outcome and treatment variables based on the given

66

data.

2. The macro TEST will be called to compute the randomization test and p-value

with the specified procedure and linear rank statistic. The macro TEST is

programmed using SAS/IML and it contains three steps:

• Compute the observed test statistic Sobs with specified score given the new

data set from 1.

• Generate randomization sequences under a specified randomization pro-

cedure and type of test statistic. For each sequence, compute the test

statistic S, and compare it to the observed test statistic.

• Repeat the second step for a specified number of times. For a two-sided

test, the proportion of times |S| ≥ Sobs will be the p-value of the test. One

can also choose upper or lower bound one-sided p-values.

The input variables for RANDIRECT are:

INDATA: Data set to be analyzed. This data set has to have at least two

variables–the response variable, either continuous or categorical, and

a treatment indicator variable. Both variables are numeric.

RESPONSE: Name of the response or outcome variable from the data above to be

used for score computation in randomization test.

TRT: Name of the variable that defines treatment. Must be a binary variable

with values 0 or 1.

TYPE: Name of the type of the reference sets (UNCONDITIONAL or COND

ITIONAL). The default value is UNCONDITIONAL.

67

RANPRO: Randomization procedure (COMPLETE, EBCD, PBD). The default

value is COMPLETE. When the EBCD is specified, p is required for

the bias probability. When PBD is specified, the blocksize and the

randomization procedure used in each block (TBD, RAR) are needed.

NUMREPS: Number of time the inference procedures is replicated. Results can be

used to simulate the size and power of the test. The default value is

1.

NUMSEQ: Number of sequences to be used for randomization. The default and

minimum value is 2500.

SCORE: Score function to be used in the randomization test, one can choose

either WILCOXON or VAN DER WAERDEN.

SEED: Seed to be used for generating randomization sequences. The default

value is 1.

P: The bias probability used for the EBCD procedure.

BLKSIZE : The block size for the PBD procedure.

PROINBLK: Randomization procedure to be used for the PBD: TBD or RAR.

PVALUESIDE: Specify whether it is a two-sided or one-sided p-value. One can choose

one of the UPPER, LOWER and TWO SIDED three options. TWO

SIDED is the default.

The output will be the simple p-value of the test specified with the randomization

procedure and test type. The sample code and output will be provided in Section

5.2.

68

5.2.2 Macro RANGLM (Appendix B)

RANGLM is used when the data are to be analyzed using a generalized linear model

(GLM). The following are the steps performed by RANGLM:

1. We apply a generalized linear model to the response variable with covariates,

and obtain residuals for each subject. This step is performed by the GLIMMIX

procedure in SAS with the specified distribution and link function. As there

is no treatment difference between two groups under the null hypothesis, no

treatment variable is involved in the regression.

2. We create a new data with the residuals and corresponding treatments for each

subject. The residuals are the outcome variable for the randomization test. We

also compute the size of the data and the number of assignments to treatment

group if conditional test is requested.

3. Similar to the RANDIRECT macro, we call the TEST macro to perform ran-

domization tests for the new outcome data and obtain the p-value.

Most of the input parameters for the RANGLM macro are similar to the RANDI-

RECT macro. We list the following parameters which are unique to RANGLM:

INDATA: Data set to be analyzed. This data set has to include the response

variable which is used to perform the GLM regression, the treatmen-

t indicator, and other covariates to be used in the regression. The

response and treatment variable are numeric, covariates need not to

be numeric, but if there are categorical covariates, they have to be

specified in CLASS option.

METHOD: The estimation method to be used. Options include: residual psudo-

likelihood based on random effects solution (RSPL), maximum psudo-
69

likelihood based on random effects solution (MSPL), residual psudo-

likelihood based on mean of the random effects (RMPL), maximum

psudo-likelihood based on mean of the random effects (MMPL), max-

imum likelihood with Laplace approximation (LAPLACE), and max-

imum likelihood with adaptive quadrature (QUAD). The quadrature

nodes can also specified within parentheses after in QUAD option

(e.g. QUAD(QPOINTS=)).

RESPONSE: Name of response or outcome variable from the data to be used for

the GLM.

COV: Name of variables to be used as covariates for the GLM regression in

the MODEL statement of GLIMMIX.

CLASS: Name of variables to be used in the CLASS statement of the GLIM-

MIX procedure.

DIST: Distribution of the data to be used in GLM. Default value is NOR-

MAL. Distribution options include: BETA, BINARY, BINOMIAL,

EXPONENTIAL, GAMMA, NORMAL, GEOMETRIC, INVGAUSS,

LOGNORMAL, MUTINOMIAL, NEGBINOMIAL, POISSON and T-

CENTRAL.

LINK : Link function to be specified for the GLM regression. The default val-

ue is identity. Link function options include: CUMCLL, CUMLOGIT,

CUMLOGLOG, CUMPROBIT, CLOGLOG, GLOGIT, IDENTITY,

LOG, LOGIT, LOGLOG, PROBIT, POWER, POWERMINUS2 and

RECIPROCAL.

The output will gives the p-value for the specified test based on scores of residuals

obtained from the regression.

70

5.2.3 Macro RANGLMM (Appendix C)

The macro RANGLMM is used when a mixed model is needed, such as when the clin-

ical trial data are longitudinal data. While RANGLM uses the residuals of the model,

RANGLMM uses predictors of random slopes as the outcome. Other computing steps

are similar to RANGLM:

1. We apply a mixed model to the response variable with covariates, given a dis-

tribution and link function. For the random effect, we assume there will be a

random intercept and random slope. Users can specify the type of covariance

matrix separately for random effects and residuals. We obtain the predictors

for the random slope from the output for each subject. This step is also per-

formed using the GLIMMIX procedure in SAS. The treatment variable might

be considered as one of the fixed effects in the model.

2. We create a new data set with predicted random slope and corresponding treat-

ment assignment for each subject, and count the size of the data and the number

of assignments to treatment 1 if necessary.

3. Similar to previous macros, we call the TEST macro to perform the random-

ization test to the data and obtain the p-value.

The following are input parameters that are unique to RANGLMM. Other input

variables are the same as previously introduced macros.

71

INDATA: Data set to be analyzed. It has to include the response variable which

is used to perform the mixed model regression, the subject variable

which specifies subjects of the data such as patient ID, the repeat-

ed measure, a treatment indicator, and other covariates if any. The

response variable, subject variable, repeated measure and treatment

indicator are numeric; covariates can be either numeric or categorical.

RESPONSE: Name of the response or outcome variable from the data to be used

for the mixed model.

GTYPE: Specifies the covariance structure of the random effects. By de-

fault, the covariance structure is UN. The options of GTYPE include:

ANTE(1), AR(1), ARH(1), ARMA(1,1), CHOL, CS, CSH, FA, FA0,

HF, LIN, PSPLINE, RSMOOTH, SIMPLE, SP(EXP), SP(GAU),

SP(MAT), SP(POW), SP(POWA), SP(SPH), TOEP, TOEPH, UN,

UNR, and VC.

RTYPE: Specifies the covariance structure of residuals. The default value is the

identity matrix. The choices for RTYPE are the same as GTYPE.

SUB : Name of the variable that specifies subjects of the data.

REPEAT: Name of the variable that specifies repeated measures of the data,

such as time of repeated treatment for the same subject.

The output will give the p-value for the specified test based on scores of the random

slope predictors obtained from the GLMM.

72

5.2.4 Macro RANSURVIVAL (Appendix D)

RANSURVIVAL is a macro especially programmed for applying the randomization

tests to survival data. Users can apply this macro either directly compute the p-

values of the test, or apply regression models and use the residuals of the regression

and perform randomization test. For the parametric models, one can either choose

the PH model or the AFT model. The procedures are as follows:

1. We generate a new data set with the outcome, censoring information, and treat-

ment variable based on the given data set.

• If there is no model specified, the new data set is just an extraction from

the original data.

• If the PH model is specified, we first compute the martingale residual-

s using PHREG procedure, and use these residuals as outcome for the

randomization test.

• If the AFT model is specified, we use LIFEREG procedure to apply the

regression and compute the martingale residuals as the outcome. One can

choose whether to use the log transform, whether to include intercept in

the regression.

2. We call another macro named STEST which computes the randomization test

and gives p-values of the test. Similar to macro TEST, the macro STEST is

also programmed using SAS/IML, the procedure of computing p-values is also

similar. The difference is that the score function for the data without modeling

is set to be SAVAGE, while for the PH or the AFT model, the score function

is WILCOXON.

73

We include input parameters that are unique to RANSURVIVAL as follows. Other

inputs are similar to previous macros.

INDATA: Data set to be analyzed. It has the following variables: the response

variable which is used to perform the randomization test, the censoring

indicator if any, a treatment indicator variable, and other covariates

to be included in the regression.

RESPONSE: Name of the response variable to be used for regression if model is

specified or randomization test if no model is specified.

CENSOR: Variable that defines censoring status. We consider value 0 as cen-

sored, and 1 as uncensored. By default, there is no censoring.

MODEL: Types of model to be used for data. Values include NONE, PH, AFT.

By default, there is no modeling.

COV : Name of the covariates to be used for regression if model is PH or

AFT.

DIST: Variable that specifies the distribution type for failure time if the AF-

T model is used. Options include EXPONENTIAL, GAMMA, LLO-

GISTIC, LNORMAL, LOGISTIC, NORMAL and WEIBULL. The

default distribution is a type 1 extreme-value distribution to the log

of the response.

NOLOG : For the AFT model, it requests whether to use log transformation or

not. By default, there is log transformation.

NOINT : For the AFT model, it requests whether intercept is included in the

regression. By default, the intercept is included.

The output will give the p-value for the specified test and models.

74

5.3 Examples

In this section, we give examples using the series of macro to perform randomiza-

tion tests on different types of data, with different types of tests and randomization

procedures.

5.3.1 Example of RANDIRECT

We provide an example from the Diabetes Complications and Control Trial, using the

data from Table 7.4 of Rosenberger and Lachin (2002, p. 112). The data set contains

three variables: the level of cholesterol of the patient (chol), treatment indicator (tx)

and the number of observations. The following is the statement we submit to perform

a conditional complete randomization test, we specify the number of sequences to be

10000, the test statistic to be van der Waerden:

%randirect(indata=one,

response =chol,

trt= tx,

type=conditional,

ranpro=complete,

numseq=10000,

score=‘van der waerden’).

The output of the macro is shown in Figure 5.1.

5.3.2 Example of RANGLM

We provide an example from a placebo-controlled clinical trial of 59 epileptics, using

the data from Table 2 in Thall and Vail (1990, p. 664). In this study, patients are

75

UNCONDITIONAL Test Result for COMPLETE Randomization

Obs n Scores Alternative P_value

1 50 VAN DER WAERDEN TWO SIDED 0.6313

1

Figure 5.1: Output of RANDIRECT Macro

randomized into treatment group (standard anti-epileptic chemotherapy) and placebo

group, and the duration of the trial is 8 weeks. The seizure count was recorded prior

the trial, and at 2-weeks intervals during the trial. The data set contains the following

variables: patient ID, treatment indicator, age, the baseline seizure count prior the

trial, and the seizure counts from week 2 to week 8. Here we only consider the

treatment effect in week 8. The following is the statement we submit to perform a

unconditional PBD randomization test with blocksize 4 and TBD within each block,

after a GLM regression with Poisson distribution with log link. We specify the number

of sequences to be 20000, and the score function to be Wilcoxon:

%ranglm(indata=b,

response =week8,

cov=age,

trt= treatment,

dist=poisson,

link=log,

type=conditional ,

ranpro=pbd ,

numseq=20000,

76

score=‘wilcoxon’,

seed=12345,

blksize=4,

proinblk=tbd

) ;

The output of the macro is shown in Figure 5.2.

CONDITIONAL Test Result for PBD with TBD Randomization

Obs n n1 Scores Alternative P_value

1 59 31 WILCOXON TWO SIDED 0.2545

1

Figure 5.2: Output of RANGLM Macro

5.3.3 Example of RANGLMM

We continue with the previous seizure data example. There are some structural

changes made for the data. A new response variable is created by combining all

seizure count from base week to week 8. The repeated measure visit is created by

listing the number of visits for each subject. The revised data set contains following

variables: Y (response), ID (subject), VISIT (repeated measure), TREATMENT,

AGE (covariate). We first apply a mixed model under the Poisson distribution,

then perform a conditional EBCD randomization test with p = 2/3. We specify the

number of randomization sequences to be 20000, and the score function to be van der

Waerden. The following are the submitted statements:

77

%ranglmm(indata=x,

response = y,

cov= age trt,

class=id,

dist=poisson,

link=log,

gtype=ar(1),

trt= trt,

sub=id,

repeat=visit,

type=conditional ,

ranpro=ebcd,

numseq=20000,

score=‘van der waerden’,

seed=12345,

p=2/3

) ;

The output of the macro is shown in Figure 5.3.

5.3.4 Example of RANSURVIVAL

We provide an example from a lung cancer clinical trial of 137 patients, described by

Kalbfleisch and Prentice (1980, pp. 223-224). In this study, males with advanced in-

operable lung cancer were randomized into a treatment group (a test chemotherapy)

and a control group (a standard therapy). The purpose of this study is to compare

the survival time of patients between two therapies. In this data set, the outcome

78

CONDITIONAL Test Result for EBCD(p=2/3) Randomization

Obs size n1 score side p_value

1 59 31 VAN DER WAERDEN TWOSIDED 0.0219

1

Figure 5.3: Output of RANGLM Macro

variable is SURVIVALTIME, censoring indicator variable is STATUS, treatment in-

dicator is TREATMENT. There are other explanatory variables including: types of

tumor cell (adeno, large, small, or squamous), prior (prior therapy: 0 = no, 10 = yes),

age, duration (months from diagnosis to randomization), and performance (Karnofsky

performance scale). Here we first consider a Weibull AFT model, where SURVIVAL-

TIME is the response, PERFORMANCE, DURATION and STATUS are covariates.

We apply the unconditional EBCD randomization test with 10000 randomization

sequences, and request a one-sided p-value. The following is the submitted code:

%ransurvival(indata=vet,

response=survivaltime,

censor=status,

model=’aft’,

cov=age performance duration,

dist=weibull,

noint=1,

trt= trt,

type=unconditional,

ranpro=ebcd,

79

numseq=10000,

p=2/3,

pvaluside=‘upper’

) ;

The output of the macro is shown in Figure 5.4.

UNCONDITIONAL Test Result for EBCD (p=2/3) Randomization

Obs n Scores Alternative P_value

1 137 WILCOXON UPPER 0.3036

1

Figure 5.4: Output of RANSURVIVAL Macro

5.4 Computer Resources and Computing Time Re-

quirement

As previously mentioned, though it is powerful tool to assess treatment effects in

clinical trials, the randomization test is not widely used because it requires extensive

computation. While more time may be needed to compute randomization tests com-

pared to traditional tests, because of the fast development of computer technology,

the issue should not be a significant concern.

The major advantage of the series of macros is it reduces the run time of the test

by using the IML procedure, instead of generating data sets or using data step loops.

80

To implement a randomization test, one has to generate a large number of randomiza-

tion sequences based on the randomization procedure, merge with the original data,

compute the tests statistic and replicate the whole process many times. Calling loops

for generating randomization sequences or generating datasets to store the sequences

would use too much computer memory and CPU time so that it slows down the

computation of p-values. In the macro, as IML is used, a matrix is mainly used for

generating the randomization sequences, and the test statistic is computed instantly

without saving to a data set. The p-value is also computed in IML; therefore, in our

series of macros, the run time of the macro to compute the randomization test is

mainly the execution time of IML. For most of the randomization procedures, IML

gives results in a reasonable amount of time. Moreover, the ODS option is applied in

RANGLM RANGLMM and RANSURVIVAL to suppress unnecessary output, and

this also helps to reduce the total time of performing the randomization test.

High-speed computing is another useful resource to improve the efficiency of com-

puting the randomization test. All the simulation and macro computation in this

thesis is performed in SAS 9.3 by using a DELL desktop computer. The processor

of the computer is Intel(R) Core(TM) i5 with speed of 3.2GHz, the hard drive is

500GB and the internal memory is 8GB, the system is Windows 7 64-bit operating

system. For a simple unconditional complete randomization test with 1000 Monte

Carlo replications, the run time is about 6 minutes. While for the conditional EBCD

test with 10 Monte Carlo replications, the run time is about 1.5 minutes.

Table 5.1 and Table 5.2 show the computing time of four macros with different

cases. It indicates the run time is highly depending the complexity of generating

the randomization sequences. As the unconditional test has less restriction than

conditional tests, the run time is generally short. For the conditional test, EBCD

81

Table 5.1: The computing time for the macros given different types of the tests,
procedures and replications with number of sequences 2500.

Macro Procedure Unconditional Tests Conditional Tests
10 Reps 100 Reps 10 Reps 100 Reps

RANDIRECT Complete 1.30 sec 9.43 sec 1.29 sec 12.94 sec
RANGLM EBCD 2.18 sec 22.30 sec 1 min 22 sec 14 min 12 sec
RANGLMM PBD (TBD) 5.33 sec 54.26 sec 5.81 sec 57.79 sec
RANSURVIVAL PBD (RAR) 6.67 sec 1 min 1 sec 7.26 sec 1 min 29 sec

Table 5.2: The computing time for the macros given different types of the tests,
procedures and randomization sequences with one replication.

Macro Procedure Unconditional Tests Conditional Tests
100000 Seq 1000000 Seq 100000 Seq 1000000 Seq

RANDIRECT Complete 3.75 sec 37.78 sec 5.27 sec 52.18 sec
RANGLM EBCD 8.98 sec 1 min 34 sec 5 min 40 sec 59 min 38 sec
RANGLMM PBD (TBD) 13.13 sec 2 min 12 sec 14.13 sec 2 min 20 sec
RANSURVIVAL PBD (RAR) 28.49 sec 4 min 32 sec 31.13 sec 5 min 14 sec

takes the longest time. Based on the conditional distribution development for E-

BCD (Plamadeala and Rosenberger, 2012), the formula of computing the probability

of treatment assignment is complicated. However, it reduces the time to generate

massive numerous of unconditional sequences.

82

Chapter 6: Conclusions

We have applied the randomization test, given unconditional and conditional refer-

ence sets, for data based on the generalized linear model, two survival models, and

the generalized linear mixed model. This application provides a viable option to de-

tect the treatment effect in clinical trials when the assumptions for the traditional

inference are violated when there are misspecifications in the population models. It

accommodates different randomization procedures including complete randomization,

Efron’s biased coin design and the permuted block design. All of these procedures are

implemented in a user-friendly series of SAS macros. These SAS macros are flexible

and comprehensive, allowing the clinical trialist to compute a randomization test for

different data structure when restricted randomization is used.

For the generalized linear model, we provide an algorithm for computing p-values

using Gail, Wieand, and Piantadosi’s strategy (1988), where the score residuals, from

the population model are used as the outcome of the randomization test. For Efron’s

biased coin design, we compute the conditional test by generating randomization

sequences directly from the conditional reference set (Plamadeala and Rosenberger,

2012). Simulation results show the size of the randomization test maintains the nom-

inal level when necessary covariates are omitted, while the size of the population test

is inflated for response distributions including the normal, Poisson, and exponential.

We also developed randomization tests for survival data by using martingale resid-

uals from the proportional hazard model and the accelerated failure model. Simula-

tions indicate that in the case of misspecification of distribution of the survival time,

83

randomization tests have better power and size than the traditional test.

For the generalized linear mixed model, we have shown how to perform the ran-

domization test to detect a time-varying treatment effect for the longitudinal data.

The outcome used for the test is the predictor of the random slope for each subject

from the generalized linear mixed regression model. We explore by simulation the

size or power of the test when the distribution of the error term or the response is

misspecified. Our simulation results show the randomization test should be consid-

ered as an alternative to the traditional test in the following cases: when there are

misspecifications of the distribution of the response, and when there are outliers for

the random effects. In the case of misspecification of the covariance structure of the

error term or random effects, there is insignificant impact to the size and power of

the population test.

We have also developed a series of SAS macros for computing the randomization

test for different types of data. This package consists of four macros: RAN-

DIRECT, RANSURVIVAL, RANGLM and RANGLMM. Clinical trialists can apply

these macros to compute p-values of the randomization test with or without modeling,

given a specified restricted randomization procedure and the type of reference set.

Interactive Matrix Language (IML) is used in the macro for computing the p-value of

the test. It helps to reduce the run time, and all macros work well for large number of

Monte Carlo sequences. This series of macros will provide convenience for researchers

who intend to apply the randomization test.

There are several interesting open research topics that can be addressed for the

randomization test in the future. First, we did not consider any data with missing

values in our research and it is still an open problem for how to deal with data

84

containing missing values. Rosenberger and Lachin (2002) proposed to use a stratum-

specified rank score by putting complete and missing records into two strata. For the

complete records, the score values are functions of the outcome while for the missing

records, scores are undefined. If the missing data are independent, one can apply the

randomization test by taking a subset of the data with complete information. Kennes,

Hilgers and Heussen (2012) examined two methods of performing randomization tests

on data with missing values, one is to keep records with missing values and assigning

0 to missing observations and imputing the lowest rank; the other one is to eliminate

the records with missing values. They applied a randomization test based on the

random allocation rule and simple linear rank sum test statistic. Their simulation

results do not show significant differences between the two methods.

Second, there are other randomization procedures that could be included. These

designs include the class of generalized biased coin designs (Smith, 1984), stratified

designs and response-adaptive randomization procedures. The exact conditional dis-

tribution of the generalized biased coin design is still unknown so computing the

conditional test for this procedure using conditional probabilities is still an open

problem. Simon and Simon (2011) described an unconditional randomization test

for response-adaptive and covariate-adaptive randomization procedures, where the

sample size is finite, and type I error rate is well controlled. A new macro could be

developed using a similar strategy for adaptive designs as well as the stratified design

if the computing complexity is solved.

There are limitations of this research. The data and modeling in our simulations

are based on specific distributions, covariates and parameters; they are not exhaustive

in terms of every possible situation encountered in clinical trials.

85

Appendix A: Macro RANDIRECT

/***

Macro Name: RANDIRECT

PROGRAM: Macro for randomization tests

PURPOSE: Macro that allows to easily compute p-values of randomization

tests for various data.

CREATED BY: Parwen Parhat, George Mason University

DATE CREATED: January 2013

**

Inputs:

INDATA Data set to be analyzed. This data set has to have at least

two variables--the response variable, either continuous or

categorical, and a treatment indicator variable. Both

variables are numeric.

Response Name of the response or outcome variable from the data above

to be used for score computation in randomization test.

TRT Name of the variable that defines treatment. Must be a binary

variable with values 0 or 1.

Type Name of the type of the randomization tests (UNCONDITIONAL or

CONDITIONAL). The default value is UNCONDITIONAL.

RANPRO Randomization procedure (COMPLETE, EBCD, PBD). The default

value is COMPLETE. When the EBCD is specified, p is required

for the biased probability. When PBD is specified, the

blocksize and the randomization procedure (TBD, RAR) used in

86

each block are needed.

NUMREPS Number of time the inference procedures is replicated. Results

can be used to simulate the size and power of the test. The

default value is 1.

NUMSEQ Number of sequences to be used for randomization. The default

and minimum value is 2500.

SCORE Score function to be used in the randomization test, one can

choose either ’WILCOXON’ or ’VAN DER WAERDEN’.

SEED Seed to be used for generating randomization sequences. The

default value is 1.

P The biased probability used for the EBCD procedure.

BLKSIZE The block size for the PBD procedure.

PROINBLK Randomization procedure to be used for the PBD: TBD or RAR.

PVALUESIDE Specify whether it is a two-sided or one-sided p-value. One

can choose one of the ’UPPER’, ’LOWER’ and ’TWO SIDED’ three

options. ’TWO SIDED’ is the default.

**

**

***/;

%macro randirect(indata=,

response =,

trt= ,

type= ,

87

ranpro= ,

numreps=,

numseq=,

score=,

seed=,

p=,

blksize=,

proinblk=,

pvalueside=

);

/*Warnings of inappropriate use of the program*/

%if %length(&indata)=0 %then %do;

%put ALERT ALERT ALERT: INDATA must be specified;

%goto stopmac;

%end;

%if %length(&trt)=0 %then %do;

%put ALERT ALERT ALERT: TRT must be specified;

%goto stopmac;

%end;

%if (%length(&type) ne 0) and (%upcase(&type) ne UNCONDITIONAL) and

(%upcase(&type) ne CONDITIONAL) %then %do;

%put ALERT ALERT ALERT: TYPE must be UNCONDITIONAL or CONDITIONAL;

%goto stopmac;

%end;

%if %index(COMPLETE EBCD PBD, %upcase(&ranpro))=0 %then %do;

%if (%length(&ranpro) ne 0) %then %do;

%put ALERT ALERT ALERT: RANPRO must be one of COMPLETE, EBCD, PBD;

%goto stopmac;

%end;

88

%end;

%if %sysevalf(&numreps<1) and (%length(&numreps) ne 0) %then %do;

%put ALERT ALERT ALERT: NUMREPS must be at least 1;

%goto stopmac;

%end;

%if %sysevalf(&numseq<2500) and (%length(&numseq) ne 0) %then %do;

%put ALERT ALERT ALERT: NUMSEQ must be at least 2500;

%goto stopmac;

%end;

%if %index(‘WILCOXON’ ‘VAN DER WAERDEN’, %upcase(&score))=0 %then %do;

%if (%length(&score) ne 0) %then %do;

%put ALERT ALERT ALERT: SCORE must be one of WILCOXON,

VAN DER WAERDEN;

%goto stopmac;

%end;

%end;

%if %sysevalf(&seed<0) and %length(&seed) ne 0 %then %do;

%put ALERT ALERT ALERT: SEED must be at least 1;

%goto stopmac;

%end;

%if (%upcase(&ranpro)=EBCD) and (%length(&p) = 0) %then %do;

%put ALERT ALERT ALERT: P must be at specified with EBCD procedure;

%goto stopmac;

%end;

%if (%upcase(&ranpro)=EBCD) %then %do;

89

%if %sysevalf(&p<0) or %sysevalf(&p>1) %then %do;

%put ALERT ALERT ALERT: P must between 0 and 1;

%goto stopmac;

%end;

%end;

%if (%upcase(&ranpro)=PBD) and (%length(&blksize) = 0) %then %do;

%put ALERT ALERT ALERT: BLKSIZE must be at specified

with PBD procedure;

%goto stopmac;

%end;

%if (%upcase(&ranpro)=PBD) and (%length(&proinblk) = 0) %then %do;

