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Abstract 

TECHNIQUES FOR THE EXPLORATION OF GEOSPATIAL-TEMPORAL 

DATASETS APPLIED TO CLUSTER COMPRESSED SATELLITE DATA 

John M. Ashley, Ph.D. 

George Mason University, 2013 

Dissertation Director: Dr. Daniel Carr 

 

NASA satellite data products are part of the recent big data explosion. An 

example of this are the individual physically referenced and processed footprints of data 

from the AIRS satellite (L2 Data Product), Each 2.3 MB data file covers a 6 minute 

period. Daily data volumes are  0.552GB/day and the collection of data products now 

spans over a decade. This research addressed NASAôs L3Q Data Products. NASA has 

developed the L3Q Entropy Constrained Vector Quantization (ECVQ) cluster 

compressed dataset to provide a compact representation of the detailed data that retains 

much of the original multi-variate, altitudinally indexed information content summarized 

to a 5
o
 x 5

o
 Earth grid cell over a period of one month.  The monthly summary files are- 

roughly 5.5MB in size,  so the compression factor is about 3000 to 1. These multivariate 

L3Q monthly summaries differ from the NASA's L3 products which contain univariate 

statistics (means and standard deviations) for 1 x 1 degree earth grid cells.  
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In this research, I developed techniques to support hierarchical cluster analysis 

over multiple months of L3Q (ECVQ) cluster compressed multivariate data.  I then 

developed new visualizations for the sets of multi-variate altitudinally indexed physical 

data vectors resulting from hierarchical clustering of the earth grid cells and their 

associated compression vectors. These techniques and visualizations allowed new, 

computationally feasible analysis and interaction with these datasets. The methods are 

potentially relevant to other ECVQ compressed multivariate data sets.  

Specifically, I examined techniques to approximate the full distance matrix that is 

traditionally used in hierarchical clustering. I addressed the  computational challenge of 

producing the distance matrix in a reasonable time by reducing the  problem via an 

adapted method of cluster exemplars.  These techniques enable practical hierarchical 

clustering of multiple months of data (granules), without losing the granule level detail. I 

examined the stability and performance of the method. 

I developed the Palettized Automated Coloring Algorithm (PACA) to allow 

automated production of hierarchical global cluster set maps and additional maps to 

highlight the extent and changes over time of clusters. I then develop a graphic that 

displays, using multiple maps and colors, the evolution of hierarchical clusters over time. 

I developed a custom graphic to allow visualization of large numbers of weighted 

geophysical data vectors. It used color, overplotting, and structural meta-data about the 

physical data vectors in a fashion that can be extended to other datasets.  The 

visualization can be extended for exploratory and interactive use. 
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I applied a combination of these new techniques and tools to study several 

scenarios related to previous research. The graphics provided a step towards the goal of 

understanding what the grid cell cluster represented in terms of the geophysical variables.   
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1 Introduction  

There is a fundamental question and three major topics that are addressed by this 

research. The fundamental question this research proposes to address is, can multiple 

time periods of geographically indexed,  multi-variate data distribution summaries be 

used to do higher level analysis? It seems obvious that providing a summary of detailed 

data that is smaller but maintains more of the inherent multi-variate distributional data of 

raw observations would be at least as valuable as simpler multi-dimensional collections 

of uni-variate statistics; provided of course that such a summary is analytically tractable.    

This research demonstrates that at least some analytic tractability is within reach using as 

a vehicle the NASA AIRS L3Q Quantized data product.  

1.1 The Data Clustering Problem  
 

The first topic of research, then, is how can we manage and manipulate this data 

to allow users to focus on areas of interest, similarity, or difference?  Data clustering is a 

technique that is commonly applied to higher-dimensional data to help answer these 

kinds of questions. There are a number of clustering techniques that are used on multi-

dimensional data that fill a portion of that need; this research extends the use of 

hierarchical clustering to multiple AIRS L3Q datasets and accelerates the production of 

distance matrices for these distributions of data.   
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1.2 The Cluster Visualization Problem  
 

The second topic is, how can the clustered data be visualized?  Working with 

multiple maps, summaries, and color palettes selected to take advantage of existing 

associations, an automated coloring algorithm for temporal geospatial data is developed. 

This algorithm could easily be extended to other domains and datasets. 

 

1.3 The Cluster of Physical Data Visualization Problem  
 

The third topic is, how can we take advantage of structure and meta-data to 

visualize distributions of high-dimensional physical data, and the similarities and 

differences between multiple distributions? A specialized graphic is produced for the 

AIRS L3Q data; while the graphic is not directly suitable for other datasets, the approach 

is generalizable and extensible. 

1.4 The Science 
 

The research will demonstrate that the combination of tools and techniques 

developed allows us  

¶ to combine multiple time-indexed, geospatially tagged multi-variate data 

distributions into an analytic whole via clustering in a computationally 

tractable fashion 

¶ to interact with and explore such data 

¶ to visualize the physical data underlying the clusters.   
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With these computational capabilities, some scientific insights into multi-period AIRS 

L3Q data are demonstrated. 
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2 Background 

An understanding of the related work in Section 3 and the computational and 

visualization techniques employed in this work requires very little background material. 

The primary science data is described in section 2.1. A brief background in data 

clustering is presented in section 2.2. Section 2.3 describes a commonly used measure for 

defining the similarity (distance) between two distributions of multi-dimensional data. In 

section 2.4 visualization of multi-dimensional and geospatial data background is 

reviewed. Science background will be presented in context in section 7.    

2.1 AIRS Satellite Data 
 

The following description of the AIRS program is taken from the NASA JPL 

AIRS overview page.  

 

AIRS is a facility instrument whose goal is to support climate research and 

improve weather forecasting.  

Launched into Earth-orbit on May 4, 2002, the Atmospheric Infrared 

Sounder, AIRS, moves climate research and weather prediction into the 

21st century. AIRS is one of six instruments on board the Aqua satellite, 

part of the NASA Earth Observing System. AIRS along with its partner 

microwave instrument, Advanced Microwave Sounding Unit (AMSU-A), 

represents the most advanced atmospheric sounding system ever deployed 

in space. Together these instruments observe the global water and energy 

cycles, climate variation and trends, and the response of the climate 

system to increased greenhouse gases. 

AIRS uses cutting-edge infrared technology to create 3-dimensional maps 

of air and surface temperature, water vapor, and cloud properties. With 
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2378 spectral channels, AIRS has a spectral resolution more than 100 

times greater than previous IR sounders and provides more accurate 

information on the vertical profiles of atmospheric temperature and 

moisture. AIRS can also measure trace greenhouse gases such as ozone, 

carbon monoxide, carbon dioxide, and methane.  

AIRS and AMSU-A share the Aqua satellite with the Moderate Resolution 

Imaging Spectroradiometer (MODIS), Clouds and the Earth's Radiant 

Energy System (CERES), and the Advanced Microwave Scanning 

Radiometer-EOS (AMSR-E). Aqua is part of NASA's "A-train", a series 

of high-inclination, Sun-synchronous satellites in low Earth orbit designed 

to make long-term global observations of the land surface, biosphere, solid 

Earth, atmosphere, and oceans. 

Significantly more detailed descriptions of all aspects of the satellite and the sounder 

instruments themselves can be found at the following website: 

http://airs.jpl.nasa.gov/technology/how_AIRS_works/how_AIRS_works_detail/ .  

 

The following summary of the orbital characteristics is from: 

http://airs.jpl.nasa.gov/technology/coverage/ .  

AIRS coverage is pole-to-pole, and covers the globe two times a day. 

Because the swaths (scanning sweeps) do not overlap at low latitudes, 

some points near the equator are missed. However, these points are 

eventually scanned within 2-3 days. 

Orbit: 438 miles (705.3km) polar, sun synchronous, 98.2+/- .1 degrees 

inclination, ascending node 1:30pm +/- 15 minutes, period 98.8 minutes 

Ground Footprint: 90 per scan, 22.4 ms footprint 

Swath Width:1650 km 

http://airs.jpl.nasa.gov/technology/how_AIRS_works/how_AIRS_works_detail/
http://airs.jpl.nasa.gov/technology/coverage/
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Figure 1:AIRS Orbital Information (source: NASA JPL) 

 

 

 

2.1.1 AIRS L2 & L3 Data 
 

AIRS L2 Data is swath data that has been algorithmically processed from the L1 

spectral data (2378 spectral channels) into physical data on multiple layers of the 

atmosphere and captured on a ñper footprintò basis. This data set contains a large number 

of derived fields related to temperature, water vapor, and concentration of various 

greenhouse gases and atmospheric dust for varying altitudes. A subset of these footprints 

are converted to 35 dimensional vectors for use in the L3 Quantized Summary data 

described below.   

 

For more information on AIRS L2 data refer to:  
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http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings/by-data-product/ .  

