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Abstract

TECHNIQUES FOR THE EXPLORATION OF GEOSPATIALEMPORAL
DATASETS APPLIED TO CLUSTER COMPRESSED SATELLITE DATA

John M. Ashley, Ph.D.
George Mason University, 2013

Dissertation Director: Dr. Daniel Carr

NASA satellite data products are part of the recent big data explésion.
example of this are thadividual physically referenceshd processefbotprints of data
from the AIRS satellitel(2 Data Product)Each 2.3 MB data fileoversa 6 minute
period Daily data volumes ar®.552GB/dayand the collection of data products now
spansoveradecadehi s research addr ess eMNASARS AO s
developed th&3Q Entropy Constrained Vector Quantization (ECVQ) cluster
compressed dataset to prd&ia compact representation of the detailed data that retains
muchof theoriginal multi-variate, altitudinally indexethformation contensummarized
to a 5 x 5° Earth grid cell over a period of one month. Thenthly summary files are
roughly 5.5MBin size, so thecompres®n factoris about 3000 to.IThese multivariate
L3Q monthly summaries differ from the NASA's L3 products which contain univariate

statistics (means and standard deviations) for 1 x 1 degree earth grid cells.

L3C



In this research,develogdtechniques to suppdnierarchical clusteanalysis
over multiple months of L3QECVQ) cluster compressed multivariate datdahen
develogdnew visualization$or the sets of mulvariatealtitudinally indexedohysical
data vectors resultinigom hierarchical clustering of thearth grid cells and their
associated@ompression vectors. These techniques and visualizationsediaw;,
computationally feasiblanalysis and interaction with these datasBte methods are
potentially relevant t@ther ECVQ compressed multivariate data sets.

Specifically, | examiné techniques to approximate the full distance mdtrat is
traditionally used in hierarchical clustering. | addressedctbraputational challege of
producing the distance matrix irr@asonable time by reducing tipeoblem via an
adapted method of cluster exemplaf$iese techniques enable practical hierarchical
clustering of multiple months of data (granules), without losing the granule level Hetail.
examing the stability and pgormance of the method.

| develogdthePalettized Automate@oloring Algorithm(PACA) to allow
automated production of hierarchical global cluster set magadditional maps to
highlight the extent and changes over time of clusters. | then devglaplaic that
displays, using multiple maps and colors, the evolution of hierarchical clusters over time.

| developed @ustom graphito allow visualization of large numbers of weighted
geophysicatata vectors. lasedcolor, overplotting, and structuraletadata about the
physical data vectors in a fashion that can be extended to other datdmets.

visualization can be extended for exploratory and interactive use.



| appled acombination of these new techniques and tools to stedgral
scenariogelaed to previous research. The graphics provided a step towards the goal of

understanding what the grid cell cluster represented in terms of the geophysical variables.



1 Introduction

There is a fundamentglestion and thremajor topics that are addresisby this
research. The fundamental questilois research proposes to addriessanmultiple
time periods of geographically indexed, matiriatedatadistributionsummaries be
used to do higher levehalysis? It seems obvious that providing a summary of detailed
data that is smaller but maintains more of the inherentvailtate distributional dataf
raw observationg/ould be at least as valuable as simpler rdittiensional collections
of univariae statistics; provided of course that such a summary is analytically tractable.
This research demonstrates that at least some analytic tractability is within reach using as

a vehicle the NASA AIRS L3Q Quantized data product.

1.1 The Data Clustering Problem

The first topicof researchthen, is how can we manage and manipulate this data
to allow users to focus on areas of interest, similarity, or differe=da clustering is a
technique that is commonly applied to higldénersional data to help answer these
kinds of questionsThere are a number of clustering techniques that are used on multi
dimensional data that fill a portion of that need; this research extemdse of
hierarchical clusteringp multiple AIRS L3Q datasstindacceleratethe production of

distance matrice®r these distributions of data



1.2 The Cluster Visualization Problem

The second topic is, how can the clustered data be visualized? Working with
multiple maps, summaries, and color palettes ssdeict take advantage of existing
associations, an automated coloring algorithm for temporal geospatial data is developed.

This algorithm could easily be extended to other domains and datasets.

1.3 The Cluster of Physical Data Visualization Problem

The thrd topic is, how can we take advantage of structure and-dagtato
visualize distributions of highdimensional physical data, and the similarities and
differences between multiple distributions? A specialized graphic is produced for the
AIRS L3Q data; vkile the graphic is not directly suitable for other datasets, the approach

is generalizable and extensible.

1.4 The Science

The research will demonstrate that the combination of tools and techniques
developed allows us
1 to combinemultiple timeindexed, gospatially tagged multiariate data
distributions into an analytic whole via clustering in a computationally
tractable fashion
9 to interact with and explore such data

1 to visualize the physical data underlying the clusters.



With these computational capkiies, some scientific insights into mitperiod AIRS

L3Q data arelemonstrated.



2 Background

An understanding of the related work in Sectiom8 the computational and
visualization techniguesmployed in this workaquires very little background material.
The primary science data is described in section 2.1. A brief background in data
clustering is presented in section 2.2. Section 2.3 describes a commonly used measure for
defining the similaty (distance) between two distributions of nuadimensional data. In
section 2.4 visualization of multimensional and geospatial data background is

reviewed. Science background will be presented in context in section 7.

2.1 AIRS Satellite Data

The following description of the AIRS program is taken from the NASA JPL

AIRS overview page.

AIRS is a facility instrument whose goal is to support climate research and
improve weather forecasting.

Launched into Eartorbit on May 4, 2002, the Atmospheridiared

Sounder, AIRS, moves climate research and weather prediction into the
21st century. AIRS is one of six instruments on board the Aqua satellite,
part of the NASA Earth Observing System. AIRS along with its partner
microwave instrument, Advanced Mievave Sounding Unit (AMSEA),
represents the most advanced atmospheric sounding system ever deployed
in space. Together these instruments observe the global water and energy
cycles, climate variation and trends, and the response of the climate
system to ineased greenhouse gases.

AIRS uses cuttinggdge infrared technology to createlignensional maps
of air and surface temperature, water vapor, and cloud properties. With



2378 spectral channels, AIRS has a spectral resolution more than 100
times greater than previous IR sounders and provides more accurate
information on the vertical profiles of atmospheric temperature and
moisture. AIRS can also measure trace greenhouse gases such as ozone,
carbon monoxide, carbon dioxide, and methane.

AIRS and AMSUA share the Aqua satellite with the Moderate Resolution
Imaging Spectroradiometer (MODIS), Clouds and the Earth's Radiant
Energy System (CERES), and the Advanced Microwave Scanning
RadiometeiEOS (AMSRE). Aqua is part of NASA's "Arain”, a ses

of highrinclination, Sursynchronous satellites in low Earth orbit designed
to make longterm global observations of the land surface, biosphere, solid
Earth, atmosphere, and oceans.

Significantly more detailed descriptions of all aspects of the satatid the sounder

instruments themselves can be found at the following website:

http://airs.jpl.nasa.gov/technology/how AIRS works/how AIRS works detail/

Thefollowing summary of the orbital characteristics is from:

http://airs.jpl.nasa.qov/technology/coverage/

AIRS coverage is polo-pole, and covers the globe two times a day.
Because the swuilas (scanning sweeps) do not overlap at low latitudes,
some points near the equator are missed. However, these points are
eventually scanned within2 days.

Orbit: 438 miles (705.3km) polar, sun synchronous, 98.2+degrees
inclination, ascending node30pm +f 15 minutes, period 98.8 minutes

Ground Footprint: 90 per scan, 22.4 ms footprint
Swath Width:1650 km


http://airs.jpl.nasa.gov/technology/how_AIRS_works/how_AIRS_works_detail/
http://airs.jpl.nasa.gov/technology/coverage/
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Figurel:AIRS Orbital Information (source: NASA JPL)

2.1.1 AIRS L2 & L3 Data

AIRS L2 Data is swath data that has been algorithmically processed from the L1
spectral data (2378 spectral channels) into physical data on multiple layers of the
at mosphere and captured on a fAper footprin
of derived fields related to temperature, water vapor, and concentration of various
greenhouse gases and atmospheric dust for varying altitudes. A subset of these footprints

are converted to 35 dimensional vectors for use in the L3 Quantized Summary data

descibed below.

For more information on AIRS L2 data refer to:



http://disc.sci.gsfc.nasa.qov/AIRS/dditaldings/bydataproduct/.

L3 data is L2 data that has been sumaeatifor various periods of timieeach
footprint is assigned a 5x5 or 1x1 degree cell (depending on the exact data product) and
for each variable in the footprint the mean value and standard deviations are recorded
along with the count of footprints in tleell. This is a very compact representation and is
quite useful but it does lose any ability to accurately describe cells with distributions
across a variable that are not norinatulti-modal distributions and thick or thin tails,
for example, are compigy lost in this productas is any information where the value of
an observation at one atmospheric pressure level are not independent of those at other

pressure levels

For more information on this product please see the following website:

http://disc.sci.gsfc.nasa.gov/AIRS/ddtaldings/bydata-product/ .