%put ALERT ALERT ALERT: PROINBLK must be at specified

with PBD procedure;

%goto stopmac;

%end;

%if %index(EBCD, %upcase(&ranpro))=0 %then %do;

%if (%length(&p) ne 0) %then %do;

%put ALERT ALERT ALERT: P must be at specified with EBCD procedure;

%goto stopmac;

%end;

%end;

%if %index(PBD, %upcase(&ranpro))=0 and %length(&blksize) ne 0 %then %do;

%put ALERT ALERT ALERT: BLKSIZE must be at specified with

PBD procedure;

%goto stopmac;

90

%end;

%if %index(PBD,%upcase(&ranpro))=0 and %length(&proinblk) ne 0 %then %do;

%put ALERT ALERT ALERT: PROINBLK must be at specified

with PBD procedure;

%goto stopmac;

%end;

%if %index(‘UPPER’ ‘LOWER’ ‘TWO SIDED’, %upcase(&pvalueside))=0

and %length(&pvalueside) ne 0 %then %do;

%put ALERT ALERT ALERT: PVALUSIDE must be one of UPPER, LOWER,

TWO SIDED;

%goto stopmac;

%end;

/*Compute the number of obs*/

%global num;

proc sql noprint;

select count(*) into: num from &indata;

quit;

%if %upcase(&type)=CONDITIONAL %then %do;

%global n1;

proc sql noprint;

select sum(&trt) into: n1 from &indata;

quit;

%end;

/*Create data to be used to compute the test*/

data a;

set &indata;

91

y=&response;

trt=&trt;

run;

%if %length(&type)=0 %then %let type=UNCONDITIONAL;

%if %length(&ranpro)=0 %then %let ranpro=COMPLETE;

%if %length(&numreps)=0 %then %let numreps=1;

%if %length(&numseq)=0 %then %let numseq=2500;

%if %length(&seed)=0 %then %let seed=1;

%if %length(&pvalueside)=0 %then %let pvalueside = ‘TWO SIDED’;

/*compute p values*/

%if %length(&proinblk)=0 %then %do;

%test(data=a, testtype= %upcase(&type), testranpro= %upcase(&ranpro)) ;

%end;

%else %if %length(&proinblk) ne 0 %then %do;

%test(data=a, testtype= %upcase(&type), testranpro= %upcase(&ranpro),

testproinblk=%upcase(&proinblk)) ;

%end;

%stopmac:;

%mend;

%macro test(data=, testtype= , testranpro= , testproinblk=);

/*Compute the test for unconditional complete randomization*/

%if %upcase(&testtype)=UNCONDITIONAL and

%upcase(&testranpro)=COMPLETE %then %do;

proc iml;

seed = &seed;

92

n=#

m=&numreps;

s=&numseq;

snew=j(s,1,.);

l=j(s,1,.);

lsum=j(m,1,.);

tnew=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{y} into y ;

close &data;

do i=1 to m;

do j=1 to s;

do k=1 to n;

c=ranuni(&seed+m);

p=0.5 ;if c<p then tnew[k]=1 ; else tnew[k]=0;

end;

if upcase(&score)=‘VAN DER WAERDEN’ then aj=probit(rank(y)/(n+1));

else if upcase(&score)=‘WILCOXON’

then aj=ranktie(y);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

93

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

end;

end;

lsum[i]=sum(l);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

n=#

Scores=upcase(&score);

Alternative=upcase(&pvalueside);

set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro Randomization";

run;

%goto stopmactest;

%end;

/*Compute test for conditional complete randomization*/

%if %upcase(&testtype)=CONDITIONAL and

%upcase(&testranpro)=COMPLETE %then %do;

proc iml;

seed = &seed;

n1=&n1;

94

n=#

m=&numreps;

s=&numseq;

snew=j(s,1,.);

l=j(s,1,.);

lsum=j(m,1,.);

tnew=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{y} into y ;

close &data;

do i=1 to m;

do j=1 to s;

mj=0;

do k=1 to n;

c=ranuni(&seed+m);

p=(n1-mj)/(n-k+1);if c<p then do; tnew[k]=1 ;mj=mj+1; end;

else do; tnew[k]=0; mj=mj+0;end;

end;

if upcase(&score)=‘VAN DER WAERDEN’ then aj=probit(rank(y)/(n+1));

else if upcase(&score)=‘WILCOXON’

then aj=ranktie(y);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

95

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

end;

end;

lsum[i]=sum(l);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

n=#

n1=&n1;

Scores=upcase(&score);

Alternative=upcase(&pvalueside);

set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro Randomization";

run;

%goto stopmactest;

%end;

/*Compute the test for unconditonal EBCD*/

%if %upcase(&testtype)=UNCONDITIONAL and

96

%upcase(&testranpro)=EBCD %then %do;

proc iml;

start efronunp(p,n1,n2);

if n1=n2 then

pp=0.5;

else if n1<n2 then

pp=p;

else if n1>n2 then pp=1-p;

return (pp);

finish;

store module=efronunp;

quit;

proc iml;

load module=efronunp;

seed = &seed;

n=#

m=&numreps;

s=&numseq;

p=&p;

snew=j(s,1,.);

l=j(s,1,.);

lsum=j(m,1,.);

tnew=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{y} into y ;

close &data;

do i=1 to m;

do j=1 to s;

n1=0;n2=0;

97

do k=1 to n;

c=ranuni(&seed+m);

pp=efronunp(&p,n1,n2);if c<pp then do;tnew[k]=1 ; n1=n1+1;n2=n2+0; end;

else do ;tnew[k]=0; n1=n1+0;n2=n2+1;end;

end;

if upcase(&score)=‘VAN DER WAERDEN’ then aj=probit(rank(y)/(n+1));

else if upcase(&score)=‘WILCOXON’ then aj=ranktie(y);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

end;

end;

lsum[i]=sum(l);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

n=#

98

Scores=upcase(&score);

Alternative=upcase(&pvalueside);

set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro(p=&p) Randomization";

run;

%goto stopmactest;

%end;

/*Compute the test for conditonal EBCD*/

%if %upcase(&testtype)=CONDITIONAL and

%upcase(&testranpro)=EBCD %then %do;

proc iml;

seed=12345;

start efronun (p,n,n1);

if n1=n/2 then do;

xc=j(n1,1,.);

do l=0 to n1-1;

xc[l+1]=((n-2*l)/(n+2*l)) *(comb(n1+l,l)*(1-p)**l);

end;

pp=(p**n1)*sum(xc);

end;

else if n1<n/2 then do;

xc1=j(n1+1,1,.);

do l=0 to n1;

xc1[l+1]=((n-n1-l)/(n-n1+l)) *(comb(n-n1+l,l)*(1-p)**(n-2*n1+l-1));

end;

99

pp=0.5*(p**n1)*sum(xc1);

end;

else if n1>n/2 then do;

n2=n-n1;

xc2=j(n2+1,1,.);

do l=0 to n2;

xc2[l+1]=((n1-l)/(n1+l)) *(comb(n1+l,l)*(1-p)**(2*n1-n+l-1));

end;

pp=0.5*(p**n2)*sum(xc2);

end;

return (pp);

finish;

store module=efronun;

start efroncon(p,n,n1,j,mj);

if j>=1 & j<n & mj>=0 & mj<j/2 then do;

if mj<=n1 & j-mj>n1 then

pp=comb(n-j,n1-mj)*(p**(n1-mj))*((1-p)**(n-j-n1+mj));

else if j-mj<=n1 & n1<n/2 then do;

xc=j(n1+mj-j+1,1,.);

do l=0 to n1+mj-j;

xc[l+1]=(n-n1-mj-l)/(n-n1-mj+l)*comb(n-n1-mj+l,l)

*((1-p)**(n-2*n1-1+l));

end;

pp=0.5*(p**(n1-mj))*sum(xc)+(p**(n1-mj))*((1-p)**(n-j-n1+mj))

*(comb(n-j,n1-mj)-comb(n-j,n1-j+mj));

end;

100

else if n1=n/2 then do;

xc1=j(n-j-n1+mj+1,1,.);

do l=0 to n-j-n1+mj;

xc1[l+1]=(n1-mj-l)/(n1-mj+l)*comb(n1-mj+l,l)*((1-p)**l);

end;

pp= (p**(n1-mj))*sum(xc1);

end;

else if n1>n/2 & j-mj<=n-n1 then do;

xc2=j(n-j-n1+mj+1,1,.);

do l=0 to n-j-n1+mj;

xc2[l+1]= (n1-mj-l)/(n1-mj+l)*comb(n1-mj+l,l)*((1-p)**(2*n1-n-1+l));

end;

pp=0.5*(p**(n-n1-mj))*sum(xc2);

end;

end;

else if j>=0 & j<n & mj=j/2 & mj<=n1 & j-mj<=n-n1

then pp=efronun(p,n-j,n1-mj);

else if j>=1 & j<n & mj>j/2 & mj<=j then do;

if n1>=mj & n1<n/2 then do;

xc3=j(n1-mj+1,1,.);

do l=0 to n1-mj;

xc3[l+1]=(n-j-n1+mj-l)/(n-j-n1+mj+l)*

comb(n-j-n1+mj+l,l)*((1-p)**(n-2*n1-1+l));

end;

pp=0.5*(p**(n1+mj-j))*sum(xc3);

end;

else if n1=n/2 then do;

xc4= j(n1-mj+1,1,.);

101

do l=0 to n1-mj;

xc4[l+1]=(n-j-n1+mj-l)/(n-j-n1+mj+l)*comb(n-j-n1+mj+l,l)

*((1-p)**(l));

end;

pp=(p**(n-j-n1+mj))*sum(xc4);

end;

else if n1>n/2 & mj<=n-n1 then do;

xc5= j(n-n1-mj+1,1,.);

do l=0 to n-n1-mj;

xc5[l+1]=(n1+mj-j-l)/(n1+mj-j+l)*comb(n1+mj-j+l,l)*

((1-p)**(2*n1-n-1+l));

end;

pp=0.5*(p**(n-j-n1+mj))*sum(xc5)+(p**(n-j-n1+mj))*((1-p)**(n1-mj))

*(comb(n-j,n1-mj)-comb(n-j,n1-j+mj));

end;

else if mj>n-n1 & j-mj<=n-n1 then

pp=comb(n-j,n1-mj)*(p**(n-j-n1+mj))*(1-p)**(n1-mj);

end;

else if mj=n1 & j=n then

pp=1;

else if mj>n1 & j<n then

pp=0;

return (pp);

102

finish;

store module=efroncon;

quit;

proc iml;

load module=efronun;

load module=efroncon;

seed = &seed;

n1=&n1;

p=&p;

n=#

m=&numreps;

s=&numseq;

snew=j(s,1,.);

l=j(s,1,.);

lsum=j(m,1,.);

tnew=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{y} into y ;

close &data;

do i=1 to m;

do j=1 to s;

mj=0;

do k=0 to n-1;

f=k+1;

c=ranuni(&seed+m);

if mj<n1 then do;

if k=0 then

pp=0.5*efroncon(p,n,n1,1,1)/efronun(p,n,n1);

103

else if k>=1 then do;

if mj=(k+1)/2 then

pp= 0.5*efroncon(p,n,n1,k+1,mj+1)/efroncon(p,n,n1,k,mj) ;

else if mj>(k+1)/2 then

pp=(1-p)*efroncon(p,n,n1,k+1,mj+1)/efroncon(p,n,n1,k,mj) ;

else if mj<(k+1)/2 then

pp=p*efroncon(p,n,n1,k+1,mj+1)/efroncon(p,n,n1,k,mj);

end;

end;

else pp=0;

if c<=pp then do;

tnew[f]=1;

mj=mj+1;

end;

else do; tnew[f]=0; mj=mj+0;end; end;

if upcase(&score)=‘VAN DER WAERDEN’ then aj=probit(rank(y)/(n+1));

else if upcase(&score)=‘WILCOXON’

then aj=ranktie(y);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

end;

104

end;

lsum[i]=sum(l);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

n=#

n1=&n1;

Scores=upcase(&score);

Alternative=upcase(&pvalueside);

set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro(p=&p) Randomization";

run;

%goto stopmactest;

%end;

/*Compute the test for unconditonal PBD*/

/*Truncated binomial*/

%if %upcase(&testtype)=UNCONDITIONAL and %upcase(&testranpro)=PBD

and %upcase(&testproinblk)=TBD %then %do;

proc iml;

seed = &seed;

105

n=#

m=&numreps;

s=&numseq;

blocksize=&blksize ;

snew=j(s,1,.);

ll=j(s,1,.);

lsum=j(m,1,.);

tnew=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{y} into y ;

close &data;

do i=1 to m;

do j=1 to s;

if mod(n,blocksize)=0 then l=n/blocksize;

else if mod(n, blocksize)>0 then l=int(n/blocksize)+1;

do k=1 to l;

mj=0; nj=0;

do kk= 0 to blocksize-1 until (k=l & kk=n-(l-1)*blocksize-1);

id=kk+(k-1)*blocksize+1;

if mj=blocksize/2 then p=0;

else if max(mj,nj)<blocksize/2 then p=0.5;

else if nj=blocksize/2 then p=1;

c=ranuni(&seed+m);

if c<p then do;tnew[id]=1 ; nj=nj+0; mj=mj+1; end;

else do ;tnew[id]=0; nj=nj+1; mj=mj+0;end;

end; end;

if upcase(&score)=‘VAN DER WAERDEN’ then aj=probit(rank(y)/(n+1));

else if upcase(&score)=‘WILCOXON’

then aj=ranktie(y);

score=aj-sum(aj)/n;