 

L3 data is L2 data that has been summarized for various periods of time ï each 

footprint is assigned a 5x5 or 1x1 degree cell (depending on the exact data product) and 

for each variable in the footprint the mean value and standard deviations are recorded 

along with the count of footprints in the cell. This is a very compact representation and is 

quite useful but it does lose any ability to accurately describe cells with distributions 

across a variable that are not normal ï multi-modal distributions and thick or thin tails, 

for example, are completely lost in this product, as is any information where the value of 

an observation at one atmospheric pressure level are not independent of those at other 

pressure levels.  

 

For more information on this product please see the following website: 

http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings/by-data-product/ .  

 

2.1.2 AIRS L3Q Data 
 

In a number of fields, data clusters or, as they are sometime known, data 

signatures  (prevalent in the image processing literature) are finding increased acceptance 

as ways to decrease the amount of data that must be processed while still attempting to 

capture useful and interesting detail in the original data and minimize error artifacts 

caused by the data reduction process. The AIRS L3Q data uses up to 100 data clusters to 

represent the footprint data covering a 5x5 degree grid cell. In the next section we discuss 

http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings/by-data-product/
http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings/by-data-product/
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the clustering technique used for this data summarization; here it is sufficient to point out 

which fields are included in the 35 dimensional data vectors that describe the clusters 

(cluster mean vectors).  

 

 

 

Table 1: Atmospheric Levels 

Level Index Temperature 

Pressure (mb) 

Specific Humidity 

Range (mb) 

Top of Cloud 

Cover   

Range (mb)  

Approximate 

Altitude   

(Temp MB) 

11 150 [TOA, 150]  13,500m 

10 200 (150,200] >= 200 11,800m 

9 250 (200,250] (200,250] 10,400m 

8 300 (250,300] (250,300] 9200m 

7 400 (300,400] (300,400] 7200m 

6 500 (400,500] (400,500] 5600m 

5 600 (500,600] (500,600] 4200m 

4 750 (600,750] (600,750] 2500m 

3 850 (750,850] (750,850] 1500m 

2 925 (850,925] (850,925] 750m 

1 1000 (925,1000] (925,1000] ~100m 

 

 

 

Additional collected meta-data includes 

¶ Scene Land Fraction 
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¶ Day Observation Fraction 

¶ Quality Indicator Good or Better Fraction [Olsen, Braverman, Granger, Manning 

2007]  

¶  

2.1.3 ECVQ Data Compression 
 

As applied to the L3Q dataset, Entropy Constrained Vector Quantization is a 

clustering technique (related to k-means) being used for data compression but with an 

additional entropy constraint that is applied as a penalty function that attempts to prevent 

ñunnecessaryò clusters from being formed. This presentation of the material is modeled 

very closely after [Carr, Braverman 2007]; for an alternative presentation see also 

[Braverman et al 2012b].  

The objective function being minimized for each cell is: 

Equation 1ECVQ Objective Function 

ὒ
ρ

ὔ
ὼ᷆ ώὼ ᷆ ‗ ὰέὫ

ὔ

ὔ
 

 ὼ = data vector (k-dimensional data point) 

 ώὼ = vector of centroids for the cluster to which the data vector is assigned 

ὔ = Number of data vectors assigned to that cluster centroid 

Note the use of the L2 norm in the equation above.  

N (the number of k-means clusters) is not allowed to exceed 100 and several 

experimentally determined values are evaluated and the values that minimize the sum of 
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the grid cell objective functions over the entire data set (all grid cells) are implemented. 

The information theoretic factor penalizes the k-means clustering when too many clusters 

are used; for more details see [Chou, Lookabaugh, Gray 1989].  

2.1.4 Principal  Components (PC) Space 
 

The 35 dimensional L3Q physical data is also processed into a principal 

components space. NASA has defined an 18 dimensional principal components space 

which accounts for about 95% of the variation in the data [Braverman et al, 2012b]. This 

space is used for the ECVQ compression that forms the L3Q data from the L2 data, and 

for the hierarchical clustering in this research.  

This data is comparable from dataset to dataset as the means and covariance 

matrix are set for any version of the data processing. Examination of the covariance 

matrices provided in multiple datasets confirms this.  

2.2 Analytic  Clustering   

Hierarchical clustering techniques can be divisive or agglomerative. In this 

research we will consider clustering techniques that are agglomerative ï they start with 

each individual item represented as a singleton cluster and applying a function of the 

distance between clusters, they merge existing clusters until eventually they have merged 

all the observations into one cluster that includes the entire data set.  

These techniques are especially useful for data exploration as they allow 

navigation up and down a ñtreeò of clusters. It is also possible to use the tree formed to 
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investigate how stable the clusters are by looking at the order and distance at which each 

cluster was merged by the algorithm.  

A disadvantage of these methods is that they normally require the entire distance 

matrix to be calculated. There are some techniques designed to scale that pre-cluster 

portions of the data using some other technique and then start the clustering with the 

cluster centroids of the pre-clustered data ï for a good survey and summary of these 

techniques see [Xu, Wunsch 2009]. This research extends the technique of cluster 

exemplars to the AIRS L3Q data and the Wasserstein or Earth Moverôs Distance.  

There are a number of common functional forms for the various distance functions 

between clusters ï see [Lance, Williams 1967] or more compactly [Xu, Wunsch 2009]. 

Intuitively, the distance between two clusters can be easily represented as:  

ǒ the shortest distance between members of each cluster or the largest;  

ǒ the distance between cluster centroids;  

ǒ or various weighted combinations of these distances.  

The actual distance measure is not constrained to be the L2 norm.  

K-Means is the most basic divisive (non-heirarchical) clustering scheme. It uses 

some rule (possibly random assignment) to select K points in the data space of the data 

set being clustered and then assigns each data point to one of the clusters. Enhancements 

of the algorithm use an update process to adjust the cluster points K; some use subsets of 

the data to perform multiple passes and create ñbetterò initial values for the K cluster 

points. There are versions that attempt to automatically determine K for a given dataset 
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and versions (such as ECVQ) that apply information-theoretic penalty functions to 

determine K. It is a staple technique for data clustering and analysis.  

Major advantages of K means are simplicity; it does not ever require a full 

distance matrix, but only the distance from each data point to the K cluster points. It is 

computationally tractable (of order N) and parallelizable as well.  

The major drawback of K means is that the parameter K is not unique, nor is 

determination of an appropriate value for K trivial on large datasets.  

 

2.3 Distance Metric Between Multi -dimensional Distributions  
 

Distance between two points in multi-dimensional space (two data vectors) is a 

simple concept; there are commonly used norms that provide useful distance metrics. The 

key point for this discussion is that it is simple to conceptualize the distance between two 

points.  

So if the grid cell values for the AIRS data are only mean values for the grid cell, 

each cell is a data vector and the concept of distance between any two cells is simple. But 

in the case considered here, the grid cell is represented by a weighted set of vectors 

representing clusters of data, and so we need a distance function that is meaningful for 

the distance between two weighted sets of vectors.  

The Wasserstein metric is defined for two distributions as the minimum of the 

expected distance between two random variables drawn from the two distributions. This 

definition requires only that the distance function selected lead to a true metric. This is a 
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metric that can be used to define the distance between the data distributions in two grid 

cells in the AIRS L3Q data. 

In the case of probability distributions of cluster points, there is a simple analogy 

that leads to what in computer science (especially in the field of image processing) is 

known as the Earth Moverôs Distance, which is equivalent to the Wasserstein distance.  

To simplify the thought process, assume that the data points are located in two 

dimensions, and so form a flat plain, such as a parking lot. Assume that at the points 

corresponding to the cluster centers for the first distribution, we pile an amount of dirt 

proportional to the probability of that cluster point. The problem before us is then how to 

transform that set of piles into a set of piles that would represent the cluster centers of the 

second distribution while expending the least amount of energy. Since the energy 

expended in moving the dirt is mass times distance, this is effectively the problem of 

transforming one distribution into the other.  

This also turns out to be a special case of the Transport problem, for which very 

efficient Linear Programming algorithms exist. This understanding can be formalized as 

follows. 

Let X be the set of k-dimensional vectors ὼ where ὼ represent the clusters in the 

first grid cell. Let p(ὼ) be the probability or weight associated with each vector ὼ .  

Similarly, let Y be the set of k-dimensional vectors ώ where ώ represent the clusters in 

the second grid cell, and p(ώ) is the probability associated with ώ. Then, let Ὠ  be the 

L2 norm of the distance from vector ὼ to ώ. We then want to find ὴ  that minimizes 

Equation 2.3-a subject to constraints on ὴ . 
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Equation 2 Earth Mover's Distance 

Ὀὢȟὣ άὭὲ Ὠὴ  

 

We want to find the ὴ  subject to the following constraints: 

ὴ ὴώ  ȟᶅ Ὦ ɴ ρȟά  

ὴ ὴὼ  ȟᶅ Ὥ ɴ ρȟὲ 

 ᶅὮ ɴ ρȟάȟᶅ Ὥ ɴ ρȟὲḊπ ὴ ρ 

 

 

There are efficient libraries and methods for solving this general transport 

problem; the worst acceptable case would be to set pij = pi*p j which satisfies all the 

constraints but generally does not minimize the value of Equation 2 Earth Mover's 

Distance. 