2.1.2 AIRS L3Q Data

In a number of fields, data clusters or, as they are sometime known, data
signatures (prealent in the image processing literature) are finding increased acceptance
as ways to decrease the amount of data that must be processed while still attempting to
capture useful and interesting detail in the original data and minimize error artifacts
causé by the data reduction process. The AIRS L3Q data uses up to 100 data clusters to

represent the footprint data covering a 5x5 degree grid cell. In the next section we discuss


http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings/by-data-product/
http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings/by-data-product/

the clustering technique used for this data summarization; here it is sufficigsint out

which fields are included in the 35 dimensional data vectors that describe the clusters

(cluster mean vectors).

Tablel: Atmospheric Levels

Level Index Temperature  |Specific Humidity  [Top of Cloud | Approximate
Pressure (mb) |[Range(mb) Cover Altitude
Range(mb) (Temp MB)
11 150 [TOA, 150] 13,500m
10 200 (150,200 >= 20( 11,800m
9 250 (200,250 (200,250 10,400m
8 300 (250,300 (250,300 9200m
7 400 (300,400 (300,400 7200m
6 500 (400,500 (400,500 5600m
5 600 (500,600 (500,600 4200m
4 750 (600,750 (600,750 2500m
3 850 (750,850 (750,850 1500m
2 925 (850,925 (850,925 750m
1 1000 (925,1000 (925,1000 ~100m

Additional collected metdata includes

9 Scene Land Fraction



1 Day Observatioffrraction

1 Quality Indicator Good or Better Fraction [Olsen, Braverman, Granger, Manning

2007]

2.1.3 ECVQ Data Compression

As applied to the L3Q dataset, Entropy Constrained Vector Quantization is a
clustering techniquérelated to kmean$ being used fodata compressioput with an
additional entropy constraint that is applied as a penalty function that attempts to prevent
Aunnecessaryo clusters from beingeledr med.
very closely after [CarBraverman 2007]for an alternative presentation see also
[Braverman et al 2012b

The objective function being minimized for each cell is:

Equation1ECVQ Objective Function

O

P . L, 0
v W 0w 0(896—

w = data vectofk-dimensional data point)
W w = vector of centroids for the cluster to which the data vector is assigned
0 = Number of data vectors assigned to that cluster centroid
Note the use of the L2 norim the equation above
N (the number of #means clsters)is not allowed to exceed 100 and several

experimentally determinedhluesare evaluated and the values that minimize the sum of



the grid cell objective functions over the entire data set (all grid cells) are implemented.
The information theoretic &or penalizes the-kneans clustering when too many clusters

are used; for more details see [Chou, Lookabaugh, Gray 1989].

2.1.4 Principal Components (PO Space

The 35 dimensional L3Q physical data is also processed princpal
components spacBASA has defined an 18 dimensiommaincipalcomponents space
which accounts for about 95% of the variation in the data [Braverman et al, 2012b]. This
space is used for the ECVQ compression that forms the L3Q data from the L2 data, and
for the hierarchical dstering in this research.

This data is comparable from dataset to dataset as the means and covariance
matrix are set for any version of the data processing. Examination of the covariance

matrices provided in multiple datasets confirms this.

2.2 Analytic Clustering

Hierarchical clustering techniques can be divisive or agglomerative. In this
research we will consider clustering techniques that are agglomdratieg start with
each individual item represented as a singleton cluster and applying ariuridine
distance between clusters, they merge existing clusters until eventually they have merged
all the observations into one cluster that includes the entire data set.

These techniques are especially useful for data exploration as they allow

navigaton up and down a Atreeo of <clusters.

10



investigate how stable the clusters are by looking at the order and distance at which each
cluster was merged by the algorithm.
A disadvantage of these methods is that they normally require the entire distance
matrix to be calculated. There are some techniques designed to scale-thastpre
portions of the data using some other technique and then start the clustering with the
cluster centroids of the pidustered daté for a good survey and summankthese
techniques see [XWJ/unsch 2009]This research extends the technique of cluster
exemplars to the AIRS L3Q data and the Wastseri n or Eart h Mover 6s
There are aumber of common functional forms for the various distance functions
between cluster$ see [LanceWilliams 1967] or more compactly [XiWunsch 2009].

Intuitively, the distance between two clusters can be easily represented as:

(@]

the shortest distance betean members of each cluster or the largest;

the distance between cluster centroids;

(@]

or various weighted combinations of these distances.

(@]

The actual distance measure is not constrained to be the L2 norm.
K-Means is the most bagikivisive (nontheirarchcal) clustering scheme. It uses
some rulgpossibly random assignmemd) select K points in the data space of the data
set being clustered and then assigns each data point to one of the clusters. Enhancements
of the algorithm use an update process tosadhe cluster points K; some use subsets of
the data to perform multiple passes and cr

points. There are versions that attempt to automatically determine K for a given dataset
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and versiongsuch as ECVQbhatapply informatiortheoretic penalty functions to
determine K. It is a staple technique for data clustering and analysis.

Major advantages of K means are simplicity; it does not ever require a full
distance matrix, but only the distance from each datéa pwihe K cluster points. It is
computationally tractable (of order N) and parallelizable as well.

The major drawback of K means is that the parameter K is not unique, nor is

determination of an appropriate value for K trivial on large datasets.

2.3 Distance Metric Between Multi -dimensional Distributions

Distance between two points in mulimensional space (two data vectors) is a
simple concept; there asmmmonly used norms that provide useful distance metrics. The
key point for this discussion that it is simple to conceptualize the distance between two
points.

So if the grid cell values for the AIRS data are only mean values for the grid cell,
each cell is a data vector and the concept of distance between any two cells is sitnple. Bu
in the cas considered heréhe grid cell is represented by a weighted set of vectors
representing clusters of data, and so we need a distance function that is meaningful for
the distance between tweeightedsetsof vectors

The Wasserstein metric is defined tao distributions as the minimum of the
expected distance between two random variables drawn from the two distributions. This

definition requires only that the distance function selected lead to a true metric. This is a
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metric that can be used to define thistance betwedhe data distributions itwo grid
cellsin the AIRS L3Q data

In the case of probability distributions of cluster points, there is a simple analogy
that leads to what in computer scielfespecially in the field of imageg@cessing)s
known as the Earth Mover6s Distance, which

To simplify thethought process, assume that the data points are located in two
dimensions, and so form a flat plain, such as a parking lot. Assume that at the points
corresponding to the cluster centers for the first distribution, we pile an amount of dirt
proportional to the probability of that cluster point. The problem before us is then how to
transform that set of piles into a set of piles that would representusterctenters of the
second distribution while expending the least amount of energy. Since the energy
expended in moving the dirt is mass times distance, this is effectively the problem of
transforming one distribution into the other.

This also turns oub be a special case of the Transport problem, for which very
efficient Linear Programming algorithms exist. This understanding can be formalized as
follows.

Let X be the set ofklimensional vector® wherew represent the clusters in the
first grid cell. Let p) be the probability or weight associated with each veaotor
Similarly, let Y be the set of-Bimensional vectore® wherew represent the clusters in
the second grid celand p() is the probability associated with. Then, lefQ be the

L2 norm of the distance fronectorm to w. We then want to find that minimizes

Equation 2.3a subject to constraints on .
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Equation2 Earth Mover's Distance

~

O a Q¢ Qn

We want to find th&) subject to the following constraints:

There are efficient libraries and methods for solving this general tndnspo
problem; the worst acceptable case would be tojsetpp; which satisfies all the
constraints but generally does not minimize the value of Equation 2 Earth Mover's
Distance.

There are a number of potenti aistange usef u
proven and presented in [Rubner, Tomasi, Greibas 2000]; [Holland, Ladner, Riskin 1996]
outlines methods that allow that information to be used for fast search on ECV@Q data

an image processing context where exact distances are not required
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The lower bound on the distance between two distributions is the distance
between the weighted average centers of the two distributionsX$ovif are the
weighted average (mean) vectors of X,Y then D(XQMD(X*,Y* ). Additionally, the
triangle inequality holds; in other words D(X,Y)D(X,Q)+D(Q,Y).

Using these relationships in clustering this data, however, is insufficiently

accurate in production of approximate distance functions to be reliable.

2.4 Visualization

Work in visualizing the AIRS L3Q data has been conducted by Carr and
Braverman [Carr, Braverman 2007a][Carr, Braverman 2007b] and earlier in [Braverman
2002], [Braverman and Kahn 2004jisualizations also play a part in [Zhou, Shi 2011].

