Scalable Role & Organization Based Access Control and Its Administration

dc.contributor.authorZhang, Zhixiong
dc.creatorZhang, Zhixiong
dc.date2008-04-29
dc.date.accessioned2008-06-27T16:51:44Z
dc.date.availableNO_RESTRICTION
dc.date.available2008-06-27T16:51:44Z
dc.date.issued2008-06-27T16:51:44Z
dc.description.abstractIn Role Based Access Control (RBAC), roles are typically created based on job functions inside an organization. Traditional RBAC does not scale up well for modeling security policies spanning multiple organizations. To solve this problem, a family of extended RBAC models called Role and Organization Based Access Control (ROBAC) models and its administrative models are proposed and formalized in this dissertation. Two examples are used to motivate and demonstrate the usefulness of ROBAC. Comparison between ROBAC and other RBAC extensions are given. I show that ROBAC can significantly reduce the administrative complexities of applications involving a large number of similar organizational units. The applicability and expressive power of ROBAC are discussed. By showing that any given ROBAC model can be modeled by a RBAC model and vice versa, I prove that the expressive power of ROBAC is equal to that of traditional RBAC. A comprehensive role and organization based administrative model called AROBAC07 is developed. It has five sub-models dealing with various administrative tasks in ROBAC. I show that the AROBAC07 model provides an intuitive and controlled way to decentralize administrative tasks in ROBAC based systems. A concept called application compartment (ACom) in ROBAC is introduced and its usage in ROBAC is discussed. AROBAC07 scales up very well for ROBAC based systems involving many organizational units. Two ROBAC variants, manifold ROBAC (ROBAC) and pseudo ROBAC (ROBAC), are presented and formalized. Their corresponding administrative models are also proposed. The usefulness of manifold ROBAC is demonstrated in secure collaboration via a ROBAC based secure collaboration schema which avoids many problems resulted from role-mapping, role-translation, or role exporting. The usefulness of pseudo ROBAC is demonstrated in a web based on-demand movie service case study.
dc.identifier.urihttps://hdl.handle.net/1920/3110
dc.language.isoen_US
dc.subjectRBAC
dc.subjectROBAC
dc.subjectAdministrative ROBAC
dc.subjectRole Based
dc.subjectAccess control
dc.titleScalable Role & Organization Based Access Control and Its Administration
dc.typeDissertation
thesis.degree.disciplineInformation Technology
thesis.degree.grantorGeorge Mason University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy in Information Technology

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhang_Zhixiong.pdf
Size:
626.92 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.72 KB
Format:
Item-specific license agreed upon to submission
Description: