Experimental Validations of the Learnable Evolution Model

dc.contributor.authorCervone, Guido
dc.contributor.authorKaufman, Kenneth A.
dc.contributor.authorMichalski, Ryszard S.
dc.date.accessioned2006-11-03T18:17:06Z
dc.date.available2006-11-03T18:17:06Z
dc.date.issued2000-07
dc.description.abstractA recently developed approach to evolutionary computation, called Learnable Evolution Model or LEM, employs machine learning to guide processes of generating new populations. The central new idea of LEM is that it generates new individuals by processes of hypothesis generation and instantiation, rather than by mutation and/or recombination, as in conventional evolutionary computation methods. The hypotheses are generated by a machine learning program from examples of high and low performance individuals. When applied to problems of function optimization and parameter estimation for nonlinear filters, LEM significantly outperformed the evolutionary computation algorithms used in experiments, sometimes achieving two or more orders of magnitude of evolution speed-up in terms of the number of generations (or births). An application of LEM to the problem of optimizing heat exchangers has produced designs equal to or exceeding the best human designs.
dc.format.extent1916 bytes
dc.format.extent834632 bytes
dc.format.extent260991 bytes
dc.format.mimetypetext/xml
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.identifier.citationCervone, G., Kaufman, K. and Michalski, R. S., "Experimental Validations of the Learnable Evolution Model," 2000 Congress on Evolutionary Computation, San Diego CA, pp 1064-1071, July 2000.
dc.identifier.urihttps://hdl.handle.net/1920/1467
dc.language.isoen_US
dc.relation.ispartofseriesP 00-9
dc.titleExperimental Validations of the Learnable Evolution Model
dc.typePresentation

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
00-09.ps
Size:
815.07 KB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
00-09.pdf
Size:
254.87 KB
Format:
Adobe Portable Document Format