For example, data h&een clustered and mapped for a single year (from [Carr,
Braverman 2007bjvhere multiple datasets were combined by repeated application of

ECVQ on the data at a grid cell level
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Winter 2002 20 Multivariate Atmospheric Clusters

Degrees Latitudee

Degrees Longitude

Figure2:From [Carr and Braverman 200BCQ\Clustes for one combined 3 month season.

Figure2, is ahand colored example showing 20 clusters, missing data, and
singleton clusters. The strong banding andedétiation between clusters over land and
sea was part of the inspiration for the automated coldvioge detail about the

production of this graphic is iRigure5, in Sectior3 Related Work
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Figure3:CrystalVisionfrom [Carr, Braverman 2007b].

Figure3 is derived from CrystalVision, a 3D visualization tool. It shovBs2
scatterplot of Cloud Fraction, Temperature and Latitdd@-D scatterfpt matrix
brushing of global summary vector values by altitude provided the color.

Figure4 highlights temporal dependencies of the distanceidtis graphic
shows the distance between Noneer 2002 and November 2005 for each earth grid cell

compressed data distributiofrhe disance is unitless numerically, it is the Wasserstein
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distance between distributions of weighteddli®ensional vectors from a principle
components space representation of 35 dimensierehléd geophysical data vector

distributions.
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It should be noted that alternative approaches to looking at the distances between
cells and extracting information from them are actively being siutlie{Braverman,
Fetzer, 2006], a number of methods were examined, including hypothesis testing for
determining similarity of distributions. Approaches using the first and second moments
of the Mallows Distance (which is equivalent to the Wassersteiandis) are being

activelyinvestigated as well [Zhou, SRD11].
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2.5 Datasets

The AIRS L3Q Monthlywersion 5Datasets are available for download from

Mirador (http://mirador.gsfc.nasa.ggv/and are formattein HDF4 format. They occupy

roughly5MB each, and so are quite compdadiere are new Version 6 datasets being
produced that occupy roughly 10MB each; these files have a slightly different structure
and are not strictly compatible with the Version 5 degting used in this research to date.
R, the statistical scripting language that this research is primarily implemented in,
hasin the past had limitetibrary support for HDF5 formabut none for the older HDF4
which the AIRS data files are based émthis work, becauskfrequently reference the
data files| have preprocessed the datafiles into an R friendly binary forinadve used
MATLAB, which has native support for HDF4 file formats, as ajprecessor, to read in
the datasets and brealeth into multiple files (by dataset, by variable) written in a (R
compatible) binary format. This effectively builds a primitive object database in the file
system, and provides a reasonable tradeoff between simplicity, comprehensibility, and
performance.The time to read, process, and write 2 years worth of data (24 datasets) is

24.459 seconds, or just over 1 second per dataset, including all overheads.
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3 Related Work

There is a paucity of analysis on the L3Q dataesilable irthe public
literature. Myresearchs most influenced by [Carr, Braverman 20Q7@hich includes:
1 a brief discussion of the data,
1 analysis of composed dataset vi a eart h mover ds di st e
1 hierarchical clustering,
1 visualizations of thenderlying physical data.
In [Zhou, Shi 2011]clustering is applied to the L3Q data and visualization of
AIRS data. Additionally, they demonstrate experimentally that the distribution of the
AIRS L3Q data precludes using certain theoretically applicabtartce measures; their
conclusion is that the Mallows Distance (equivalent to the Wasserstein distance and the
earth moverds distance) i s thd&hemtbenapplappr op
multi-dimensional scaling to the physical data vectan which they compare results
using only the mean vectoiBata graphics are developed to examine clusters.
In [Braverman et al 2012b], there is the most thorough and understandable
exposition of the motivation and theoretical underjigs of the L3Q dataset to date.
A study of multiple winter datasets is performed leveraging the restartability of
the ECVQ process four winters are each individually summarized from three monthly

datasets. Full intravinter Wasserstein distance matd@e formed in thprincipal
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components space, and then mdithensional scaling is applied and the results

analyzed.

3.1 Detail: [Carr, Braverman 2007]

All visualizations in this section unless otherwise noted are excerpted from [Carr,
Braverman 200[7

Winter 2002 (2002.12, 2003.01, 2003.02) data was clustered into a single dataset
by application of ECVQ to the underlying monthly summaries. It was then hierarchically
clustered. Manual exploration and coloring produced the following image, wheee whit
denotes areas of no data, and black denotes singleton clusters. Twenty clusters were

colored.

Wyinter 2002: 20 Multivariate Atmospheric Clusters

Degrees Latitudee

Degrees Longitude

Figure5: Winter 2002, 20 Clusters [Carr, Braverman 2007]
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This handbuilt example has some very useful features as a visualizatidme
example used 20 clusters, 8 of which were singletons which were all colored black.
White colors encoded the grid cells with missing values. The remaining 12 clusters were
distinguished with a custom chosen color palette. Since the clusters do sinoaga
tendencytowards includingither landor ocean cells. This was interesting since only
one element of the 35 geophysical parameter vectors elements directly addresses th
distinction. For the grid cell clusters a palette of greens and greys was used for land
clusters- motivated by Tom Van Sant's Earth fré@@pace poster. For the five dominant
land clusters, three shades of green were assoeigie vegetation andvo shadesf
gray were associated with arid clusters. This left colors dominated by red and blue
forming a palette to associate with the seven ocean clisteds orange, three shades
of blue, violet, and purple. The assignment of colors to clustssoughly associated
with sea surface temperature and latitude. Overall, colors were chosen so that they were
easy to distinguish

The approach was extended to datasets fowihiers of 2003, 2004, and 2005.
Below the clustering was done sepahafer each year. The clusters that appear over the
same part of the globe don't necessary reflect the same discrete multivariate distribution
of summary vectors. Dr. Carr speculates that atmosphere process will vary to year to
year over and above seasi effects and that in some cases earth surface factors are
sufficiently strong that after controlling for seasonal variation groups of contiguous grid
cells will tend to be in one or very few clusters year after year. The emergence of new,

stable and gospatially contiguous clusters is interesting. Selection of 20 clusters in

22



2003 to fewer singleton clusters, but produced a small emergent cluster over China
(colored pink). Additional colors were added manually to the palettes. Manually
increasingtie number of clusters generated to 27 and 21 clusters in 2004 and 2005
respectively recoverthie same clusterDr. Carr speculates that if these cells are actually
a distinct cluster across these three yeaight air pollutioneffects be &trong enouly

factor to make this atmospherically distinct?
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Wirter 2008 20 Nutiven oo Almosgtions Cletors

Wit 2004 27 Nutivarn e Almosphiec e Clsters
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Wit 2004 21 Nutivesr e Almosphecc Cletors

J
Dogrees Longtud

Figure6: Separate ViewsCopied fromWinter 2003,04,05 [Carr, Braverman 2007]
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The hand coloring and the similarity in the cluster shapes suggests that there are
common cluters across the datasets but that may simply be an artifact of the selection of
varying numbers of clusters in each winter dataset.

A number of techniques were explored to represent the-wauriite physical
data.. In Figure7, aconditioned choropleth map used a 6 x 6 set of panels to show a 6 x
6 set of earth grid cells. Each vertical rectangle in a panel represents an ECVQ cluster
vector value The rectangle width is proportional to tim@mber of observations
(footprints) in the vector weightEach vertical rectangle is divided into 11 rectangles
corresponding to 11 altitudesThreecolorswere used talynamically control cloud
fraction cobr. Dynamic conditioning and filter views using temperature and cloud
fraction are not shown. This approach doessecate to thédull globe or to clusters with
significantly larger number o€ompressed summavectors (or to the set of all

compressed \&ors in a larger hierarchical cluster of earth grid cells).
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Figure7: Conditioned Choropleth Map [Carr, Braverman 2007]

Two and threadimension scatterplots with linked brushing were used to study all
the ECVQ cluster means and sizes\Winter 2002 This shows all the ECQV vectors in
geophysical ung plus latitude and longitude. Linked brushumgws (here based on
altitude) dso include parallel coordinate plaiad 3D scatterplots with motion parallel
stereo.

Each37 component vectdB5 geophysical AIRS L3Q data elements plus latitude
and longitude)became 11 altitude specific vectors with some replicated values to

accommodatéhe 20 variable limitation in the software. Strengths of the method include
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interactivity and a varity of statistical tools.A weakness is that the technique does not
preservehe interaltitude structure of the data (although in 3D it does maintain the intra

altitude relationships).
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Figure8: CrystalVision Scatterplot Matrix [Carr, Braverman 2007]

3.2 Detail: [Zhou, Shi 2011]

All images inthis section are from [Zhou, Shi 2011] unless noted otherwise. The

research ends up focused on the use of a multidimensional scaled version of the Mallows
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distance between dimensionally reduead ZscaledAIRS L3Q physical data rather
than theprincipalcomponents vectors. The analysis bears some similarities to
[Braverman et al 2012b] as it follows an earlier version of that paper.

They examine a single mtimof AIRS data (December 2002). They remove the
indicator variables (Good, Land, Day Fractioasyl then scale each remaining physical
dimension to have mean zero and standard deviation one ~ N(0,1). This effectively
weights each dimension identically. Clusters are produced using Mallows distance and
Mean distance, with Mallows detce ending upding the auth@preferred measure as

they conclude that the distribution carries additional information beyond the mean.

Color: Cluster—Mean ] Color: Cluster—Mallows

Latitude

=

=

£

= 2 . .
o o

130 -120 -110 -100 -%0 -30 -70 -60 =50 -130 -120 -110 -100 -90 -80 -70 -0 ~-30
Longitude Longitude
Fioure 5. Clustering displayed in geographic maps: Three panels are colored by Cluster-

Mean and Cluster-Mallows. White blocks in the maps show the locations where data are

missing.

Figure9: North America Dec 2002 Clusters from [Zhou, Shi 2011]

In Figure9, above, the Mallows distaaddentifies additional outliers and has
slightly different cluster memberships. The blocks labeled A are used by the authors to

examinephysical variatiorusing the graphics belown each block, there are 32
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columns; the first 11 correspond to temperature, then the next block corresponds to
specific humidity, and the last to cloud fraction. The top row is the mean data for the
entire cel. Each row below that is an individual data vector from a cell, whose height is
proportional to the relative weightolor is used to encode the scaled value of the

physical data value, clamping the Z score to the rai338][

Empirical Distribution in —\1 Empirical Distribution in A, Empirical Distribution in A,

3
Mean Mean Mean
Configuration Configuration Configuration| 4
| - — = a
- -1
Cloud Cloud Cloud -2
Temp Water Vapol Fraction Temp Water Vapor| praction Temp Water Vapo  Fractin

10 15 20 a5 o s 10 15 20 x 10 18 20 25 o

Figurel0: Physical Data Visualization; excerpt from Figure 7 [Zhou, Shi 2011

3.3 Details: [Braverman et al 2012b]

All figures in this section are taken from [Braverman et al 2012b] unless
otherwise notedThe paper starts with a recap of thdSlsatellite data, and outlines the
scale of the challenge in dealing with the processed footprints in the AIRS L2 data
about 240 granules of each of about 5MB perida850 data vectors per file.

The methodology of converting L2 to L3 data is revievasd] then the
underpinnings of the production of quantized compressed summaries (L3Q) data is

described. As an example of the use the data can be put to, seasonal summaries are
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produced by repeated application of ECVQ to December, January, and Febraary dat
starting in 2002 and covering 2003, 2004, and 2005.

Usefully, the JPL team has provided timing data in their Table 1, to which I will
refer later. While not detailed in the table, they also mention that the time to compute the

Wasserstein distance ugithe GNU library they employed is roughly 1 second per cell

pair.
Table 1. Compression statistics for 12 months covering the winters of 2002, 2003, 2004, and 2005
Raw 5-day Monthly Seasonal
Total file size 32.78' GB 3.10GB 148.47 MB 40.96 MB
Average PC-scale summary distortion 0 0.837 7.59° 0.42¢
As a proportion of total variation 0 0.06° 0.26° 0.19°
Computation time {(hours) NA 10.29% 7.27 2.4%

NOTE: 1378 KBfday x 240 granulesiday = 361 days.

2 Average prid cell distortion over all nonempty grid cells for each S-day period. Seventy-two S-day values are then equally weighted.

3 Average prid cell distortion over all nonempty grid cells for each month. Twelve monthly values are then equally weighted.

* Average grid cell distortion over all nonempty grid cells for each month. Three monthly means averaged to form a seasonal mean; then these values
equally weighted.

5Total variation is the weighted average of squared distances between cluster representatives and prid cell means, plus erid cell distortion.

16,210 seconds required to process T years of data on 8, dual core 2.2 GHz AMD Opteron processors with individual executions on a single core. This
equates to 37,051 seconds for 1 year on one processor.

"Calculated as 12 x 36 minutes to process | month on one Mac 3.2 GHz processor.

SCalculated as 4 x 36 minutes to process one season on one Mac 3.2 GHz processor.

Figurell: Timings from [Braverman et al 2012b]

The JPL team then applies mutimensional scaling to the four overall distance
matrices they computed in tpeincipalcomponents space to prodwmeresponding
dimensionaklectors They then studthe first two dimensions from the multi

dimensional saling, MDS1 and MDS2using a variety of graphics.
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Figure 7. MDSI coordinate values displayed in geographic space.
2002 shown, other years are visually indistinguishable from 2002.
White pixels correspond to grid cells with no AIRS data present.

Figurel2: MDS1 Coordinate Values from [Braverman et al 2012b]

Note again the general structure of these values off the coast of South America
and Africa. At a high level, this structure is similar to that found by [Zhou, Shi 2011]
from MDS scaling of the raw physical data and in [Carr, Braverman 2007] from
hierarchially clustering therincipalcomponents data distances directiDS1 is

strongly correlated with latitude and surface temperature (which relationship has an
obvious physical coupling).

The JPL team also finds structure in the MDS2 dimension althou2®04 they

have to reverse the sign of the MDS2 dimension to maintain the apparent structure of the
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pattern between the years. Given that the sign of the dimension is effectively arbitrary in
multi-d i mensi onal scal i nlgtitistalthesmanual m@rventiom e X pe ct
Between 30N and 30 S MDS2 appears to be fairly strongly coateld to an

atmospheric measucalled vertical velocity.

MDS2 DJF

1 | | 1 ism— | ]
-3.45 1.92 lons2 -0.07 0.1  lons2

Figure 10. Comparison of average (negative) MDS2 over winters 2002-2005 (left) for the region between 30°S and 30°N with the NCEP
reanalysis average omega for December, January. and February, 1968-1996 (right). White pixels correspond to grid cells with no AIRS data
present.

Figurel3: MDS2 & Vertical Velocity [Braverman et al 2012b]

Omega is the Lagrangian derivative of pressure with respect to time at the 500hPa
pressure level, and &measure of vertical velocity. Additional analysis by the JPL team
highlights this more fully in the paper. Of interest to me here especially gettezal
shape of the clusters, the scientific and mathematical underpinnings, and the fact that all

these mappings were produced and colored via an iterative manual process.
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4 Creating Globally Hierarchically Clustered Sets

There are a nundp of challenges related to building clusters of mdilthensional
data distributions over time. NASA scientists haweapproach that allows clustering of
large volumes of Level 2 (processed satellite scan footprint) data into L3Q data (cluster
compressedummary data). The details of this ECVQ approacioatiined in Sectior2
Backgroungl specifics of the implementation are in [Braverman et al 2012b]. Repeated
application of the ECVQ method allows multiple datasets to be combined into a single
dataset. This research, however, looks at combining multiple datasets into a consistent
whole while maintaining the lower level summaries using hierarchical clustering as a
vehicle.

The first challenge, then, fsxding a suitable distance metric to express the
similarity or difference of two empirical distributions. The Wasserstein distariteh
involves solving a linear programming problems)computable, and has all the needed
properties for a proper metri€roper metricallow many other analytical techniques
which rely on a distance mettic be used These include agglomeratisaddivisive
clustering methods and selfganizing mapsAgglomerative clusteringor examplewas
shownin [Carr, Braverman 2007].

The second problem is that while the distance function would be well defined in
the physical measures, the various physical idatat independent between variables or

altitudes, nor are the scales of the measurements of equal informational value. NASA
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scientists, in the construction of the AIRS L3Q dataset, have applied Principal
Components Analysis to the 35 measured and dephgsical variables and reduced
them to 18 dimensions inRC space. This reduces the computational complexity of the
underlying distance calculati@nd also helps with the scaling of the variablbgch are
in different units

The third problem is one sfcale. Each monthly AIRS L3Q dataset could have as
many as 2,592 grid cellalthough the average is closer to 2200 due to issues with data
calculation over ice, snow and high altitude regidhd is the number of months of

data to be studied, thealculation of the distance matrix requiteg solution of

approximately———— linear programming problemdxperimentally, a reasonably

capable CPU core today can calculate axiprately 82distances per second.
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Figurel4: Size of Full Distance Matrix by Month

The chart above shows the number of entries in the distance matrix, which grows
dramatically over time. Another way to look at this would be to compute the number of

CPU cores required to populate the distamedrix in 60 minutes.
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Figurel5: Servers to compute full distance matrix in 1 hour

This rapidly becomgcost prohibitive.

Storing the distance matrix for all prior months would be an option; in this case
with sufficient storage space, the calculation of the distance matrix elements that need to
be added becomes linear (effectively only requiring filling the bottom row ok&loic
the distance matrix). By the tenth year, however, this requidep ¢ 71¢ ¢ 1T Tvalues.

If stored as IEEE double precision floating point numbers, this requires approximately

278 GB of storagaiVorking with this amount of data in system memory is nespie
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on many machines today. This would require disk based storage which would have
significant performance impactshé& data is growing at a rate proportional to
0 ¢¢mm which will grow faster than compute power.

Given that the problerof computirg the distance matriself is growing with
0O ¢gmm ,itwould be reasonable to target a technique that drastically reduces the
constant portiorf2200) of the problem scalirapnd allows some level of user confrol
letting them trade time for accuraayhile still delivering reasonable values for both.

This couldinvolve using faster approximations in the distance calculation, a further
reduction in the dimensionality of the distributions, or satiermeans of reducing the
volume of computation andasage required.

At this point, it is |l ogical to ask, ba
simply restart the ECVQ process to combine any set of datasets for study? Certainly,
from Figure11: Timings from [Braverman et al 2012hf seems that for 12 months of
data, instead of requiring 100 servers for an heome small multiple of 36 minutes on
a Mac will suffice to do the compression followed by a couple of hours to do the final
distance matrix.

This repeated application of ECVQ is a moful tool, and if the desireiiime
granule of interest can be reducedtsingle unit (a month, a season, a year), then the
technique appears to deliver excellent results. It does create a new atomic granularity in
the data, however. If a researcher is looking for climate patterns in multiple months rather
than seasons, thmsight prove to be unacceptable. Or, if the research wanted to identify

similar patterns in Northern and Southern hemisphere winters, the six months required
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would form a single dataset; this would confound the summer and winter patterns in each
hemisphes.

In the event that multiple seasons were to be clustered together, the techniques
developed here for accelerating the computation and managing the clustering and
visualization of the AIRS L3Q data would still work with minor code modifications.

An altemative approach to muitiear clustering would be to compute the overall

ECVQ compressed summary for all the data, over some chosen basis in terms of

geospati al and tempor al di stribution of <ce
these |fusupars cal cul ated, or bookkeeping i
which giid cells contributedvhat portiontoeachi s uper cl ust er so. Maps

membership or affinity statistics might provide further interesting insights. This is left as
a future research topic.

Another, potentially very fast alternative, would be to calculate the
distance matrices and clusters on a dataset by dataset basis,somdar to the pre
processing this research u$esnd then use the Jaccard distance betwkrsters to
combine clusters across datasets.

Equation3: Jaccard Distance

(@) oh p

0° 0

The Jaccard distance can be quiadiculated wittwo accumulators and a final
division; extremely fast relativi® any of the other options presenteste This technique
has an implicit assumption built in, howeVethat distinct clusters that cover the same

earth grid cell in multiple datasets are, in fact, the same cluster. This is in some sense akin
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to the sesonality effect that can result from repeated application of the ECVQ technique.

Quantification of this effect is left as a future research topic.

4.1 Approximating the Wasserstein Distance

Since calculation of the Wasserstein Distais¢be performance bottleneck mmy
analysis of the cluster compressed AIRS data, it is natural to ask if that computation can
be accelerated in any way, including perhaps by approximation.

As indicatedn section 2.3, [Rubner, Tomasi, Greibas 2000] showatithere is
a lower bound on the distance between two distributioaad with mean X*andY* -

- D(X,Y) OD(X*,Y*). If there is no need for a complete distance matrix (for example, in
a serial aggregation of clusters that will terminate at a distanc#,car for image

search this could be a useful screen prior to calculation of the actual Wasserstein
distance. If the full distance matrix isgred or the lower bound is insufficiently
discriminatoryt hen t hi s doesndt hel p.

[Barbour, Xia 2006khoweda likely upper bound on the metric distance between
two distributions is derived based on Poisson approximations of the distributions. The
quality of the result is related to the quality of the fit of the Poisson distribution to the
underlying data[Horowitz, Karandikar 1994] showed an upper bound on the square of
the Wasserstein distance assuming that the setslX were drawn from i.i.d.
distributions. These results are interesting but would require significant further

refinement to apply to safler empirically distributed datasets such as this.
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[Shirdhonkar, Jacobs 200Bjoposé a wavelet transformation that allows
estimation of the Earth Mover6s Distance
these bounds are showo range froma factor of 4 to a factor of 10. This error range still
allows the technique to be useful in the domain of image search but, in its current form,
renders it iksuited for approximating the nestldistances in this research.

[Kreitmeier 2011}showedthe gtimal compression error in an entropy sense is
expressible in terms of the Wasserstein distance between the original and the compressed
distribution. While interesting, thiss nota useful resulfor this research

Recallour expression of the problem.

0 oy a Q¢ Q

IOy phd A 'Oy pRE Dt p
Does knowledge of a minimum intezt distance between members witkamth
grid cellsX and Y give any practicainsight into the distances? If we calculated some
strategically chosen set miter-grid cell vectorL.2 Norm distancesl; we could estimate
upper and lower bounds aky; howevercalculation ofd; is highly parallelizable and
relatively quick, and swe can have the actual result in similar time to what it would take

to get upper and lower bounds on the value.
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Is thereperformanceo be gainedh the calculation ofthed; themselves, by
approximatingd; by d;* which ignores some number dimensions of the vector means
from the distance calculati®mn theory,this would have a relatively small impact, as the
square root of the sum of the squares of differences is more and more dominated by the
execution of the square root function as thenher of summand terms decrea3édss
will also introduce a bias into the overall calculatiemderestimating the true distantte
is possible that caching and other architectural effects could provide an unexpected
performance boost for this technigaed so a simulationas performed. Starting from a
18D vector, vectors are removed from the distance calculation and performance and
accuracy of the resultant distances relative to the full distance are confpotadtigure
16: L2 Norm Catulation Timesit is apparent that the time to do the calculation is

relatively insensitive to the number of dimensiossd.
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Figurel6: L2 Norm Callation Times
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L2 Norm Accuracy
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Figurel7: L2 Norm Accuracy
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Figurel7 above showshe fractional percent of the true valhat reducing the
dimensionalitydue to reducing the number of vector components used in compugation
the L2 norm

Could we gain perfanance in the calculation of the summand te€ing by
ordering X and Y w.r.t. the probability weights asrdpping some of the vectors with
small weight® This would deliver an estimate of D(X,Y) the&buld havesomebias,
and would reduce thesize of the systems that needed a linear solve, whitlimpact
total compute times.

Implementation would require peomputed sorts, but that price could be paid
once in the prgrocessing of the datahen the complete inti@onth distance matrix is
computed The question then is, does this have enough performance impact enough of the
time to be worth introducing an approximation witlkaly bias into the mix?

In Figurel8, it is apparent that a consistently high bias is introduced via weight
censoring Thiscomputationwas run on a sample of random dBtaremovingvectors
and reweighting to enable the linear programming routines to wpr&babilityweight
hast o Amove f ur tPérffermancedse Figureshawsehafor larger
numbers of vectors, there is some benefit to lightly trimming the tail of the distnb

Examination of the distributional datakigure20reveals a relatively fat and flat

tail beyond about 37 compression vector summaries. The performance gragiréal9
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certainly suggests that there could be somalls(factor 25) overall speedup available
using this technique.

It seems more likely that rather than censoring based on weights, which is by
definition discarding some of the data in the production of the approximation, that using
weighted kmeans tdurther compress the number of vector representatives in the earth
grid cell compressed data clusters to form &l2@ter or 3ecluster summary directly to
represent the earth grid cell for distance calculations might speed up the entire tail of the
perfamance curve with potentially less impact to accuracy. This study is an interesting
area for future research. Thenefitof censoringseems small relative to the potential

bias bemng introduced, and so this research did not pursue it further.
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Figurel8: Impact of threshold censoring on distance metric
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Mean Time in ms by Vector Count
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Figurel9:Performance inpact of weight censoring
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Distribution of Compression Vector Counts
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Figure20: Distribution of Compression Vectors

Computationally, there is another question that shbealdsked can this
calculationbe donen single precision rather than double precision? On most computer
architectures today this will double the effective throughput on both coropastrained
andbandwidthconstrained parts of the problelvhere it will not offer any improvement
is in activities like pointer chasinmdex calculationsand instruction decode &
executon By anal ogy with Amdahl 6s Law, the
less than a factor of two. This would, however, still be attractive. Because of the lack of
an optimized single precision linear transport solver library, this is an open topic for

further research, and is mentioned here only for completeness.
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4.2 Other scale reductions

One simple way to reduce the size of the problem would be to replacecardmy
grid cells with some smaller number of representative €elisthe case of this search,
a singleton cellThis would not change theg-O order of the probleri the number of
cells in the distance matrix is still proportional tg,Mhe number of earth grid cells with
data in a given datasetbut could drastically reduce the scaféhe constant in front of
Nm, with commensurate computational bene®tswumber of techniques for creating
representatives are documented in the literature, and their application to this problem is
relativelystraightforward with a few caveats

The first issue is, of course, choosing which cells will be replaced with a smaller
set of cells (or singleton cell). A logical choice is to use an existing clustering algorithm
to choose clusters of similar cells to be removed as a set. Another would be gasggre
grid cells on a preletermined spatial and temporal grid. An example of the first
technique would be to use agglomerative clustering, and cut the tree at a level that gives a
targeted number of clusters or distance between clusters. An examplsedahd
approach would be to aggregate neighboring 5x5 degree spatial cells into 20x20 degree
cells, or to directly to aggregate multipiatasetscross the same 5x5 degree spatial cells
via restarting ECVQ

Once a set of celis selectedit remains tceither select or construct a
representativeell. If we choose to constructepresentativeell, we must decide how
many clusters it would contain, their weights, and the data vectors. One possible

technique for this would be to apply ECQV again, atdhster levelWe could also
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attempt to solve an optimization problem, on some measure of distance or entropy, to
find a ficentero of the cluster.
| have choserto select an exemplaarth gridcell from the existingntra-month

cluster members. The @t ofthistechnique are desbed in the following sections.