106

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then ll[j]=1; else ll[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

end;

lsum[i]=sum(ll);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

n=#

Scores=upcase(&score);

Alternative=upcase(&pvalueside);

set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro with &testproinblk

Randomization";

107

run;

%goto stopmactest;

%end;

/*Random allocation Rule*/

%if %upcase(&testtype)=UNCONDITIONAL and %upcase(&testranpro)=PBD

and %upcase(&testproinblk)=RAR %then %do;

proc iml;

seed = &seed;

n=#

m=&numreps;

s=&numseq;

blocksize=&blksize ;

snew=j(s,1,.);

ll=j(s,1,.);

lsum=j(m,1,.);

tnew=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{y} into y ;

close &data;

do i=1 to m;

do j=1 to s;

if mod(n,blocksize)=0 then l=n/blocksize;

else if mod(n, blocksize)>0 then l=int(n/blocksize)+1;

do k=1 to l;

mj=0;

do kk= 0 to blocksize-1 until (k=l & kk=n-(l-1)*blocksize-1);

id=kk+(k-1)*blocksize+1;

108

c=ranuni(&seed+m);

p=(blocksize/2-mj)/(blocksize-kk);

if c<p then do; tnew[id]=1 ; mj=mj+1; end;

else do ;tnew[id]=0; mj=mj+0; end;

end;

end;

if upcase(&score)=‘VAN DER WAERDEN’ then aj=probit(rank(y)/(n+1));

else if upcase(&score)=‘WILCOXON’

then aj=ranktie(y);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then ll[j]=1; else ll[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

end;

lsum[i]=sum(ll);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

109

data x2;

n=#

Scores=upcase(&score);

Alternative=upcase(&pvalueside);

set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro with &testproinblk

Randomization";

run;

%goto stopmactest;

%end;

/*Conditional PBD*/

/*TBD*/

%if %upcase(&testtype)=CONDITIONAL and %upcase(&testranpro)=PBD

and %upcase(&testproinblk)=TBD %then %do;

proc iml;

seed = &seed;

n1=&n1;

n=#

m=&numreps;

s=&numseq;

blocksize=&blksize ;

snew=j(s,1,.);

ll=j(s,1,.);

110

lsum=j(m,1,.);

tnew=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{y} into y ;

close &data;

do i=1 to m;

do j=1 to s;

if mod(n,blocksize)=0 then l=n/blocksize;

else if mod(n, blocksize)>0 then l=int(n/blocksize)+1;

n11=0;

do k=1 to l;

mj=0; nj=0;

do kk= 0 to blocksize-1 until (k=l & kk=n-(l-1)*blocksize-1);

id=kk+(k-1)*blocksize+1;

if n11<n1 then do;

if mj=blocksize/2 then p=0;

else if max(mj,nj)<blocksize/2 then p=0.5;

else if nj=blocksize/2 then p=1; end;

else p=0;

c=ranuni(&seed+m);

if c<p then do;tnew[id]=1 ; nj=nj+0; mj=mj+1;n11=n11+1; end;

else do ;tnew[id]=0; nj=nj+1; mj=mj+0;n11=n11+0;end;

end; end;

if upcase(&score)=‘VAN DER WAERDEN’ then aj=probit(rank(y)/(n+1));

else if upcase(&score)=‘WILCOXON’ then aj=ranktie(y);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then ll[j]=1; else ll[j]=0;

111

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

end;

lsum[i]=sum(ll);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

n=#

n1=&n1;

Scores=upcase(&score);

Alternative=upcase(&pvalueside);

set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro with &testproinblk

Randomization";

run;

%goto stopmactest;

112

%end;

/*Random allocation Rule*/

%if %upcase(&testtype)=CONDITIONAL and %upcase(&testranpro)=PBD and

%upcase(&testproinblk)=RAR %then %do;

proc iml;

seed = &seed;

n=#

m=&numreps;

s=&numseq;

blocksize=&blksize ;

n1=&n1;

snew=j(s,1,.);

ll=j(s,1,.);

lsum=j(m,1,.);

tnew=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{y} into y ;

close &data;

do i=1 to m;

do j=1 to s;

if mod(n,blocksize)=0 then l=n/blocksize;

else if mod(n, blocksize)>0 then l=int(n/blocksize)+1;

n11=0;

do k=1 to l;

mj=0;

do kk= 0 to blocksize-1 until (k=l & kk=n-(l-1)*blocksize-1);

id=kk+(k-1)*blocksize+1;

if n11<n1 then p=(blocksize/2-mj)/(blocksize-kk); else p=0;

113

c=ranuni(&seed+m);

if c<p then do; tnew[id]=1 ; mj=mj+1; n11=n11+1;end;

else do ;tnew[id]=0; mj=mj+0; n11=n11+0;end;

end;

end;

if upcase(&score)=‘VAN DER WAERDEN’ then aj=probit(rank(y)/(n+1));

else if upcase(&score)=‘WILCOXON’ then aj=ranktie(y);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then ll[j]=1; else ll[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

end;

lsum[i]=sum(ll);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

114

n=#

n1=&n1;

Scores=upcase(&score);

Alternative=upcase(&pvalueside);

set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro with &testproinblk

Randomization";

run;

%goto stopmactest;

%end;

%stopmactest:;

%mend;

115

Appendix B: Macro RANGLM

/**

Name: RANGLM

PROGRAM: Macro for randomization tests

PURPOSE: Macro that allows to easily compute p-values of randomization

tests under the GLM.

Inputs:

INDATA Data set to be analyzed. This data set has to include the

response variable which is for the GLM regression, the

treatment indicator, and other covariates to be used in the

regression. The response and treatment variable are numeric,

covariates need not to be numeric, but if there are

categorical covariates, they have to be specified in CLASS

option.

METHOD The estimation method to be used. Options include: Residual

psudo-likelihood based on random effects solution (RSPL),

maximum psudo-likelihood based on random effects solution

(MSPL), residual psudo-likelihood based on mean of the random

effects (RMPL), maximum psudo-likelihood based on mean of the

random effects (MMPL), maximum likelihood with Laplace

approximation (LAPLACE), and maximum likelihood with adaptive

quadrature (QUAD). The quadrature nodes can also specified

within parentheses in QUAD option (e.g. QUAD(QPOINTS=).

RESPONSE Name of response or outcome variable from the data to be used

for the GLM regression.

116

COV Name of variables to be used as covariates for GLM regression

in the MODEL statement of GLIMMIX.

CLASS Name of variables to be used in the Class statement of the

GLIMMIX procedure.

DIST Distribution of the data to be used in GLM regression.

Default value is Normal. Distribution options include: BETA,

BINARY, BINOMIAL, EXPONENTIAL, GAMMA, NORMAL, GEOMETRIC,

INVGAUSS, LOGNORMAL, MUTINOMIAL, NEGBINOMIAL, POISSON and

TCENTRAL.

LINK Link function to be specified for the GLM regression. The

default value is identity. Link function options include:

CUMCLL, CUMLOGIT, CUMLOGLOG, CUMPROBIT, CLOGLOG, GLOGIT,

IDENTITY, LOG, LOGIT, LOGLOG, PROBIT, POWER, POWERMINUS2 and

RECIPROCAL.

TRT Name of the variable that defines treatment. Must be a binary

variable with values 0 or 1.

Type Name of the type of the randomization tests (UNCONDITIONAL or

CONDITIONAL). The default value is UNCONDITIONAL.

RANPRO Randomization procedure (COMPLETE, EBCD, PBD). The default

value is COMPLETE. When the EBCD is specified, p is required

for the biased probability. When PBD is specified, the

blocksize and the randomization procedure used in each block

(TBD, RAR) are needed.

117

NUMREPS Number of time the inference procedures is replicated.

Results can be used to simulate the size and power of the

test. The default value is 1.

NUMSEQ Number of sequences to be used for randomization. The default

and minimum value is 2500.

SCORE Score function to be used in the randomization test, one can

choose either ’WILCOXON’ or ’VAN DER WAERDEN’.

SEED Seed to be used for generating randomization sequences. The

default value is 1.

P The biased probability used for the EBCD procedure.

BLKSIZE The block size for the PBD procedure.

PROINBLK Randomization procedure to be used for the PBD: TBD or RAR.

PVALUESIDE Specify whether it is a two-sided or one-sided p-value. One

can choose one of the ’UPPER’, ’LOWER’ and ’TWO SIDED’ three

options. ’TWO SIDED’ is the default.

***/;

%macro ranglm(indata=,

method=,

response =,

cov=,

class=,

trt= ,

118

dist=,

link=,

type= ,

ranpro= ,

numreps=,

numseq=,

score=,

seed=,

p=,

blksize=,

proinblk=,

pvalueside=

) ;

/*Warnings of inappropriate use of the program*/

%if %length(&indata)=0 %then %do;

%put ALERT ALERT ALERT: INDATA must be specified;

%goto stopmac;

%end;

%if %length(&trt)=0 %then %do;

%put ALERT ALERT ALERT: TRT must be specified;

%goto stopmac;

%end;

%if (%length(&type) ne 0) and (%upcase(&type) ne UNCONDITIONAL) and

(%upcase(&type) ne CONDITIONAL) %then %do;

%put ALERT ALERT ALERT: TYPE must be UNCONDITIONAL or CONDITIONAL;

%goto stopmac;

%end;

119

%if %index(BETA BIANRY BINOMIAL EXPONENTIAL GAMMA NORMAL GEOMETRIC INVGAUSS

LOGNORMAL MUTINOMIAL NEGBINOMIAL POISSON TCENTRAL, %upcase(&dist)) =0 and

(%length(&dist) ne 0) %then %do;

%put ALERT ALERT ALERT: Dist must be one of BETA, BIANRY, BINOMIAL,

EXPONENTIAL, GAMMA, NORMAL, GEOMETRIC, INVGAUSS, LOGNORMAL,

MUTINOMIAL, NEGBINOMIAL, POISSON, TCENTRAL;

%goto stopmac;

%end;

%if %index(CUMCLL CUMLOGIT CUMLOGLOG CUMPROBIT CLOGLOG GLOGIT IDENTITY LOG

LOGIT LOGLOG PROBIT POWER POWERMINUS2 RECIPROCAL, %upcase(&link)) =0 and

(%length(&link) ne 0) %then %do;

%put ALERT ALERT ALERT:LINK must be one of the following funciton :

CUMCLL, CUMLOGIT, CUMLOGLOG, CUMPROBIT, CLOGLOG, GLOGIT, IDENTITY,

LOG, LOGIT, LOGLOG, PROBIT, POWER, POWERMINUS2, RECIPROCAL;

%goto stopmac;

%end;

%if %index(COMPLETE EBCD PBD, %upcase(&ranpro))=0 and

(%length(&ranpro) ne 0) %then %do;

%put ALERT ALERT ALERT: RANPRO must be one of COMPLETE, EBCD, PBD;

%goto stopmac;

%end;

%if %sysevalf(&numreps<1) and (%length(&numreps) ne 0) %then %do;

%put ALERT ALERT ALERT: NUMREPS must be at least 1;

%goto stopmac;

%end;

%if %sysevalf(&numseq<2500) and (%length(&numseq) ne 0) %then %do;

%put ALERT ALERT ALERT: NUMSEQ must be at least 2500;

120

%goto stopmac;

%end;

%if %index(‘WILCOXON’ ‘VAN DER WAERDEN’, %upcase(&score))=0 and

(%length(&score) ne 0) %then %do;

%put ALERT ALERT ALERT: SCORE must be one of WILCOXON,

VAN DER WAERDEN;

%goto stopmac;

%end;

%if %sysevalf(&seed<0) and %length(&seed) ne 0 %then %do;

%put ALERT ALERT ALERT: SEED must be at least 1;

%goto stopmac;

%end;

%if (%upcase(&ranpro)=EBCD) and %length(&p) = 0 %then %do;

%put ALERT ALERT ALERT: P must be at specified with

EBCD procedure;

%goto stopmac;

%end;

%if (%upcase(&ranpro)=EBCD) %then %do;

%if %sysevalf(&p<0) or %sysevalf(&p>1) %then %do;

%put ALERT ALERT ALERT: P must between 0 and 1;

%goto stopmac;

%end;

%end;

%if (%upcase(&ranpro)=PBD) and (%length(&blksize) = 0) %then %do;

121

%put ALERT ALERT ALERT: BLKSIZE must be at specified with

PBD procedure;

%goto stopmac;

%end;

%if (%upcase(&ranpro)=PBD) and (%length(&proinblk) = 0) %then %do;

%put ALERT ALERT ALERT: PROINBLK must be at specified with

PBD procedure;

%goto stopmac;

%end;

%if %index(EBCD, %upcase(&ranpro))=0 and %length(&p) ne 0 %then %do;

%put ALERT ALERT ALERT: P must be at specified with EBCD procedure;

%goto stopmac;

%end;

%if %index(PBD,%upcase(&ranpro))=0 and %length(&blksize) ne 0

%then %do;

%put ALERT ALERT ALERT: BLKSIZE must be at specified with

PBD procedure;

%goto stopmac;

%end;

%if %index(PBD,%upcase(&ranpro))=0 and %length(&proinblk) ne 0

%then %do;

%put ALERT ALERT ALERT: PROINBLK must be at specified with

PBD procedure;

%goto stopmac;

