Attempted Prediction of Emotional Valence from EEG Using Multidimensional Directed Information
Date
Authors
Clayton A Baker
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Quantitative measurement of a person’s emotional state can aid performance in a number of areas, such as human-machine interactions, and psychological research. Electroencephalogram (EEG) data has shown potential as a predictor of emotional valence based on asymmetric activation patterns between the left and right hemispheres of the prefrontal cortex. Multidimensional directed information (MDI) is a computational tool that allows the measurement of information content transferred between different signals in a connected system, and has previously seen applications in EEG-based affective measurement in order to detect the presence of an emotional response. This study aimed to use MDI with EEG data from published datasets in order to derive a directional bias metric as a predictor for emotional valence based on frontal hemisphere asymmetry. Two methods of MDI computation were attempted; significant differences were observed in results between the two, suggesting possible errors in implementation. Neither method yielded output correlating with valence.
Description
Keywords
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States