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The Federal Air Marshal Service provides front-line security in homeland defense by 

protecting civil aviation from potential terrorist attacks. Unique challenges arise in 

maximizing effective deployment of a limited number of air marshals to cover the risk 

posed by potential terrorists on nearly 30,000 daily domestic and international flights. 

Some risk presents in a stochastic nature (e.g., a last minute ticket sale where suspicion is 

aroused). Pre-scheduled air marshal deployments cannot respond to risk which presents 

stochastically in real-time. This dissertation proposes the formation of a quick reaction 

force to explicitly address stochastic risk of terrorism on commercial flights and presents a 

method for near real-time force allocation to optimize risk coverage. 

The dynamic allocation of reactionary air marshals requires sequential decision making 

under uncertainty with limited lead time. This dissertation investigates the application of 

an approximate dynamic program (ADP) to assist schedulers allocating air marshals in near 

real-time. ADP is a form of reinforced learning that seeks optimal decisions by 



 

incorporating future impacts rather than optimizing only on short-term rewards. The 

marshal allocation system is modeled as a Markov decision process. Due to the many 

variables and environment complexity, explicit storage of all states and their values is not 

possible. Value function approximation schemes are explored to mitigate scalability 

challenges by alleviating the need for state value storage. The study demonstrates that air 

marshal allocation in near real-time is possible using an ADP with value function 

approximation and results in improved coverage of stochastic risk over the myopic 

approach or pre-scheduling. 
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1. CHAPTER ONE – INTRODUCTION 

1.1. Research Objective 

The research has both theoretical and application objectives. The primary 

theoretical objective determines the methodology: apply approximate dynamic 

programming (ADP) to influence decision making under uncertainty in a domain area 

exhibiting scarce resources and low-frequency stochastic events. As a secondary 

theoretical objective, the research will also address scalability by demonstrating diffusion 

wavelet theory as a suitable value function approximator. The application objective is to 

demonstrate the potential benefits from allocating federal air marshals in near real-time 

according to optimal policy derived from ADP. The dynamically allocated marshals 

address stochastic risks and serves to complement the overall security strategy for the 

Federal Air Marshal Service (FAMS). 

1.2. FAMS Background 

Federal law enforcement officers first served on commercial airline flights under 

President John F. Kennedy in 1961 in response to an increase in plane hijackings. The Sky 

Marshal Program, as it was known then, started with just 18 of these highly specialized 

officers, but today, the number of air marshals is likely in the thousands1. The structure, 

                                                 
1 The actual number of air marshals currently in service is categorized as Sensitive Security Information 

(SSI) and is not disclosed in the public domain. 
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size, and focus of the air marshal program has varied over the decades based on a complex 

combination of perceived threat, implementation of alternative security procedures, 

budgetary constraints, political factors, and direct reaction to high-profile incidents. For 

example, mandatory passenger screening enacted by the Federal Aviation Administration 

(FAA) in 1973 resulted in the reassignment of nearly all 1,700 air marshals to other 

positions within the United States Customs Security division. In 1985, following the 

hijacking of TWA Flight 8472, Congress rapidly increased the number of air marshals and 

expanded their mission to focus on U.S. flights operating internationally. Over the years 

that followed, the number of air marshals continued to fluctuate based on the underlying 

conditions of the time and the state of the world. 

When terrorists hijacked four commercial planes to attack the United States on 

September 11, 20013, the FAMS had only 33 active air marshals in service. President 

George W. Bush responded to these attacks by ordering the immediate expansion of the 

FAMS, bringing the number of trained air marshals back into the thousands. Today, the 

FAMS is part of the Transportation Security Administration (TSA), organized under the 

Department of Homeland Security (DHS)4, with the mission to promote “confidence in the 

nation’s civil aviation system through the effective deployment of Federal Air Marshals 

                                                 
2 Members of Hezbollah and Islamic Jihad hijacked Trans World Airlines (TWA) Flight 847, an 

international flight originating from Cairo destined for London via Athens and Rome, on June 14, 1985. 

The hijackers held the 153 passengers and crew hostage as a bargaining chip for the release of Shi’ite 

Muslims in Israeli custody.  
3 During these attacks, 19 al-Qaeda terrorists simultaneously hijacked four commercial airliners in flight 

with the purpose of using the jets as projectiles to target key U.S. government buildings and infrastructure. 

The attackers were successful in three of the four attacks with the fourth thwarted by the heroic efforts of 

the crew and passengers of United Airlines Flight 93. 
4 FAMS was transferred from U.S. Immigration & Customs Enforcement (ICE) to TSA on October 16, 

2005 as part of realignment following recommendations and findings stated in DHS Second Stage Review 

(USGPO, 2007). 
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(FAMs) to detect, deter, and defeat hostile acts targeting U.S. carriers, airports, passengers, 

and crews” (“Federal Air Marshals,” 2013). Placement of air marshals on commercial 

flights promotes confidence, but the key to success lies in the “effective” deployment of 

air marshals. No formal definition for effectiveness of air marshal deployments was found 

in public domain. For this research, effective deployment is defined as maximum coverage 

of perceived high-risk flights for a given high-risk threshold setting. The risk threshold 

setting is discussed in detail in section 4.2.4. 

Merely increasing the number of air marshals in force is not sufficient as an 

effective security strategy. Even at their healthiest numbers over the decades, the air 

marshal-to-flight ratio on a given day is small. Thus, deployment strategy of this limited 

resource is critical to carrying out the FAMS mission and minimizing hostile acts via the 

commercial air industry. Air marshals are the last line of defense against would-be 

terrorists who have passed through security and screening to board a passenger aircraft. It 

follows that the FAMS strategy should include analyzing passenger manifests and devoting 

resources to flights whose manifests pose the greatest uncertainty and thus exhibit higher 

levels of potential risk. Employing such a flexible strategy for the entire force might be 

operationally prohibitive for many reasons including low schedule predictability, 

numerous unplanned nights away from domiciles, and increased expenditures on per diem 

and other real costs required to support such a strategy. The research proposes the 

formation of a smaller, more agile reactionary force to mitigate the dynamic and stochastic 

risk related to the composition of flight manifests. Assuming the FAMS already 

implements strategies to effectively protect against deterministic sources of risk such as 
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aircraft size and flight paths that threaten critical and vulnerable infrastructure, then the 

implementation of a Quick Reaction Force (QRF) would complement such a strategy by 

countering the stochastic sources of risk. 

1.3. Quick Reaction Force Strategy 

The QRF strategy poses a number of unique and challenging problems with regard 

to allocation and positioning of scarce resources in order to maximize coverage of high-

risk flights. Due to the number of variables, size of the air transportation system, and the 

stochasticity of the risks involved, the problem is essentially 𝑁𝑃-hard and thus, impossible 

to solve to optimality. Furthermore, in many cases, opportunity to respond to the stochastic 

risk has very limited lead time, so, the ability to make decisions in near real-time is critical 

to an effective QRF strategy. The research objective in support of the application is to find 

an optimal policy for implementation in near real-time. Policy in this context refers to the 

set of individual decisions for all marshals at a single point in time. Decisions and policy 

are addressed further in section 4.2.5. The concept of an optimal policy is described below. 

Each successive implementation of the policy must account for the combined 

effects of the individual decisions on all QRF marshals currently available in the system. 

To incorporate the future impact of decisions, the policy must be able to look past 

immediate short-term rewards in favor of optimally positioning marshals throughout the 

system to maximize the opportunity to react to emerging stochastic risks. A simulation-

based implementation of ADP produces an optimal policy for allocating marshals by 

learning the best policies (given the system state) that achieve maximum coverage of high-

risk flights over an infinite horizon (large number of iterations in a simulation).   
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1.4. Methodology 

The optimal scheduling of thousands of air marshals on tens of thousands of flights 

is an intractable problem. The use of heuristics and other innovative approaches can lead 

to near-optimal schedules in reasonable time. The FAMS has developed procedures and 

methodology to produce feasible schedules targeting risky flights while adhering to all 

constraints on work conditions. The exact procedures employed by the FAMS, as well as 

the data, metrics, and performance of those procedures, are confidential. However, in 2006, 

the Homeland Security Institute conducted an independent assessment of the FAMS 

operational approach finding it to be reasonable (Lord, 2010).  

Inaccessibility to the data and existing procedures poses a different set of challenges 

for the researcher. Due to sensitivity of the FAMS operations and procedures, information 

about the existence and/or extent of a QRF is unavailable. Regardless, merely having a 

QRF as part of strategy does not automatically equate to improved effectiveness; more 

important is the means of allocation of the QRF marshals. As a result of this research, the 

FAMS may consider formation of a QRF if one does not exist or may improve allocation 

procedures for an already formed QRF. 

The QRF primarily provides benefit by mitigating stochastic risks, which in this 

research represents inherent uncertainty in passenger manifests. As an additional 

complication, manifests do not become final until hours or minutes before a flight's 

scheduled departure. Allocating air marshals in response to a positive risk signal will affect 

distribution of QRF marshals throughout the system at the next decision point, which could 

merit repositioning other marshals to maintain optimal balance. 
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The methodology allocates marshals to flights by using an approximate dynamic 

program, which supports time-constrained sequential decisions under uncertainty. The 

problem is formulated as a Markov decision process over an infinite time horizon. The 

process derives optimal policy from unsupervised learning of system state values through 

simulation. Computational challenges arise from large problem and outcome space, but 

aggregation and value function approximation mitigate complexity. As a result, the 

methodology and decision support tool will assist schedulers in determining the optimal 

allocation of a QRF to cover maximum risk. 

1.5. Contributions 

The contributions from this body of work touch on both the methodological and 

applicative domains. Primarily as a contribution to theory, the research demonstrates ADP 

as an effective approach to developing optimal policy in view of scarce resources and low-

frequency stochastic events. Furthermore, the research addresses and tests scalability using 

diffusion wavelets for approximating the value function used in the ADP. Use of diffusion 

wavelets as a value function approximator has recently surfaced in the literature and has 

only been applied as a proof of concept. Successful implementation of diffusion wavelets 

in this research serves as further evidence of supporting the use of diffusion wavelets as a 

viable approach to approximating value functions. Better and more efficient approximating 

functions address scalability concerns and facilitate solving larger and more complex 

problems.  

By proposing a QRF strategy in conjunction with an optimal allocation scheme 

developed from ADP, the research contributes to more proactive allocation of air marshals 
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in countering the adapting strategies of adversaries to the United States. The policy 

considers the stochastic nature of the risk and can be implemented in near real-time. Lastly, 

the security segment of the air transportation industry often receives less attention from the 

research community. This research extends operations research (OR) support to this 

component of the industry. 

1.6. Structure of Dissertation 

Chapter 2 contains a review of the relevant literature in the application domain as 

well as on the methods employed in the research. In Chapter 3, the essential elements of 

ADP lay the groundwork for application to the problem space. Chapter 4 describes the 

model and simulation environment in detail with discussion of the ADP algorithm as 

incorporated into the simulation. Chapter 5 describes the experimental design, findings 

from the experiments, and discussion on parameter sensitivity. Chapter 6 summarizes the 

research conclusions, presents broader impacts of the study, and addresses future work. 
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2. CHAPTER TWO – LITERATURE REVIEW 

2.1. Application Domain 

This problem spans two domains: the commercial aviation industry and homeland 

security. Both domains have benefited greatly from the study and application of operations 

research techniques over the last half-century. The wide range of applications and 

improvements from OR are outlined by Clarke and Smith (2004) for the airline industry 

and by Wright, Liberatore, and Nydick (2006) for homeland security. The FAMS problem 

poses unique challenges not found in either of these domains. 

2.2. Commercial Aviation Industry 

The commercial aviation industry has long recognized the power of OR. By 

applying OR to industry operations, commercial aviation has vastly reduced the waste and 

inefficiencies that have contributed to the failures of multibillion dollar airlines. In 

particular, OR has direct influence upon areas such as resource allocation and utilization, 

scheduling, capacity management, and flow control. Barnhart, Belobaba, and Odoni (2003) 

provide an excellent overview in of the many areas of the industry that have employed OR. 

The commercial aviation domain remains rich with large and interesting problems for 

operations researchers to study and improve through application of the trade tools. 

Individual airlines and the FAA often employ operations researchers on staff. A quick web 
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search will reveal hundreds of recent scholarly articles and papers on the subject and many 

organizations affiliated with the industry.  

A popular component of the commercial air industry among researchers is 

addressing airline crew scheduling due to its many rich features and vast potential for 

optimizing costs for the airlines. Barnhart et al. (2003) discuss the many variants of the 

problem, but one common theme is the generation of a subset of feasible pairings for which 

each flight is included in exactly one pairing. The pairings are selected so that sequence of 

flight legs in the pairing originate and terminate at the same location and satisfy the work 

rule constraints for the crews in terms of consecutive work hours. The possible 

combinations of all pairings for the full scale problem is enormous so only evaluating a 

small subset of pairings is possible. This problem, at its core, is a set partitioning and set 

covering problem and is difficult due to the complexity of the system and large number of 

integer variables. Many solution approaches exist and are discussed by the authors.  

This particular problem is of interest to the FAMS allocation problem because 

under normal operating conditions it is important to minimize the number of nights a 

marshal spends away from his domicile. However, differences between the problems exist 

in that air marshals are not required to cover every flight as in the crew scheduling problem, 

nor could they due to the limited supply of marshals. Regardless, one approach to 

scheduling air marshals is to generate feasible flight pairings and pre-schedule a marshal’s 

entire work day by selecting pairings that maximizes the coverage of perceived risk. The 

drawback here is that such an approach is only suitable for deterministic risks and exhibits 

large processing times ill-suited for allocating marshals in near real-time under uncertainty.  
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Unlike the commercial aviation industry, the FAMS has received far less attention. 