4.2.1 Calculation of cluster representatives
Given thatl wish to select exemplars from eaotramonthcluster to represent
that cluster at the next level of analysis, a method of choosing one or more grid cells from
the clustemust be determined. A straightforwamndterion is to selectthe grid cell with
the minimum total distance to all the other grélls in the cluster. As the distance
measure is a metric, this ensures that the
distributionalcenter of the clusteAlternative approaches to selecting a representative
earth grid cell could be devised, bhistis computational tractable and fits well with my

intended use of the representative.

4.2.2 Adjustment to the local block distance matrix entries
A complication arises when using exemplars to restart clustering across multiple

datasetsConsider theset of points in the figure below.
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Sample Clustering Points
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Figure21 Sample Points in the X,Y plane

The points 4 and 5 would be the representatives of two clust2i3;4land 56-7-8.
Using Nearest Nei ghbor c ohodireR) thesetwosclugteiss i n g |
are joined by 4, at an intercluster distance d&. This is show in the clusterting

dendrogram below.
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Cluster Dendrogram
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Figure22 Nearest Neighbor Hierarchical Clustering

If we use a clustering technique that uses a more complicated formula for the
distance between two clusters (any form of weighted average of the distance between all
the points in the clusters, for instance t
between clusters-2-3-4 and 56-7-8 will be greater than 2. Indeed, in this example that
distance is 3.6 .

The dendrogram below illustrates this.
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Cluster Dendrogram
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Figure23 Complete Hierarchal Cluster

This means that if we enter poidk$ into the list of cluster representatives the
distance, taken from the local distance matrix in this case, will be recordeBasi2e
clusters they represent do not join until a distance threshold of 3.6. Without an
adjustment, nce the clustering restarted, a potentially large number of early merges
will be intradatasetas tlere will be manyepresentativethatare closer than their
respectivehierarchical clustemerge distancesMy approach forces these potentially

early intramonth cluste merges to be delayed in favor of intabnth merges. | do that
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by adjusting the distance matrix to the threshold value used to determine theantre

cutset.

4.2.3 Overall impact and performance of the method
Timings with ever increasing numbekclusters reveal something about the

impact the method has on overall performance of the tea@niq

Figure24: Distance Matrix Calculation Times

As this is a linear trend on a log scale, the growth in computeréiquered
clearly demonstrates that attacking raw data (about 2200 clusters per time \wetilt)
rapidly become prohibitiveElapsed time (the one of most concern for interactive users)

shows a practical rate of 82 distance calculations per second.t Adténacalculation for

54



a singl e m@granhlésroughly 2206:2200/2)/82 seconds, or about 8
hours. This would grow proportionate to the square of the number of datasets to be
analyzed. Clearly, managing the number of grid cell represesgaised is the most
direct way to manage the time consumed by the analysis.

Figure25illustrates the tradeoff between the cutoff values of D for the
hierarchical distering of sets of earth grid cells, the number of representatives, and the
performance and speedup for a study consisting of 3 monthly dafsetsumerical

scale is common but the units of each line are different.

Figure25: Performance tradeoffs by hierarchy cutoff value

4.2.4 Impact to cluster ing (cluster stability)
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There are a number of ways to examine the stability of the clusterings produced

by this method. One would be to look at the stability of the seluster representatives

selected.

Figure26: Cluster Representative Stability

This chart shows the fraction of the cluster representatives at the first
hierarchical cutoff level that are still representatives in the sesemdf all the cluster
representatives were the same, then the resultant clustering would also be the same.
Having thesets ofrepresentatives be differemtowever,is no guarantee that the final
clustering will be differet

Visually, we can line ta maps up in pairs for a tinperiodand attempt to

compare earth grid cell clustering outcomes
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Figure27: Clustering with D cutoff = 2.0
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Cluster Map Nov 2002
Based on NASA AIRS L3Q Datasets
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Figure28: Clustering with Cutoff Threshold = 1.5

A number of interesting changes are apparatthough at a broad level the
patterns are similaFirst, the clusteover the sea and some of the land of the US Pacific
Northwest has changed its positioning in the coloring. Also, two of the cells on the
southen edge (one on land, one at sea) have left the clU$tedarge cluster off the west
coast of South America has split in two, while two clusters over the headwaters of the
Amazon basin have merged into one.

We can also visualize the difference between ¢lusterings with a heatmap,
generated by looking at which cluster each earth grid cell occupies under each clustering.

A clustering comparison of the samen®nth sample dataset clustered at representative
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cutoffs of d=1.0 and d=1.5, with 60 heirarchickusters displayed, is below. The

heatmap has entries where given clusters have earth grid cells in common under the two
different clusterings. The actual cluster number is an artifact of the analysis although the
strong diagonal nature of the plot shawat the general ordering of cluster formation is
similar. If a cluster was completely stable across under the pair of clusterings, then there
would be only one nemero entry in a rovcolumn set. Multiple entries indicate different

cluster memberships dar different representative clustering scenarios.
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Cluster Membership -- Joint Distribution
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Figure29: Cluster Stability Analysisjoint Distribution

| conclude that the clusters are not completely statder the technique as it
standsbothnumerical andriisual evidence confirms thisthe general pattern of clusters

is however close, and the geophysical data visualization tools highlighted in $ection
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provides evidence that the clusters produced by the methregrekentatives are
supported byhe dataAdditional studies of the stability of the clustering results based on

the representatives chosen would be an interesting topic for future research.
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5. Displaying Multi -Dataset Qusters

Given that | have clusters of earth grid cells fromtipld monthsthe next step is
to attempt to visualize those data clusters to help guide further analysis of the data. To
that end developeca number of techniques and graphics.

Because of the complexity and quantity of the data being explored, teetiqu
automate coloring of sets of maps covering multiple time periods are discuSssdion
5.3 Palettized Automate@oloring Algorithm Stability of the resultant colorings in the
face of small data changes is discussesiddion 5.3.5 Coloring Stability

Issues with focusing attention and change blindness led to the development of
several focusing graphics, displaying one or a small number of clusters over multiple
maps. This also allows the display and analysis of more clustermthanitial palette
supportsfor a single mapit is also more cognitively accessiblehe final techniques
developed for small multiples of clusters aré&ection5.4.5 Multiset Hierarchical Earth
Grid ClustersThe ultimate product of ¢éhsingle cluster extents over time maps are
discussed irsection5.4.6 Single Set Hierarchical Earth Grid Clusters over Time

Following the existing literature, the demonstrated maps prigetion5.6
Other Datasetsover only a single seasdvly techniques do allow more than three
months to be included in a study, which | demonstrate in Section 5.6.

Finally, in Section5.7 Computational Complexity of the &hod | review the
time required for the different phases involved in computing the initial clustering and the

production of initial cluster maps.
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5.1 Sets of maps over time

Existing studies of the AIRS L3Q data predominantly focusitrer a single data
granule or pranerge existing data granules into a single dataset which can then be
geospatially visualized. In this research, the data from each existing data granule is
preserved and presented for visualization, resultinginahatufamap per dat ase-
such a situation, showing cluster membership across time (separate images) presents
challenges. Here we use consistency of color to indicate cluster membetishigame

color represents the same cluster across time.

5.2 Map coloring strategies

Commonly, cluster membershih spatial areas on a magpindicated by color.
Random assignment of colors to clusters would, by definition caimynal
informational valudeyond distinguishing clusterSome method to assign coliss
neededf we want to add additional information

Assignment of colors to clusters based on a value in the data (i.e. mean cluster
temperaturat sea level) against a scafechosen colors is extremetpmmon. While
this is simple, and quick, it geradlly requires a graduated scale to make any sort of sense
T which either limits the colors to a very small number or makes it challenging to
discriminate between clusters which are near the same data values. This method does,
however, have the advantagevidually presenting some information about the

underlying clusters.
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Assignment by some rteedata associated to the déte. number of cluster
memberor average latitugeagainst a scale of chosen colors is also simple. Unless
cluster size is partidarly scientifically interesting, however, this will likely add no
comprehensibility to the map.