%end;

122

%if %index(‘UPPER’ ‘LOWER’ ‘TWO SIDED’, %upcase(&pvalueside))=0

and %length(&pvalueside) ne 0 %then %do;

%put ALERT ALERT ALERT: PVALUSIDE must be one of UPPER, LOWER,

TWO SIDED;

%goto stopmac;

%end;

%global num;

/*Compute the size of the data*/

proc sql noprint;

select count(*) into: num from &indata;

quit;

/*put default values for which not be specified*/

%if %length(&type)=0 %then %let type=UNCONDITIONAL;

%if %length(&method)=0 %then %let method=RSPL;

%if %length(&ranpro)=0 %then %let ranpro=COMPLETE;

%if %length(&numreps)=0 %then %let numreps=1;

%if %length(&numseq)=0 %then %let numseq=2500;

%if %length(&seed)=0 %then %let seed=1;

%if %length(&dist)=0 %then %let dist=normal;

%if %length(&link)=0 %then %let link=identity;

%if %length(&pvalueside)=0 %then %let pvalueside = ‘TWO SIDED’;

/*Compute n1 for conditional tests*/

%if %upcase(&type)=CONDITIONAL %then %do;

%global n1;

proc sql noprint;

select sum(&trt) into: n1 from &indata;

123

quit;

%end;

/*Create data to be used to compute the test*/

%if %length(&class)=0 %then %do;

ods select none;

/*Compute the residuals*/

proc glimmix data=&indata method=&method ;

model &response= &cov /dist=&dist link=&link;

output out=residual residual=r;

run;

ods select all;

%end;

%else %do;

ods select none;

/*Compute the residuals*/

proc glimmix data=&indata method=&method ;

class &class;

model &response= &cov /dist=&dist link=&link;

output out=residual residual=r;

run;

ods select all;

%end;

data a;

set residual;

y=r;

trt=&trt;

run;

124

/*Compute p values*/

%if %length(&proinblk)=0 %then %do;

%test(data=a, testtype= %upcase(&type), testranpro= %upcase(&ranpro)) ;

%end;

%else %if %length(&proinblk) ne 0 %then %do;

%test(data=a, testtype= %upcase(&type), testranpro= %upcase(&ranpro),

testproinblk=%upcase(&proinblk)) ;

%end;

%stopmac:;

%mend;

125

Appendix C: Macro RANGLMM

/**

Name: RANGLMM

PROGRAM: Macro of randomization tests

PURPOSE: Macro that allows to easily compute p-values of randomization

tests under the GLMM.

**

Inputs:

INDATA Data set to be analyzed. It has to include the response

variable which is used to perform the mixed model regression,

the subject variable which specifies subjects of the data

such as patient ID, the repeated measure, a treatment indicator,

and other covariates if any.

METHOD The estimation method to be used. Options include: Residual

psudo-likelihood based on random effects solution (RSPL),

maximum psudo-likelihood based on random effects solution

(MSPL), residual psudo-likelihood based on mean of the random

effects (RMPL), maximum psudo-likelihood based on mean of the

random effects (MMPL), maximum likelihood with Laplace

approximation (LAPLACE), and maximum likelihood with adaptive

quadrature (QUAD).The quadrature nodes can also specified

within parentheses after in QUAD option (e.g.

QUAD(QPOINTS=)).

RESPONSE Name of the response or outcome variable from the data to be

used for the mixed model.

126

COV Name of variables to be used as covariates for GLM regression

in the MODEL statement of GLIMMIX.

CLASS Name of variables to be used in the Class statement of the

GLIMMIX procedure.

DIST Distribution of the data to be used in GLM regression.

Default is Normal Distribution. Options include: BETA, BINARY,

BINOMIAL, EXPONENTIAL, GAMMA, NORMAL, GEOMETRIC, INVGAUSS,

LOGNORMAL, MUTINOMIAL, NEGBINOMIAL, POISSON and TCENTRAL.

LINK Link function to be specified for the GLM regression. The

default value is identity. Link function options include:

CUMCLL, CUMLOGIT, CUMLOGLOG, CUMPROBIT, CLOGLOG, GLOGIT,

IDENTITY, LOG, LOGIT, LOGLOG, PROBIT, POWER, POWERMINUS2 and

RECIPROCAL.

GTYPE Specifies the covariance structure of the random effects. By

default, the covariance structure is unstructured. The

options of GTYPE include: ANTE(1), AR(1), ARH(1), ARMA(1,1),

CHOL, CS, CSH, FA, FA0, HF, LIN, PSPLINE, RSMOOTH, SIMPLE

SP(EXP), SP(GAU), SP(MAT), SP(POW), SP(POWA),SP(SPH), TOEP,

TOEPH, UN, UNR, and VC.

RTYPE Specifies the covariance structure of residuals. The default

value is the identity matrix. The choices for RTYPE are the

same as GTYPE.

TRT Name of the variable that defines treatment. Must be a binary

variable with values 0 or 1.

127

SUB Name of the variable that specifies subjects of the data.

REPEAT Name of the variable that specifies repeated measures of

the data.

TRT Name of the variable that defines treatment. Must be a binary

variable with values 0 or 1.

Type Name of the type of the randomization tests (UNCONDITIONAL or

CONDITIONAL). The default value is UNCONDITIONAL.

RANPRO Randomization procedure (COMPLETE, EBCD, PBD). The default

value is COMPLETE. When the EBCD is specified, p is required

for the biased probability. When PBD is specified, the

blocksize and e randomization procedure used in each block

(TBD, RAR) are needed.

NUMREPS Number of time the inference procedures is replicated.

Results can be used to simulate the size and power of the

test. The default value is 1.

NUMSEQ Number of sequences to be used for randomization. The default

and minimum value is 2500.

SCORE Score function to be used in the randomization test, one can

choose either ’WILCOXON’ or ’VAN DER WAERDEN’.

SEED Seed to be used for generating randomization sequences. The

default value is 1.

128

P The biased probability used for the EBCD procedure.

BLKSIZE The block size for the PBD procedure.

PROINBLK Randomization procedure to be used for the PBD: TBD or RAR.

PVALUESIDE Specify whether it is a two-sided or one-sided p-value. One

can choose one of the ’UPPER’, ’LOWER’ and ’TWO SIDED’ three

options. ’TWO SIDED’ is the default.

**

**

***/;

%macro ranglmm(indata=,

method=,

response =,

cov=,

class= ,

dist=,

link=,

gtype=,

rtype=,

trt= ,

sub=,

repeat=,

type= ,

ranpro= ,

numreps=,

numseq=,

score=,

129

seed=,

p=,

blksize=,

proinblk=,

pvalueside=

) ;

/*Warnings of inappropriate use of the program*/

%if %length(&indata)=0 %then %do;

%put ALERT ALERT ALERT: INDATA must be specified;

%goto stopmac;

%end;

%if %length(&trt)=0 %then %do;

%put ALERT ALERT ALERT: TRT must be specified;

%goto stopmac;

%end;

%if %length(&sub)=0 %then %do;

%put ALERT ALERT ALERT: SUB must be specified;

%goto stopmac;

%end;

%if %length(&repeat)=0 %then %do;

%put ALERT ALERT ALERT: REPEAT must be specified;

%goto stopmac;

%end;

%if %length(&class)=0 %then %do;

%put ALERT ALERT ALERT: CLASS must be specified;

%goto stopmac;

%end;

130

%if %index(ANTE(1) AR(1) ARH(1) ARMA(1,1) CHOL CS CSH FA FA0 HF LIN

PSPLINE RSMOOTH SIMPLE SP(EXP) SP(GAU) SP(MAT)SP(POW) SP(POWA) SP(SPH)

TOEP TOEPH UN UNR VC, %upcase(>ype))=0 and (%length(>ype) ne 0)

%then %do;

%put ALERT ALERT ALERT: Dist must be one of ANTE(1) AR(1) ARH(1)

ARMA(1,1) CHOL CS CSH FA FA0 HF LIN PSPLINE RSMOOTH SIMPLE SP(EXP)

SP(GAU) SP(MAT) SP(POW) SP(POWA) SP(SPH) TOEP TOEPH UN UNR VC;

%goto stopmac;

%end;

%if %index(ANTE(1) AR(1) ARH(1) ARMA(1,1) CHOL CS CSH FA FA0 HF LIN

PSPLINE RSMOOTH SIMPLE SP(EXP) SP(GAU) SP(MAT)SP(POW) SP(POWA) SP(SPH)

TOEP TOEPH UN UNR VC, %upcase(&rtype))=0 and (%length(&rtype) ne 0)

%then %do;

%put ALERT ALERT ALERT: Dist must be one of ANTE(1) AR(1) ARH(1)

ARMA(1,1) CHOL CS CSH FA FA0 HF LIN PSPLINE RSMOOTH SIMPLE SP(EXP)

SP(GAU) SP(MAT) SP(POW) SP(POWA) SP(SPH) TOEP TOEPH UN UNR VC;

%goto stopmac;

%end;

%if (%length(&type) ne 0) and (%upcase(&type) ne UNCONDITIONAL) and

(%upcase(&type) ne CONDITIONAL) %then %do;

%put ALERT ALERT ALERT: TYPE must be UNCONDITIONAL or CONDITIONAL ;

%goto stopmac;

%end;

%if %index(BETA BINARY BINOMIAL EXPONENTIAL GAMMA NORMAL GEOMETRIC INVGAUSS

LOGNORMAL MUTINOMIAL NEGBINOMIAL POISSON TCENTRAL, %upcase(&dist)) =0 and

(%length(&dist) ne 0) %then %do;

%put ALERT ALERT ALERT: Dist must be one of BETA, BINARY, BINOMIAL,

EXPONENTIAL, GAMMA, NORMAL, GEOMETRIC, INVGAUSS, LOGNORMAL,

131

MUTINOMIAL, NEGBINOMIAL, POISSON, TCENTRAL;

%goto stopmac;

%end;

%if %index(CUMCLL CUMLOGIT CUMLOGLOG CUMPROBIT CLOGLOG GLOGIT IDENTITY LOG

LOGIT LOGLOG PROBIT POWER POWERMINUS2 RECIPROCAL, %upcase(&link)) =0 and

(%length(&link) ne 0) %then %do;

%put ALERT ALERT ALERT:LINK must be one of the following funciton:

CUMCLL, CUMLOGIT, CUMLOGLOG, CUMPROBIT, CLOGLOG, GLOGIT, IDENTITY,

LOG, LOGIT, LOGLOG, PROBIT, POWER, POWERMINUS2, RECIPROCAL;

%goto stopmac;

%end;

%if %index(COMPLETE EBCD PBD, %upcase(&ranpro))=0 and

(%length(&ranpro) ne 0) %then %do;

%put ALERT ALERT ALERT: RANPRO must be one of COMPLETE, EBCD, PBD;

%goto stopmac;

%end;

%if %sysevalf(&numreps<1) and (%length(&numreps) ne 0) %then %do;

%put ALERT ALERT ALERT: NUMREPS must be at least 1;

%goto stopmac;

%end;

%if %sysevalf(&numseq<2500) and (%length(&numseq) ne 0) %then %do;

%put ALERT ALERT ALERT: NUMSEQ must be at least 2500;

%goto stopmac;

%end;

%if %index(‘WILCOXON’ ‘VAN DER WAERDEN’, %upcase(&score))=0 and

(%length(&score) ne 0) %then %do;

132

%put ALERT ALERT ALERT: SCORE must be one of WILCOXON,

VAN DER WAERDEN;

%goto stopmac;

%end;

%if %sysevalf(&seed<0) and %length(&seed) ne 0 %then %do;

%put ALERT ALERT ALERT: SEED must be at least 1;

%goto stopmac;

%end;

%if (%upcase(&ranpro)=EBCD) and %length(&p) = 0 %then %do;

%put ALERT ALERT ALERT: P must be at specified with EBCD procedure;

%goto stopmac;

%end;

%if (%upcase(&ranpro)=EBCD) %then %do;

%if %sysevalf(&p<0) or %sysevalf(&p>1) %then %do;

%put ALERT ALERT ALERT: P must between 0 and 1;

%goto stopmac;

%end;

%end;

%if (%upcase(&ranpro)=PBD) and (%length(&blksize) = 0) %then %do;

%put ALERT ALERT ALERT: BLKSIZE must be at specified with

PBD procedure;

%goto stopmac;

%end;

%if (%upcase(&ranpro)=PBD) and (%length(&proinblk) = 0) %then %do;

%put ALERT ALERT ALERT: PROINBLK must be at specified with

133

PBD procedure;

%goto stopmac;

%end;

%if %index(EBCD, %upcase(&ranpro))=0 and %length(&p) ne 0 %then %do;

%put ALERT ALERT ALERT: P must be at specified with EBCD procedure;

%goto stopmac;

%end;

%if %index(PBD,%upcase(&ranpro))=0 and %length(&blksize) ne 0

%then %do;

%put ALERT ALERT ALERT: BLKSIZE must be at specified with

PBD procedure;

%goto stopmac;

%end;

%if %index(PBD,%upcase(&ranpro))=0 and %length(&proinblk) ne 0

%then %do;

%put ALERT ALERT ALERT: PROINBLK must be at specified with

PBD procedure;

%goto stopmac;

%end;

%if %index(‘UPPER’ ‘LOWER’ ‘TWO SIDED’, %upcase(&pvalueside))=0

and %length(&pvalueside) ne 0 %then %do;