One possible explanation for the oversight includes the necessary confidentiality 

surrounding data and operations. A second explanation might be a perceived absence of a 

direct linkage to profitability. However, this perception is debunked by Asay and Clemons 

(2009). The authors developed an analytical prediction model to assess the impact of the 

9/11 attacks. They found an immediate 31% to 44% drop in passenger travel following the 

attacks. Travel rapidly rebounded over the following year, but it ultimately fell short by 

3% to 8% of long-term projections calculated in the absence of such events. Proactive risk 

reduction could indirectly benefit the airlines' bottom line; more importantly, more 

effective resource application ensures the maximum benefit achieved from the funds 

appropriated by Congress for law enforcement on commercial air travel. 

By applying innovative OR approaches similar to those used in the commercial 

aviation industry, FAMS is likely to benefit in the same manner with regard to its business 

and operations.  

2.3. Homeland Security and the Federal Air Marshals Service 

The FAMS organization has not gone entirely unnoticed by the research community 

as a small number of papers address specific aspects of FAMS’ operations. A value-

focused thinking (VFT) approach is used to optimize field office allocations (Castelli, 

Meier, Morris, Philie, & Kwinn, 2013). The authors analyzed the assignment of marshals 

to field offices across the country by considering both risk and cost. They applied a two-

phased approach of VFT to achieve near-optimal solutions. This research addressed an 
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important facet of the overall strategy in support of the FAMS mission – maintaining 

optimal numbers of marshals at strategic locations.  

Tsai, Kiekintveld, Ordonez, Tambe, and Rathi, (2009) modeled the problem of 

scheduling marshals as a Stackleberg game and introduced software assistants to employ 

randomization to air marshal scheduling. The Intelligent Randomization in Scheduling 

(IRIS) system developed under the research mitigates perception of predictability by 

always targeting the top tier of riskiest flights. The FAMS employed IRIS as a pilot 

program for scheduling marshals on international flights operated by U.S. carriers. Due to 

security considerations, the effectiveness of the pilot program is not accessible in public 

domain. Jain et al. (2010) elaborates on the IRIS system but also discusses software 

assistants for randomized patrol planning in the context of airport police at Los Angeles 

International Airport. While clearly the missions of airport police and air marshals differ, 

the problems share characteristics with respect to leader-follower dynamic in game theory 

modeling. Modeling the interaction between the adversary and the air marshal is outside 

the scope of this research, but it is recognized that incorporating this dynamic into the air 

marshal allocation model could have added benefits. 

The implementation of an effective allocation strategy for QRF marshals would 

rely on a system that monitors and assesses risk levels of passenger manifests in near real-

time. A number of initiatives to achieve this have been proposed since 9/11 but ultimately 

not implemented over privacy concerns. (Barnett, 2004) summarizes the vision of the 

CAPPS (Computer-Assisted Passenger Prescreening System) II initiative under TSA. The 

CAPPS II would make threat assessments of individual passengers from processing 
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thousands of details on individuals, both personal and private. However, a number of 

organizations such as the American Civil Liberties Union raised concern over privacy and 

civil liberties issues, and TSA terminated CAPPS II in the midst of controversy. In 2009, 

the TSA began implementation of a system called Secure Flight, which matches passenger 

information against federal watch lists. While CAPPS II and Secure Flight share some 

functionality, the TSA avows not to collect or use commercial data. Secure Flight 

originated from a recommendation from the 9/11 commission that the TSA should maintain 

uniform watch lists rather than the airlines. Implementation of Secure Flight completed in 

November 2010 (“Secure Flight Program,” 2014).  

2.4. Approximate Dynamic Programming 

ADP spans many applications and problem classes. As researchers continue to 

develop approaches to mitigate the scalability of large problems, it becomes increasingly 

popular as a solution approach. ADP is well-suited and designed for solving problems 

requiring decision making under uncertainty. Simão et al. (2008) apply an approximate 

dynamic program to large-scale fleet management for Schneider National, one of the 

largest truckload motor carriers in the U.S. with over 6,000 long-haul drivers. In this work, 

the authors met their goal of obtaining solutions to extremely high-dimensional state 

variables that closely matched the performance of a highly skilled group of dispatchers. 

This application bears resemblance to the marshal allocation problem due to similarities in 

the physics and dynamics of the system model. The authors use aggregation to approximate 

the value function, determine an optimal step-size algorithm for the learning rate, and 

implement a double pass algorithm to speed up convergence. Aggregation ideas from this 
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research serve as a basis for the levels of aggregation studied in the ADP formulation for 

the marshal allocation problem.  

Addressing other aspects of airport security, McLay, Lee, and Jacobson (2010) 

utilized risk-based policies for checkpoint screening at airports. The authors modeled the 

sequential passenger assignment problem as a MDP and use ADP to compute the optimal 

policy of assigning various security devices to passengers assessed at different risk classes 

upon check-in. It is not clear whether air marshals are considered as a security “device” in 

the problem. However, seeing how marshals serve as the last line of defense in the airline 

security system, it follows that their inclusion in the model could serve as an effective 

cueing mechanism for the employment of QRF air marshals.  

McLay et al. (2010) found the optimality equations for the Sequential Stochastic 

Multilevel Passenger Screening Problem (SSMPSP) to be computationally intractable and 

can only be solved in a reasonable amount of computation time for small instances of 

SSMPSP. The authors' research results in a Sequential Stochastic Assignment Heuristic 

(SSAH) that efficiently approximates the solutions to SSMPSP in real-time. The 

formulation of the ADP in the FAMS allocation problem draws on techniques employed 

in the SSAH to facilitate near real-time approximations calculated in the algorithm.  

With careful consideration during design, selection of an appropriate approximator 

for value functions results in implementable approximate dynamic programs. A growing 

body of work defines the scope and nature of approximation considerations. George, 

Powell, Kulkarni, and Mahadevan (2008) considered the right level of aggregation and 

weighting schemes for multi-attribute resources to facilitate value function approximation. 
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The authors proposed an adaptive weighting strategy that is implementable for very large-

scale problems exhibiting large attribute space. 

Mahadevan and Maggioni (2006) suggested the use of diffusion wavelets and 

Laplacian eigenfunctions for value function approximations in solving large scale MDPs. 

Balakrishna (2009) employed diffusion wavelet-based value functions as a proof of 

concept to deal with the large dimensionality and significant uncertainty as applied to the 

problem of taxi-out time estimation. The author also applied ADP to assist in predicting 

taxi-out times. In an adapted form, her model forms the basis for the system environment 

for the air marshal problem. 
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3. CHAPTER THREE – APPROXIMATE DYNAMIC PROGRAMMING 

3.1. Background 

Dynamic programming (DP) dates back to the 1950s when Richard Bellman 

published his “Principle of Optimality: An optimal policy has the property that whatever 

the initial state and initial decision are, the remaining decisions must constitute an optimal 

policy with regard to the state resulting from the first decision” (Bellman, 2003, p. 83). At 

the same time, other engineering disciplines and research communities were independently 

converging upon the same discoveries. As a result, dynamic programming is known under 

different names such as reinforcement learning, neuro-dynamic programming, and 

adaptive dynamic programming. 

Dynamic programming is very efficient at solving problems of small size for which 

transition probabilities are known. With larger problem spaces, transition probabilities are 

almost certainly unknown, but they are a necessary component of dynamic programming. 

The uncertainty inherent in larger problem spaces led to the development of approximate 

dynamic programming, which avoids the need for transition probabilities through a 

simulation (learning-based) framework while providing many other added benefits. 

Due to its use across many fields, DP/ADP notation can become confusing. As used 

in this research, notation and definitions are adapted from (Powell, 2011). The description 
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of ADP found in this chapter serves as the conceptual basis for understanding the ADP 

framework and its application to the FAMS’ allocation problem. 

3.2. Markov Decision Process 

Markov chains and the Markov decision process provide the template for DP/ADP 

modeling and algorithms. This section provides an overview of the MDP and related 

research. Consider the directed graph 𝐺 = (𝑆, 𝐸) depicted in Figure 3-1 and described by 

the countable set of states = (𝑠1, 𝑠2, … , 𝑠|𝑆|) and set of edges 𝐸. 

 

Figure 3-1: Example Markov chain with 3 states. 

System transitions occur randomly at uniform time steps from state 𝑠𝑖 to state 𝑠𝑗 

with probability 𝑝𝑠𝑖,𝑠𝑗. Each transition only depends on the current state 𝑠𝑖, rather than the 

history of preceding transitions bringing the system to 𝑠𝑖. Such a system is a discrete-time 

Markov chain and exhibits the Markov memoryless property which states 
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Pr(𝑆𝑡+1 = 𝑠𝑗|𝑆𝑡 = 𝑠𝑖, 𝑆𝑡−1 = 𝑠𝑘, … , 𝑆1 = 𝑠1) = Pr(𝑆𝑡+1 = 𝑠𝑗|𝑆𝑡 = 𝑠𝑖), 

𝑖, 𝑗, 𝑘 ∈ 𝑆. 

(3.1) 

 

MDP is a variant of a Markov chain in which the transition between states is partly 

random and partly controlled by a decision maker taking action 𝑥 from a set of actions 𝒳 at 

each time step. Decisions result in a reward or contribution 𝐶. Thus, the decision influences 

the probability of transitioning from state 𝑠𝑖 to 𝑠𝑗 and is given as  

𝑝𝑠𝑖,𝑠𝑗(𝑥𝑘) = Pr(𝑆𝑡+1 = 𝑠𝑗|𝑆𝑡 = 𝑠𝑖 , 𝑋𝑡 = 𝑥𝑘) (3.2) 

with the resulting contribution of 𝐶(𝑆𝑗|𝑆𝑖 , 𝑥𝑘). Figure 3-2 shows the analogous Markov 

chain from Figure 3-1 but with 2 decisions incorporated into the system transforming the 

chain into a MDP. The decisions in the MDP are depicted by the gray circles and all 

transitions from one state to another must pass through a decision point. The decisions and 

probabilistic branches each have associated rewards and penalties depicted in color next to 

the transition probabilities. 



18 

 

 

Figure 3-2: Example Markov decision process with 3 states and 2 decisions. 

 

The MDP purpose is to find the best policy 𝑋𝑡
𝜋(𝑆𝑡) to follow to produce the greatest 

expected contribution over all outcomes. Thus 𝑋𝑡
𝜋(𝑆𝑡) represents a particular policy from 

the set of all policies Π given the system is in state 𝑆𝑡. The best policy in an MDP 

maximizes some cumulative objective function of the potentially random contributions 

over a long run horizon 

𝑚𝑎𝑥
𝜋∈𝛱

𝔼 {∑𝛾𝑡𝐶𝑡
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𝑇
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3.3. Dynamic Programming and Bellman’s Equation 

The entire optimization problem in equation (3.1) does not need to be solved at 

once. Under dynamic programming the problem is solved iteratively through recursive 

updating of a value function 𝑉𝑡(𝑆𝑡) which holds the value of being in the state 𝑆𝑡. Take 

note that the value of a resultant state one time step in the future is discounted by 𝛾, 

typically set to a value of 0.9 or 0.95. Discount factor accounts for 𝑆𝑡+1 occurring one time 

step in the future. Supposing all state values are stored, then the current value of the new 

state is represented by 𝑉𝑡(𝑆𝑡+1). As a result, the decomposed optimization problem is stated 

as 

𝑉𝑡(𝑆𝑡) = max
𝑥𝑡∈𝑋𝑡

(𝐶𝑡(𝑆𝑡 , 𝑥𝑡) + 𝛾𝔼{𝑉𝑡(𝑆𝑡+1)|𝑆𝑡}). (3.4) 

This equation is commonly referred to as Bellman’s equation and is written in 

standard form where the expectation is encapsulated in the max operator. Solving 

Bellman's equation is easy on small problems where the transition probability matrix is 

known. However, in larger problems, transition probabilities are often unknown and 

impossible to calculate. This issue is alleviated through the use of a post-decision state 

described in section 3.5. 

Dynamic programming solves the above optimization problem rooted in the MDP 

iteratively by breaking the problem into the sum of two components: the immediate 

contribution 𝐶𝑡(𝑆𝑡, 𝑥𝑡) from decision 𝑥𝑡 taken from state 𝑆𝑡 and the discounted expected 

value of the next system state 𝑉𝑡(𝑆𝑡+1). The resultant problem becomes  
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𝑉𝑡(𝑆𝑡) = 𝑚𝑎𝑥
𝑥𝑡∈𝒳𝑡

(𝐶𝑡(𝑆𝑡 , 𝑥𝑡) + 𝛾𝔼{𝑉𝑡(𝑆𝑡+1)|𝑆𝑡}). (3.5) 

Simulation iteratively solves this decomposed problem to find the long run value 

of all states 𝑉(𝑆). This learning-based simulation makes it possible to solve large problems 

that are intractable using classical mathematical programming approaches. 

3.4. Elements of ADP 

3.4.1. State Space 

The state variable 𝑆𝑡 captures the information required to describe the system status 

at time 𝑡 and holds the information necessary to inform decisions. As defined by Powell,  

“a state variable is the minimally dimensioned function of history that is necessary and 

sufficient to compute the decision function, the transition function, and the contribution 

function” (2011, p. 179). The state variable represents a state in a Markov chain. Often 

expressed as a multi-dimensional vector, the state variable results in an extremely large 

state space for large problems and restricts the scalability of ADP. In the case of a resource 

allocation problem, the state variable might include available resources 𝑅𝑡 and demands 

𝐷𝑡 waiting to be served 

𝑆𝑡 = 〈𝑅𝑡 , 𝐷𝑡〉. (3.6) 

Time introduces special considerations when demands cannot be serviced 

instantaneously and a time delay restricts observation of action impacts. When time affects 
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the problem model, state space could be modeled to include projected information about 

resource and demand levels at some point in time in the future. The marshal allocation 

model employs this approach. 

3.4.2. Decision Space and Policy 

The literature uses a variety of words and notation to describe decisions, including 

actions, controls, and policy. This study will refer to 𝑥 = (𝑥𝑑)𝑑∈𝒟 as a vector of decisions 

where 𝑑 ∈ 𝒟 is an individual decision for a single marshal. The decisions in a MDP are 

problem-specific but for frame of reference, an individual decision in the context of the 

marshal allocation problem might be to allocate marshal 𝑚 to a high-risk flight. 