There are a number of potentially useful properties of the Earth Moverôs Distance 

proven and presented in [Rubner, Tomasi, Greibas 2000]; [Holland, Ladner, Riskin 1996] 

outlines methods that allow that information to be used for fast search on ECVQ data in 

an image processing context where exact distances are not required. 
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The lower bound on the distance between two distributions is the distance 

between the weighted average centers of the two distributions. So if X*, Y* are the 

weighted average (mean) vectors of X,Y then D(X,Y)  Ó D(X*,Y* ).  Additionally, the 

triangle inequality holds; in other words D(X,Y)  Ò D(X,Q)+D(Q,Y). 

Using these relationships in clustering this data, however, is insufficiently 

accurate in production of approximate distance functions to be reliable.   

 

2.4 Visualization  
 

Work in visualizing the AIRS L3Q data has been conducted by Carr and 

Braverman [Carr, Braverman 2007a][Carr, Braverman 2007b] and earlier in  [Braverman 

2002], [Braverman and Kahn 2004]. Visualizations also play a part in [Zhou, Shi 2011].  

For example, data has been clustered and mapped for a single year (from [Carr, 

Braverman 2007b]) where multiple datasets were combined by repeated application of 

ECVQ on the data at a grid cell level.  
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Figure 2:From [Carr and Braverman 2007]; ECQV Clustes for one combined 3 month season.  

 

 

 

Figure 2, is a hand colored example showing 20 clusters, missing data, and 

singleton clusters. The strong banding and differentiation between clusters over land and 

sea was part of the inspiration for the automated coloring. More detail about the 

production of this graphic is in Figure 5, in Section 3 Related Work.  
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Figure 3:CrystalVision  from [Carr, Braverman 2007b]. 

 

 

 

Figure 3 is derived from CrystalVision, a 3D visualization tool. It shows a 3-D 

scatterplot of Cloud Fraction, Temperature and Latitude. A  2-D scatterplot matrix 

brushing of global summary vector values by altitude provided the color. 

Figure 4 highlights temporal dependencies of the distance data ï this graphic 

shows the distance between November 2002 and November 2005 for each earth grid cell 

compressed data distribution. The distance is unitless ï numerically, it is the Wasserstein 
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distance between distributions of weighted 18-dimensional vectors from a principle 

components space representation of 35 dimensional Z-scaled geophysical data vector 

distributions.  

 

 

 

 

Figure 4: TǊǳƴŎŀǘŜŘ 9ŀǊǘƘ aƻǾŜǊΩǎ 5ƛǎǘŀƴŎŜ ōŜǘǿŜŜƴ ŎŜƭƭǎ ƛƴ нллн ŀƴŘ ǘƘŜ ǎŀƳŜ ŎŜƭƭ ƛƴ нллр  

 

 

 

It should be noted that alternative approaches to looking at the distances between 

cells and extracting information from them are actively being studied. In [Braverman, 

Fetzer, 2006], a number of methods were examined, including hypothesis testing for 

determining similarity of distributions.  Approaches using the first and second moments 

of the Mallows Distance (which is equivalent to the Wasserstein distance) are being 

actively investigated as well [Zhou, Shi 2011].  
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2.5 Datasets 
 

The AIRS L3Q Monthly Version 5 Datasets are available for download from 

Mirador (http://mirador.gsfc.nasa.gov/) , and are formatted in HDF4 format. They occupy 

roughly 5MB each, and so are quite compact. There are new Version 6 datasets being 

produced that occupy roughly 10MB each; these files have a slightly different structure 

and are not strictly compatible with the Version 5 data being used in this research to date.  

R, the statistical scripting language that this research is primarily implemented in, 

has in the past had limited library support for HDF5 format, but none for the older HDF4 

which the AIRS data files are based on. In this work, because I frequently reference the 

data files, I have pre-processed the datafiles into an R friendly binary format. I have used 

MATLAB, which has native support for HDF4 file formats, as a pre-processor, to read in 

the datasets and break them into multiple files (by dataset, by variable) written in a (R 

compatible) binary format. This effectively builds a primitive object database in the file 

system, and provides a reasonable tradeoff between simplicity, comprehensibility, and 

performance.  The time to read, process, and write 2 years worth of data (24 datasets) is 

24.459 seconds, or just over 1 second per dataset, including all overheads.  

http://mirador.gsfc.nasa.gov/
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3 Related Work 

There is a paucity of analysis on the L3Q datasets available in the public 

literature. My research is most influenced by [Carr, Braverman 2007a], which includes: 

¶ a brief discussion of the data,  

¶ analysis of composed datasets via earth moverôs distance  

¶ hierarchical clustering, 

¶ visualizations of the underlying physical data. 

In [Zhou, Shi 2011], clustering is applied to the L3Q data and visualization of 

AIRS data. Additionally, they demonstrate experimentally that the distribution of the 

AIRS L3Q data precludes using certain theoretically applicable distance measures; their 

conclusion is that the Mallows Distance (equivalent to the Wasserstein distance and the 

earth moverôs distance) is the most appropriate distance measure to use.  They then apply 

multi-dimensional scaling to the physical data vectors from which they compare results 

using only the mean vectors. Data graphics are developed to examine clusters. 

In [Braverman et al 2012b], there is the most thorough and understandable 

exposition of the motivation and theoretical underpinnings of the L3Q dataset to date. 

A study of multiple winter datasets is performed leveraging the restartability of 

the ECVQ process ï four winters are each individually summarized from three monthly 

datasets. Full intra-winter Wasserstein distance matrices are formed in the principal 
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components space, and then multi-dimensional scaling is applied and the results 

analyzed.  

3.1 Detail: [Carr, Braverman 2007]  
 

All visualizations in this section unless otherwise noted are excerpted from [Carr, 

Braverman 2007].  

 

Winter 2002 (2002.12, 2003.01, 2003.02) data was clustered into a single dataset 

by application of ECVQ to the underlying monthly summaries. It was then hierarchically 

clustered. Manual exploration and coloring produced the following image, where white 

denotes areas of no data, and black denotes singleton clusters. Twenty clusters were 

colored.  

 

 

 

 
Figure 5: Winter 2002, 20 Clusters [Carr, Braverman 2007] 
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This hand-built example has some very useful features as a visualization. .  The 

example used 20 clusters, 8 of which were singletons which were all colored black.  

White colors encoded the grid cells with missing values.  The remaining 12 clusters were 

distinguished with a custom chosen color palette.   Since the clusters do show a strong 

tendency towards including either land or ocean cells.  This was interesting since only 

one element of the 35 geophysical parameter vectors elements directly addresses this 

distinction.   For the grid cell clusters a palette of greens and greys was used for land 

clusters -- motivated by Tom Van Sant's Earth from Space poster.   For the five dominant 

land clusters, three shades of green were associated with vegetation and two shades of 

gray were associated with arid clusters.   This left colors dominated by red and blue 

forming  a  palette to associate with the seven ocean clusters ï red, orange, three shades 

of blue, violet, and purple.  The assignment of colors to clusters was roughly associated 

with sea surface temperature and latitude.    Overall, colors were chosen so that they were 

easy to distinguish.  

The approach was extended to datasets for the winters of 2003, 2004, and 2005.  

Below the clustering was done separately for each year.  The clusters that appear over the 

same part of the globe don't necessary reflect the same discrete multivariate distribution 

of summary vectors.    Dr. Carr speculates that atmosphere process will vary to year to 

year over and above seasonal effects and that in some cases earth surface factors are 

sufficiently strong that after controlling for seasonal variation groups of contiguous grid 

cells will tend to be in one or very few clusters year after year.  The emergence of new, 

stable and geospatially contiguous clusters is interesting.   Selection of  20 clusters in 
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2003 to fewer singleton clusters, but produced a small emergent cluster over China 

(colored pink).  Additional colors were added manually to the palettes.  Manually 

increasing the number of clusters generated to 27 and 21 clusters in 2004 and 2005 

respectively recovers the same cluster.   Dr. Carr speculates that if these cells are actually 

a distinct cluster across these three years, might air pollution effects be a strong enough 

factor to make this atmospherically distinct?   
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Figure 6: Separate Views: Copied from Winter 2003,04,05 [Carr, Braverman 2007] 
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The hand coloring and the similarity in the cluster shapes suggests that there are 

common clusters across the datasets but that may simply be an artifact of the selection of 

varying numbers of clusters in each winter dataset.  

 A number of techniques were explored to represent the multi-variate physical 

data. .  In Figure 7, a conditioned choropleth map used a 6 x 6 set of panels to show a 6 x 

6 set of earth grid cells.  Each vertical rectangle in a panel represents an ECVQ cluster 

vector value.  The rectangle width is proportional to the number of observations 

(footprints) in the vector weight.  Each vertical rectangle is divided into 11 rectangles 

corresponding to 11 altitudes.   Three colors were used to dynamically control cloud 

fraction color. Dynamic conditioning and filter views using temperature and cloud 

fraction are not shown.  This approach does not scale to the full globe or to clusters with 

significantly larger number of  compressed summary vectors (or to the set of all 

compressed vectors in a larger hierarchical cluster of earth grid cells).   