%put ALERT ALERT ALERT: PVALUSIDE must be one of UPPER, LOWER,

TWO SIDED;

%goto stopmac;

%end;

134

/*Put default values for which not be specified*/

%if %length(&type)=0 %then %let type=UNCONDITIONAL;

%if %length(&ranpro)=0 %then %let ranpro=COMPLETE;

%if %length(&numreps)=0 %then %let numreps=1;

%if %length(&numseq)=0 %then %let numseq=2500;

%if %length(&seed)=0 %then %let seed=1;

%if %length(&method)=0 %then %let method=RSPL;

%if %length(&dist)=0 %then %let dist=normal;

%if %length(&link)=0 %then %let link=identity;

%if %length(>ype)=0 %then %let gtype=un;

%if %length(&pvalueside)=0 %then %let pvalueside = ’TWO SIDED’;

%global num;

/*Compute the number of the subjects*/

data rt1 (keep=&trt &sub);

set &indata ;

proc sort

nodup;

by ⊂

run;

proc sql noprint;

select count(*) into: num from rt1;

quit;

%if %upcase(&type)=CONDITIONAL %then %do;

%global n1;

proc sql noprint;

select count(distinct &sub) into: n1 from &indata where &trt=1;;

135

quit;

%end;

/*Create data to be used to compute the test*/

/*Compute the residuals*/

%if %length(&rtype) = 0 %then %do;

ods select SolutionR;

proc glimmix data=&indata method=&method;

class &class ;

model &response= &cov /dist=&dist link=&link ;

random int &repeat/subject=&sub type=>ype solution ;

ods output SolutionR=rt;

run;

%end;

%if %length(&rtype) ne 0 %then %do;

ods select SolutionR;

proc glimmix data=&indata method=&method;

class &class ;

model &response= &cov /dist=&dist link=&link ;

random int &repeat/subject=&sub type=>ype solution ;

random _residual_/type=&rtype;

ods output SolutionR=rt;

run;

%end;

data rt2;

set rt;

if effect =‘Intercept’ then delete;

y=estimate;

run;

136

data a;

set rt1;set rt2;

trt=&trt;

run;

/*Compute p values with previously loaded TEST macro*/

%if %length(&proinblk)=0 %then %do;

%test(data=a, testtype= %upcase(&type), testranpro= %upcase(&ranpro)) ;

%end;

%else %if %length(&proinblk) ne 0 %then %do;

%test(data=a, testtype= %upcase(&type), testranpro= %upcase(&ranpro),

testproinblk=%upcase(&proinblk)) ;

%end;

%stopmac:;

%mend;

137

Appendix D: Macro RANSURVIVAL

/**

Name: RANSURVIVAL

PROGRAM: Macro for randomization tests of survival data

PURPOSE: Macro that allows to easily compute p-values of randomization

tests for survival data

**

Inputs:

INDATA Data set to be analyzed. It has the following variables: the

response variable which is used to perform the randomization

test, the censoring indicator if any, a treatment indicator

variable, and other covariates to be included in the

regression.

RESPONSE Name of the response variable to be used for regression

if model is specified or randomization test if no model is

specified.

CENSOR Variable that defines censoring status. We consider value 0

as censored, and 1 as uncensored. By default, there is no

censoring.

MODEL Types of model to be used for data. Values include NONE, PH,

AFT. By default, there is no modeling.

COV Name of the covariates to be used for regression if model is

PH or AFT.

138

DIST Variable that specifies the distribution type for failure

time if the AFT model is used. Options include EXPONENTIAL,

GAMMA, LLOGISTIC, LNORMAL, LOGISTIC, NORMAL and WEIBULL.

The default distribution is a type 1 extreme-value

distribution to the log of the response.

NOLOG For the AFT model, it requests whether to use log

transformation or not. By default, there is log

transformation.

NOINT For the AFT model, it requests whether intercept is

included in the regression. By default, the intercept is

included.

TRT Name of the variable that defines treatment. Must be a binary

variable with values 0 or 1.

Type Name of the type of the randomization tests (UNCONDITIONAL or

CONDITIONAL). The default value is UNCONDITIONAL.

RANPRO Randomization procedure (COMPLETE, EBCD, PBD). The default

value is COMPLETE. When the EBCD is specified, p is required

for the biased probability. When PBD is specified, the

blocksize and the randomization procedure used in each block

(TBD, RAR) are needed.

NUMREPS Number of time the inference procedures is replicated.

Results can be used to simulate the size and power of the

139

test. The default value is 1.

NUMSEQ Number of sequences to be used for randomization. The default

and minimum value is 2500.

SCORE Score function to be used in the randomization test, one can

choose either ’WILCOXON’ or ’VAN DER WAERDEN’.

SEED Seed to be used for generating randomization sequences. The

default value is 1.

P The biased probability used for the EBCD procedure.

BLKSIZE The block size for the PBD procedure.

PROINBLK Randomization procedure to be used for the PBD: TBD or RAR.

PVALUESIDE Specify whether it is a two-sided or one-sided p-value. One

can choose one of the ’UPPER’, ’LOWER’ and ’TWO SIDED’

three options. ’TWO SIDED’ is the default.

***/;

%macro ransurvival(indata=,

response=,

censor=,

model=,

cov=,

140

dist=,

nolog=,

noint=,

trt= ,

type= ,

ranpro= ,

numreps=,

numseq=,

seed=,

p=,

blksize=,

proinblk=,

pvalueside=

) ;

/*Warnings of inappropriate use of the program*/

%if %length(&indata)=0 %then %do;

%put ALERT ALERT ALERT: INDATA must be specified;

%goto stopmac;

%end;

%if %length(&trt)=0 %then %do;

%put ALERT ALERT ALERT: TRT must be specified;

%goto stopmac;

%end;

%if %length(&model) ne 0 and %index(‘AFT’ ‘PH’, %upcase(&model))=0

%then %do;

%put ALERT ALERT ALERT: If MODEL is specified, it must be AFT or PH;

%goto stopmac;

%end;

141

%if (%length(&type) ne 0) and (%upcase(&type) ne UNCONDITIONAL) and

(%upcase(&type) ne CONDITIONAL) %then %do;

%put ALERT ALERT ALERT: TYPE must be UNCONDITIONAL or CONDITIONAL ;

%goto stopmac;

%end;

%if %upcase(&model)=‘AFT’ %then %do;

%if %index(EXPONENTIAL GAMMA LLOGISTIC LNORMAL LOGISTIC NORMAL WEIBULL,

%upcase(&dist)) =0 and (%length(&dist) ne 0)%then %do;

%put ALERT ALERT ALERT: Dist must be one of EXPONENTIAL, GAMMA,

LLOGISTIC, LNORMAL, LOGISTIC, NORMAL, WEIBULL;

%goto stopmac;

%end;

%end;

%if %index(COMPLETE EBCD PBD, %upcase(&ranpro))=0 and (%length(&ranpro)

ne 0) %then %do;

%put ALERT ALERT ALERT: RANPRO must be one of COMPLETE, EBCD, PBD;

%goto stopmac;

%end;

%if %sysevalf(&numreps<1) and (%length(&numreps) ne 0) %then %do;

%put ALERT ALERT ALERT: NUMREPS must be at least 1;

%goto stopmac;

%end;

%if %sysevalf(&numseq<2500) and (%length(&numseq) ne 0) %then %do;

%put ALERT ALERT ALERT: NUMSEQ must be at least 2500;

%goto stopmac;

%end;

142

%if %sysevalf(&seed<0) and %length(&seed) ne 0 %then %do;

%put ALERT ALERT ALERT: SEED must be at least 1;

%goto stopmac;

%end;

%if (%upcase(&ranpro)=EBCD) and %length(&p) = 0 %then %do;

%put ALERT ALERT ALERT: P must be at specified with EBCD procedure;

%goto stopmac;

%end;

%if (%upcase(&ranpro)=EBCD) %then %do;

%if %sysevalf(&p<0) or %sysevalf(&p>1) %then %do;

%put ALERT ALERT ALERT: P must between 0 and 1;

%goto stopmac;

%end;

%end;

%if (%upcase(&ranpro)=PBD) and (%length(&blksize) = 0) %then %do;

%put ALERT ALERT ALERT: BLKSIZE must be at specified with

PBD procedure;

%goto stopmac;

%end;

%if (%upcase(&ranpro)=PBD) and (%length(&proinblk) = 0) %then %do;

%put ALERT ALERT ALERT: PROINBLK must be at specified with

PBD procedure;

%goto stopmac;

143

%end;

%if %index(EBCD, %upcase(&ranpro))=0 and %length(&p) ne 0 %then %do;

%put ALERT ALERT ALERT: P must be at specified with EBCD procedure;

%goto stopmac;

%end;

%if %index(PBD,%upcase(&ranpro))=0 and %length(&blksize) ne 0

%then %do;

%put ALERT ALERT ALERT: BLKSIZE must be at specified with

PBD procedure;

%goto stopmac;

%end;

%if %index(PBD,%upcase(&ranpro))=0 and %length(&proinblk) ne 0

%then %do;

%put ALERT ALERT ALERT: PROINBLK must be at specified with

PBD procedure;

%goto stopmac;

%end;

%if %index(‘UPPER’ ‘LOWER’ ‘TWO SIDED’, %upcase(&pvalueside))=0

and %length(&pvalueside) ne 0 %then %do;

%put ALERT ALERT ALERT: PVALUSIDE must be one of UPPER, LOWER, TWO SIDED;

%goto stopmac;

%end;

%global num;

144

/*Compute the size of the data*/

proc sql noprint;

select count(*) into: num from &indata;

quit;

%if %upcase(&type)=CONDITIONAL %then %do;

%global n1;

proc sql noprint;

select sum(&trt) into: n1 from &indata;

quit;

%end;

/*Put default values for which not be specified*/

%if %length(&type)=0 %then %let type=UNCONDITIONAL;

%if %length(&ranpro)=0 %then %let ranpro=COMPLETE;

%if %length(&numreps)=0 %then %let numreps=1;

%if %length(&numseq)=0 %then %let numseq=2500;

%if %length(&seed)=0 %then %let seed=1;

%if %upcase(&model)=AFT and %length(&dist)=0 %then %let dist=weibull;

%if %length(&pvalueside)=0 %then %let pvalueside = ‘TWO SIDED’;

%if %length(&noint)=0 %then %let noint=0;

%if %length(&nolog)=0 %then %let nolog=0;

%if %length(&model)=0 %then %let model=‘NONE’;

%global Scores;

%if %upcase(&model)=‘NONE’ %then %let Scores=‘SAVAGE’;

%else %let Scores=‘WILCOXON’;

/*Create data to be used to compute the test*/

/*No censoring*/

%if %length(&censor)=0 %then %do;

%if %upcase(&model)=‘NONE’ %then %do;

145

proc rank data =&indata out=a1 savage;

var &response;

ranks r;

run;

data a;

set a1;

trt=&trt;

censor=1;

run;

%end;

%if %upcase(&model)=‘PH’ %then %do;

proc phreg data=&indata noprint;

model &response= &cov;

output out=r1 resmart=r ;

run;

data a;

set r1;

censor=1;

trt=&trt;

run;

%end;

%if %upcase(&model)=‘AFT’ %then %do;

%if &nolog=0 %then %do;

%if &noint=0 %then %do;

proc lifereg data=&indata noprint;

model &response= &cov /dist=&dist;

output out=r1 crresidual=cr ;

run;

data a;

146

set r1;

censor=1;

r = censor - cr;

trt=&trt;

run;

%end;

%if &noint=1 %then %do;

proc lifereg data=&indata noprint;

model &response= &cov /dist=&dist noint;

output out=r1 crresidual=cr ;

run;

data a;

set r1;

censor=1;

r = censor - cr;

trt=&trt;

run;

%end;

%end;

%if &nolog=1 %then %do;

%if &noint=0 %then %do;

proc lifereg data=&indata noprint;

model &response= &cov /dist=&dist nolog;

output out=r1 crresidual=cr ;

run;

data a;

set r1;

censor=1;

r = censor - cr;

trt=&trt;

run;

147

%end;

%if &noint=1 %then %do;

proc lifereg data=&indata noprint;

model &response= &cov /dist=&dist nolog noint;

output out=r1 crresidual=cr ;

run;

data a;

set r1;

censor=1;

r = censor - cr;

run;

%end;

%end;

%end;

%end;

/*Censoring*/

%if %length(&censor) ne 0 %then %do;

%if %upcase(&model)=‘NONE’ %then %do;

proc rank data=&indata out=a1 savage;

var &response;

ranks r;

run;

data a;

set a1;

trt=&trt;

r=&response;

censor=&censor;

run;

%end;

148

%if %upcase(&model)=‘PH’ %then %do;

proc phreg data=&indata noprint;

model &response*&censor(0)= &cov ;

output out=r1 resmart=r ;

run;

data a;

set r1;

censor=&censor;

trt=&trt;

%end;

%if %upcase(&model)=‘AFT’ %then %do;

%if &nolog=0 %then %do;

%if &noint=0 %then %do;

proc lifereg data=&indata noprint;

model &response*&censor(0)= &cov /dist=&dist;

output out=r1 cresidual=cr ;

run;

data a;

set r1;

censor=&censor;

r = censor - cr;

trt=&trt;

run;

%end;

%if &noint=1 %then %do;

proc lifereg data=&indata noprint;

model &response*&censor(0)= &cov /dist=&dist noint;

output out=r1 cresidual=cr ;

run;