Hand coloring (direct manual assignment of colors to clusters) can produce maps
that highlight certain areas of interest, provide good ability to discrimimstween
neighboring clusters, and can be related to the science of interest. This requires
potentially multiple iterations and manual intervention to produce each map, which is
time that could have been spent examining the clusters for scientifictinsigh

This research leverages existing expectations from topographic relief maps with a
metadata driven approach to automatically color cluster mappings using palettes that
have proven discriminatory powaWhile perhaps not generating the same ease of insight
that a well colored, manually generated set of maps would, by using similar heuristics to
those chosen by topographical mapmakers the results appear to be reasonably useful.
This could be considerednaetadata driven coloring, except that in this case distinct

clusters with the same medata value on the coloring scale are not colored together.

5.3 Palettized Automated Coloring Algorithm

ThePalettized Automate@oloring Algorithm(PACA) was first ekscribed in [Carr,
Ashley 2011]as the Initial Coloring AlgorithmThe algorithm relies on:

1 multiple prechosen palettesf ordered colors
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1 a metadata driven function that maps cluster members to preferred palettes and
preferredpositions within thospalettes,
1 an aggregation method for those preference mappings, and
1 an assignment procedure for mapping cluster aggregate preferences to colors.
While the algorithm can be applied to any data driven investigation of clusters where
more than one single @chosen palette would be useful, this research implements only
the specialized case needed to provide automated coloring of the generated AIRS L3Q

clusters.

5.3.1 Palettes

In this research, two palettes were selecttednd and Sedl hese two palettes
were defined for two reasons:

1 climate science dynamics are different over large areas of water versus land and

1 these choices let us take advantage of likely prior user associations of colors.
The second factdeverageshe common topographical convention of using graduated
blue colors for water depth, and greens and browns to color for some combination of
height and aridity.

A given cell has a preference for being colored using a color from the Land
palette derived fnm the percentage of land data in the 5x5 grid cell. Cells near the poles
that didnét have data were arbitrarily ass
preferences are stable over (rgeplogic) time, the algorithm itself does not impose any

requirementhat the preference function not change over time.
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5.3.2 Palette Colors
Multiple Colobrewer monochromatic color sets were combined to prodgce t

two palettes.Sets of colors from ColorbrewfBrewer 2002] are chosen to be easily
distinguishable anthke into account common colorblindnesses and printability. They
have been developed to give equal perceptual steps between colors.

The Sea palette uses reds, blues and purples to form a palette running from dark
red to light red, then dark blue to lighlue, then dark purple to light purple. This follows
a familiar red>warm, blue>cold color mapping found in many environments (bathroom
taps, for example) and also the bligatermapping found in many topographic maps
that include surface water features

The Land palette uses browns and greens to form a palette running from light
brown to dark brown, then light green to dark gre€his will leverage a very common
theme in topographic maps, using browns to denote arid land areas and greens to denote
more fertile ones.

Below, in Figure30: SeaPalette the SST data underlying the palette preference
functionis displayed in the palette coldrghis data is externab the AIRS L3Q dataset
The dataset used to form the basis for the palette preference function is derived from
NOAA Optimum Interpolation Sea Surface Temperature V2 data products.
NOAA Ol _SST V2 datavasprovided by the NOAA/OAR/ESRL PSD, Boulder,
Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/

In Figure31: Land PalettetheNormalized Difference Vegetation IndeXDVI)

datais coloredusingthe land palette coloiisthis dataset ialso external to the AIRS
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L3Q dataset It is derived from Moderate Resolution Imaging Spectroradiometer data on

NASAGs Terra satellitwwwlahtd®delddg data i s avai

The only restriction from the method is that there be some way to map an earth
grid cell to a preference for each palette and for a position on that plaletethat some
sea regions with islands and coastal regions will have preferenceshopatettesThe
methodology does not require that an individual cluster member have only a single
preference. Mathematically, the preference function returns a palette preference vector,

not a scalar.

—_— -

= —

Figure30: SeaPalette
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http://www.landcover.org/

Figure31: Land Palette

5.3.3 Palette Position Preference

The palette position preference function uses additional-dattaderived from
geospatial cell location. Specifically, palette preference position for the Sea palette is
derived from mean sea surface temperatures. Palette preference positions for the Land
palette are derived from NDVI greenness index data. While in the research code the
function used is not time varying (it is based on a particular month of SST and NDVI
data) there is no reason this cannot be time varying. Nor, obviously, does the function
need to be the same for different palettesis not in this caset merely must be
calculable for any cluster member and generate a preference for a rankismghon

palette.
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Palette position preference is aggregated by taking the mean palettenposit
preference of all the cluster members and rank ordering them. This rank ordering is then

used with the ranked colors on the palettes to assign colors to clusters.

5.3.4 Pseudo-code
The actual R cod® implement the algorithm described abtadees adir bit of

space but conceptually, the pseudode is straightforward.

# Aggregate the individual cluster member preferences to form cluster preferences
FOR EACtiuster
FOR EACHember

Calculate the palette and position preferences for the member

Aggregate that to the cluster
# Assign clusters to palettes
# Number of clusters == total number of palette colors
landPaletteAssignment LIST of lengtlandPalColorsvith empty elements
seaPaletteAssignement ST of lengteeaPalColorgith emptyelements

landOrder =LIST of all clusters sortedlaypdPalPref
seaOrder =LIST of all clusters sorted $8aPalPref

WHILENOT DONE
Alternate current palette for assignment
IFcurrentpalette is not full
Assign next unassigned cluster froorrent order to that palette
landPalettePrefOrder = list clusters in landPaletteAssignment
sorted by land palette position preference
seaPalettePrefOrder = list clusters in seaPaletteAssignment
sorted by sea palette position preference
Assign colorsat clusters in PalettePrefOrder
To extend the algorithm to any arbitrary number of palettes, assume an array of
lists of PaletteAssignments, PaletteOrders, and PalettePrefOndesinstead of

alternating the current preference advancanititreat thearray as a ring buffer.
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Other assignment algorithms are certainly possible; comparing the colorings from

different assignment algorithms would make an interesting future study.

5.3.5 Coloring Stability
By the nature of the algorithm, changing the number of colors available or

changing the number of clusters being studied can change the assigned coloring. In the
following examples, the underlying data is the same for both sets of maps; the only
differenceis the number of target clusters being studied is 32 for the maps on the left and
31 for the maps on the right. The study set is three months of data from Dec 2004 to Feb
2005.

Because the only difference in the two studies is the number of targetgluste
effectively, the only underlying difference in the two clusterings is that in the second
study, two of the clusters from the first study are combined into a single cluster. This is
due to the nature of the hierarchical clustering. This means thati3@ 81 clusters in

the secondtudyare identical tdhe clusters in the first study.

Degrees Longtuce
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Cluster Map Jan 2003
‘Based on NASA AIRS 130 Datasets

Figure32: 32 Colors, Left; 31 Colors, Right

In the figure above, while the colorings across northern Europe and Russia appear
to be the same in both studies, the area off the west coast of South America highlights the
difference in coloring caused by clusters changing relative position in theepalett

preference and palette position preference rankings.

5.4 Multi -Dataset Examples
The basis for all these maps is a data structure that defines a layer per dataset,

indexed by latitude and longitud&5°® grid cell numbers. In a nod to the related work
referenced in Section 3, a variety of studi

refer to the set of data {December 2002, January 2003, February 2008hter 2002
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data. Unlike [Zhou, Shi 2011], who study the single month December 2002, here we
analyze and visualize data from all of Winter 2002.

Unlike [Braverman et al, 2012b], who combine datasets into a single
dataset before visualization and study, | maintain each month as a separate and

analyzable component of the overall seasonal streictur

5.4.1 Full Data All Clusters
The following three images show the output of the initial color algorithm applied

to the Winter 2002 data after processing. The process parameters set a representative
cutoff threshold of 3, producing 148 representatiustelrs. The analysis and initial
mapping require@bout83 seconds of elapsed time on a Intel Core i7 laptop with 4 cores
at 2.7GHzandhaving8GB of RAM. More detail on the timings is found later5r6
Other Datasets

There are a number of differences with the images in the related work. The most
obvious is that there are three maps, each Witleil. The colored cells are not filled
completely with squares, but rather with circles, which, if they areauljao another
cell in the same cluster, are connected by line segments as well. Background in squares is

lighter for primarily land grid cells and darker for water.
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Cluster Map Feb 2003
Based on NASA AIRS L3Q Datasets
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Figure33:Dec 02 , Jan 0Feb 03( 143 Reps, 32 Colors)

Further, asn [Carr, Braverman 2007] the data is clustered in the 18 dimensional
principal components space, with assigned colors per cluster, rather than being colored on
a single numeric scale associated with the value ®dimension from a muki
dimensional scaling of either the physigahou, Shi 2011pr principal components

spacgBraverman et al, 2012b]

It also depends on how much data is being examined, across what
boundaries. Is Winter the right timeframe, othie process more complex than thiag?

example, seasonal summaries would miss similarities between Northern Hemisphere
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temperate spring patterns and Southern Hemisphere temperate spring patterns, as they
would have been converted into a Spring and adaa#iset (assuming a researcher with a
Northern Hemisphere biasExamining the more granular monthly data would allow

those patterns to be revealed.