 

 

 



 

26 
 

 
Figure 7: Conditioned Choropleth Map [Carr, Braverman 2007] 

 

 

 

Two and three-dimension scatterplots with linked brushing were used to study all 

the ECVQ cluster means and sizes for Winter 2002. This shows all the ECQV vectors in 

geophysical units plus latitude and longitude.  Linked brushing views (here based on 

altitude) also include parallel coordinate plots and 3D scatterplots with motion parallel 

stereo.   

Each 37 component vector (35 geophysical AIRS L3Q data elements plus latitude 

and longitude)  became 11 altitude specific  vectors with some replicated values to 

accommodate the 20 variable limitation in the software.  Strengths of the method include 
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interactivity and a varity of statistical tools.A weakness is that the technique does not 

preserve the inter-altitude structure of the data (although in 3D it does maintain the intra-

altitude relationships).   

  

 

 

 
Figure 8: CrystalVision Scatterplot Matrix [Carr, Braverman 2007] 

 

 

 

3.2 Detail: [Zhou, Shi 2011]  
 

All images in this section are from [Zhou, Shi 2011] unless noted otherwise. The 

research ends up focused on the use of a multidimensional scaled version of the Mallows 
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distance between dimensionally reduced and Z-scaled AIRS L3Q physical data rather 

than the principal components vectors.  The analysis bears some similarities to 

[Braverman et al 2012b] as it follows an earlier version of that paper.  

They examine a single month of AIRS data (December 2002). They remove the 

indicator variables (Good, Land, Day Fractions) and then scale each remaining physical 

dimension to have mean zero and standard deviation one ~ N(0,1).  This effectively 

weights each dimension identically. Clusters are produced using Mallows distance and 

Mean distance, with Mallows distance ending up being the authorsô preferred measure as 

they conclude that the distribution carries additional information beyond the mean.  

 

 

 

 
Figure 9: North America Dec 2002 Clusters from [Zhou, Shi 2011] 

 

 

 

In Figure 9, above, the Mallows distance identifies additional outliers and has 

slightly different cluster memberships. The blocks labeled A are used by the authors to 

examine physical variation using the graphics below. In each block, there are 32 
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columns; the first 11 correspond to temperature, then the next block corresponds to 

specific humidity, and the last to cloud fraction. The top row is the mean data for the 

entire cell. Each row below that is an individual data vector from a cell, whose height is 

proportional to the relative weight. Color is used to encode the scaled value of the 

physical data value, clamping the Z score to the range [-3,3].  

 

 

 

 
Figure 10: Physical Data Visualization; excerpt from Figure 7 [Zhou, Shi 2011] 

 

 

 

3.3 Details: [Braverman et al 2012b]  
 

All figures in this section are taken from [Braverman et al 2012b] unless 

otherwise noted.  The paper starts with a recap of the AIRS satellite data, and outlines the 

scale of the challenge in dealing with the processed footprints in the AIRS L2 data ï 

about 240 granules of each of about 5MB per day ï 1350 data vectors per file. 

The methodology of converting L2 to L3 data is reviewed, and then the 

underpinnings of the production of quantized compressed summaries (L3Q) data is 

described. As an example of the use the data can be put to, seasonal summaries are 
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produced by repeated application of ECVQ to December, January, and February data 

starting in 2002 and covering 2003, 2004, and 2005.  

Usefully, the JPL team has provided timing data in their Table 1, to which I will 

refer later.  While not detailed in the table, they also mention that the time to compute the 

Wasserstein distance using the GNU library they employed is roughly 1 second per cell 

pair.  

 

 

 

 

Figure 11: Timings from [Braverman et al 2012b] 

 

 

 

The JPL team then applies multi-dimensional scaling to the four overall distance 

matrices they computed in the principal components space to produce corresponding 6 

dimensional vectors. They then study the first two dimensions from the multi-

dimensional scaling, MDS1 and MDS2, using a variety of graphics.  
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Figure 12: MDS1 Coordinate Values from [Braverman et al 2012b] 

 

 

 

Note again the general structure of these values off the coast of South America 

and Africa. At a high level, this structure is similar to that found by [Zhou, Shi 2011] 

from MDS scaling of the raw physical data and in [Carr, Braverman 2007] from 

hierarchically clustering the principal components data distances directly.  MDS1 is 

strongly correlated with latitude and surface temperature (which relationship has an 

obvious physical coupling).   

The JPL team also finds structure in the MDS2 dimension although in 2004 they 

have to reverse the sign of the MDS2 dimension to maintain the apparent structure of the 
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pattern between the years. Given that the sign of the dimension is effectively arbitrary in 

multi-dimensional scaling, this isnôt unexpected ï but it is another manual intervention. 

Between 30
o
 N and 30

o
 S MDS2 appears to be fairly strongly correlated to an 

atmospheric measure called vertical velocity.  

 

 

 

 

Figure 13: MDS2 & Vertical Velocity [Braverman et al 2012b] 

 

 

 

Omega is the Lagrangian derivative of pressure with respect to time at the 500hPa 

pressure level, and is a measure of vertical velocity.  Additional analysis by the JPL team 

highlights this more fully in the paper. Of interest to me here especially is the general 

shape of the clusters, the scientific and mathematical underpinnings, and the fact that all 

these mappings were produced and colored via an iterative manual process.  



 

33 
 

 

 

4 Creating Globally Hierarchically Clustered Sets 

There are a number of challenges related to building clusters of multi-dimensional 

data distributions over time. NASA scientists have an approach that allows clustering of 

large volumes of Level 2 (processed satellite scan footprint) data into L3Q data (cluster 

compressed summary data). The details of this ECVQ approach are outlined  in Section 2 

Background; specifics of the implementation are in [Braverman et al 2012b].  Repeated 

application of the ECVQ method allows multiple datasets to be combined into a single 

dataset. This research, however, looks at combining multiple datasets into a consistent 

whole while maintaining the lower level summaries using hierarchical clustering as a 

vehicle.  

The first challenge, then, is finding a suitable distance metric to express the 

similarity or difference of two empirical distributions.  The Wasserstein distance (which 

involves solving a linear programming problem)  is computable, and has all the needed 

properties for a proper metric.  Proper metrics allow many other analytical techniques 

which rely on a distance metric to be used.  These include agglomerative and divisive 

clustering methods and self-organizing maps. Agglomerative clustering, for example, was 

shown in [Carr, Braverman 2007].  

The second problem is that while the distance function would be well defined in 

the physical measures, the various physical data is not independent between variables or 

altitudes, nor are the scales of the measurements of equal informational value. NASA 
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scientists, in the construction of the AIRS L3Q dataset, have applied Principal 

Components Analysis to the 35 measured and derived physical variables and reduced 

them to 18 dimensions in a PC space. This reduces the computational complexity of the 

underlying distance calculation and also helps with the scaling of the variables which are 

in different units.  

The third problem is one of scale. Each monthly AIRS L3Q dataset could have as 

many as 2,592 grid cells, although the average is closer to 2200 due to issues with data 

calculation over ice, snow and high altitude regions. If ὔ  is the number of months of 

data to be studied, then calculation of the distance matrix requires the solution of 

approximately  linear programming problems.  Experimentally, a reasonably 

capable CPU core today can calculate approximately 82 distances per second.  
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Figure 14: Size of Full Distance Matrix by Month 

 

 

 

The chart above shows the number of entries in the distance matrix, which grows 

dramatically over time. Another way to look at this would be to compute the number of 

CPU cores required to populate the distance matrix in 60 minutes.  
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Figure 15: Servers to compute full distance matrix in 1 hour 

 

 

 

This rapidly becomes cost prohibitive.  

Storing the distance matrix for all prior months would be an option; in this case 

with sufficient storage space, the calculation of the distance matrix elements that need to 

be added becomes linear (effectively only requiring filling the bottom row of blocks of 

the distance matrix). By the tenth year, however, this requires πȢυρςπzςςππ values. 

If stored as IEEE double precision floating point numbers, this requires approximately 

278 GB of storage. Working with this amount of data in system memory is not possible 
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on many machines today. This would require disk based storage which would have 

significant performance  impacts. The data is growing at a rate proportional to 

ὕ ςςππὔ  which will grow faster than compute power.  

Given that the problem of computing the distance matrix itself is growing with 

ὕ ςςππὔ , it would be reasonable to target a technique that drastically reduces the 

constant portion (2200)  of the problem scaling and allows some level of user control ï 

letting them trade time for accuracy, while still delivering reasonable values for both. 

This could involve using faster approximations in the distance calculation, a further 

reduction in the dimensionality of the distributions, or some other means of reducing the 

volume of computation and storage required.  