149

data a;

set r1;

censor=&censor;

r = censor - cr;

trt=&trt;

run;

%end;

%end;

%if &nolog=1 %then %do;

%if &noint=0 %then %do;

proc lifereg data=&indata noprint;

model &response*&censor(0)= &cov /dist=&dist nolog;

output out=r1 cresidual=cr ;

run;

data a;

set r1;

censor=&censor;

r = censor - cr;

trt=&trt;

run;

%end;

%if &noint=1 %then %do;

proc lifereg data=&indata noprint;

model &response*&censor(0)= &cov /dist=&dist nolog noint;

output out=r1 cresidual=cr ;

run;

data a;

set r1;

censor=&censor;

r = censor - cr;

trt=&trt;

150

run;

%end;

%end;

%end;

%end;

/*Compute p values*/

%if %length(&proinblk)=0 %then %do;

%stest(data=a, testtype= %upcase(&type), testranpro= %upcase(&ranpro)) ;

%end;

%else %if %length(&proinblk) ne 0 %then %do;

%stest(data=a, testtype= %upcase(&type), testranpro= %upcase(&ranpro),

testproinblk=%upcase(&proinblk)) ;

%end;

%stopmac:;

%mend;

%macro stest(data=, testtype= , testranpro= , testproinblk=);

/*Compute unconditional complete randomization*/

%if %upcase(&testtype)=UNCONDITIONAL and %upcase(&testranpro)=COMPLETE

%then %do;

proc iml;

seed = &seed;

n=#

m=&numreps;

s=&numseq;

xj=j(n,1,.);

snew=j(s,1,.);

l=j(s,1,.);

lsum=j(m,1,.);

151

tnew=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{r} into r ;

read all var{censor} into d;

close &data;

do i=1 to m;

do j=1 to s;

do k=1 to n;

c=ranuni(&seed+m);

p=0.5 ;if c<p then tnew[k]=1 ; else tnew[k]=0;

xj[k]=n-k+1;

end;

if upcase(&model)=‘NONE’ then aj=d-(r+1);

else if upcase(&model)=‘AFT’ | upcase(&model)=‘PH’ then aj=ranktie(r);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

end;

end;

lsum[i]=sum(l);

end;

152

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

n=#

if upcase(&model)=‘NONE’ then Scores=‘SAVAGE’; else Scores=‘WILCOXON’;

Alternative=upcase(&pvalueside);

set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro Randomization";

run;

%goto stopmactest;

%end;

/*Compute test for conditional complete randomization*/

%if %upcase(&testtype)=CONDITIONAL and %upcase(&testranpro)=COMPLETE

%then %do;

proc iml;

seed = &seed;

n1=&n1;

n=#

m=&numreps;

s=&numseq;

snew=j(s,1,.);

l=j(s,1,.);

153

lsum=j(m,1,.);

tnew=j(n,1,.);

xj=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{r} into r ;

read all var{censor} into d;

close &data;

do i=1 to m;

do j=1 to s;

mj=0;

do k=1 to n;

c=ranuni(&seed+m);

p=(n1-mj)/(n-k+1);if c<p then do; tnew[k]=1 ;mj=mj+1; end;

else do; tnew[k]=0; mj=mj+0;end;

xj[k]=n-k+1;

end;

if upcase(&model)=‘NONE’ then aj=d-(r+1);

else if upcase(&model)=‘AFT’ | upcase(&model)=‘PH’ then aj=ranktie(r);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

154

end;

end;

lsum[i]=sum(l);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

n=#

n1=&n1;

Scores=&Scores;

Alternative=upcase(&pvalueside);set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro Randomization";

run;

%goto stopmactest;

%end;

/*Compute the test for unconditonal EBCD*/

%if %upcase(&testtype)=UNCONDITIONAL and %upcase(&testranpro)=EBCD

%then %do;

proc iml;

start efronunp(p,n1,n2);

if n1=n2 then

155

pp=0.5;

else if n1<n2 then

pp=p;

else if n1>n2 then pp=1-p;

return (pp);

finish;

store module=efronunp;

quit;

proc iml;

load module=efronunp;

seed = &seed;

n=#

m=&numreps;

s=&numseq;

p=&p;

snew=j(s,1,.);

l=j(s,1,.);

lsum=j(m,1,.);

tnew=j(n,1,.);

xj=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{r} into r ;

read all var{censor} into d;

close &data;

do i=1 to m;

do j=1 to s;

n1=0;n2=0;

do k=1 to n;

c=ranuni(&seed+m);

156

pp=efronunp(&p,n1,n2);if c<pp then do;tnew[k]=1 ; n1=n1+1;n2=n2+0; end;

else do ;tnew[k]=0; n1=n1+0;n2=n2+1;end;

xj[k]=n-k+1;

end;

if upcase(&model)=‘NONE’ then aj=d-(r+1);

else if upcase(&model)=‘AFT’ | upcase(&model)=‘PH’ then aj=ranktie(r);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

end;

end;

lsum[i]=sum(l);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

n=#

Scores=&Scores;

157

Alternative=upcase(&pvalueside);set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro (p=&p) Randomization";

run;

%goto stopmactest;

%end;

/*Compute the test for conditonal EBCD*/

%if %upcase(&testtype)=CONDITIONAL and %upcase(&testranpro)=EBCD %then %do;

proc iml;

seed=12345;

start efronun (p,n,n1);

if n1=n/2 then do;

xc=j(n1,1,.);

do l=0 to n1-1;

xc[l+1]=((n-2*l)/(n+2*l)) *(comb(n1+l,l)*(1-p)**l);

end;

pp=(p**n1)*sum(xc);

end;

else if n1<n/2 then do;

xc1=j(n1+1,1,.);

do l=0 to n1;

xc1[l+1]=((n-n1-l)/(n-n1+l)) *(comb(n-n1+l,l)*(1-p)**(n-2*n1+l-1));

end;

pp=0.5*(p**n1)*sum(xc1);

end;

158

else if n1>n/2 then do;

n2=n-n1;

xc2=j(n2+1,1,.);

do l=0 to n2;

xc2[l+1]=((n1-l)/(n1+l)) *(comb(n1+l,l)*(1-p)**(2*n1-n+l-1));

end;

pp=0.5*(p**n2)*sum(xc2);

end;

return (pp);

finish;

store module=efronun;

start efroncon(p,n,n1,j,mj);

if j>=1 & j<n & mj>=0 & mj<j/2 then do;

if mj<=n1 & j-mj>n1 then

pp=comb(n-j,n1-mj)*(p**(n1-mj))*((1-p)**(n-j-n1+mj));

else if j-mj<=n1 & n1<n/2 then do;

xc=j(n1+mj-j+1,1,.);

do l=0 to n1+mj-j;

xc[l+1]=(n-n1-mj-l)/(n-n1-mj+l)*comb(n-n1-mj+l,l)*

((1-p)**(n-2*n1-1+l));

end;

pp=0.5*(p**(n1-mj))*sum(xc)+(p**(n1-mj))*((1-p)**(n-j-n1+mj))

*(comb(n-j,n1-mj) -comb(n-j,n1-j+mj));

end;

else if n1=n/2 then do;

xc1=j(n-j-n1+mj+1,1,.);

159

do l=0 to n-j-n1+mj;

xc1[l+1]=(n1-mj-l)/(n1-mj+l)*comb(n1-mj+l,l)*((1-p)**l);

end;

pp= (p**(n1-mj))*sum(xc1);

end;

else if n1>n/2 & j-mj<=n-n1 then do;

xc2=j(n-j-n1+mj+1,1,.);

do l=0 to n-j-n1+mj;

xc2[l+1]= (n1-mj-l)/(n1-mj+l)*comb(n1-mj+l,l)*((1-p)**(2*n1-n-1+l));

end;

pp=0.5*(p**(n-n1-mj))*sum(xc2);

end;

end;

else if j>=0 & j<n & mj=j/2 & mj<=n1 & j-mj<=n-n1 then

pp=efronun(p,n-j,n1-mj);

else if j>=1 & j<n & mj>j/2 & mj<=j then do;

if n1>=mj & n1<n/2 then do;

xc3=j(n1-mj+1,1,.);

do l=0 to n1-mj;

xc3[l+1]=(n-j-n1+mj-l)/(n-j-n1+mj+l)*comb(n-j-n1+mj+l,l)*

((1-p)**(n-2*n1-1+l));

end;

pp=0.5*(p**(n1+mj-j))*sum(xc3);

end;

else if n1=n/2 then do;

xc4= j(n1-mj+1,1,.);

do l=0 to n1-mj;

xc4[l+1]=(n-j-n1+mj-l)/(n-j-n1+mj+l)*comb(n-j-n1+mj+l,l)

160

*((1-p)**(l));

end;

pp=(p**(n-j-n1+mj))*sum(xc4);

end;

else if n1>n/2 & mj<=n-n1 then do;

xc5= j(n-n1-mj+1,1,.);

do l=0 to n-n1-mj;

xc5[l+1]=(n1+mj-j-l)/(n1+mj-j+l)*comb(n1+mj-j+l,l)*

((1-p)**(2*n1-n-1+l));

end;

pp=0.5*(p**(n-j-n1+mj))*sum(xc5)+(p**(n-j-n1+mj))*((1-p)**(n1-mj))

*(comb(n-j,n1-mj)-comb(n-j,n1-j+mj));

end;

else if mj>n-n1 & j-mj<=n-n1 then

pp=comb(n-j,n1-mj)*(p**(n-j-n1+mj))*(1-p)**(n1-mj);

end;

else if mj=n1 & j=n then

pp=1;

else if mj>n1 & j<n then

pp=0;

return (pp);

finish;

store module=efroncon;

161

quit;

proc iml;

load module=efronun;

load module=efroncon;

seed = &seed;

n1=&n1;

p=&p;

n=#

m=&numreps;

s=&numseq;

snew=j(s,1,.);

l=j(s,1,.);

lsum=j(m,1,.);

tnew=j(n,1,.);

xj=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{r} into r ;

read all var{censor} into d;

close &data;

do i=1 to m;

do j=1 to s;

mj=0;

do k=0 to n-1;

f=k+1;

c=ranuni(&seed+m);

if mj<n1 then do;

if k=0 then

162

pp=0.5*efroncon(p,n,n1,1,1)/efronun(p,n,n1);

else if k>=1 then do;

if mj=(k+1)/2 then

pp= 0.5*efroncon(p,n,n1,k+1,mj+1)/efroncon(p,n,n1,k,mj) ;

else if mj>(k+1)/2 then

pp=(1-p)*efroncon(p,n,n1,k+1,mj+1)/efroncon(p,n,n1,k,mj) ;

else if mj<(k+1)/2 then

pp=p*efroncon(p,n,n1,k+1,mj+1)/efroncon(p,n,n1,k,mj);

end;

end;

else pp=0;

if c<=pp then do;

tnew[f]=1;

mj=mj+1;

end;

else do; tnew[f]=0; mj=mj+0;end;

xj[f]=n-f+1;

end;

if upcase(&model)=‘NONE’ then aj=d-(r+1);

else if upcase(&model)=‘AFT’ | upcase(&model)=‘PH’ then aj=ranktie(r);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

163

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then l[j]=1; else l[j]=0;

end;

end;

lsum[i]=sum(l);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

n=#

n1=&n1;

Scores=&Scores;

Alternative=upcase(&pvalueside);set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro (p=&p) Randomization";

run;

%goto stopmactest;

%end;

/*Compute the test for unconditonal PBD*/

/*Truncated binomial*/

%if %upcase(&testtype)=UNCONDITIONAL and %upcase(&testranpro)=PBD

and %upcase(&testproinblk)=TBD

%then %do;

164

proc iml;

seed = &seed;

n=#

m=&numreps;

s=&numseq;

blocksize=&blksize ;

snew=j(s,1,.);

ll=j(s,1,.);

lsum=j(m,1,.);

tnew=j(n,1,.);

xj=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{r} into r ;

read all var{censor} into d ;

close &data;

do i=1 to m;

do j=1 to s;

if mod(n,blocksize)=0 then l=n/blocksize;

else if mod(n, blocksize)>0 then l=int(n/blocksize)+1;

do k=1 to l;

mj=0; nj=0;

do kk= 0 to blocksize-1 until (k=l & kk=n-(l-1)*blocksize-1);

id=kk+(k-1)*blocksize+1;

if mj=blocksize/2 then p=0;

else if max(mj,nj)<blocksize/2 then p=0.5;

else if nj=blocksize/2 then p=1;

c=ranuni(&seed+m);

if c<p then do;tnew[id]=1 ; nj=nj+0; mj=mj+1; end;

else do ;tnew[id]=0; nj=nj+1; mj=mj+0;end; xj[id]=n-id+1;

165

end; end;

if upcase(&model)=‘NONE’ then aj=d-(r+1);

else if upcase(&model)=‘AFT’ | upcase(&model)=‘PH’ then aj=ranktie(r);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then ll[j]=1; else ll[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

end;

lsum[i]=sum(ll);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

n=#

Scores=&Scores;

Alternative=upcase(&pvalueside);set x;

166

run;

proc print data=x2;

title "&testtype Test Result for &testranpro with &testproinblk

Randomization";

run;

%goto stopmactest;

%end;