Furthermore, 𝜋 is the overall policy for the model that captures the specific decision vector 

𝑋𝑡 to execute given state 𝑆𝑡. 

𝑋𝑡
𝜋(𝑆𝑡) (3.7) 

The decision vector stores the set of all individual decisions for all eligible marshals 

at time 𝑡 of policy determination. This facilitates simultaneous allocations for all eligible 

marshals at each decision point. 

3.4.3. Transition Function 

This research focuses on a problem involving stochasticity. Thus, representation of 

the model environment requires quantifiable randomness as it affects state transitions. 

Model stochasticity presents as exogenous changes to the state space based on information 

arriving over the time interval from 𝑡 to 𝑡 + 1 and is represented by the random variable 
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𝑊𝑡+1 (see Figure 3-3). Randomness can include exogenous changes to the resources �̂�𝑡+1, 

new random demands �̂�𝑡+1, or random changes to other model elements. A sample 

realization is represented by 𝜔𝑖 where 𝑊𝑡+1(𝜔𝑖) is an observation of randomness inherent 

in the system arriving between time 𝑡 and 𝑡 + 1. The sample can be collected through real-

world observation of physical processes, sampling known distributions, or applying 

computer simulation of a complex process.  

 
Figure 3-3: State transition model under uncertainty. 

A transition model 𝑀 depicted in (3.8) incorporates the effects of the new 

information arriving between time steps and describes the evolution of the state variable. 

The model for evolving from state 𝑆𝑡+1 is dependent on the current state 𝑆𝑡 and the random 

variable 𝑊𝑡+1. 

𝑆𝑡+1 = 𝑆
𝑀(𝑆𝑡 ,𝑊𝑡+1). (3.8) 
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For ADP learning, the algorithm must also take into account the effects of decisions 

in conjunction with the random information. If two possible decision vectors exist (𝑥1, 𝑥2) 

from state 𝑆𝑡, then the transition in Figure 3-3 is modified as follows:  

 
Figure 3-4: Modified state transition model. 

The model in Figure 3-4, doubles in size from three branches to six branches with 

the introduction of two different decisions. Note that there is no passing of time associated 

with the decision, as the decision is made instantaneously at time 𝑡 and prior to observing 

the random variable 𝑊𝑡+1. As decision space and outcome space grows so does the problem 

size. Growth continues until the problem eventually becomes unyielding and requires more 

innovative solution approaches.  
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3.5. Post-Decision State 

Powell (2011) introduced the use of a post-decision state 𝑆𝑡
𝑥 to avoid explicitly 

solving for the expectations or even requiring transition probabilities. Using a post-decision 

state (PDS) modifies the transition model in (3.8) into two steps yielding  

 

𝑆𝑡
𝑥 = 𝑆𝑀,𝑥(𝑆𝑡, 𝑥𝑡), 

𝑆𝑡+1 = 𝑆𝑀(𝑆𝑡
𝑥, Wt+1). 

(3.9) 

(3.10) 

 

In equation (3.9) 𝑀, 𝑥 represents the transition model for evolving from the state 𝑆𝑡 

under decision 𝑥𝑡 and brings the system to the post-decision state 𝑆𝑡
𝑥. Note that this is a 

deterministic transition and occurs without the passing of time. From the PDS the original 

model 𝑀 incorporates the random information 𝑊𝑡+1 and brings the system to the next pre-

decision state 𝑆𝑡+1. Following this two-step process, Figure 3-4 is modified to that in Figure 

3-5. 

 

Figure 3-5: State transition model using post-decision state. 
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Again, take note that there is no passing of time with the decision and that the 

exogenous information occurs after the decision is executed. While at first glance, the 

model in Figure 3-5 appears to have the same complexity as the model in Figure 3-4, the 

states are now modeled around the PDS which makes the problem easier to solve. 

Furthermore, only the exogenous information related to the selected decision is considered 

for the future state. Note that the state 𝑆𝑡+1 is now the next pre-decision state for 

consideration at the next time step. Powell (2011) exploited a simple relationship between 

𝑉𝑡(𝑆𝑡) and 𝑉𝑡(𝑆𝑡
𝑥) that is summarized by 

 

𝑉𝑡−1(𝑆𝑡−1
𝑥 ) =  𝔼{𝑉𝑡(𝑆𝑡)|𝑆𝑡−1

𝑥 }, (3.11) 

𝑉𝑡(𝑆𝑡) =  max
𝑥𝑡∈𝑋𝑡

(𝐶𝑡(𝑆𝑡, 𝑥𝑡) + 𝛾𝑉𝑡(𝑆𝑡
𝑥)). (3.12) 

 

The result of substituting (3.12) into (3.11) is 

𝑉𝑡−1(𝑆𝑡−1
𝑥 ) =  𝔼 {max

𝑥𝑡∈𝒳𝑡
(𝐶𝑡(𝑆𝑡 , 𝑥𝑡) + 𝛾𝑉𝑡(𝑆𝑡

𝑥)) |𝑆𝑡−1
𝑥 }. (3.13) 

Note that in (3.13), the expectation is now positioned outside the maximum operator which 

will provide considerable computational advantages. Assuming a suitable approximation 

�̅�𝑡(𝑆𝑡
𝑥) for the value function around the post-decision state 𝑆𝑡

𝑥 then after 𝑛 iterations of 

the algorithm the optimization problem is expressed as 
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�̂�𝑡
𝑛 = max

𝑥𝑡∈𝒳𝑡
𝑛
(𝐶𝑡(𝑆𝑡

𝑛, 𝑥𝑡
𝑛) + 𝛾�̅�𝑡

𝑛−1(𝑆𝑀,𝑥(𝑆𝑡
𝑛, 𝑥𝑡

𝑛))) , (3.14) 

where �̂�𝑡
𝑛 is an estimate of the value of the post decision state 𝑆𝑡

𝑥,𝑛
 and 𝑥𝑡

𝑛 is the value of 

𝑥𝑡 that solves (3.14). Take note that the computation of an expectation is not required as it 

is captured in the deterministic value approximation function �̅�𝑡
𝑛−1(𝑆𝑀,𝑥(𝑆𝑡

𝑛, 𝑥𝑡
𝑛)). Value 

function approximation is discussed in section 3.7. The estimated value �̂�𝑡
𝑛 is used to 

update the value function approximation around the post-decision state according to 

�̅�𝑡−1
𝑛 (𝑆𝑡−1

𝑥,𝑛 ) = (1 − 𝛼𝑛−1)�̅�𝑡−1
𝑛−1(𝑆𝑡−1

𝑥,𝑛 ) + 𝛼𝑛−1�̂�𝑡
𝑛, 

(3.15) 

where 𝛼 is the step size used in the learning rate of the algorithm. The learning rate is 

discussed in section 3.9.2. 

A sample algorithm of forward dynamic programming using the post-decision state 

over an infinite horizon problem (the index 𝑡 is dropped) is outlined in Figure 3-6. 
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Step 0. Initialization. 

 Initialize �̅�0, set 𝑛 = 1, and initialize  𝑆1. 

Step 1. Choose a sample path 𝜔𝑛. 

Step 2. 

 2a. Solve 

�̂�𝑛 = max
𝑥∈𝒳𝑛

(𝐶(𝑆𝑛, 𝑥𝑛) + 𝛾�̅�𝑛−1(𝑆𝑀,𝑥(𝑆𝑛, 𝑥𝑛))) 

  and let 𝑥𝑛 be the value of 𝑥 that solves maximization. 

 2b. Find the post-decision state 

𝑆𝑥,𝑛 = 𝑆𝑀,𝑥(𝑆𝑛, 𝑥𝑛). 

 2c. Update the value function for the post-decision state 

�̅�𝑛(𝑆𝑥,𝑛) = (1 − 𝛼𝑛−1)�̅�
𝑛−1(𝑆𝑥,𝑛) + 𝛼𝑛−1�̂�

𝑛. 

 2d. Find the next pre-decision state 

𝑆𝑛+1 = 𝑆𝑀(𝑆𝑥,𝑛,𝑊𝑛+1(𝜔𝑛)). 

Step 3. Increment 𝑛. If 𝑛 ≤ 𝑁 go to step 1. 

Step 4. Return the value function �̅�𝑛. 

Figure 3-6: Forward dynamic programming algorithm using the post-decision state 

3.6. Curses of Dimensionality 

Over the years following the foundation of ADP, various techniques arose to 

mitigate the problems inherent to large dimensionality. Powell (2011) discusses the 

challenges posed by large problems in terms of the state space, outcome space, and decision 

space. He refers to these challenges as the “curses of dimensionality”. First, to address 

outcome space with unknown transition probabilities (also known as the curse of 

modeling), a simulation framework generates the Markov state transitions. The simulation 

approach also supports asynchronous updating of individual states. Synchronous update of 

all values is infeasible in problems with very large state space. However, a simulation with 
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individual updates results in slower convergence and the need for hundreds of thousands 

or even millions of simulation iterations. Through simulation-based learning, it is possible 

under certain conditions to achieve near-optimal (approximate) solutions. To address the 

inability to store all values for extremely large problems, value function approximation 

schemes are employed to reduce the storage requirement to a relatively small number of 

values or parameters. 

3.7. Value Function Approximation 

For problems of very large problem space, explicit state value storage would be 

prohibitive. Thus, the literature includes techniques to mitigate the storage challenge. 

Gosavi (2003) categorized available function approximation methods into three main 

groups: state space aggregation, function interpolation, and function fitting. Value function 

approximation addressed the curse of dimensionality by approximating the value of a state 

such that 𝑉(𝑆) ≈ �̅�(𝑆). 

3.7.1. Aggregation 

One approach of approximating the state value is to use aggregation. The premise 

of aggregation is to make a decision, transition to the next state, and then determine the 

value of the resultant state through an aggregated component of the state variable. For 

example, if city is an element of the system state, aggregating by region would require 

storage of far fewer overall system state values. To simplify the problem and 

computation, an exact solution for an aggregated state space may be disaggregated for an 

approximate solution to the original, more complex problem.  
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The disadvantages of the approach also merit consideration. In an aggregated 

model, potential advantages of the state variable structure are negated, and preservation of 

the Markov property becomes difficult due to a loss of model fidelity. Even if the Markov 

property is maintained, solution optimality cannot be guaranteed. Additionally, an 

algorithm incorporating aggregation tends to lean more heavily on heuristics to mitigate 

the degraded fidelity of the system state caused by aggregation. 

3.7.2. Interpolation 

Interpolation also reduces storage requirements by only requiring storage for a 

smaller subset of state values. Interpolation determines the values for the states that are not 

stored. Gosavi (2003) described the 𝑘-nearest neighbors and kernel-based approaches. 

When a state is visited that is not stored, the algorithm determines state value by averaging 

the weighted values of its 𝑘-nearest neighbors using weights based on Euclidean distances 

between state vectors or weights assigned using a kernel-based approach. Interpolation 

may scale small- to moderate-sized problems. However, interpolation still requires storage, 

and computational inefficiencies arise from the greater number of value lookups required 

for each approximation during the evaluation process. For example, an approximation 

scheme that uses four nearest neighbors to interpolate the value of a state that is not stored 

requires four separate lookups. 

3.7.3. Function Fitting  

The final approximation scheme addressed in this research is based off fitting a 

function based on regression. The general form for value function approximation using 

regression is 
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�̅�(𝑆|𝜃) = ∑𝜃𝑓𝜙𝑓(𝑆).

𝑓∈𝐹

 
(3.16) 

where 𝜃𝑓 are the coefficients (parameters) of the basis functions 𝜙𝑓. The literature provides 

expanded detail on particular forms for basis functions: Fourier approximations, splines, 

piecewise linear regression, and linear and orthogonal polynomials. However, these 

techniques require pre-specification of the basis functions and the number of terms in the 

function. This requirement is avoided through the use of diffusion wavelets. 

3.8. Diffusion Wavelets 

Diffusion wavelets generalize classical wavelet theory which operates on one- and 

two-dimensional Euclidean spaces to more general structures such as manifolds. The 

theory draws on spectral graph theory and identifies orthogonal basis functions from the 

signals represented in the manifold. As basis functions, diffusion wavelets mitigate the 

challenges of pre-specification by providing benefits as outlined by Balakrishna (2009): 

 
1. Diffusion wavelets produce the best basis functions in light of a nonlinear and 

non-stationary value function. 

2. The number of features necessary to describe the function is automatically 

determined using the diffusion operator where information is stored 

compactly in the coefficients of the basis functions even for multi-

dimensional data. 

3. The coefficients are updated as part of the decomposition scheme avoiding 

the need for a separate recursive parameter update scheme. 

4. Diffusion wavelets serve as an effective interpolator for values of states not 

visited during the learning phase of ADP. 
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By using diffusion wavelets for the marshal allocation problem, the research 

advances the earlier work of Mahadevan and Maggioni (2006) in applying diffusion 

wavelets for value function approximations in dynamic programming. A brief review of 

the technique follows to provide cursory understanding of diffusion wavelet theory 

extended to this work. A more detailed discussion can be found in the original work by 

Mahadevan and Maggioni (2006) and Balakrishna (2009). The functional form of this 

transform in the context of value function approximation is 

�̅�(𝑆|𝜃) = ∑ 𝑐(𝑗0,𝑘)𝜙(𝑗0,𝑘)(𝑆) + ∑ ∑ 𝑑(𝑗,𝑘)𝑤(𝑗,𝑘)(𝑆),

∞

𝑘=−∞

∞

𝑗=𝑗0

∞

𝑘=−∞

 
(3.17) 

where 𝜙(𝑗0,𝑘) is the scaling function, 𝑤(𝑗,𝑘) are the wavelet functions.  The coefficients for 

the basis functions are computed as follows: 

 

𝑐(𝑗0,𝑘) =
1

𝑚
∑�̅�𝑖(𝑆)

𝑚

𝑖=1

𝜙(𝑗0,𝑘)(𝑆), 

 

(3.18) 

 

𝑑(𝑗,𝑘) =
1

𝑚
∑�̅�𝑖(𝑆)

𝑚

𝑖=1

𝑤(𝑗,𝑘)(𝑆). (3.19) 

 

The orthogonal basis functions allow for perfect reconstruction of the signals. This 

theory applied to value function approximation in ADP modifies the algorithm in Figure 

3-6 to that of Figure 3-7:  
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Step 0. Initialization 

0a. Set size of �̅� and 𝕊 (sample set of visited states) to ℕ and initialize �̅�0 and 𝕊0. 

 0b. Set 𝑛 = 1 and initialize 𝑆1. 

 0c. Set 𝕟 = 1 and set 𝕤1 = 𝑆
1. 

 0d. Define criteria 𝔻 for switching to diffusion wavelet approximator �̃�. 

Step 1. Choose a sample path 𝜔𝑛. 

Step 2. Check criteria 𝔻. If 𝔻 is satisfied continue to Step 2a, else go to Step 3. 

 2a. Obtain/update initial basis functions and the corresponding coefficients for �̃�𝑛 using 

diffusion wavelets on sample 𝕊. 

 2b. Solve 

�̂�𝑛 = min
𝑥∈𝑋𝑛

(𝐶(𝑆𝑛, 𝑥𝑛) + 𝛾�̃�𝑛−1(𝑆𝑀,𝑥(𝑆𝑛, 𝑥𝑛))) 

  and let 𝑥𝑛 be the value of 𝑥 that solves the equation. 

 2c. Update the value of post-decision state 𝑆𝑥,𝑛: 

  If 𝑆𝑥,𝑛 ∈ 𝕊 go to step 4, 

  else find 𝕤old ∈ 𝕊 where 𝕤old is state with oldest recorded visit iteration and replace 

𝕤old = 𝑆𝑥,𝑛, 

�̅�𝑛(𝕤old) = (1 − 𝛼𝑛−1)�̃�
𝑛−1(𝑆𝑥,𝑛) + 𝛼𝑛−1�̂�

𝑛, 

  go to Step 5. 

Step 3. 

 3a. Solve 

�̂�𝑛 = min
𝑥∈𝑋𝑛

(𝐶(𝑆𝑛, 𝑥𝑛) + 𝛾�̅�𝑛−1(𝑆𝑀,𝑥(𝑆𝑛, 𝑥𝑛))) 

  and let 𝑥𝑛 be the value of 𝑥 that solves this equation. 

 3b. Find the post-decision state 

𝑆𝑥,𝑛 = 𝑆𝑀,𝑥(𝑆𝑛, 𝑥𝑛). 

 3c. If 𝕟 ≤ ℕ 

𝕤𝕟 = 𝑆𝑥,𝑛, 

�̅�𝑛(𝕤𝕟) = (1 − 𝛼𝑛−1)�̅�
𝑛−1(𝑆𝑥,𝑛) + 𝛼𝑛−1�̂�

𝑛, 

𝕟 =  𝕟 + 1, 

  else go to step 4. 

Step 4. Update 𝕊 and �̅�(𝕊). 

 4a. Update 

�̅�𝑛(𝑆𝑥,𝑛) = (1 − 𝛼𝑛−1)�̅�
𝑛−1(𝑆𝑥,𝑛) + 𝛼𝑛−1�̂�

𝑛, 

  else find 𝕤old ∈ 𝕊 where 𝕤old is state with oldest recorded visit iteration and replace 

𝕤old = 𝑆
𝑥,𝑛 

�̅�𝑛(𝕤old) = (1 − 𝛼𝑛−1)�̅�
𝑛−1(𝑆𝑥,𝑛) + 𝛼𝑛−1�̂�

𝑛. 

Step 5. Find the next pre-decision state 

𝑆𝑛+1 = 𝑆𝑀(𝑆𝑥,𝑛,𝑊𝑛+1(𝜔𝑛)). 

Step 6. Increment 𝑛. If 𝑛 ≤ 𝑁 go to step 1. 

Step 7. Return the value function approximator �̃�𝑛. 

Figure 3-7: ADP algorithm with diffusion wavelet approximation 
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3.9. Phases of ADP Algorithm 

Simulation-based implementation of ADP has three basic phases: exploration, 

learning, and implementation (or learnt). 

3.9.1. Exploration 

Exploration occurs at the beginning of the simulation. Initially, the max operator in 

(3.14) is switched off in place of selecting random decisions. Without the max operator, 

the system visits states it might not otherwise visit, and the system may identify unlikely 

neighborhoods exhibiting good state values. Even with the max operator turned off, the 

exploration phase still takes advantage of the smoothing from the learning rate contained 

in (3.15). Exploration gradually transitions in favor of the of the maximization operator. 

With the incorporation of smoothing, an overlap exists between the exploration and 

learning phases. 

3.9.2. Learning Phase and Convergence 

The learning phase comprises the entirety of the simulation portion of an ADP 

strategy. The purpose of the simulation is to achieve optimality of (3.1) by producing an 

optimal policy for use during the implementation phase. Key considerations during the 

learning phase primarily concern the relationship between convergence and the learning 

rate.  

The learning parameter 𝛼 represents a step size and usually takes on values between 

0 and 1. The learning parameter is initialized at a high value which places more emphasis, 

early in the simulation, on the combination of immediate rewards and discounted value of 

the post-decision state as computed from solving equation (3.14). Towards the end of the 



34 

 

simulation as 𝛼 decays emphasis shifts to the long run value of the state either stored or 

captured in the value function approximator. Critically, the learning parameter must not 

decay too quickly nor reach zero prior to meeting convergence criteria, or else learning will 

cease prematurely. Figure 3-8 graphically depicts a learning rate that exhibits these 

characteristics.  

 
 

Figure 3-8: Sample learning rate over duration of simulation 

By their nature, stochastic approximation algorithms do not converge to a point and 

therefore necessitate an appropriate convergence scheme. This research chooses to measure 

convergence based off the mean squared error (MSE) of the gradient. The scheme 

employed for convergence establishes a moving band based off a ±1 standard deviation of 

𝑘 prior iterations of the simulation. Figure 3-9 illustrates the MSE decreasing after an initial 

climb early in the simulation. Zooming in on the plot reveals that MSE fluctuates due to 

the stochasticity in the system. Observe the MSE plot enter and exit the convergence band 

several times. This example still requires more iterations to converge within the band. 
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Figure 3-9: Example of convergence to a band  

Although the approach is guaranteed to converge, this application requires a 

significant number of iterations to reach convergence due to the large number of states that 

must be visited a sufficient number of times accumulate a meaningful value. Further 

examples of iterations to convergence will be addressed when discussing experimental 

runs. Two factors address convergence within the approach: 1) step size used for the 

learning rate closely relates to the convergence of the algorithm; and 2) the approximating 

scheme for the value function affects convergence but may simultaneously affect ability to 

converge to optimality. 

3.9.3. Implementation (Learnt) Phase 

Once the algorithm has successfully converged, the optimal policy is captured in 

the value function approximator. At this point, all the learning has occurred and policy 
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dictated through the learnt equation can be followed. The learnt policy equation for 

implementation is 

𝑥𝑡 = arg max
𝑥𝑡∈𝒳t

(𝐶𝑡(𝑆𝑡 , 𝑥𝑡) + 𝛾�̅�𝑡(𝑆𝑡
𝑥)). (3.20) 

This policy is considered optimal and takes into consideration the downstream 

effects of immediate decisions. Essentially, the goal of the implementation phase is to move 

from one good state to another good state by following optimal policy. 
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4. CHAPTER FOUR – MODEL FORMULATION 

4.1.  Overview 

This chapter describes the model parameters and data structure along with a 

description of the dynamics involved in the operating environment. The chapter also 

discusses how the ADP algorithm and other subroutines interact with the operating 

environment to learn the decisions that lead to an optimal policy in the long run. 

4.2.  Inputs and Parameters 

To model the air marshals' operational environment, technical parameters address 

inherent system challenges including size, dynamics, and complexity. This section 

describes necessary inputs and parameters to capture the system at sufficiently high detail 

to allocate individual marshals to specific flights. All data used in the model comes from 

either the public domain or if necessary data is unavailable it is generated during 

preprocessing phase of the model. 

4.2.1.  Airports and Flights 

The FAA divides the United States into nine regions 𝑟 ∈ ℛ for administrative 

purposes (see Figure 4-1). Modeling the commercial air transportation of the entire United 

States has the same difficulty as developing the model for a smaller region. Because the 

larger scale significantly increases the simulation time required during the learning phase 

of the algorithm, this research focuses on a case study involving only three of the nine 
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regions. Careful consideration in coding the model environment will ensure easy 

adaptation to the entire United States. The case study includes only U.S. commercial flights 

both initiated and terminated at the active airports within the closed system defined by the 

Eastern, Southern, and Great Lakes regions. The study defines active airports as those 

departing a minimum of 90 daily flights. The resulting model is a 20-airport system to 

include 11 major hubs (see Appendix A). Airport data is collected from “Airport Data & 

Contact Information” (2014) and hubs are classified according to “List of hub airports” 

(2014). 

 
Figure 4-1: FAA regions (“Regions and Aeronautical Center Operations,” 2012). 
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Hubs are key locations in the system model in that they have more flights departing 

to more airports throughout the day. This larger number of feasible flights create an 

opportunity for a broader decision space for marshals. Metropolitan areas with more than 

one airport in close proximity also create an opportunity for broader decisions: marshals 

could potentially relocate amongst these airports using means other than the flights in the 

system. Because modeling metropolitan areas requires a high level of specification, the 

FAMS may choose to extend the model with this capability after adoption. 

The active airports within the defined region support an average of 2,850 flights 

each day for model simulation. Of the many attributes tracked on all simulation flights, the 

algorithm uses only eight: a unique flight identifier, departure airport, departure date time 

group (DTG), arrival airport, arrival DTG, importance, risk level, and coverage status. 

Flight data and attributes are collected from “FAA Operations & Performance 

Data” (2014). Historical flight schedules were used covering the period from 1 October to 

31 December, 2014. During the learning phase the simulation cycled through the same set 

of data with new stochastic risks. 

𝑓 =

{
 
 
 

 
 
 
flight identifier
departure airport
departure DTG
arrival airport
arrival DTG
importance
risk level
coverage }

 
 
 

 
 
 

 (4.1) 
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4.2.2. Marshals and Field Offices 

For planning purposes, the QRF model includes 20 available marshals each day. 

The set of marshals is depicted as ℳ. Twenty marshals is chosen by assuming the 

proportional distribution of total number of air marshals across all flights and a fixed 

percentage of QRF-allocated air marshals. From the 2,000 marshals in force (assumption 

for the model only, as the actual number is sensitive security information), only 440 

proportionally cover the 22% of all U.S. flights restricted to the model regions. After 

accounting for work schedules, days off, and QRF tour length, an appropriate daily QRF 

size for the three-region model is 20 marshals. These marshals are domiciled at specified 

field offices. Of the 20 active airports in the model region, 11 are field offices for 

domiciling marshals, of which 10 field offices overlap with the 11 hubs. 

The simulation tracks approximately two dozen marshal attributes, but a minimal 

subset of seven attributes (4.2) are required for the algorithm to support decision and policy 

selection. Remaining attributes support metrics collection and code readability. The seven 

necessary attributes support the algorithm: a unique marshal identifier, the domicile airport, 

the QRF duty start date, daily duty start time, allocated flights, projected status, and 

projected airport. Only the first two are static; the remainder dynamically change based on 

state transitions. The allocated flights are an array list of flight IDs for current allocations. 

The projected status and projected airports are vectors discretized by time steps used for 

forward tracking of the marshal's status and airport, respectively, over the projection 

period. 
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𝑚 =

{
 
 
 

 
 
 
marshal identifier
domicile airport

QRF duty start date
daily duty start time
〈allocated flights〉

〈projected status〉

〈projected airport〉 }
 
 
 

 
 
 

 (4.2) 

 

Marshal status space includes six possible statuses: off duty, in-flight, recalled, 

allocated, available, and inactive. Work conditions constrain marshal availability: a 

maximum number of consecutive hours worked, a minimum number of consecutive hours 

off duty, time buffers for boarding and de-boarding flights, and a recall time buffer to travel 

to an airport after activation. By assumed policy, QRF marshals do not require mandatory 

off days: after five days on the QRF, marshals return to the regular duty cycle (not 

modeled). For the QRF, no rule forces the return to domicile at the end of each day. 

Although marshals may return home each day during the regular duty cycle, policy 

assumes QRF flexibility to support better assignment by the ADP algorithm. 

Other applications of ADP in the literature often aggregate variables to reduce the 

problem size. For example, to facilitate an optimal ordering policy with ADP, the decisions 

might be to order different quantity levels of various commodities, within which each item 

of a particular commodity is identical. In contrast, marshals cannot be aggregated for 

allocation decisions. ADP as applied to air marshal allocation must define marshals by a 

number of attributes to uniquely identify each at specific locations in time and space. 
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4.2.3. Critical Time Periods 

Time constrains the model and the decision process. It is found in specified flight 

arrival and departure times, working rules for marshals, status and location assignments for 

marshals on flights, and stochastic presentation of risks. This problem considers five 

significant time intervals, listed in Figure 4-2 from smallest to largest, that are used in the 

simulation to measure the system state and shape the decision space. 

 

 

 
Figure 4-2: Critical time periods. 

These time periods are described as follows: 

 

 

1. Simulation time step. Appropriate ranges for values include five minutes to 

one hour. The size of this interval affects the frequency of policy updates and 

the storage of marshals’ status and location. Larger time steps produce coarser 

projection of status and location which could exclude some flights from the 

decision space. Finer discretization by smaller time steps leads to better policy 

but with diminishing returns. For too small of a time interval, the small 

measure of entropy between state space transitions could lead to increased 

iterations for ADP algorithm convergence. 