5.4.2 Full Data with Focus Clusters

Selection of certain clusters for additional focus (and making them stand out more
easily across images) could be accomplished many ways. In this research, expanding the
size of the colored dots for-fiocus items and reducing the size of the dots foobut
focus items was selected. Other choices are, of course, possible. In the following single
image from the Winter 2002 study case, a swath of four clusters taken vertically through
North America east of the Rocky Mountains and due south just over ther lotal

Mexico is selected. Each of these four cells is in a separate cluster.
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Cluster Map Dec 2002
Based on NASA AIRS L3Q Datasets
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Figure34: Winter 2002 Study, Dec 2002 Data with Focus Clusters

These focused data clusters are also highlighted in the other two months at the

same time, as would be expected.

5.4.3 Full Data Single Cluster over Time

A cluster of grid cells corresponds to distribution of multivariate ralitiude
atmospheric desiptors. The purpose of clustering earth grid cells over time is to show
the shifting in location and extent of such relatively stable atmospheric distributions. The
shifting of extents means that the distribution can disappear and possiéherge |agr.
Focusingattention on a single cluster (distribution ) over time helps us to see the shifts in

spatial location and temporal extent
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Feb 2003

| This Map Count: 121

Jan 2003

| This Map Count: 87

Dec 2002

| This Map Count: 181

Figure35: Winter 2002, Cluster 7

This can be represented using animatiojugtaposed views, but both
approaches have their deficiendégare 2013]. While we can see changes in animation

where our eyes are focused and changes can draw our attention, we cannot
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simultaneously focus on and think about multiple location in a nfrapther grid cells
that remain a part of the same cluster over time may draw no attention and not be
noticed. With animation, out of sight is quickly out of mind. New images fill our
retinas.

Juxtaposed views provide time to observe and thinkufteérsirom the problem
of change blindness. When our eyes move in rapid motions called saccades from one
focal point to another we are effectively blind. Our visual change detectors are at rest.
We only retain a little area of focal attention in mindd enough to make comparisons

between corresponding location in two juxtaposed maps. Detailed comparison of

juxtaposed images requires back and forth scrutiny of small areas.

Cluster 7

Feb 2003

This Map Count: 121

Jan 2003

This Map Count: 87

Dec 2002

.| This Map Count: 181

Figure36: Winter 2002, Multiple Clusters
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Cluster 9

Feb 2003

| This Map Count: 289

Jan 2003

g This Map Count: 256

Dec 2002

gl This Map Count: 193



Figure35 shows just one cluster to remove the distraction of other clusters. We quickly
notice rough similarities over the three months, but detailed comparison is difficult.
Figure36 juxtaposes three month plots for Clusters 7 and 9. It seems the groups
of grid cells for the two clusters are contiguous for the same month, but detailed
assessment is difficult. If weamt to know where the clustease and are not contiguous,

it is better to superpose clusters in the same plots.

5.4.4 Masked Data

Given a limited number of colors, and the possibility of larger and larger datasets,
| wanted a way to leverage the techmda allow more focus on individual areas and use

the colorings to provide greater detail to an area of interest.

| employ a mask to do this, where only clusters having at least one cell in the
region defined by the mask are allowed to occupy a pal€his. allows me to define

study regions such as the zone frofiS3t 36N.
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Cluster Map Dec 2002
Based on NASA AIRS L3Q Datasets
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Figure37: December 2002 3 to 36N

Because | include cells outside the study area that are members of the clusters
within the study area, the g€ of the study area is not a hard boundaciiose this
approach as it seemed like seeing all cells similar to the cells in the study area would be
more valuable than not knowing which if any other earth grid cells are included in the

clusters of interdgs

5.4.5 Multi -set Hierarchical Earth Grid Clusters

One potential objection to the overall cluster maps over time produced by the
PACA s that there are too many different clusters shown on the same set of maps,

leading to an overwhelming amount ofanfation on the graphicélso, being forced to
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display all the clusters in a single graphic implies that the total number of clusters in the
study cannot exceed the number of clusters in the palettes being used for coloring.
The multiset charts belowdalress both these concerns. They display a small
number of hierarchical clusters over time using multiple maps. Thegruakered
version of thePalettized Automate@oloring Algorithmlocally, on a reduced color
palette. This does allow the overall dataset to be broken into any arbitrary number of
hierarchical clusters; overall display of the study set simply requires multiplesatilti
maps.
ThePACA was altered as in this case)ways expect to have as many palette
positions for both the land and sea palettes as there are cl8stersstead of
alternatively taking the cluster with the greatest preference for each palette until all
palette positions are filled or | run out otisters, | allow the clusters to take a position on
whicheverpalette they most prefer.

The graphic below showsultiple clusters, any small subset can be displayed.
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Feb 2003

This map count = 532

Jan 2003

This map count =476

Dec 2002

This map count = 502

Figure38: (Small) Multiple Clusters over Time

5.4.6 Single Set Hierarchical Earth Grid Clusters over Time

This graphic helps visualize the evolution of a single hierarchical cluster over
time. Each pane of the map corresponds to a different underlying dataset. In each pane,

the union of earth grid cellbat ever are members of the cluster are outlined in light
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green; those that are always part of the cluster are filled in dark green, and those that are
members in that dataset but not all the datasets are colored medium green.

Effectively, the union offte earth grid cells can be thought of as a high water
mar k for the clusterds geographical extent
through time is a common technique for historical maps and | use the outlines to similar
effect. There will alwgs be at least one cell in the high water mark, and the number of
cells with outlines will be the same in al
cluster will over plot the outlines.

The cells that are always members of the cluster footghiould there be any,
can be thought of as the invariant core of the cluster geographicEflgy are repeated
in every pane, and cannot be overplotted.

Finally, any cells beyond the invariant core are shown in the medium green.
These will change, pang Ipane. Also, by definition, any cell that appears in solid
medium green will not be part of the cluster in some dataset (or it would be a part of the
invariant core of the cluster).

These features make the changes over time more apparent. Given khgi the
water marks would overlap, the technique is difficult to extend to multiple clusters unless
the outline for the high water marks of the two clusters was changed to some sort of
striped fill. A convention for overlaying high water marks and currersteiunembers
would need to be established as well.

| then extendedhe techniqueby using two colors for the high water markone

for cells which, relative to the current pane, were part of the cluster in the past and one

83



for cells which, relative tthe current pane, are going to be part of the cluster in the
future.Red for the past and blue for the futsez=med sensible, in effeciadDo p p | er 0
palette, with items receding from the current point of view colored red, and those coming
towards the currd point of view being blueAdditional graphical enhancements were

also incorporated Figure39: The Final Single Set over Time M3ps
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X\& Set over Time Cluster 20
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B Al Maps B CurrentMap B Future Maps B Past Maps
Figure39: The Final Single Set over Time Maps
5.5 Study Areas with reduced coloring
Certainly, some study areas may not

defined of 32 colors. It is possible to reduce the number of colors being used which
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simply reduces the number of clusters shown. This can be combined with the masking

features abve to produce analysis of smaller areas.

Cluster Map Dec 2002
Based on NASA AIRS L3Q Datasets
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Figure40:Winter 2012, North America Study Area, 6 Colors

Figure40, abovewas generated using a study area covering North America from
southern Canada to the Caribbean from Dec Zaf22002. The hierarchical cluster tree
was cut in such a way that over the three months in the study, six clusters covered the
study area. Everyatl in any of those clusters, including those cells outside the area of

study, were colored. With so few clusters, strong latitudinal banding is evident. We can
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see that rainforested and monsoon areas in South Amerie8abalban Africa, and the
islands & Southeast Asia have no analogues in the North America study region.

Likewise, large areas of the Arctic and the steppes of Asia have no high level analogues.

5.6 Other Datasets

The methods outlined in this research are not limited to a single season. A
analysis performed on the entire calendar year 2010, for instance, using a cutoff threshold
of 3, generated 630 cluster representatives. The elapsed time to calculate the distance
matrix was 1320.88 seconds (just over 20 minuiEs¢PACA was used to geerate a 32

color map over the entire 12 months.

Cluster Map Jan 2005 Cluster Map Jul 2005
Based on NASA ARRS L3Q Datasets Based on NASA AIRS L3Q Datasets
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