/*Random allocation Rule*/

%if %upcase(&testtype)=UNCONDITIONAL and %upcase(&testranpro)=PBD and

%upcase(&testproinblk)=RAR

%then %do;

proc iml;

seed = &seed;

n=#

m=&numreps;

s=&numseq;

blocksize=&blksize ;

snew=j(s,1,.);

ll=j(s,1,.);

lsum=j(m,1,.);

tnew=j(n,1,.);

xj=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{r} into r ;

167

read all var{censor} into d ;

close &data;

do i=1 to m;

do j=1 to s;

if mod(n,blocksize)=0 then l=n/blocksize;

else if mod(n, blocksize)>0 then l=int(n/blocksize)+1;

do k=1 to l;

mj=0;

do kk= 0 to blocksize-1 until (k=l & kk=n-(l-1)*blocksize-1);

id=kk+(k-1)*blocksize+1;

c=ranuni(&seed+m);

p=(blocksize/2-mj)/(blocksize-kk);

if c<p then do; tnew[id]=1 ; mj=mj+1; end;

else do ;tnew[id]=0; mj=mj+0; end;

xj[id]=n-id+1;

end;

end;

if upcase(&model)=‘NONE’ then aj=d-(r+1);

else if upcase(&model)=‘AFT’ | upcase(&model)=‘PH’ then aj=ranktie(r);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then ll[j]=1; else ll[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

168

end;

end;

lsum[i]=sum(ll);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

n=#

Scores=&Scores;

Alternative=upcase(&pvalueside);set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro with &testproinblk

Randomization";

run;

%goto stopmactest;

%end;

/*Conditional PBD*/

/*TBD*/

%if %upcase(&testtype)=CONDITIONAL and %upcase(&testranpro)=PBD and

%upcase(&proinblk)=TBD %then %do;

proc iml;

169

seed = &seed;

n1=&n1;

n=#

m=&numreps;

s=&numseq;

blocksize=&blksize ;

snew=j(s,1,.);

ll=j(s,1,.);

lsum=j(m,1,.);

tnew=j(n,1,.);

xj=j(n,1,.);

use &data;

read all var{trt} into trt ;

read all var{r} into r ;

read all var{censor} into d;

close &data;

do i=1 to m;

do j=1 to s;

if mod(n,blocksize)=0 then l=n/blocksize;

else if mod(n, blocksize)>0 then l=int(n/blocksize)+1;

n11=0;

do k=1 to l;

mj=0; nj=0;

do kk= 0 to blocksize-1 until (k=l & kk=n-(l-1)*blocksize-1);

id=kk+(k-1)*blocksize+1;

if n11<n1 then do;

if mj=blocksize/2 then p=0;

else if max(mj,nj)<blocksize/2 then p=0.5;

else if nj=blocksize/2 then p=1; end;

else p=0;

c=ranuni(&seed+m);

170

if c<p then do;tnew[id]=1 ; nj=nj+0; mj=mj+1;n11=n11+1; end;

else do ;tnew[id]=0; nj=nj+1; mj=mj+0;n11=n11+0;end;

xj[id]=n-id+1;

end; end;

if upcase(&model)=‘NONE’ then aj=d-(r+1);

else if upcase(&model)=‘AFT’ | upcase(&model)=‘PH’ then aj=ranktie(r);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then ll[j]=1; else ll[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

if upcase(&pvalueside)=‘TWO SIDED’ then do;

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

end;

lsum[i]=sum(ll);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

n=#

n1=&n1;

171

Scores=&Scores;

Alternative=upcase(&pvalueside);set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro with &testproinblk

Randomization";

run;

%goto stopmactest;

%end;

/*Random allocation Rule*/

%if %upcase(&testtype)=CONDITIONAL and %upcase(&testranpro)=PBD and

%upcase(&proinblk)=RAR %then %do;

proc iml;

seed = &seed;

n=#

m=&numreps;

s=&numseq;

blocksize=&blksize ;

n1=&n1;

snew=j(s,1,.);

ll=j(s,1,.);

lsum=j(m,1,.);

tnew=j(n,1,.);

xj=j(n,1,.);

use &data;

read all var{trt} into trt ;

172

read all var{r} into r ;

read all var{censor} into d ;

close &data;

do i=1 to m;

do j=1 to s;

if mod(n,blocksize)=0 then l=n/blocksize;

else if mod(n, blocksize)>0 then l=int(n/blocksize)+1;

n11=0;

do k=1 to l;

mj=0;

do kk= 0 to blocksize-1 until (k=l & kk=n-(l-1)*blocksize-1);

id=kk+(k-1)*blocksize+1;

if n11<n1 then p=(blocksize/2-mj)/(blocksize-kk); else p=0;

c=ranuni(&seed+m);

if c<p then do; tnew[id]=1 ; mj=mj+1; n11=n11+1;end;

else do ;tnew[id]=0; mj=mj+0; n11=n11+0;end;

xj[id]=n-id+1;

end;

end;

if upcase(&model)=‘NONE’ then aj=d-(r+1);

else if upcase(&model)=‘AFT’ | upcase(&model)=‘PH’ then aj=ranktie(r);

score=aj-sum(aj)/n;

sobs=trt’*score;

snew[j]=tnew’*score;

if upcase(&pvalueside)=‘UPPER’ then do;

if snew[j]>abs(sobs) then ll[j]=1; else ll[j]=0;

end;

if upcase(&pvalueside)=‘LOWER’ then do;

if snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

173

if upcase(&pvalueside)=‘TWO SIDED’ then do;

if snew[j]>abs(sobs) |snew[j]<-abs(sobs) then ll[j]=1; else ll[j]=0;

end;

end;

lsum[i]=sum(ll);

end;

pvalue=sum(lsum)/(m*s);

xx= pvalue;

cname = { "P-value" };

create x from xx [colname=cname];

append from xx;

quit;

data x2;

n=#

n1=&n1;

Scores=&Scores;

Alternative=upcase(&pvalueside);set x;

run;

proc print data=x2;

title "&testtype Test Result for &testranpro with &testproinblk

Randomization";

run;

%goto stopmactest;

%end;

%stopmactest:

%mend;

174

Bibliography

175

Bibliography

[1] Agresti, A., Caffo, B., Ohman-Strickland, P. (2004). Examples in which
misspecification of a random effects distribution reduces efficiency and possible
remedies. Biostatistics 47 639-653.

[2] Breslow, N. (1978). The proportional hazards model: applications in epidemi-
ology. Communications in Statistics A7 315-332.

[3] Chen, J., Zhang, D., Davidian, D. (2002). A Monte Carlo EM algorithm
for generalized linear mixed models with flexible random effects distribution.
Biostatistics 3 347-360.

[4] Chow, S-C., Liu, J-P. (2004). Design and Analysis of Clinical Trials . New
York: John Wiley and Sons.

[5] Collett, D. (2003). Modeling Survival Data in Medical Research. Boca Raton:
CRC Press.

[6] Cook, T. D., DeMets, D. L. (2008). Introduction to Statistical Methods for
Clinical Trials . Boca Raton: CRC Press.

[7] Edmonson, J. H., Fleming, T.R., Decker, T. G., Malkasian, G. D.,
Jorgensen, E. O., Jefferies, J. A., Webb, M. J., Kvols, L. K. (1979).
Different chemotherapeutic sensitivities and host factors affecting prognosis in
advanced ovarian carcinoma versus minimal residual disease. Cancer Treatment
Reports 63 641-647.

[8] Efron, B. (1971). Forcing a sequential experiment to be balanced. Biometrika
69 61-67.

[9] Fitzmaurice, G., Laird, N., Ware, J. (2004). Applied Longitudinal Analy-
sis. New York: John Wiley and Sons.

[10] Friedman, A. S. (1975). Interaction of drug therapy with marital therapy in
depressive patients. Archives of General Psychiatry 32 619-637.

[11] Freireich, E. J., Gehan, E., Frei, E. F., Schroeder, L. R., Wolman,
I. J., Anbari, R., Burgert, E. O., Mills, S. D., Pinkel, D., Selaway,

176

O. S., Moon, J. H., Gendel, B. R., Spurr, C. L., Storrs, R., Haurani,
F., Hoogstraten, B., Stanley, L. (1963). The effect of 6-mercaptopurine
on the duration of steroid-induced remissions in acute leukemia: a model for
evaluation of other potentially useful therapy. Blood 21 699-716.

[12] Jacqmin-Gadda, H., Sibillot, S., Proust, C., Molina, J.-M.,
Thiébaut, R. (2007). Robustness of the linear mixed model to misspecified
error distribution. Computational Statistics and Data Analysis 51 5142-5154.

[13] Gail, M. H., Tan, W. Y., Piantadosi, S. (1988). Tests for no treatment
effect in randomized clinical trials. Biometrika 75 57-64.

[14] Gail, M. H., Wieand, S., Piantadosi, S. (1984). Biased estimates of treat-
ment effect in randomized experiments with nonlinear regressions and omitted
covariates. Biometrika 71 431-444.

[15] Gibbons, J D., Chakraborti, S. (2010). Nonparametric Statistical Inference.
Boca Raton: CRC Press.

[16] Henry, K., Erice, A., Tierney, C., Balfour, H. H., Fischl, M. A.,
Kmack, A., Liou, S. H., Kenton, A., Hirsch, M. S., Phair, J., Mar-
tinez, A., Kahn J. O. (1998). A randomized, controlled, double-blind study
comparing the survival benefit of four different reverse transcriptase inhibitor
therapies (three-drug, two-drug, and alternating drug) for the treatment of ad-
vanced AIDS. Journal of Acquired Immune Deficiency Syndromes and Human
Retrovirology 19 339-349.

[17] Kalbfleisch, J. D., Prentice, R. L. (1980). Statistical Analysis of Failure
Time Data. New York: John Wiley and Sons.

[18] Kempthorne, O. (1977). Why randomize? Journal of Statistical Planning and
Inference. 1 1-25.

[19] Kennes, L. N., Hilgers, R-D., Heussen, N. (2012). Choice of the reference
set in a randomization test based on linear ranks in the presence of missing values.
Communications in Statistics-Simulation and Computation 47 1051-1061.

[20] Kleinbaum, D. G., Klein, M. (2005). Survival Analysis: A Self-Learning
Text . London: Springer.

[21] Lachin, J. M. (1988). Statistical properties of randomization in clinical trials.
Controlled Clinical Trials 9 289-311.

[22] Lachin, J. M., Matts, J. P., Wei, L. J. (1988). Randomization in clinical
trials:conclusions and recommendations. Controlled Clinical Trials 9 365-374.

177

[23] Lagakos, S. W., Schoenfeld, D. A. (1984). Properties of proportional-
hazards score tests under misspecified regression models. Biometrics 40 1037-
1048.

[24] Lehmann, E. L. (2006). Nonparametrics: Statistical Methods Based on Ranks.
New York: Springer.

[25] Litiére, S., Alonso, A., Molenberghs, G. (2007). Type I and type II
error under random-effects misspecification in generalized linear mixed models.
Biometrics 63 1038-1044.

[26] Ludbrook, J., Dudley, H. (1998). Why permutation tests are superior to t
and F tests in biomedical research. The American Statistician 52 127-132.

[27] Markaryan, T., Rosenberger, W. F. (2010). Exact properties of Efron’s
biased coin randomization procedure. Annals of Statistics 38 1546-1567.

[28] McCullagh, P., Nelder, J. A. (1989). Generalized Linear Models . London:
Chapman and Hall.

[29] Morgan, T. M., Lagakos, S. W., Schoenfeld, D. A. (1986). Omitting
covariates from the proportional hazards model. Biometrics 42 993-995.

[30] Plamadeala, V., Rosenberger, W. F. (2012). Sequential monitoring with
conditional randomization tests. Annals of Statistics 40 30-44.

[31] Rosenberger, W. F., Lachin, J. M. (2002). Randomization in Clinical Tri-
als: Theory and Practice. New York: John Wiley and Sons.

[32] SAS Institute Inc. (2009). SAS/STAT 9.2 User’s Guide. Cary, NC.
http://www.support.sas.com.

[33] Simon, R., Simon, N. R. (2011). Using randomization tests to preserve type
I error with response adaptive and covariate adaptive randomization. Statistics
and Probability Letters 81 767-772.

[34] Smith, R. L. (1984). Sequential treatment allocation using biased coin designs.
Journal of the Royal Statistical Society B 46 519-543.

[35] Thall, P.F., Vail, S. C. (1990). Some covariance models for longitudinal
count data with overdispersion. Biometrics 46 657-671.

[36] Zhang, Y., Rosenberger, W. F. (2008). Sequential monitoring with condi-
tional randomization tests: generalized biased coin design. Sequential Analysis
27 234-253.

178

Curriculum Vitae

Parwen Parhat graduated from Peking University with a B.A in Economics and a
B.S. in Statistics (double major) in 2006. She received her Masters degree in Eco-
nomics from the University of Houston in 2008, and then in 2009, she came to George
Mason University to study Statistics. In 2011, she worked as a research assistant in
the Robert Graham Center for policy studies in family medicine and primary care of
the American Academy of Family Physicians, conducted statistical analysis of large
health care data, participated in a grant project studying the social accountability of
Graduate Medical Education, and helped in manuscript preparations which resulted
in two peer-reviewed publications. From 2011 to 2013, as a research assistant for
Dr.Hughes-Oliver, she worked on reviewing and evaluating major existing classifi-
cation measures, and performed data analysis with various statistical classification
techniques.

179

	Parwen_Parhat_final2.pdf
	Parwen_Parhat_final2.pdf
	Parwen_Parhat_final2.pdf
	sig2.pdf
	final

	final

	final

	final