Horizon 

Follow-on Look-ahead 

Step 
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2. Look-ahead period. Two hours in length, this period represents the average 

time to move from the current location to the next as well as an acceptable 

amount of time to delay in place to cover a known high-risk flight departing 

later from the same airport. 

3. Follow-on period. Immediately following the look-ahead period, this four-

hour period facilitates decision comparison. The follow-on period provides a 

set interval to measure the system state after in-flight marshals arrive at their 

new locations. Critical to the positioning component of the QRF strategy, the 

follow-on period is when the model measures the potential impact of marshal 

relocation within the region or rebalance to a new region. 

4. Horizon. Pre-specified somewhere in the range of 8-14 hours, this time span 

constrains the value of regional risk as the number of known uncovered high-

risk flights. The horizon is a rolling period that shifts with each simulation time 

step. 

5. One day (not depicted). The model applies a 24-hour period to determine the 

number of flights in a particular day and for pre-assigning known high-risk 

flights to available marshal time (discussed later in this section). 

 

The lengths of these time periods are tunable parameters that may have operational 

advantages allowing schedulers to align existing procedures with the model. Another 

advantage could arise from aligning the allocation model to timing aspects of the risk 

model based on historical observations of data such as ticket purchasing timelines. 

4.2.4. Risks 

The FAMS may be concerned by two types of risk: static (deterministic) and 

dynamic (stochastic). Unchanging factors define static risk, such as aircraft size or critical 

infrastructure along a flight route. Dynamic risk might arise from indicators such as the 

flight manifest. For example, an individual provides cash for a one-way ticket without 
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luggage. Although not illegal, the suspicious activity may merit additional risk-mitigation 

by allocating an available air marshal to this flight. 

Any of the current approaches can assess both static and dynamic risk. An approach 

developed by the RAND Corporation assesses risk based on three key components: threat, 

vulnerability, and consequences (Willis, Morral, Kelly, & Medby, 2005). Another option 

may apply some metric such as dollars, which would quantify values of assets and human 

life. A probabilistic assessment component could facilitate calculation of the maximum 

expected loss (worst case) or the highest probability of loss (most likely case). Risk 

assessment as applied to the commercial air industry is a sizeable and complex problem 

with a large number of possible variables and a span covering the entire United States. As 

such, the scope of this research does not include development of a detailed risk model. 

Ultimately, risk is an input to the model. As a simplification of possible risk 

assessment or measurement methods, the model assumes a binned-risk approach. 

Furthermore, the model only considers the stochastic risk by assuming that the larger 

conventional marshal force already provides coverage for deterministic risks. The model 

uses three risk bins: low, moderate, and high.  

ℜ = {

𝓇1
𝓇2
𝓇3
} = { 

 low
moderate
 high

} (4.3) 

 

The low-risk bin represents a typical flight with no need for an air marshal (unless 

to reposition the marshal for a later flight). The moderate-risk bin represents an elevated 

risk level which may warrant a marshal aboard but only after considering tradeoff 
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opportunities. The high-risk bin includes strong readings from risk indicators. The QRF 

strategy assumes marshals must be allocated to high-risk flights when feasible. The number 

of flights in each bin responds to the thresholds defined by FAMS’ leadership. The model 

assumes that threshold definitions reduce focus to a limited number of moderate- and high-

risk flights with slightly more moderate- than high-risks in the system. 

The model only considers perceived risk and excludes risk associated with 

imminent threat. Any intelligence as to an imminent threat would warrant more drastic 

measures, such as delaying or canceling departure of the flight. As such, labeling a flight 

as high-risk does not indicate a direct threat to passengers aboard the flight, but rather, risk 

bins support the best decisions to allocate a scarce security asset – the federal air marshal. 

4.2.5. Policy and Decision Space 

A policy is defined as the set of all individual decisions for all eligible marshals at 

a point in time. Ineligible marshals consist of those still serving their mandatory minimum 

hours off-duty and those currently in flight; all other marshals are considered eligible and 

will be included in the optimal policy for that point in time. The set of decisions for 

marshals (4.4) include: the decision to do nothing (keep marshal in current location), 

rebalance the system by moving marshal to a hub in another region, relocate the marshal 

to a hub within current region, activate the marshal for that day, allocate marshal to a 

moderate-risk flight, allocate marshal to a high-risk flight, abort marshal’s currently 

allocated flight for immediate re-allocation to a high-risk flight, or allocate marshal to a 

delayed high-risk flight (take lower risk flight leg followed by a high-risk flight leg). 
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𝑑 =

{
 
 
 

 
 
 
𝑑0
𝑑𝑟
𝑑9
𝑑10
𝑑11
𝑑12
 𝑑13
 𝑑14}

 
 
 

 
 
 

=

{
 
 
 

 
 
 

do nothing
rebalance to region 𝑟 ∈ ℛ

relocate in region
activate

allocate to moderate-risk
allocate to high-risk

abort and reallocate to high-risk
cover delayed high-risk }

 
 
 

 
 
 

 
(4.4) 

The feasible decision space for a marshal is defined by that marshal’s current status 

and the flights departing over the look-ahead period from that marshal’s current airport. 

For example, if the set of feasible flights for a marshal does not include moderate-risk 

departures, then the decision to cover a moderate risk is unavailable. Likewise, if no 

feasible flights arrive in region 𝑟𝑖, then the decision to rebalance to region 𝑟𝑖 is also 

unavailable. By aggregating decision space, the selected approach enables scalable 

application to larger problem size. Each aggregated decision includes one or more flights 

for which the flight selection uses predefined criteria (e.g., taking the flight with highest 

importance or the flight with the earliest arrival time). 

Additional constraints complicate the decision to abort and the decision to cover a 

delayed high-risk flight. These decisions involve more than one flight and require detailed 

code specification in the coding to account for sequencing (e.g., a marshal cannot depart 

on his second leg until after his first leg has arrived). After initial experimentation, addition 

of these decisions significantly improved performance under all tested strategies. 

Furthermore, the inclusion of a decision to abort an allocated but not yet departed flight led 

to an additional modeling constraint: any time a marshal’s decision space includes a 
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decision involving allocation to a high-risk flight, that high-risk allocation would 

automatically be selected for the current policy. The algorithm applies an order of 

precedence to allocate marshals: first, cover immediate high-risk flight; second, abort 

current allocation and reallocate to a high-risk flight; and third, cover a delayed high-risk 

flight. 

The algorithm automatically covers high-risk flights as policy and under the 

assumption that the QRF strategy would never leave a feasible high-risk flight uncovered. 

The only situation with a tradeoff including a high-risk flight decision involves the possible 

existence of multiple feasible high-risk flights for a marshal. Testing supports automatic 

coverage of high-risk flights as long as the decision to abort exists. For example, if a 

marshal is allocated to a high-risk flight departing in one hour, and a new high-risk flight 

presents with an earlier departure from the same airport and without other available 

marshals, then the algorithm would abort the current allocation in favor of the earlier flight. 

While initially appearing to be a zero sum tradeoff, covering the earlier flight also leaves 

the possibility that an inbound marshal may arrive in time to cover the later flight.  

An example policy 𝜋9 is depicted in Figure 4-3. In this example there are only four 

eligible marshals for this time decision point (𝑚7, 𝑚6, 𝑚1, and 𝑚3).  The first two marshals 

(𝑚7 and 𝑚6) are both assigned decisions involving the allocation to high-risk flights. 

Marshal 𝑚7 is selected for allocation to a delayed high-risk flight (𝑑13), hence the two 

flights (𝑓15 and 𝑓376) associated with the decision, the second of would be the high-risk 

flight. The second marshal 𝑚6 is assigned the abort decision (𝑑12) in which he aborts 

current allocation to flight 𝑓35 and reallocates to the high-risk flight 𝑓274. Marshal 𝑚1 is 
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assigned decision 𝑑1 (rebalance to region 𝑟1) which involves allocation to flight 𝑓456. 

Marshal 𝑚3 waits in place (𝑑0) and has no associated flight. Marhsal 𝑚7  

 

𝜋9 =

marshal decision flight(s)

{

   𝑚7    → 𝑑13   → {𝑓15, 𝑓376}
    𝑚6    →  𝑑12   → ~𝑓35, 𝑓274
    𝑚1    → 𝑑1    → 𝑓456
    𝑚3    →  𝑑0    → n/a

}
 

 

 

Figure 4-3: Example policy for four marshals at time 𝑡 = 9. 

There is one final tactic to cover high-risk flights that also measurably and 

significantly improves performance under all strategies. This tactic is a heuristic that pre-

assigns all known high-risk flights over the next 24 hours to available marshal-hours at the 

beginning of the day. Only performed once a day, assignments under this tactic receive no 

rewards (the reward scheme for decisions is discussed later in the chapter). This tactic 

mimics an experienced scheduler as a benchmark to evaluate the performance of the ADP 

strategy. However, this tactic also resulted in vast improvement of high-risk coverage 

within the ADP strategy. Because this tactic dictates marshal activation time, pre-definition 

does not intuitively preclude improvement over dynamic marshal activation time as defined 

solely by ADP. However, the existence of abort decision proves its power as the abort 

decision would also apply to any of these pre-assignments. Thus, in addition to representing 

the skilled scheduler, the algorithm also automatically executes this tactic for all strategies. 
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4.2.6. State Space 

Reliance upon MDP also necessitates definition of possible system states. Careful 

consideration as to the state representation critically determines the convergence and 

performance of the ADP algorithm as it learns an optimal policy scheme. The system states 

include representative features to inform good policy selection and support readable 

automation in near real-time. Any significant time lag introduced by the information 

required for state descriptions could inadvertently lead to poor decisions. 

Model design must consider the size of the state space. Larger state spaces affect 

the scalability of the algorithm and require a sophisticated value function approximator 

when explicit storage of state values becomes prohibitive. Aggregation can be most 

beneficial to support large state spaces. For example, consider a problem with 100 airports, 

by which demand is sorted into three risk bins at each airport, and a count of marshals at 

each airport in three different bins. As an obviously unreasonable number of states, 

computation requires a prohibitively large number of simulated iterations to visit enough 

unique states frequently enough to collect a meaningful value. One aggregation approach 

might bin airports by regions and another might bin on the size of the airports (e.g., hub 

and non-hub airports). The final version selected for experimentation consists of a vector 

containing three components. These three components consist of a time block, a means of 

measuring marshal dispersion throughout system, and a means for measuring uncovered 

high-risk flights by region in the future. 
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1. Representative block of time from the day, 𝜏. Flight density varies by time. 

For example, the density of departures from 6-9 A.M. differs significantly 

than from 6-9 P.M. 

2. Regional airport hubs with feasible coverage, 𝐻𝑟. For inclusion, the hub must 

have at least one marshal currently located there or inbound within the look-

ahead period. This approach captures the distribution of marshals within the 

region as well as across the regions. By assuming that hubs provide greater 

connectivity, hubs increase the feasible decision space for marshals. 

3. Uncovered regional high-risk flights beyond the follow-on period, 𝑈𝑟. The 

model does not consider uncovered high-risk in the look-ahead period. If the 

risk were reachable, a marshal would have already been allocated. 

 

These three components hold information relevant to the decisions in the decision 

space and will contribute to convergence towards good policy.  

𝑆 = (𝜏,𝐻𝑟 , 𝑈𝑟) (4.5) 

The case study applies six time blocks of equal size. Each region (𝑟1, 𝑟2, 𝑟3) has a 

number of regional airport hub values (defined as the total number of airport hubs) and the 

amount of risk as binned into three categories (no high-risk flights, 1-5 high-risk flights, 

and 6 or more high-risk flights). The result is a system with 7,776 states for the case study. 

4.2.7. Contributions 

The contribution scheme penalizes high-risk flights uncovered at each time step 

and attributes immediate rewards and penalties to individual marshal decisions. The sum 
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of immediate rewards and penalties is captured in the one-step contribution term 𝐶(𝑆𝑛, 𝑥𝑡) 

found in Bellman’s equation. Through recursively updating the state value, this 

contribution is included in the updated value for the post-decision states. Thus, being in a 

state with a good decision space (i.e., inclusion of decisions associated with allocating to 

high-risks) will be rewarded, and the learning algorithm will capture this in the updated 

value for that state. Conversely, states that result in high-risk flights going uncovered for 

the immediate time step are penalized, which is also captured in the updated state value. 

Through simulation, the history of rewards and penalties develops state values which the 

algorithm will read to inform future decisions. 

The reward scheme also evaluates the current distribution of marshals throughout 

the system. For example, the simulation collects metrics for each critical time period while 

determining the system state including: the number of marshals currently available at each 

airport, the number of marshals inbound to each airport during the look-ahead period, and 

the number of known high- and moderate-risk flights due to depart from each airport. These 

measurements inform determination of airports and regions with shortages and overages 

of marshals (i.e., are there enough marshals available to cover known high-risks). Thus, 

when considering decisions to relocate from one region to another, rewards consider the 

needs of the originating airport/region as well as those of the destination airport/region. 

Furthermore, value rewarded for covering moderate- and high-risk flights is scaled by 

flight importance. Recall that flight importance is a pre-specified deterministic measure 

stored in flight attribute vector. Flight importance speaks to criticality and vulnerability 

aspects of risk assessment. 
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4.2.8. Working Rules 

The working rules built into the model consist of constraints on work hours, 

minimum off-time, buffer times for boarding and de-boarding flights as well as a recall 

time associated with activating marshals for duty each day.  

4.3. Model Dynamics 

The model inputs and parameters just described undergo a series of pre-processing 

steps to insure proper data structuring, validation, and initialization before feeding into the 

model as depicted in Figure 4-4.  