At this point, it is logical to ask, based on the prior work, why it isnôt sufficient to 

simply restart the ECVQ process to combine any set of datasets for study? Certainly, 

from Figure 11: Timings from [Braverman et al 2012b], it seems that for 12 months of 

data, instead of requiring 100 servers for an hour,  some small multiple of 36 minutes on 

a Mac will suffice to do the compression followed by a couple of hours to do the final 

distance matrix.  

This repeated application of ECVQ is a powerful tool, and if the desired time 

granule of interest can be reduced to a single unit (a month, a season, a year), then the 

technique appears to deliver excellent results. It does create a new atomic granularity in 

the data, however. If a researcher is looking for climate patterns in multiple months rather 

than seasons, this might prove to be unacceptable.  Or, if the research wanted to identify 

similar patterns in Northern and Southern hemisphere winters, the six months required 
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would form a single dataset; this would confound the summer and winter patterns in each 

hemisphere.  

In the event that multiple seasons were to be clustered together, the techniques 

developed here for accelerating the computation and managing the clustering and 

visualization of the AIRS L3Q data would still work with minor code modifications. 

An alternative approach to multi-year clustering would be to compute the overall 

ECVQ compressed summary for all the data, over some chosen basis in terms of 

geospatial and temporal distribution of cells. All ñrawò cells could have their distances to 

these ñsuperclustersò calculated, or bookkeeping in the production process could record 

which grid cells contributed what portion  to each ñsuperclustersò. Maps of these 

membership or affinity statistics might provide further interesting insights.  This is left as 

a future research topic.   

 Another, potentially very fast alternative, would be to calculate the 

distance matrices and clusters on a dataset by dataset basis, once -- similar to the pre-

processing this research uses ï and then use the Jaccard distance between clusters to 

combine clusters across datasets.  

Equation 3: Jaccard Distance 

Ὀ ὃȟὄ ρ  
ὃ᷊ὄ

ὃ ᷾ ὄ
 

The Jaccard distance can be quickly calculated with two accumulators and a final 

division; extremely fast relative to any of the other options presented here. This technique 

has an implicit assumption built in, however ï that distinct clusters that cover the same 

earth grid cell in multiple datasets are, in fact, the same cluster. This is in some sense akin 
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to the seasonality effect that can result from repeated application of the ECVQ technique. 

Quantification of this effect is left as a future research topic.   

4.1 Approximating the Wasserstein Distance  
 

Since calculation of the Wasserstein Distance is the performance bottleneck in my 

analysis of the cluster compressed AIRS data, it is natural to ask if that computation can 

be accelerated in any way, including perhaps by approximation. 

As indicated in section 2.3, [Rubner, Tomasi, Greibas 2000] showed that there is 

a lower bound on the distance between two distributions X and Y with mean X* and Y* -

- D(X,Y) Ó D(X*,Y*). If there is no need for a complete distance matrix (for example, in 

a serial aggregation of clusters that will terminate at a distance cutoff, or for image 

search) this could be a useful screen prior to calculation of the actual Wasserstein 

distance. If the full distance matrix is required, or the lower bound is insufficiently 

discriminatory then this doesnôt help.  

[Barbour, Xia 2006] showed a likely upper bound on the metric distance between 

two distributions is derived based on Poisson approximations of the distributions. The 

quality of the result is related to the quality of the fit of the Poisson distribution to the 

underlying data. [Horowitz, Karandikar 1994] showed an upper bound on the square of 

the Wasserstein distance assuming that the sets X and Y were drawn from i.i.d. 

distributions. These results are interesting but would require significant further 

refinement to apply to smaller empirically distributed datasets such as this.  
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[Shirdhonkar, Jacobs 2008] proposed  a wavelet transformation that allows 

estimation of the Earth Moverôs Distance to within a set of error bounds. Experimentally, 

these bounds are shown  to range from a factor of 4 to a factor of 10. This error range still 

allows the technique to be useful in the domain of image search but, in its current form, 

renders it ill-suited for approximating the needed distances in this research.  

[Kreitmeier 2011] showed the optimal compression error in an entropy sense is 

expressible in terms of the Wasserstein distance between the original and the compressed 

distribution. While interesting, this is not a useful result for this research.  

Recall our expression of the problem.  

Ὀὢȟὣ άὭὲ Ὠὴ  

ὴ ὴώ  ȟᶅ Ὦ ɴ ρȟά  

ὴ ὴὼ  ȟᶅ Ὥ ɴ ρȟὲ 

 ᶅὮ ɴ ρȟάȟᶅ Ὥ ɴ ρȟὲḊπ ὴ ρ 

Does knowledge of a minimum intra-set distance between members within earth 

grid cells X and  Y give any practical insight into the distances dij? If we calculated some 

strategically chosen set of inter-grid cell vector L2 Norm distances dij we could estimate 

upper and lower bounds on dij; however calculation of dij is highly parallelizable and 

relatively quick, and so we can have the actual result in similar time to what it would take 

to get upper and lower bounds on the value.  
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 Is there performance to be gained in the calculation of the dij themselves, by 

approximating dij by dij*  which ignores some number of dimensions of the vector means 

from the distance calculation? In theory, this would have a relatively small impact, as the 

square root of the sum of the squares of differences is more and more dominated by the 

execution of the square root function as the number of summand terms decreases. This 

will  also introduce a bias into the overall calculation, underestimating the true distance. It 

is possible that caching and other architectural effects could provide an unexpected 

performance boost for this technique, and so a simulation was performed. Starting from a 

18D  vector, vectors are removed from the distance calculation and performance and 

accuracy of the resultant distances relative to the full distance are computed. From Figure 

16: L2 Norm Calculation Times, it is apparent that the time to do the calculation is 

relatively insensitive to the number of dimensions used.  
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Figure 16: L2 Norm Calculation Times 
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Figure 17: L2 Norm Accuracy 
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Figure 17 above shows the fractional percent of the true value that reducing the 

dimensionality due to reducing the number of vector components used in computation of 

the L2 norm.   

Could we gain performance in the calculation of the summand terms Ὠὴ  by 

ordering X and Y w.r.t. the probability weights and dropping some of  the vectors with 

small weights?  This would deliver an estimate of D(X,Y) that would have some bias, 

and would  reduce the size of the systems that needed a linear solve, which will impact 

total compute times. 

Implementation would require pre-computed sorts, but that price could be paid 

once in the pre-processing of the data, when the complete intra-month distance matrix is 

computed. The question then is, does this have enough performance impact enough of the 

time to be worth introducing an approximation with a likely bias into the mix?  

In Figure 18, it is apparent that a consistently high bias is introduced via weight 

censoring. This computation was run on a sample of random data By removing vectors 

and reweighting to enable the linear programming routines to work,   probability weight 

has to ñmove furtherò on average. Performance-wise, Figure 19 shows that for larger 

numbers of vectors, there is some benefit to lightly trimming the tail of the distribution.  

Examination of the distributional data in Figure 20 reveals a relatively fat and flat 

tail beyond about 37 compression vector summaries. The performance graph in Figure 19 
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certainly suggests that there could be some small (factor 2-5) overall speedup available 

using this technique.   

It seems more likely that rather than censoring based on weights, which is by 

definition discarding some of the data in the production of the approximation, that using 

weighted K-means to further compress the number of vector representatives in the earth 

grid cell compressed data clusters to form a 20-cluster or 30-cluster summary directly to 

represent the earth grid cell for distance calculations might speed up the entire tail of the 

performance curve with potentially less impact to accuracy. This study is an interesting 

area for future research. The benefit of censoring seems small relative to the potential 

bias being introduced, and so this research did not pursue it further.  
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Figure 18: Impact of threshold censoring on distance metric 
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Figure 19:Performance inpact of weight censoring 
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Figure 20: Distribution of Compression Vectors 

 

 

 

Computationally, there is another question that should be asked ï can this 

calculation be done in single precision rather than double precision? On most computer 

architectures today this will double the effective throughput on both compute constrained 

and bandwidth constrained parts of the problem. Where it will not offer any improvement 

is in activities like pointer chasing, index calculations, and instruction decode & 

execution. By analogy with Amdahlôs Law, the maximum performance gain on offer is 

less than a factor of two. This would, however, still be attractive. Because of the lack of 

an optimized single precision linear transport solver library, this is an open topic for 

further research, and is mentioned here only for completeness.   
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4.2 Other scale reductions  
 

One simple way to reduce the size of the problem would be to replace many earth 

grid cells with some smaller number of representative cells ï in the case of this research, 

a singleton cell. This would not change the big-O order of the problem ï the number of 

cells in the distance matrix is still proportional to Nm, the number of earth grid cells with 

data in a given dataset -- but could drastically reduce the scale of the constant in front of 

Nm, with commensurate computational benefits. A number of techniques for creating 

representatives are documented in the literature, and their application to this problem is 

relatively straightforward, with a few caveats.  