 
Figure 4-4: FAMS allocation model 

The system model consists of the simulation built around the FAMS’ operating 

environment in which flight schedules are realized with the passing of time in discrete time 
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steps. The system makes marshal allocation decisions at each step. In absence of the policy 

function, a decision maker would have to determine flights for all marshals in the system 

considering hundreds of flights across dozens of locations. A human would be challenged 

to consider and factor the immediate impact of decisions, let alone the future impacts or 

incorporation of stochastic risks. The addition of the stochastic risks makes marshal 

allocation more challenging because the problem becomes one of balance and positioning 

to give marshals the greatest chance at covering risks. 

In order to arrive at an optimal policy using the ADP algorithm, the simulation must 

solve smaller sub-problems. One sub-problem involves generating a set of policies for 

evaluation under Bellman’s equation. One approach to generating such policies involves 

devising an integer program that would solve to optimality. However, iteratively solving 

an integer problem of moderate size would be computationally expensive within a 

simulation-based approach. The simulation runs over hundreds of thousands of iterations 

as required to facilitate visiting states a sufficient number of times to accumulate a 

meaningful value for the states. In light of the number of iterations, the algorithm must 

minimize the computations needed to make decisions on marshals. To minimize the 

computational effort to evaluate marshal decisions, a heuristic populates the set of policies 

for evaluation in Bellman’s equation at each time step. 

The algorithm employs the heuristic only after populating decision spaces for all 

eligible marshals. The heuristic makes successive decisions for eligible marshals beginning 

with the marshal who has the most restrictive decision space (smallest number of 

decisions). First, if any decision is available to allocate to high-risk flights, it is 
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automatically selected, or else a decision is selected at random from remaining feasible 

decisions. Next, a check insures that the decisions of preceding marshals do not conflict 

with the current selection. For example, two marshals at the same airport at the same time 

most likely share overlapping decision space. If the first marshal is allocated to the only 

flight supporting a particular decision, then that decision would no longer be available to 

the second marshal. In such a situation, the selected decision for the latter marshal is 

reversed and replaced with another random decision from the remaining decision space and 

re-checked. If the selected decision is still feasible, then a flight is intelligently selected 

using another heuristic from the remaining flights supporting that decision. 

The flight selection heuristic uses criteria to rank flights and selects the highest-

ranked flight. Rules define the criteria and may include such relative comparisons: higher 

importance, earliest arrival times, ending at a high-demand airport, and so on. The next 

step after flight selection is calculation of the immediate contribution associated with the 

individual marshal decision. The immediate contribution is a combination of rewards 

earned from the reward scheme which rewards certain decisions and scales rewards by 

flight importance. Additionally, arrival at in-demand locations receive rewards, and arrival 

at locations with an excess of marshals is penalized. 

 After going through all eligible marshals, the algorithm identifies and penalizes 

any high-risk flights that will go uncovered over the next time step. The algorithm 

determines the chosen state based on the combined effect of all marshal decisions, the 

immediate rewards from the marshals, the immediate penalization of missed flights, and 

the discounted value of the following state. This resultant value of the policy accounts for 
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both the immediate rewards from marshal decisions as well as the value of the post decision 

state (the value of the post decision state holds information about the stochastic element 

which will not be observed until after implementation of the policy). 

The algorithm evaluates all policies in the generated set of policies for that iteration. 

Application of Bellman’s equation to all polices defines the policy resulting in the 

maximum value – this policy becomes the selected policy for that iteration. Using the set 

of individual marshal decisions and the flight assignments previously determined during 

policy generation phase, the simulation updates attributes accordingly. This heuristic 

performs exceptionally fast for a relatively small number of generated policies. As the 

number of policies to evaluate increases, the computational effort increases for determining 

the PDS value using the value function approximation whether through a lookup table or 

other means such as diffusion wavelets. 

4.4. Attribute tracking 

After every iteration in the simulation marshal and flight attributes must be updated 

based upon the decisions made, flights selected, and the realization of exogenous 

information. Updating the flight attributes is straight forward as it entails only the changing 

of risk level and coverage status. However, tracking the status and location of marshals 

proves challenging especially in light of decisions that involve allocation to multiple flights 

or aborting existing flights in favor of another. To handle these particular dynamics, a 

marshal’s availability is projected out 24 hours from the current time and tracked in 

discretized time steps. For example, if a marshal is allocated to a flight then the relevant 
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time steps in that marshals projection vectors (status and location) are changed accordingly. 

See Appendix B: Sample Marshal Attribute Tracking for sample marshal attribute tracking. 

4.5. Special Considerations 

Measurement of effectiveness must maximize the coverage of high-risk (or 

weighted risk) rather than maximizing utilization of marshals on high-risk flights. While 

some correlation exists between the two definitions of effectiveness, the two distinct 

metrics each have different purposes. Utilization speaks towards the efficiency of marshals 

(e.g., whether his work day is filled with mission hours as opposed to waiting at an airport 

all day). Effectiveness relates to whether or not marshals are allocated to the flights 

possessing the types of risk they are designed to cover. 

Since risk is binned as a model input, the modeler may set the threshold on the high-

risk bin such that many high-risk flights exist. An abundance of high-risk flights provide 

the opportunity for marshals to fill allocation schedules with high-risk flights and support 

an appearance of excellent utilization and effectiveness. Conversely, the modeler can set 

the threshold on high-risk flights so low relative to the number of marshals that any 

scheduler could easily cover all high-risk flights and provide the perception of effective 

coverage. Both cases are trivial and not the intent of achieving optimized policy. Recall 

that every effort should be made to cover a high-risk flight while moderate-risk flights pose 

trade-off opportunities. With the marshal allocation rules and guidance from organizational 

leadership in mind, the modeler must carefully tune flight risk bins to insure maximal 

coverage of the right types of flights.  
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4.6. Sample Marshal Routes 

Consider that marshals are constrained by a set of working rules such as a maximum 

number of hours to work in a day or having a minimum number of hours off prior to starting 

a new shift. Given this information, a marshal’s available time on a given day is limited, 

and marshals are likely to cover only 2-4 legs in a given day. This number of legs is further 

constrained by flight times and cross-regional flights which diminish a marshal’s remaining 

available hours. The following examples demonstrate possible utilization rates on high-

risk flights given a non-trivial scenario where the number of high-risk flights and available 

marshals are appropriately matched. 

4.6.1. Two-Leg Work Day 

Figure 4-5 depicts a marshal allocation schedule of 2 legs for the day. In such a 

scenario, a marshal at airport 𝐴 either starts his daily shift with a known high-risk flight 

departing from his location. Alternatively, he waits in place until a future flight’s risk 

changes to high, at which point the marshal is allocated to the high-risk flight taking him 

to airport 𝐵. 𝐵 may or may not be a hub airport. From airport 𝐵, the marshal can either 

wait to see if a moderate- or high-risk flight (depicted by amber and red dashed lines, 

respectively) presents, or relocate to a hub or marshal’s domicile. Factors contributing to 

only 2 legs might be cross-regional flight, long flight duration, or a long wait time at either 

airport. 
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Figure 4-5: Two-leg work day 

Note that in this scenario, only 50% of the marshal’s legs cover a high-risk flight. 

Only by chance of another high-risk flight presenting at airport 𝐵 in the appropriate time 

window will both legs cover high-risks. 

4.6.2. Three-Leg Work Day 

Figure 4-6 depicts a 3-leg work day. In this scenario, a marshal starts his work day 

at airport 𝐴 (probably a hub if he had the opportunity to reposition at the end of the 

preceding day) and is allocated to a delayed high-risk. To cover the delayed high-risk, the 

marshal takes a low-risk flight from airport 𝐴 to airport 𝐵 and then boards the high-risk 

flight destined for airport 𝐷. Again, airport 𝐷 may or may not be a hub. At airport 𝐷, the 

marshal finds himself in the same position that the 2-leg marshal found himself in after the 

first leg. Either by chance a higher risk flight presents offering an opportunity to cover a 

second high-risk flight, or the marshal repositions or returns to his domicile for optimal 

placement during next work shift. 
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Figure 4-6: Three-leg work day 

As in the 2-leg example, only 1 of the legs covers a high-risk flight unless by 

chance, a flight presents departing from airport 𝐷 in the appropriate time window. 

4.6.3. Four-Leg Work Day 

The last scenario covers a marshal able to fit 4 legs in his shift. In such a scenario, 

the marshal likely stays in the same region and covers short flight legs. In this scenario, the 

marshal boards a high-risk flight departing from his starting airport much like in the 2-leg 

scenario. However, from airport 𝐵 a known high-risk exists such that the marshal may 

feasibly cover a delayed high-risk departing from airport 𝐷. Finally, the marshal has 

enough time to reposition at the end of the day if airport 𝐶 is a non-hub or is not a high-

demand airport. 
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Figure 4-7: Four-leg work day 

As a result, 50% of legs cover high-risk flights. These three examples depict cases 

where marshals cover high-risk. A scenario also exists in which a marshal is not well-

positioned or makes trade-off decisions that result in missed opportunities to cover the 

stochastic high-risk flights. Measured by flight legs in each of the three cases, each 

marshal’s daily utilization on high-risk flights is at or below 50%, barring exposure to high-

risk by chance. Proper tuning of the risk thresholds should result in utilization rates just 

below 50%. The utilization rate will serve as a good starting point for the ADP algorithm 

to seek optimal policy and exceed these rates by covering more high-payoff stochastic risks 

through careful consideration of trade-offs and positioning marshals for the greatest 

opportunity to cover maximal risk.  
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5. CHAPTER FIVE – EXPERIMENTATION & ANALYSIS 

5.1. Experiment Design 

Experimental design addresses the non-trivial scenario in which the definition for 

high-risk flights tunes the number of potential flight allocations to the number of available 

QRF marshals. Recall that confidentiality limits access to existing procedures and metrics. 

Thus, the research requires design of a reasonable and appropriate means of measuring 

performance suited to the experiments. 

Each experiment run in the research applies the same time period and same number 

of simulations. The experiments are run for 10 day periods over 25 simulations. All 

parameters are held constant except for those distinguishing the strategy being tested. For 

sensitivity analysis, only those parameters explicitly being examined will vary. 

5.1.1. Controls 

The experiment uses two controls: the myopic strategy and simulation of an 

experienced scheduler following a heuristic. These two strategies are described below. 

5.1.1.1. Myopic Strategy 

To establish baseline performance, the research uses a basic myopic strategy for 

comparison. The myopic strategy follows an identical decision and reward scheme as the 

ADP algorithm except that it gives no consideration to the state value of the system after a 

decision cycle. Mathematically, the difference is equivalent to setting the discount 
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parameter in Bellman’s equation equal to zero. Thus, the modified one step optimization 

problem becomes  

𝑉(𝑆𝑥,𝑛) = max
𝑥𝑛∈𝒳𝑛

𝐶𝑛(𝑆𝑛, 𝑥𝑛) 
(5.1) 

Implementing this modified equation at every iteration of the simulation has the 

effect of taking a short-sighted greedy approach that only considers the immediate rewards 

for decisions made at the current time and ignores the potential impact of future decisions. 

As this strategy requires no learning phase, the myopic approach results in the immediate 

implementation of the policy that satisfies the maximization problem 

𝑥𝑛 = arg max
𝑥𝑛∈𝒳𝑛

𝐶𝑛(𝑆𝑛, 𝑥𝑛) 
(5.2) 

Note that once the ADP algorithm learns the optimal policy, simulation no longer 

serves a purpose. As a result, indexing on equation (5.2) would revert to time 𝑡 rather than 

iteration 𝑛. However, in experimentation the simulation model serves to test the controls 

as well as the other strategies by building a distribution around the performance metrics.  

5.1.1.2. Experienced Scheduler 

The second control is to mimic the procedures an experienced scheduler might 

follow. To implement the control, a subroutine pre-assigns known high-risk flights over a 

specified time period to marshals' available time over the same period. This subroutine 

extends from the decisions for individual marshals: allocate to high-risk flights and allocate 
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to delayed high-risk flights. After pre-assigning all known high-risks flights to marshals, 

the scheduler adopts the myopic strategy for the duration of the time period. At the 

conclusion of the time period, pre-assignment executes for the next time period. A logical 

time period for upfront pre-assignment is the 24-hour hour period starting at midnight. This 

time period covers the entire on-duty and off-duty cycle for most marshals.  

The experiment assumes perfect information for the experienced scheduler: all 

would-be stochastic risks are populated up front with scheduler visibility on those risks 24 

hours out. By treating these risks statically, the experiment captures how a scheduler would 

perform with perfect information. The performance of the scheduler under perfect 

information serves as a pseudo-upper bound or goal to be reached by any other strategy 

under testing. 

Take note that the pre-assignment subroutine proved to be a powerful heuristic that 

improved performance of all tested strategies. In conjunction with the existence of an abort 

decision, pre-assignment provides immediate benefit. With an abort decision, a marshal 

may abort any pre-assigned flight if a better opportunity presents stochastically. To 

incorporate the improvement, the ADP model also includes this heuristic. The benefit of 

pre-scheduling is an important observation of the research process demonstrating the 

overlap of the modeling and experimentation phases and the iterative means under which 

the research process occurred. This is an excellent example of the emphasis that an ADP 

approach places on the modeling aspect of the problem more so than other OR approaches.  
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5.1.2. Risk  

The experiments use seeded sequences to model stochastic risk such that each 

strategy encountered identical risks throughout. The base scenario establishes the threshold 

for the moderate-risk bin at 5% and the threshold for the high-risk bin at 1%. The lead time 

for visibility of risk is ranged with a maximum of 12 hours and a minimum set to the length 

of time used for the boarding buffer (e.g., 30 minutes). The maximum lead time represents 

a situation such as a potential terrorist purchasing a ticket with a half day notice. The 

minimum lead time represents a potential terrorist purchasing a ticket at the last available 

moment. The lead time for all risks is uniformly distributed across this time range. This is 

not to suggest that the risk propagation would occur in this manner, but uniform risk 

distribution forms a basis to demonstrate algorithm performance. Recall that the risk model 

is an input to the system. Should the FAMS adopt the model, they would likely employ 

their expertise to incorporate a more accurate and detailed representation of risk. 

5.1.3. Metrics 

The simulation tracks a number of metrics for performance against the 

environmental model, including high-risk coverage, weighted coverage, and marshal 

utilization on high-risk flights. High correlation exists among these metrics. Functional 

instances may arise where one metric more meaningfully captures system effectiveness, 

especially to planners and schedulers. For the purposes of this research, the high-risk 

coverage metric provides an option which is simple to calculate and explain while 

addressing a key assumption: the FAMS must make every opportunity to cover high-risk 

flights. 
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5.2. Experimental Runs 

The main experiment consisted of setting the baselines on a consistent scenario: 20 

airports support a daily average of 2,850 flights with approximately 1% posing high-risk 

and 5% posing moderate-risk. Risks randomly emerge with visibility uniformly distributed 

between 12 hours before departure and immediately prior to boarding. System variables 

result in an average of 29 high-risk flights each day to be covered by 20 marshals. Each 

marshal starts his QRF tour of duty at a pre-specified field office. Due to the relaxed 

working rules assumed for the QRF, the marshals are exempt from the requirement to 

return to domicile at the end of each day. Should a marshal complete QRF duty away from 

his domicile, he will return to his domicile on an administrative flight. A secondary 

objective of the main experiment is to test the viability of using diffusion wavelets for 

approximating the value function used in the ADP algorithm and the learnt equation.  

The results of this experiment are illustrated in Figure 5-1: Mean coverage of high-

risk flights (measured against myopic strategy).. The three gray bars in the chart depict the 

performance of the ADP learnt policy against three approaches (from left to right): a 

straight value lookup approach with no approximation, an interpolation scheme on a 

reduced-size lookup table, and diffusion wavelets as the approximation scheme. As a 

positive finding, both approximations methods performed within statistical bounds of the 

base ADP model with no approximation. Other trial runs with various parameter settings 

produced consistent results. 

With respect to performance the ADP policy covers slightly more than 60% of the 

stochastic high-risk flights on average that appear over the simulation. In comparison to 
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the myopic strategy (46.3% coverage) is an absolute improvement of almost fifteen 

percentage points or equivalently 4-5 high-risk flights on this scaled version of the 

problem. Consider the full-scale problem and this improvement could amount to the 

coverage of dozens more high-risk flights. 

 
Figure 5-1: Mean coverage of high-risk flights (measured against myopic strategy). 

The next step in this experiment is to compare the performance of the ADP policy 

to the pseudo-upper bound captured by modeling the experienced scheduler operating 

under perfect information. Figure 5-2 reveals that the experienced scheduler covers, on 

average, 71.4% of the high-risk flights given a QRF of 20 marshals and a high-risk 
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threshold set to 1% of the daily flights. Despite the deterministic nature of risks under 

perfect information scenario, the experienced scheduler does not produce optimal results: 

he is merely following a heuristic that mimics how a human might go about scheduling. 

An integer program (see Appendix E: Integer Programming Formulation for an example 

integer program) could easily solve to optimality the deterministic version of this problem 

over a finite time horizon, but this experiment only employs comparative measures 

appropriate for sequential decisions under uncertainty.  

 
Figure 5-2: Mean coverage of high-risk flights (measured against experienced scheduler under perfect 

information). 
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This chart highlights the gap between the myopic strategy and the experienced 

scheduler under perfect information. The flights in this gap comprise the flights that may 

benefit most from an effective allocation strategy. These high-risk flights emerge with very 

little lead time and at locations with no marshals present. The key observation is that the 

ADP strategy covers more than half of these flights (4 out of 7). This finding demonstrates 

the power of the ADP policy in light of stochastic risks. 

For the approximately 29 daily high-risk flights in the experiment, on average, the 

myopic strategy covered between 13 and 14, ADP covered between 17 and 18, and the 

experienced scheduler under perfect information covered between 20 and 21 high-risk 

flights. Although the experiment tests a limited number of high-risk flights, the scaled 

model only includes 3 of 9 regions, covering approximately 22% of domestic flights 

(meeting criteria for inclusion) in the United States. Additionally, this strategy applies only 

to the QRF, assumed to be only 10% of the FAMS’ force at large. Finally, and perhaps 

most importantly, only a very small percentage of real-world flights will meet criteria for 

a high level of perceived risk arising from individual passengers. 

5.3. Sensitivity Analysis 

Sensitivity analysis explored two parameters: the number of marshals and the 

number of high-risk flights. By choosing these two parameters, the research tests algorithm 

performance as the system approaches the boundaries of the non-trivial scenario. The 

scenario becomes trivial when marshals begin to greatly outnumber risks and vice-versa. 

Understanding the limits of the marshal and flight parameters will aid planners in defining 

the high-risk flight threshold responsive to the number of QRF marshals. 
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5.3.1. Amount of Risk 

The first sensitivity test explores the realized improvement of ADP as the amount 

of risk in the system varies. Fixing the number of simulated QRF marshals at 20, the percent 

of flights with high-risk varies: 0.5%, 1%, 2%, 3%, and 4%. Preliminary tests include all 

three variants of ADP strategy used in the main experiment. Relative comparison among 

the ADP variants reveal consistent performance without statistical significance, as in the 

main experiment. Thus, the research only presents the results of ADP using interpolation 

as the value function approximations scheme. The research employed interpolation as the 

strategy variant because it required the shortest amount of simulation run time. Figure 5-3 

depicts the results from the analysis. 

 
Figure 5-3: Sensitivity on percent of high-risk (measured against myopic strategy). 
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As a key observation from the analysis, the ADP algorithm consistently 

outperforms the myopic strategy. Another observation is that high-risk coverage decreases 

as the high-risk threshold increases. By fixing the number of marshals at 20 as high-risk 

flights increase, the marshal availability limits the total daily capacity for potential high-

risk coverage.  

As in the main experiment, the experienced scheduler under perfect information 

sets the pseudo-upper bound which caps the basis for the critical gap. The additional 

comparison provides valuable information in Figure 5-4: Sensitivity on percent of high-

risk (measured against experienced scheduler under perfect information).. It is important 

to note that although the gap size appears to be decreasing (moving from left to right), the 

number of high-risk flights comprising the gap simultaneously increases due to the 

increased number of high-risk flights in the trial runs. This analysis reveals that at all 

parameter settings tested, the ADP approach covered an average of 50% or more of the gap 

flights.  
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Figure 5-4: Sensitivity on percent of high-risk (measured against experienced scheduler under perfect 

information). 
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historical observations of risk cueing systems, adjusting the number of QRF marshals 

available, and/or setting an acceptable level of exposure to uncovered high-risk flights. 

This latter method is an intuitive finding resultant from the experimentation and is 

recommended as the preferable approach. 

Improved ADP performance for rising system risk (relative to the pseudo-upper 

bound) suggests two things: 1) the ADP algorithm performs exceptionally well at balancing 

and pre-positioning QRF marshals throughout the day to cover more stochastic risk when 

an abundance of risk persists, and 2) a high-risk threshold greater than 2% encroaches on 

the boundary for which this application becomes trivial. In the trivial instance of weakly 

defined high-risk, so many high-risk flights are available that marshals fill their daily 

allocation schedules with mostly high-risk flights. Recall that these are not imminent risks 

but perceived risk based on positive indicator signals. 

5.3.2. Number of Marshals 

The second sensitivity test explores the number of marshals in the system. The 

simulation fixes the percent of high-risk flights at 1% (average of 29 daily high-risk flights) 

while testing varied numbers of QRF marshals: 10, 20, 40, 60, and 80. As in the previous 

sensitivity analysis, discussion only includes the results of the ADP algorithm using 

interpolation as the value approximating method. Figure 5-5 shows the results from the 

analysis. 
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Figure 5-5: Sensitivity on number of marshals (measured against myopic strategy). 
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Figure 5-6: Sensitivity on number of marshals (measured against experienced scheduler under perfect 

information). 
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covers all high-risk flights given perfect knowledge of the risk. As the number of marshals 

increases, the myopic strategy improves coverage more slowly than the experienced 

scheduler because the stochastic element remains in the myopic approach. The widening 

gap explains the diminishing returns on ADP gap closure as the system moves from 10 to 

80 marshals.  

5.4. Observations on Problem Size 

This case study includes a 3-region subset of the FAMS area: the Eastern, Southern, 

and Great Lakes regions of the United States. Relative to the 9 regions that comprise the 

entire U.S., the selected regions support approximately 22% of total flights in the FAMS 

system. Problem size impacts both modeling considerations and simulation performance. 

5.4.1. Modeling 

 Table 5-1 compares the scale of main variables as modeled and in actuality. 

Note that although the case study uses one third of the FAMS regions in the United States, 

the model includes fewer than 22% of the daily flights. The significant difference in relative 

percentages arises from modeling the area as a closed system: the model only includes 

flights that both depart and arrive within the 3 selected regions. Model constraints exclude 

many of the cross-regional flights such as coast-to-coast flights that a full, 9-region system 

would include. 
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 Table 5-1. Problem size comparison. 

Problem Size Small Large Scaled Size 

Regions 3 9 33.3% 

Airports 20 72 26.7% 

Mean Daily Flights ~2,850 ~13,000 21.9% 

QRF Marshals 20 100 20.0% 

 

In comparison to the 3-region case study, the 9-region system exhibits potentially 

exponential growth of state space. Note that in Table 5-1, the size of the state space for the 

modeled problem relative to the potential problem changes by many magnitudes of order. 

In the small problem, all state values may be explicitly stored, regardless of whether or not 

the problem approach includes aggregation. However, the vast size of the state space of the 

larger problem obviates the impossibility of explicit storage supported by a prohibitive 

demand for computer memory and processing time associated with lookup routines 

performed on such large tables. 

 

 Table 5-2. State space comparison. 

State Size Small Large 

Aggregating on region > 104 > 1013 
No aggregation > 106 > 1022 

 

The implications of scale changes for model adoption clearly highlight the benefits 

of aggregating the model as well as the greater need for and importance of incorporating 

value function approximation as problems size scales.  
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5.4.2. Computation 

The true benefits of value function approximation arise during the learning phase 

of ADP, which requires many iterations to accumulate meaningful state values. As such, 

simulation run times can span hours, days, and even weeks depending on the size of the 

model and the method of value approximation employed.  Table 5-3 illustrates the run 

time differences for the modeled and actual problem space in a scenario applying state-

space aggregation at the regional level.  

 

 Table 5-3. Computational comparisons of learning phase. 

Simulation Run Times 

(Aggregated Model) Small Large 

No value function approximation < 8 hrs --† 

VFA: interpolation < 6 hrs 
days 

(estimated) 

VFA: diffusion wavelets < 24 hrs 
weeks 

(estimated) 
†Storage capacity prohibitive. 

Note that for the small case study, the optimal policy can be learnt in under a day, 

and possibly in only a few hours, regardless of the approximation scheme chosen. The full-

scope model, with the exception of the lookup table approach, could take weeks or even 

months to learn, depending upon the system state-space definition. Exceptionally long run 

times arise without value-function approximation due to the ever-increasing size of the 

lookup table. Each time the application visits a new unique state, the lookup table 

incorporates the value and adds to the computational time required to perform future 

lookups. The diffusion wavelet scheme could also take weeks, with computational time 
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driven by complex matrix operations performed on moderately sized matrices multiple 

times for each simulation iteration. Note that the code used to perform the diffusion wavelet 

approximation in the experimentation bears room for improvement, and efficiencies could 

reduce the run time from weeks to days. Future work on the application may address 

efficiency reduction for diffusion wavelets. 

Long run times for the learning phase should not ward off the end-user of this 

technology: the learning phase need only occur once (or as warranted by large perturbations 

to the system or model). Once learning occurs, ADP transitions to the learnt policy equation 

for implementation. The implementation phase experiences far less drastic change in scale 

between models. Regardless of system size, any approach will only take a matter of 

seconds to determine the optimal policy given the current state of the system.  Table 

5-4 presents the run times for the aggregated model for all three variants of ADP strategy. 

 

 Table 5-4. Computational comparisons of implementation phase. 

Implementation Run Times 

(Aggregated Model) Small Large 

No value function approximation < 1 sec. n/a 
VFA: lookup table < 1 sec. seconds 
VFA: diffusion wavelets < 1 sec. seconds 

 

Note that QRF implementation to address stochastic high-risk assumes a risk-

evaluation system exists. The risk-evaluation system would need the ability to relay threat 

assessments of all flights over the specified critical time periods in near-real time such as 

that discussed in the literature review. Additionally, the status and location of all marshals 
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must be dynamically updated and tracked in near-real time to serve as an input into the 

learnt equation. 
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6. CHAPTER SIX – CONCLUSIONS 

6.1. Findings  

In following the theme of contributions, which parallel both methodology and 

application, this chapter provides conclusions from the research on each of these facets.  

6.1.1. Methodology 

The primary theoretical objective was to apply ADP to influence decision making 

under uncertainty in a domain area exhibiting scarce resources and low-frequency 

stochastic events. Problems exhibiting these conditions require careful consideration to the 

positioning and balance of resources to effectively be able to react to the infrequent 

stochastic events. This work shows significant improvements of the ADP approach 

compared to myopic strategies that seek to maximize short term benefits and ignoring the 

value that may arise in the future by intelligently repositioning assets according to an 

optimal policy learnt through simulation approach. 

The secondary theoretical objective of the research was to address scalability by 

demonstrating diffusion wavelet as a suitable value function approximator. Very few 

researchers have explored diffusion wavelets as use as value function approximator in 

ADP. Thus the successful implementation in this application serves to promote its use and 

advance the scalability of ADP on problems sizes previously considered too big to solve. 
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This work shows diffusion wavelets performed on par with other approximation techniques 

such as aggregation and table lookups. 