The first issue is, of course, choosing which cells will be replaced with a smaller 

set of cells (or singleton cell). A logical choice is to use an existing clustering algorithm 

to choose clusters of similar cells to be removed as a set. Another would be to aggregate 

grid cells on a pre-determined spatial and temporal grid. An example of the first 

technique would be to use agglomerative clustering, and cut the tree at a level that gives a 

targeted number of clusters or distance between clusters. An example of the second 

approach would be to aggregate neighboring 5x5 degree spatial cells into 20x20 degree 

cells, or to directly to aggregate multiple datasets across the same 5x5 degree spatial cells 

via restarting ECVQ.  

Once a set of cells is selected, it remains to either select or construct a 

representative cell. If we choose to construct a representative cell, we must decide how 

many clusters it would contain, their weights, and the data vectors. One possible 

technique for this would be to apply ECQV again, at the cluster level. We could also 
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attempt to solve an optimization problem, on some measure of distance or entropy, to 

find a ñcenterò of the cluster.  

 I have chosen  to select an exemplar earth grid cell from the existing intra-month 

cluster members. The details of this technique are described in the following sections. 

4.2.1 Calculation of cluster representatives  
 

 Given that I wish to select exemplars from each intra-month cluster to represent 

that cluster at the next level of analysis, a method of choosing one or more grid cells from 

the cluster must be determined. A straightforward criterion  is to select the grid cell with 

the minimum total distance to all the other grid cells in the cluster. As the distance 

measure is a metric, this ensures that the selected grid cell will be ñclosestò to the 

distributional center of the cluster. Alternative approaches to selecting a representative 

earth grid cell could be devised, but this is computational tractable and fits well with my 

intended use of the representative.  

4.2.2 Adjustment to the local block distance matrix entries  
 

 A complication arises when using exemplars to restart clustering across multiple 

datasets. Consider the set of points in the figure below.  
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Figure 21 Sample Points in the X,Y plane 

  

 

 

The points 4 and 5 would be the representatives of two clusters, 1-2-3-4 and 5-6-7-8. 

Using Nearest Neighbor connections (ñsingleò clustering method in R) these two clusters 

are joined by 4-5, at an inter-cluster distance of 2. This is show in the clusterting 

dendrogram below.  

 

 

 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.4

-0.2

0.0

0.2

0.4

Sample Clustering Points

X

Y

1

2

3

4 5

6

7

8



 

52 
 

 
Figure 22 Nearest Neighbor Hierarchical Clustering 

 

 

 

If we use a clustering technique that uses a more complicated formula for the 

distance between two clusters (any form of weighted average of the distance between all 

the points in the clusters, for instance the R ñcompleteò clustering), then the distance 

between clusters 1-2-3-4 and 5-6-7-8 will be greater than 2. Indeed, in this example that 

distance is 3.6 .  

 The dendrogram below illustrates this.  

 

 

 

2

3 1 4

7

8 5 6

0.5

1.0

1.5

2.0

Cluster Dendrogram

hclust (*, "single")

distanceMatrix

H
ei

gh
t



 

53 
 

 
Figure 23 Complete Hierarchal Cluster 
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by adjusting the distance matrix to the threshold value used to determine the intra-month 

cutset.  

4.2.3 Overall impact and performance of the method  
 

 Timings with ever increasing numbers of clusters reveal something about the 

impact the method has on overall performance of the technique.  

 

 

 

 
Figure 24: Distance Matrix Calculation Times 
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a single monthôs dataset (a granule) is roughly (2200*2200/2)/82 seconds, or about 8 

hours. This would grow proportionate to the square of the number of datasets to be 

analyzed. Clearly, managing the number of grid cell representatives used is the most 

direct way to manage the time consumed by the analysis.  

Figure 25 illustrates the tradeoff between the cutoff values of D for the 

hierarchical clustering of sets of earth grid cells, the number of representatives, and the 

performance and speedup for a study consisting of 3 monthly datasets. The numerical 

scale is common but the units of each line are different.  

 

 

  

 

Figure 25: Performance tradeoffs by hierarchy cutoff value 
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 There are a number of ways to examine the stability of the clusterings produced 

by this method. One would be to look at the stability of the set of cluster representatives 

selected.  

 

Figure 26: Cluster Representative Stability 

  

 

 

 This chart shows the fraction of the cluster representatives at the first 

hierarchical cutoff level that are still representatives in the second set. If all the cluster 

representatives were the same, then the resultant clustering would also be the same. 

Having the sets of representatives be different, however,  is no guarantee that the final 
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 Visually, we can line the maps up in pairs for a time period and attempt to 

compare earth grid cell clustering outcomes   
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Figure 27: Clustering with D cutoff = 2.0 
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Figure 28: Clustering with Cutoff Threshold = 1.5 

 

 

 

A number of interesting changes are apparent, although at a broad level the 

patterns are similar. First, the cluster over the sea and some of the land of the US Pacific 

Northwest has changed its positioning in the coloring. Also, two of the cells on the 

southern edge (one on land, one at sea) have left the cluster. The large cluster off the west 

coast of South America has split in two, while two clusters over the headwaters of the 

Amazon basin have merged into one.  

We can also visualize the difference between two clusterings with a heatmap, 

generated by looking at which cluster each earth grid cell occupies under each clustering. 

A clustering comparison of the same 3-month sample dataset clustered at representative 
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cutoffs of d=1.0 and d=1.5, with 60 heirarchical clusters displayed, is below. The 

heatmap has entries where given clusters have earth grid cells in common under the two 

different clusterings. The actual cluster number is an artifact of the analysis although the 

strong diagonal nature of the plot shows that the general ordering of cluster formation is 

similar. If a cluster was completely stable across under the pair of clusterings, then there 

would be only one non-zero entry in a row-column set. Multiple entries indicate different 

cluster memberships under different representative clustering scenarios.   
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Figure 29: Cluster Stability Analysis,  Joint Distribution 

 

 

 

I conclude that the clusters are not completely stable under the technique as it 

stands; both numerical and visual evidence confirms this.  The general pattern of clusters 

is however close, and the geophysical data visualization tools highlighted in Section 6 
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provides evidence that the clusters produced by the method of representatives are 

supported by the data. Additional studies of the stability of the clustering results based on 

the representatives chosen would be an interesting topic for future research.  
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5. Displaying Multi -Dataset Clusters 

 

Given that I have clusters of earth grid cells from multiple months, the next step is 

to attempt to visualize those data clusters to help guide further analysis of the data. To 

that end I developed a number of techniques and graphics.  

Because of the complexity and quantity of the data being explored, techniques to 

automate coloring of sets of maps covering multiple time periods are discussed in Section 

5.3 Palettized Automated Coloring Algorithm. Stability of the resultant colorings in the 

face of small data changes is discussed in Section 5.3.5 Coloring Stability.   

Issues with focusing attention and change blindness led to the development of 

several focusing graphics, displaying one or a small number of clusters over multiple 

maps. This also allows the display and analysis of more clusters than my initial palette 

supports for a single map; it is also more cognitively accessible. The final techniques 

developed for small multiples of clusters are in Section 5.4.5 Multi-set Hierarchical Earth 

Grid Clusters. The ultimate product of the single cluster extents over time maps are 

discussed in Section 5.4.6 Single Set Hierarchical Earth Grid Clusters over Time.  

Following the existing literature, the demonstrated maps prior to Section 5.6 

Other Datasets cover only a single season. My techniques do allow more than three 

months to be included in a study, which I demonstrate in Section 5.6.  

Finally, in Section 5.7 Computational Complexity of the Method, I review the 

time required for the different phases involved in computing the initial clustering and the 

production of initial cluster maps.  
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5.1 Sets of maps over time  
 

Existing studies of the AIRS L3Q data predominantly focus on either a single data 

granule or pre-merge existing data granules into a single dataset which can then be 

geospatially visualized. In this research, the data from each existing data granule is 

preserved and presented for visualization, resulting in a natural ñmap per datasetò. In 

such a situation, showing cluster membership across time (separate images) presents 

challenges. Here we use consistency of color to indicate cluster membership ï the same 

color represents the same cluster across time.   

5.2 Map coloring strategies  
  

Commonly, cluster membership of spatial areas on a map is indicated by color. 

Random assignment of colors to clusters would, by definition carry minimal 

informational value beyond distinguishing clusters. Some method to assign colors is 

needed if we want to add additional information.  

Assignment of colors to clusters based on a value in the data (i.e. mean cluster 

temperature at sea level) against a scale of chosen colors is extremely common.  While 

this is simple, and quick, it generally requires a graduated scale to make any sort of sense 

ï which either limits the colors to a very small number or makes it challenging to 

discriminate between clusters which are near the same data values. This method does, 

however, have the advantage of visually presenting some information about the 

underlying clusters.    
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 Assignment by some meta-data associated to the data (i.e. number of cluster 

members or average latitude) against a scale of chosen colors is also simple. Unless 

cluster size is particularly scientifically interesting, however, this will likely add no 

comprehensibility to the map.  

 Hand coloring (direct manual assignment of colors to clusters) can produce maps 

that highlight certain areas of interest, provide good ability to discriminate between 

neighboring clusters, and can be related to the science of interest. This requires 

potentially multiple iterations and manual intervention to produce each map, which is 

time that could have been spent examining the clusters for scientific insight.  

  This research leverages existing expectations from topographic relief maps with a 

meta-data driven approach to automatically color cluster mappings using palettes that 

have proven discriminatory power. While perhaps not generating the same ease of insight 

that a well colored, manually generated set of maps would, by using similar heuristics to 

those chosen by topographical mapmakers the results appear to be reasonably useful. 

This could be considered a meta-data driven coloring, except that in this case distinct 

clusters with the same meta-data value on the coloring scale are not colored together. 

5.3 Palettized Automated  Coloring Algorithm  
 

The Palettized Automated Coloring Algorithm (PACA) was first described in [Carr, 

Ashley 2011] as the Initial Coloring Algorithm. The algorithm relies on:  

¶ multiple pre-chosen palettes of ordered colors,   
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¶ a meta-data driven function that maps cluster members to preferred palettes and 

preferred positions within those palettes,  

¶ an aggregation method for those preference mappings, and  

¶ an assignment procedure for mapping cluster aggregate preferences to colors.  

While the algorithm can be applied to any data driven investigation of clusters where 

more than one single pre-chosen palette would be useful, this research implements only 

the specialized case needed to provide automated coloring of the generated AIRS L3Q 

clusters.  

5.3.1 Palettes 
 

In this research, two palettes were selected ï Land and Sea. These two palettes 

were defined for two reasons:  

¶ climate science dynamics are different over large areas of water versus land and  

¶ these choices let us take advantage of likely prior user associations of colors.  

The second factor leverages the common topographical convention of using graduated 

blue colors for water depth, and greens and browns to color for some combination of 

height and aridity.  

A given cell has a preference for being colored using a color from the Land 

palette derived from the percentage of land data in the 5x5 grid cell. Cells near the poles 

that didnôt have data were arbitrarily assigned a preference for Land. While these 

preferences are stable over (non-geologic) time, the algorithm itself does not impose any 

requirement that the preference function not change over time.   
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5.3.2 Palette Colors  
 Multiple Colorbrewer monochromatic color sets were combined to produce the 

two palettes.  Sets of colors from Colorbrewer [Brewer 2002] are chosen to be easily 

distinguishable and take into account common colorblindnesses and printability. They 

have been developed to give equal perceptual steps between colors.  

The Sea palette uses reds, blues and purples to form a palette running from dark 

red to light red, then dark blue to light blue, then dark purple to light purple. This follows 

a familiar red->warm, blue->cold color mapping found in many environments (bathroom 

taps, for example) and also the blue->water mapping found in many topographic maps 

that include surface water features. 

The Land palette uses browns and greens to form a palette running from light 

brown to dark brown, then light green to dark green.  This will leverage a very common 

theme in topographic maps, using browns to denote arid land areas and greens to denote 

more fertile ones.  

Below, in Figure 30: Sea Palette, the SST data underlying the palette preference 

function is displayed in the palette colors ï this data is external to the AIRS L3Q dataset.  

The dataset used to form the basis for the palette preference function is derived from 

NOAA Optimum Interpolation Sea Surface Temperature V2 data products. 

NOAA_OI_SST_V2 data was provided by the NOAA/OAR/ESRL PSD, Boulder, 

Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/.   

In Figure 31: Land Palette, the Normalized Difference Vegetation Index (NDVI) 

data is colored using the land palette colors ï this dataset is also external to the AIRS 
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L3Q dataset.  It is derived from Moderate Resolution Imaging Spectroradiometer data on 

NASAôs Terra satellite. MODIS data is available at www.landcover.org.   

The only restriction from the method is that there be some way to map an earth 

grid cell to a preference for each palette and for a position on that palette. Note that some 

sea regions with islands and coastal regions will have preferences on both palettes. The 

methodology does not require that an individual cluster member have only a single 

preference. Mathematically, the preference function returns a palette preference vector, 

not a scalar.  

 

 

 

 

Figure 30: Sea Palette 

http://www.landcover.org/
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Figure 31: Land Palette 

 

 

 

5.3.3 Palette Position Preference  
 

The palette position preference function uses additional meta-data derived from 

geospatial cell location. Specifically, palette preference position for the Sea palette is 

derived from mean sea surface temperatures. Palette preference positions for the Land 

palette are derived from NDVI greenness index data. While in the research code the 

function used is not time varying (it is based on a particular month of SST and NDVI 

data) there is no reason this cannot be time varying. Nor, obviously, does the function 

need to be the same for different palettes ï  it is not in this case. It merely must be 

calculable for any cluster member and generate a preference for a ranking on each 

palette.  
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 Palette position preference is aggregated by taking the mean palette position 

preference of all the cluster members and rank ordering them. This rank ordering is then 

used with the ranked colors on the palettes to assign colors to clusters.  

5.3.4 Pseudo-code 
The actual R code to implement the algorithm described above takes a fair bit of 

space, but conceptually, the pseudo-code is straightforward.  

 
# Aggregate the individual cluster member preferences to form cluster preferences 
FOR EACH cluster  
 FOR EACH member  
  Calculate the palette and position preferences for the member 
  Aggregate that to the cluster    
# Assign clusters to palettes 
# Number of clusters == total number of palette colors 
landPaletteAssignment = LIST of length landPalColors with empty elements 
seaPaletteAssignement = LIST of length seaPalColors with empty elements 
 
landOrder   = LIST of all clusters sorted by landPalPref 
seaOrder   = LIST of all clusters sorted by seaPalPref 
 
WHILE NOT DONE 
 Alternate current palette for assignment 
 IF current palette is not full 
  Assign next unassigned cluster from current order to that palette 
 
landPalettePrefOrder = list clusters in landPaletteAssignment 

 sorted by land palette position preference 
seaPalettePrefOrder = list clusters in seaPaletteAssignment 

 sorted by sea palette position preference 
 
Assign colors to clusters in PalettePrefOrder 

 

To extend the algorithm to any arbitrary number of palettes, assume an array of 

lists of PaletteAssignments, PaletteOrders, and PalettePrefOrders.  Then instead of 

alternating the current preference advance it, and treat the array as a ring buffer.   
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Other assignment algorithms are certainly possible; comparing the colorings from 

different assignment algorithms would make an interesting future study.  

  

5.3.5 Coloring Stability  
By the nature of the algorithm, changing the number of colors available or 

changing the number of clusters being studied can change the assigned coloring. In the 

following examples, the underlying data is the same for both sets of maps; the only 

difference is the number of target clusters being studied is 32 for the maps on the left and 

31 for the maps on the right. The study set is three months of data from Dec 2004 to Feb 

2005.  

Because the only difference in the two studies is the number of target clusters, 

effectively, the only underlying difference in the two clusterings is that in the second 

study, two of the clusters from the first study are combined into a single cluster. This is 

due to the nature of the hierarchical clustering. This means that 30 of the 31 clusters in 

the second study are identical to the clusters in the first study.  
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Figure 32: 32 Colors, Left; 31 Colors, Right 

 

 

 

 

 

In the figure above, while the colorings across northern Europe and Russia appear 

to be the same in both studies, the area off the west coast of South America highlights the 

difference in coloring caused by clusters changing relative position in the palette 

preference and palette position preference rankings.  

5.4 Multi -Dataset Examples 
The basis for all these maps is a data structure that defines a layer per dataset, 

indexed by latitude and longitude 5
o
x5

o
 grid cell numbers.  In a nod to the related work 

referenced in Section 3, a variety of studies were conducted on ñWinterò datasets.  I will 

refer to the set of data {December 2002, January 2003, February 2003} as Winter 2002 
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data. Unlike  [Zhou, Shi 2011], who study the single month December 2002, here we 

analyze and visualize data from all of Winter 2002.  

 Unlike [Braverman et al, 2012b], who combine datasets into a single 

dataset before visualization and study, I maintain each month as a separate and 

analyzable component of the overall seasonal structure.  

5.4.1 Full Data All Clusters  
 The following three images show the output of the initial color algorithm applied 

to the Winter 2002 data after processing. The process parameters set a representative 

cutoff threshold of 3, producing 148 representative clusters.  The analysis and initial 

mapping required about 83 seconds of elapsed time on a Intel Core i7 laptop with 4 cores 

at 2.7GHz, and having 8GB of RAM. More detail on the timings is found later in 5.6 

Other Datasets. 

 There are a number of differences with the images in the related work. The most 

obvious is that there are three maps, each with 5
o
 detail. The colored cells are not filled 

completely with squares, but rather with circles, which, if they are adjacent to another 

cell in the same cluster, are connected by line segments as well. Background in squares is 

lighter for primarily land grid cells and darker for water.  
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Cluster Map Dec 2002
Based on NASA AIRS L3Q Datasets
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Cluster Map Jan 2003
Based on NASA AIRS L3Q Datasets
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Figure 33:Dec 02 , Jan 03, Feb 03 ( 143 Reps, 32 Colors ) 

 

 

 

 

Further, as in [Carr, Braverman 2007] the data is clustered in the 18 dimensional 

principal components space, with assigned colors per cluster, rather than being colored on 

a single numeric scale associated with the value of one dimension from a multi-

dimensional scaling of either the physical [Zhou, Shi 2011] or principal components 

space [Braverman et al, 2012b].  