6.1.2. FAMS Application 

The application objective was to demonstrate the potential benefits from allocating 

federal air marshals in near real-time according to optimal policy derived from ADP. This 

research demonstrates that ADP is a viable approach for learning optimal policy to 

facilitate near real-time allocation of federal air marshals to counter a stochastic risk. Not 

only does the approach facilitate synchronous decisions on multiple marshals, but it does 

so in a matter of seconds. The implementation phase is data driven by a small number of 

inputs. In addition to the policy equation, these inputs include updated flight schedules, 

statuses for all available QRF marshals that day, and latest risk assessments on all flights. 

The first input for the policy equation, is likely already accessible to the FAMS. 

Near real-time updates to flight schedules via their close coordination with TSA and 

individual airlines should be of little difficulty to attain. Marshal statuses for daily 

availability – to include all the tracked attributes – could be updated through a merger of 

existing marshal tracking procedures and the subroutine used in the simulation for updating 

marshal attributes. Thus, this aspect of model is attainable, too. However, the last element, 

the risk assessment, poses some challenges. Ideally, existing systems such as Secure Flight 

already monitors and collects information requisite to make a valid risk assessment based 

off stochastic indicators in near real-time. If this were not the case, the system would have 

to be augmented with potentially new technology to provide the necessary assessment 

capability of the factors that would differentiate between the risk bins. Obviously this last 
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requirement is the limiting factor in realizing this capability. This research could serve as 

justification for pursuing such technology that can perform the risk assessments without 

fear over privacy concerns that plagued CAPPS II. 

Regardless of the existence or development of risk assessment technology for 

assessing passenger manifests in near real-time, the algorithm has potential to complement 

existing procedures for scheduling FAMS against more deterministic factors. During the 

research experimentation phase it was shown that the model can be applied to deterministic 

risks – as was the case with the experienced scheduler operating under perfect information. 

The underlying model used for the algorithm can produce feasible schedules for a day, 

weeks, or months, even for large numbers of marshals in a relatively quickly manner. The 

building of the schedule would occur dynamically using existing deterministic risk models 

fit to model structure and the heuristics already built into the model. This approach avoids 

the long solution times associated with solving large integer programming problems 

providing schedulers with quicker solutions. This approach is also vastly different than 

traditional means of crew scheduling problems in which subsets of feasible flight pairings 

are generated and considered for inclusion in the solution of crew scheduling. Such a 

technique only considers a relatively small portion of feasible pairings possible out of the 

essentially infinite combinations. The proposed model considers all feasible flights 

accessible to a marshal from his immediate location over the look-ahead period as well as 

follow-on flights over the follow-on period. This has the potential to find stronger pairings, 

those with multiple moderate- to high-risk flights paired together.  
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Additionally, the model can also serve as a scenario analysis tool for planners. The 

model has the potential to track details of the system at a very high level of detail that can 

help planners make policy decisions on numbers of marshals to domicile at particular 

airports, to help de-conflict activation times for marshals at the same airport or operating 

in the same region, to test performance of different scheduling heuristics, to collect marshal 

utilization statistics for analysis, and to visualize the distribution of marshals and risks 

across time and space. Some of these capabilities are built into the model and ready to go 

while others require only slight modifications to adjust to actual procedures and data 

structure. 

Throughout the research process, discussions arose with committee members and 

other analysts as to ways to game such an approach along with proposals to counter gaming 

attempts. For security reasons these discussions are not included as part of this published 

work but will be shared with the FAMS as a part of future collaborative efforts to improve 

security operations and homeland defense. 

6.2. Broader Impact 

This research serves to advance scalability limitations of employing ADP on large 

problems by demonstrating diffusion wavelet as a suitable value function approximator. 

Diffusion wavelet theory can significantly reduce the storage requirements down to a 

relatively small number of parameters yet still facilitate modeling at a high level of detail. 

The employment of this approach for near real-time scheduling of QRFs is not 

limited to the FAMS but could apply to any defense or security agency that employs a QRF 

strategy consisting of multiple entities disbursed over time and space where the allocation 
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to a demand of one entity may offset the balance of the system requiring temporary 

rebalancing or repositioning. Furthermore, the concept is not restricted to QRFs but can be 

adapted to other large systems requiring constant rebalancing and repositioning in order to 

maximize the likelihood of servicing stochastic demands. 

6.3. Future Work 

On the algorithmic front there are areas where the model and algorithm could 

perform better and faster. Some examples include exploring more sophisticated learning 

rate schemes that are more adaptive to the convergence gradients of the simulation. 

Improving model robustness by including additional stochastic elements such as flight 

delays and cancelations as well as personnel absences and tardiness. An improved risk 

assessment scheme that factors in the remaining portion of unsold seats on a flight. 

Including this in the model would affect the probability of specific flights changing to a 

higher risk level (e.g., if a flight is sold out and already assessed at the lowest stochastic 

risk level than there is a zero probability of that flight changing to a higher stochastic risk 

level). This component of modeling would contribute to reducing some of the uncertainty 

in the model. 

Of course, the most important future work to come is through collaboration with 

the FAMS, adapting the model to their existing data structure, and finally testing the model 

performance against existing procedures. Findings from these tests might warrant pilot 

testing and/or merging the approach with existing procedures to form more robust 

scheduling and allocation procedures that effectively address all sources of risk. 
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APPENDIX A: AIRPORTS IN THREE-REGION MODEL 

# 
Region 
Index 

Region 
Name 

Airport 
Index 

Airport 
Code 

Airport 
Name 

Airport 
City 

Hub 

1 1 Eastern 25 BWI Baltimore/Washington International  Baltimore, MD Yes 

2 1 Eastern 39 DCA Ronald Reagan Washington National Washington, DC No 

3 1 Eastern 50 EWR Newark Liberty International Newark, NJ Yes 

4 1 Eastern 71 IAD Washington Dulles International Washington, DC No 

5 1 Eastern 78 JFK John F. Kennedy International New York, NY No 

6 1 Eastern 89 LGA LaGuardia New York, NY No 

7 1 Eastern 152 PHL Philadelphia International Philadelphia, PA Yes 

8 1 Eastern 153 PIT Pittsburgh International Pittsburgh, PA Yes 

9 2 Great Lakes 270 DTW Detroit Metro Wayne County Detroit, MI Yes 

10 2 Great Lakes 362 MDW Chicago Midway International Chicago, IL Yes 

11 2 Great Lakes 396 MSP Minneapolis-St Paul International Minneapolis, MN Yes 

12 2 Great Lakes 419 ORD Chicago O’Hare International Chicago, IL Yes 

13 3 Southern 525 ATL Hartsfield-Jackson Atlanta International Atlanta, GA No 

14 3 Southern 536 BNA Nashville International Nashville, TN Yes 

15 3 Southern 554 CLT Charlotte Douglas International Charlotte, NC Yes 

16 3 Southern 601 FLL Fort Lauderdale-Hollywood International Fort Lauderdale, FL No 

17 3 Southern 695 MCO Orlando International Orlando, FL No 

18 3 Southern 702 MIA Miami International Miami, FL No 

19 3 Southern 776 RDU Raleigh-Durham International Raleigh/Durham, NC Yes 

20 3 Southern 837 TPA Tampa International Tampa, FL No 

 *BOLDED airport code = hub airport  
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APPENDIX B: SAMPLE MARSHAL ATTRIBUTE TRACKING 

  

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Horizon (12 hours)
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Status
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13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36Step

Time

2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0 0 0 0 0

Sample Working Rules
Work day: 14 hrs

Recall time:     1 hr
Boarding time:    ½ hr

Debrief time:    ½ hr
New mission cutoff:   8 hrs

Min off duty: 10 hrs

Activate
@ S13 Start of 

duty
New mission 

cutoff

Boarding 
Time

(.5 hrs)
In-flight

(1.75 hrs)

Debrief
Time

(.5 hrs)

Allocated 
Status

(1.1 hrs)

[2 steps] [6 steps]

S25 (11:30) allocate to flight 
departing at 13:35 and arriving 

at 15:20

Begin off-duty 
status

(min. of 10 hrs)

Projected Status:

Statuses
0: Of-Duty
1: Inflight
2: Recalled
3: Allocated
4: Inactive
5: Available
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APPENDIX C: SAMPLE ALLOCATION SCHEDULE 

The below schedule is a representative example of the output from the model, grouped on marshal ID and sorted by hour 

of decision. The white section to the right contains attributes relating to the marshal and the gray section to the left depicts 

assigned flight attributes. 

 

 

Hour of 

Decision

Marshal

ID

Current

Region

Current

Airport Decision

Hrs On Duty 

(Pre-

Decision)

Daily Mission

Hours (Post-

Decision)

Cum Legs

(Mod-

erate)

Cum 

Legs

(High)

Legs

Total Flight ID

Depart

Hour

Arrive

Hour

Arrival

Region

Arrival

Airport Risk

Flight

Importance

5.50 1 2 270 Activate 0.00

6.50 1 2 270 Relocate to Region 3 0.25 1.53 0 0 1 26344 10.27 11.80 3 776 Low 1.3

12.50 1 3 776 Cover Moderate 6.25 2.57 1 0 2 26989 13.97 15.00 2 419 Moderate 1.3

15.50 1 2 419 Cover High 9.25 5.65 1 1 3 27700 17.85 20.93 1 50 High 1.4

7.00 2 1 153 Activate 0.00

8.00 2 1 153 Delayed High (leg 1) 0.25 0.50 1 0 1 26289 10.08 10.58 2 419 Moderate 1.3

8.00 2 2 419 Delayed High (leg 2) 0.25 2.10  0.50 1 1 2 27517 16.85 18.45 2 270 High 1.3

10.50 2 2 419 Abort & Cover high 2.75 3.18 1 1 2 27416 16.27 18.95 1 39 High 1.5

19.50 2 1 39 Cover Moderate 11.75 4.02 2 1 3 28224 21.08 21.92 3 776 Moderate 2

7.00 3 1 50 Activate 0.00

8.00 3 1 50 Delayed High (leg 1) 0.25 1.47 0 0 1 26153 9.22 10.68 2 419 Low 1.8

8.00 3 2 419 Delayed High (leg 2) 0.25 2.70 0 1 2 27280 15.50 16.73 1 152 High 1.3

17.00 3 1 152 Cover Moderate 9.25 4.05 1 1 3 27883 18.72 20.07 3 776 Moderate 1.3

7.50 5 3 536 Activate 0.00

8.50 5 3 536 Cover Moderate 0.25 2.98 1 0 1 26712 12.27 15.25 1 50 Moderate 1.4

15.50 5 1 50 Relocate in Region 7.25 4.20 1 0 2 27398 16.22 17.43 1 153 Low 1.8
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APPENDIX D: SAMPLE SIMULATION METRICS 

Run ID:
2
014-3-31-23-10Strategy:ADP

Run Hours:0.00 left of17.38

Iterations:300000 of300000

Sims:625 of625

Days(Steps):10 (48)

Exploration:10%

Marshals:20

Airports(>90 deps):20

Avg Flights:2836

% Hi Risk:4

% Med Risk:5

LeadTime:12

Neighbors:4

Decisions:25

Static Risk:n

PreAllocated:n

Include Delayed:y

Include Abort:y

Contibutions:

Abort:-10

Hi Risk:200

Hi Delayed:200

Med Risk:125

Low  Risk:0

Activate:0

Rebalance Region Demand Hi:40

Rebalance Region Demand Med:20

Rebalance Region Demand Low :-30

Missed Hi:-500

Airport Shortage Scalar:20

Alpha:0.9

Discount:0.95
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Key Simulation Parameters
• Strategy: ADP
• 300,000 iterations 
• 625 ten-day cycles
• 2,850 flights (4% risk)
• 20 airports
• 20 marshals
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APPENDIX E: INTEGER PROGRAMMING FORMULATION 

The formulation below is a simplified representation of the deterministic version of 

the allocation problem for a finite time horizon (e.g., one 24 hour period).   

  

Maximize: 

∑ ∑ ∑𝑥𝑚𝑙𝑓(risk𝑓 ∙ importance𝑓)

ℱ𝑙∈𝐿𝑚ℳ

 

Subject to: 

 

∑ ∑ 𝑥𝑚𝑙𝑓

𝑙∈𝐿𝑚ℳ

≤ 1                                                  ∀𝑓 ∈ ℱ 

𝑥𝑚𝑙2𝑓2t_dep
𝑓2
− 𝑥𝑚𝑙1𝑓1 ∙ t_arr𝑓1 < 0               ∀𝑚 ∈ ℳ; (𝑙1, 𝑙2) ∈ 𝐿𝑚; (𝑓1, 𝑓2) ∈ ℱ 

𝑥𝑚𝑙2𝑓2loc_dep
𝑓2
− 𝑥𝑚𝑙1𝑓1 ∙ loc_arr𝑓1 = 0      ∀𝑚 ∈ ℳ; (𝑙1, 𝑙2) ∈ 𝐿𝑚; (𝑓1, 𝑓2) ∈ ℱ 

∑ ∑𝑥𝑚𝑙𝑓(t_arr𝑓
ℱ

− t_dep
𝑓
) ≤ Tworkday      ∀

𝑙∈𝐿𝑚 

𝑚 ∈ ℳ 

𝑥𝑚𝑙𝑓 ∈ {0,1} 

𝑥𝑚𝑙𝑓   decision to allocate leg 𝑙 of marshal 𝑚 to flight 𝑓 

ℱ     set of all flights 𝑓 

ℳ   set of all marshals 𝑚 

𝐿𝑚   set of flight legs 𝑙 for marshal 𝑚 ∈ ℳ 
t_arr𝑓  arrival time of flight 𝑓 

t_dep𝑓  departure time of flight 𝑓 

loc_arr𝑓 arrival airport (location) of flight 𝑓 

locdep𝑓   departure airport (location) of flight 𝑓 

risk𝑓   contribution value associated with risk of flight 𝑓  

importance𝑓  scaling factor associated with importance of flight 𝑓 

Tworkday  maximum time in marshal work day 

 

(No more than 1 marshal/flight) 

(Flight leg de-confliction constraints) 

(Daily working hours) 
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