 It also depends on how much data is being examined, across what 

boundaries. Is Winter the right timeframe, or is the process more complex than that? For 

example, seasonal summaries would miss similarities between Northern Hemisphere 
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temperate spring patterns and Southern Hemisphere temperate spring patterns, as they 

would have been converted into a Spring and a Fall dataset (assuming a researcher with a 

Northern Hemisphere bias).  Examining the more granular monthly data would allow 

those patterns to be revealed.  

  

5.4.2 Full Data with Focus Clusters  
 

Selection of certain clusters for additional focus (and making them stand out more 

easily across images) could be accomplished many ways. In this research, expanding the 

size of the colored dots for in-focus items and reducing the size of the dots for out of 

focus items was selected. Other choices are, of course, possible. In the following single 

image from the Winter 2002 study case, a swath of four clusters taken vertically through 

North America east of the Rocky Mountains and due south just over the border into 

Mexico is selected. Each of these four cells is in a separate cluster.  
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Figure 34: Winter 2002 Study, Dec 2002 Data with Focus Clusters 

 

 

 

These focused data clusters are also highlighted in the other two months at the 

same time, as would be expected.   

5.4.3 Full Data Single Cluster over Time  
 

A cluster of grid cells corresponds to distribution of multivariate multi-altitude 

atmospheric descriptors.  The purpose of clustering earth grid cells over time is to show 

the shifting in location and extent of such relatively stable atmospheric distributions.  The 

shifting of extents means that the distribution can disappear and possibly re-emerge later.    

Focusing attention on a single cluster (distribution ) over  time helps us to see the shifts in 

spatial location and temporal extent  
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Figure 35: Winter 2002, Cluster 7 

 

 

 

.   This can be represented using animation or  juxtaposed views, but both  

approaches have their deficiencies [Ware 2013] .  While we can see changes in animation 

where our eyes are focused and changes can draw our attention,  we cannot 

Cluster 7

Dec 2002

This Map Count:  181

Jan 2003

This Map Count:  87

Feb 2003

This Map Count:  121
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simultaneously focus on and think about multiple location in a map.  Further grid cells 

that remain a part of  the same cluster over time may draw no attention and not be 

noticed.   With animation, out of sight is quickly out of mind.  New images fill our 

retinas.  

Juxtaposed views provide time to observe and think but suffer from the problem 

of change blindness.  When our eyes move in rapid motions called saccades from one 

focal point to another we are effectively blind.   Our visual change detectors are at rest.  

We only retain a little area of focal attention in mind long enough to make comparisons 

between corresponding location in two juxtaposed maps.  Detailed comparison of 

juxtaposed images requires back and forth scrutiny of small areas.   

 

 

 

  

 
Figure 36: Winter 2002, Multiple Clusters 
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Figure 35 shows just one cluster to remove the distraction of other clusters.  We quickly 

notice rough similarities over the three months, but detailed comparison is difficult.   

Figure 36 juxtaposes three month plots for Clusters 7 and 9.   It seems the groups 

of grid cells for the two clusters are contiguous for the same month, but detailed 

assessment is difficult.  If we want to know where the clusters are and are not contiguous, 

it is better to superpose clusters in the same plots.. 

5.4.4 Masked Data 
 

Given a limited number of colors, and the possibility of larger and larger datasets,  

I wanted a way to leverage the technique to allow more focus on individual areas and use 

the colorings to provide greater detail to an area of interest.  

 

I employ a mask to do this, where only clusters having at least one cell in the 

region defined by the mask are allowed to occupy a palette.  This allows me to define 

study regions such as the zone from 30
o
S to 30

o
N. 

 

 

 



 

80 
 

 
Figure 37: December 2002 30

o
S to 30

o
N 

 

 

 

Because I include cells outside the study area that are members of the clusters 

within the study area, the edge of the study area is not a hard boundary. I chose this 

approach as it seemed like seeing all cells similar to the cells in the study area would be 

more valuable than not knowing which if any other earth grid cells are included in the 

clusters of interest.   

5.4.5 Multi -set Hierarchical Earth Grid Clusters  
  

One potential objection to the overall cluster maps over time produced by the 

PACA is that there are too many different clusters shown on the same set of maps, 

leading to an overwhelming amount of information on the graphics. Also, being forced to 
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display all the clusters in a single graphic implies that the total number of clusters in the 

study cannot exceed the number of clusters in the palettes being used for coloring.  

 The multi-set charts below address both these concerns. They display a small 

number of hierarchical clusters over time using multiple maps. They use an altered 

version of the Palettized Automated Coloring Algorithm locally, on a reduced color 

palette. This does allow the overall dataset to be broken into any arbitrary number of 

hierarchical clusters; overall display of the study set simply requires multiple multi-set 

maps.  

 The PACA was altered as in this case, I always expect to have as many palette 

positions for both the land and sea palettes as there are clusters. So, instead of 

alternatively taking the cluster with the greatest preference for each palette until all 

palette positions are filled or I run out of clusters, I allow the clusters to take a position on 

whichever palette they most prefer.  

 The graphic below shows multiple clusters, any small subset can be displayed.  
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Figure 38: (Small) Multiple Clusters over Time 

5.4.6 Single Set Hierarchical Earth Grid Clusters over Time  
 

This graphic helps visualize the evolution of a single hierarchical cluster over 

time. Each pane of the map corresponds to a different underlying dataset. In each pane, 

the union of earth grid cells that ever are members of the cluster are outlined in light 

Tropical Clusters 15,17,20,21,23

Dec 2002

This map count = 502

Jan 2003

This map count = 476

Feb 2003

This map count = 532
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green; those that are always part of the cluster are filled in dark green, and those that are 

members in that dataset but not all the datasets are colored medium green.  

 Effectively, the union of the earth grid cells can be thought of as a high water 

mark for the clusterôs geographical extent. Using a different outline for various extents 

through time is a common technique for historical maps and I use the outlines to similar 

effect. There will always be at least one cell in the high water mark, and the number of 

cells with outlines will be the same in all panes, although currently ñactiveò cells in the 

cluster will over plot the outlines.  

The cells that are always members of the cluster footprint, should there be any, 

can be thought of as the invariant core of the cluster geographically.   They are repeated 

in every pane, and cannot be overplotted.  

Finally, any cells beyond the invariant core are shown in the medium green. 

These will change, pane by pane. Also, by definition, any cell that appears in solid 

medium green will not be part of the cluster in some dataset (or it would be a part of the 

invariant core of the cluster).  

These features make the changes over time more apparent. Given that the high 

water marks would overlap, the technique is difficult to extend to multiple clusters unless 

the outline for the high water marks of the two clusters was changed to some sort of 

striped fill. A convention for overlaying high water marks and current cluster members 

would need to be established as well.  

I then extended  the technique  by using  two colors for the high water mark ï one 

for cells which, relative to the current pane, were part of the cluster in the past and one 
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for cells which, relative to the current pane, are going to be part of the cluster in the 

future. Red for the past and blue for the future seemed sensible, in effect a ñDopplerò 

palette, with items receding from the current point of view colored red, and those coming 

towards the current point of view being blue. Additional graphical enhancements were 

also incorporated ( Figure 39: The Final Single Set over Time Maps).    
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Figure 39: The Final Single Set over Time Maps 

 

 

5.5 Study Areas with reduced coloring  
 

Certainly, some study areas may not benefit from using the full palette Iôve 

defined of 32 colors. It is possible to reduce the number of colors being used which 

Set over Time Cluster 20
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2005

All Maps Current Map Future Maps Past Maps
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simply reduces the number of clusters shown. This can be combined with the masking 

features above to produce analysis of smaller areas.  

 

 

 

 
Figure 40:Winter 2012, North America Study Area, 6 Colors 

 

 

 

Figure 40, above, was generated using a study area covering North America from 

southern Canada to the Caribbean from Dec 2002-Feb 2002. The hierarchical cluster tree 

was cut in such a way that over the three months in the study, six clusters covered the 

study area. Every cell in any of those clusters, including those cells outside the area of 

study, were colored. With so few clusters, strong latitudinal banding is evident. We can 
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see that rainforested and monsoon areas in South America, sub-Saharan Africa, and the 

islands of Southeast Asia have no analogues in the North America study region. 

Likewise, large areas of the Arctic and the steppes of Asia have no high level analogues.  

5.6 Other Datasets 
 

The methods outlined in this research are not limited to a single season. An 

analysis performed on the entire calendar year 2010, for instance, using a cutoff threshold 

of 3, generated 630 cluster representatives. The elapsed time to calculate the distance 

matrix was 1320.88 seconds (just over 20 minutes). The PACA was used to generate a 32 

color map over the entire 12 months.  
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